Modular forms¶
One of SageMath’s computational specialities is (the very technical field of) modular forms and can do a lot more than is even suggested in this very brief introduction.
Cusp forms¶
How do you compute the dimension of a space of cusp forms using Sage?
To compute the dimension of the space of cusp forms for Gamma use
the command dimension_cusp_forms
. Here is an example from
section “Modular forms” in the Tutorial:
sage: from sage.modular.dims import dimension_cusp_forms
sage: dimension_cusp_forms(Gamma0(11),2)
1
sage: dimension_cusp_forms(Gamma0(1),12)
1
sage: dimension_cusp_forms(Gamma1(389),2)
6112
>>> from sage.all import *
>>> from sage.modular.dims import dimension_cusp_forms
>>> dimension_cusp_forms(Gamma0(Integer(11)),Integer(2))
1
>>> dimension_cusp_forms(Gamma0(Integer(1)),Integer(12))
1
>>> dimension_cusp_forms(Gamma1(Integer(389)),Integer(2))
6112
from sage.modular.dims import dimension_cusp_forms dimension_cusp_forms(Gamma0(11),2) dimension_cusp_forms(Gamma0(1),12) dimension_cusp_forms(Gamma1(389),2)
Related commands: dimension_new__cusp_forms_gamma0
(for
dimensions of newforms), dimension_modular_forms
(for modular
forms), and dimension_eis
(for Eisenstein series). The syntax is
similar - see the Reference Manual for examples.
Coset representatives¶
The explicit representation of fundamental domains of arithmetic quotients \(H/\Gamma\) can be determined from the cosets of \(\Gamma\) in \(SL_2(\ZZ)\). How are these cosets computed in Sage?
Here is an example of computing the coset representatives of \(SL_2(\ZZ)/\Gamma_0(11)\):
sage: G = Gamma0(11); G
Congruence Subgroup Gamma0(11)
sage: list(G.coset_reps())
[
[1 0] [ 0 -1] [1 0] [ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1]
[0 1], [ 1 0], [1 1], [ 1 2], [ 1 3], [ 1 4], [ 1 5], [ 1 6],
[ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1]
[ 1 7], [ 1 8], [ 1 9], [ 1 10]
]
>>> from sage.all import *
>>> G = Gamma0(Integer(11)); G
Congruence Subgroup Gamma0(11)
>>> list(G.coset_reps())
[
[1 0] [ 0 -1] [1 0] [ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1]
[0 1], [ 1 0], [1 1], [ 1 2], [ 1 3], [ 1 4], [ 1 5], [ 1 6],
<BLANKLINE>
[ 0 -1] [ 0 -1] [ 0 -1] [ 0 -1]
[ 1 7], [ 1 8], [ 1 9], [ 1 10]
]
G = Gamma0(11); G list(G.coset_reps())
Modular symbols and Hecke operators¶
Next we illustrate computation of Hecke operators on a space of modular symbols of level 1 and weight 12.
sage: M = ModularSymbols(1,12)
sage: M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
sage: t2 = M.T(2)
sage: f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
sage: factor(f)
(x - 2049) * (x + 24)^2
sage: M.T(11).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
>>> from sage.all import *
>>> M = ModularSymbols(Integer(1),Integer(12))
>>> M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
>>> t2 = M.T(Integer(2))
>>> f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
>>> factor(f)
(x - 2049) * (x + 24)^2
>>> M.T(Integer(11)).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
M = ModularSymbols(1,12) M.basis() t2 = M.T(2) f = t2.charpoly('x'); f factor(f) M.T(11).charpoly('x').factor()
Here t2
represents the Hecke operator \(T_2\) on the space
of Full Modular Symbols for \(\Gamma_0(1)\) of weight
\(12\) with sign \(0\) and dimension \(3\) over
\(\QQ\).
sage: M = ModularSymbols(Gamma1(6),3,sign=0)
sage: M
Modular Symbols space of dimension 4 for Gamma_1(6) of weight 3 with sign 0
over Rational Field
sage: M.basis()
([X,(0,5)], [X,(3,5)], [X,(4,5)], [X,(5,5)])
sage: M._compute_hecke_matrix_prime(2).charpoly()
x^4 - 17*x^2 + 16
sage: M.integral_structure()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
>>> from sage.all import *
>>> M = ModularSymbols(Gamma1(Integer(6)),Integer(3),sign=Integer(0))
>>> M
Modular Symbols space of dimension 4 for Gamma_1(6) of weight 3 with sign 0
over Rational Field
>>> M.basis()
([X,(0,5)], [X,(3,5)], [X,(4,5)], [X,(5,5)])
>>> M._compute_hecke_matrix_prime(Integer(2)).charpoly()
x^4 - 17*x^2 + 16
>>> M.integral_structure()
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
M = ModularSymbols(Gamma1(6),3,sign=0) M M.basis() M._compute_hecke_matrix_prime(2).charpoly() M.integral_structure()
See the section on modular forms in the Tutorial or the Reference Manual for more examples.
Genus formulas¶
Sage can compute the genus of \(X_0(N)\), \(X_1(N)\), and related curves. Here are some examples of the syntax:
sage: from sage.modular.dims import dimension_cusp_forms
sage: dimension_cusp_forms(Gamma0(22))
2
sage: dimension_cusp_forms(Gamma0(30))
3
sage: dimension_cusp_forms(Gamma1(30))
9
>>> from sage.all import *
>>> from sage.modular.dims import dimension_cusp_forms
>>> dimension_cusp_forms(Gamma0(Integer(22)))
2
>>> dimension_cusp_forms(Gamma0(Integer(30)))
3
>>> dimension_cusp_forms(Gamma1(Integer(30)))
9
from sage.modular.dims import dimension_cusp_forms dimension_cusp_forms(Gamma0(22)) dimension_cusp_forms(Gamma0(30)) dimension_cusp_forms(Gamma1(30))
See the code for computing dimensions of spaces of modular forms
(in sage/modular/dims.py
) or the paper by Oesterlé and Cohen {CO}
for some details.