Asymptotic Expansions — Miscellaneous¶
AUTHORS:
Daniel Krenn (2015)
ACKNOWLEDGEMENT:
Benjamin Hackl, Clemens Heuberger and Daniel Krenn are supported by the Austrian Science Fund (FWF): P 24644-N26.
Benjamin Hackl is supported by the Google Summer of Code 2015.
Functions, Classes and Methods¶
- class sage.rings.asymptotic.misc.Locals[source]¶
Bases:
dict
A frozen dictionary-like class for storing locals of an
AsymptoticRing
.EXAMPLES:
sage: from sage.rings.asymptotic.misc import Locals sage: locals = Locals({'a': 42}) sage: locals['a'] 42
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import Locals >>> locals = Locals({'a': Integer(42)}) >>> locals['a'] 42
from sage.rings.asymptotic.misc import Locals locals = Locals({'a': 42}) locals['a']
The object contains default values (see
default_locals()
) for some keys:sage: locals['log'] <function log at 0x...>
>>> from sage.all import * >>> locals['log'] <function log at 0x...>
locals['log']
- default_locals()[source]¶
Return the default locals used in the
AsymptoticRing
.OUTPUT: a dictionary
EXAMPLES:
sage: from sage.rings.asymptotic.misc import Locals sage: locals = Locals({'a': 2, 'b': 1}) sage: locals {'a': 2, 'b': 1} sage: locals.default_locals() {'log': <function log at 0x...>} sage: locals['log'] <function log at 0x...>
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import Locals >>> locals = Locals({'a': Integer(2), 'b': Integer(1)}) >>> locals {'a': 2, 'b': 1} >>> locals.default_locals() {'log': <function log at 0x...>} >>> locals['log'] <function log at 0x...>
from sage.rings.asymptotic.misc import Locals locals = Locals({'a': 2, 'b': 1}) locals locals.default_locals() locals['log']
- exception sage.rings.asymptotic.misc.NotImplementedBZero(asymptotic_ring=None, var=None, exact_part=0)[source]¶
Bases:
NotImplementedError
A special NotImplementedError which is raised when the result is B(0) which means 0 for sufficiently large values of the variable.
- exception sage.rings.asymptotic.misc.NotImplementedOZero(asymptotic_ring=None, var=None, exact_part=0)[source]¶
Bases:
NotImplementedError
A special NotImplementedError which is raised when the result is O(0) which means 0 for sufficiently large values of the variable.
- class sage.rings.asymptotic.misc.WithLocals[source]¶
Bases:
SageObject
A class extensions for handling local values; see also
Locals
.This is used in the
AsymptoticRing
.EXAMPLES:
sage: A.<n> = AsymptoticRing('n^ZZ', QQ, locals={'a': 42}) sage: A.locals() {'a': 42}
>>> from sage.all import * >>> A = AsymptoticRing('n^ZZ', QQ, locals={'a': Integer(42)}, names=('n',)); (n,) = A._first_ngens(1) >>> A.locals() {'a': 42}
A.<n> = AsymptoticRing('n^ZZ', QQ, locals={'a': 42}) A.locals()
- locals(locals=None)[source]¶
Return the actual
Locals
object to be used.INPUT:
locals
– an objectIf
locals
is notNone
, then aLocals
object is created and returned. Iflocals
isNone
, then a storedLocals
object, if any, is returned. Otherwise, an empty (i.e. no values except the default values)Locals
object is created and returned.
OUTPUT: a
Locals
object
- sage.rings.asymptotic.misc.bidirectional_merge_overlapping(A, B, key=None)[source]¶
Merge the two overlapping tuples/lists.
INPUT:
A
– list or tuple (type has to coincide with type ofB
)B
– list or tuple (type has to coincide with type ofA
)key
– (default:None
) a function. IfNone
, then the identity is used. Thiskey
-function applied on an element of the list/tuple is used for comparison. Thus elements with the same key are considered as equal.
OUTPUT:
A pair of lists or tuples (depending on the type of
A
andB
).Note
Suppose we can decompose the list \(A=ac\) and \(B=cb\) with lists \(a\), \(b\), \(c\), where \(c\) is nonempty. Then
bidirectional_merge_overlapping()
returns the pair \((acb, acb)\).Suppose a
key
-function is specified and \(A=ac_A\) and \(B=c_Bb\), where the list of keys of the elements of \(c_A\) equals the list of keys of the elements of \(c_B\). Thenbidirectional_merge_overlapping()
returns the pair \((ac_Ab, ac_Bb)\).After unsuccessfully merging \(A=ac\) and \(B=cb\), a merge of \(A=ca\) and \(B=bc\) is tried.
- sage.rings.asymptotic.misc.bidirectional_merge_sorted(A, B, key=None)[source]¶
Merge the two tuples/lists, keeping the orders provided by them.
INPUT:
A
– list or tuple (type has to coincide with type ofB
)B
– list or tuple (type has to coincide with type ofA
)key
– (default:None
) a function. IfNone
, then the identity is used. Thiskey
-function applied on an element of the list/tuple is used for comparison. Thus elements with the same key are considered as equal.
Note
The two tuples/list need to overlap, i.e. need at least one key in common.
OUTPUT:
A pair of lists containing all elements totally ordered. (The first component uses
A
as a merge base, the second componentB
.)If merging fails, then a RuntimeError is raised.
- sage.rings.asymptotic.misc.combine_exceptions(e, *f)[source]¶
Helper function which combines the messages of the given exceptions.
INPUT:
e
– an exception*f
– exceptions
OUTPUT: an exception
EXAMPLES:
sage: from sage.rings.asymptotic.misc import combine_exceptions sage: raise combine_exceptions(ValueError('Outer.'), TypeError('Inner.')) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Inner. sage: raise combine_exceptions(ValueError('Outer.'), ....: TypeError('Inner1.'), TypeError('Inner2.')) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Inner1. > *and* TypeError: Inner2. sage: raise combine_exceptions(ValueError('Outer.'), ....: combine_exceptions(TypeError('Middle.'), ....: TypeError('Inner.'))) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Middle. >> *previous* TypeError: Inner.
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import combine_exceptions >>> raise combine_exceptions(ValueError('Outer.'), TypeError('Inner.')) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Inner. >>> raise combine_exceptions(ValueError('Outer.'), ... TypeError('Inner1.'), TypeError('Inner2.')) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Inner1. > *and* TypeError: Inner2. >>> raise combine_exceptions(ValueError('Outer.'), ... combine_exceptions(TypeError('Middle.'), ... TypeError('Inner.'))) Traceback (most recent call last): ... ValueError: Outer. > *previous* TypeError: Middle. >> *previous* TypeError: Inner.
from sage.rings.asymptotic.misc import combine_exceptions raise combine_exceptions(ValueError('Outer.'), TypeError('Inner.')) raise combine_exceptions(ValueError('Outer.'), TypeError('Inner1.'), TypeError('Inner2.')) raise combine_exceptions(ValueError('Outer.'), combine_exceptions(TypeError('Middle.'), TypeError('Inner.')))
- sage.rings.asymptotic.misc.log_string(element, base=None)[source]¶
Return a representation of the log of the given element to the given base.
INPUT:
element
– an objectbase
– an object orNone
OUTPUT: string
EXAMPLES:
sage: from sage.rings.asymptotic.misc import log_string sage: log_string(3) 'log(3)' sage: log_string(3, base=42) 'log(3, base=42)'
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import log_string >>> log_string(Integer(3)) 'log(3)' >>> log_string(Integer(3), base=Integer(42)) 'log(3, base=42)'
from sage.rings.asymptotic.misc import log_string log_string(3) log_string(3, base=42)
- sage.rings.asymptotic.misc.parent_to_repr_short(P)[source]¶
Helper method which generates a short(er) representation string out of a parent.
INPUT:
P
– a parent
OUTPUT: string
EXAMPLES:
sage: from sage.rings.asymptotic.misc import parent_to_repr_short sage: parent_to_repr_short(ZZ) 'ZZ' sage: parent_to_repr_short(QQ) 'QQ' sage: parent_to_repr_short(SR) 'SR' sage: parent_to_repr_short(RR) 'RR' sage: parent_to_repr_short(CC) 'CC' sage: parent_to_repr_short(ZZ['x']) 'ZZ[x]' sage: parent_to_repr_short(QQ['d, k']) 'QQ[d, k]' sage: parent_to_repr_short(QQ['e']) 'QQ[e]' sage: parent_to_repr_short(SR[['a, r']]) 'SR[[a, r]]' sage: parent_to_repr_short(Zmod(3)) 'Ring of integers modulo 3' sage: parent_to_repr_short(Zmod(3)['g']) 'Univariate Polynomial Ring in g over Ring of integers modulo 3'
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import parent_to_repr_short >>> parent_to_repr_short(ZZ) 'ZZ' >>> parent_to_repr_short(QQ) 'QQ' >>> parent_to_repr_short(SR) 'SR' >>> parent_to_repr_short(RR) 'RR' >>> parent_to_repr_short(CC) 'CC' >>> parent_to_repr_short(ZZ['x']) 'ZZ[x]' >>> parent_to_repr_short(QQ['d, k']) 'QQ[d, k]' >>> parent_to_repr_short(QQ['e']) 'QQ[e]' >>> parent_to_repr_short(SR[['a, r']]) 'SR[[a, r]]' >>> parent_to_repr_short(Zmod(Integer(3))) 'Ring of integers modulo 3' >>> parent_to_repr_short(Zmod(Integer(3))['g']) 'Univariate Polynomial Ring in g over Ring of integers modulo 3'
from sage.rings.asymptotic.misc import parent_to_repr_short parent_to_repr_short(ZZ) parent_to_repr_short(QQ) parent_to_repr_short(SR) parent_to_repr_short(RR) parent_to_repr_short(CC) parent_to_repr_short(ZZ['x']) parent_to_repr_short(QQ['d, k']) parent_to_repr_short(QQ['e']) parent_to_repr_short(SR[['a, r']]) parent_to_repr_short(Zmod(3)) parent_to_repr_short(Zmod(3)['g'])
- sage.rings.asymptotic.misc.repr_op(left, op, right=None, latex=False)[source]¶
Create a string
left op right
with taking care of parentheses in its operands.INPUT:
left
– an elementop
– stringright
– an elementlatex
– boolean (default:False
); if set, then LaTeX-output is returned
OUTPUT: string
EXAMPLES:
sage: from sage.rings.asymptotic.misc import repr_op sage: repr_op('a^b', '^', 'c') '(a^b)^c'
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import repr_op >>> repr_op('a^b', '^', 'c') '(a^b)^c'
from sage.rings.asymptotic.misc import repr_op repr_op('a^b', '^', 'c')
- sage.rings.asymptotic.misc.repr_short_to_parent(s)[source]¶
Helper method for the growth group factory, which converts a short representation string to a parent.
INPUT:
s
– string; short representation of a parent
OUTPUT: a parent
The possible short representations are shown in the examples below.
EXAMPLES:
sage: from sage.rings.asymptotic.misc import repr_short_to_parent sage: repr_short_to_parent('ZZ') Integer Ring sage: repr_short_to_parent('QQ') Rational Field sage: repr_short_to_parent('SR') Symbolic Ring sage: repr_short_to_parent('NN') Non negative integer semiring sage: repr_short_to_parent('UU') Group of Roots of Unity
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import repr_short_to_parent >>> repr_short_to_parent('ZZ') Integer Ring >>> repr_short_to_parent('QQ') Rational Field >>> repr_short_to_parent('SR') Symbolic Ring >>> repr_short_to_parent('NN') Non negative integer semiring >>> repr_short_to_parent('UU') Group of Roots of Unity
from sage.rings.asymptotic.misc import repr_short_to_parent repr_short_to_parent('ZZ') repr_short_to_parent('QQ') repr_short_to_parent('SR') repr_short_to_parent('NN') repr_short_to_parent('UU')
- sage.rings.asymptotic.misc.split_str_by_op(string, op, strip_parentheses=True)[source]¶
Split the given string into a tuple of substrings arising by splitting by
op
and taking care of parentheses.INPUT:
string
– stringop
– string; this is used by str.split. Thus, if this isNone
, then any whitespace string is a separator and empty strings are removed from the result.strip_parentheses
– boolean (default:True
)
OUTPUT: a tuple of strings
- sage.rings.asymptotic.misc.strip_symbolic(expression)[source]¶
Return, if possible, the underlying (numeric) object of the symbolic expression.
If
expression
is not symbolic, thenexpression
is returned.INPUT:
expression
– an object
OUTPUT: an object
EXAMPLES:
sage: from sage.rings.asymptotic.misc import strip_symbolic sage: strip_symbolic(SR(2)); _.parent() 2 Integer Ring sage: strip_symbolic(SR(2/3)); _.parent() 2/3 Rational Field sage: strip_symbolic(SR('x')); _.parent() x Symbolic Ring sage: strip_symbolic(pi); _.parent() pi Symbolic Ring
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import strip_symbolic >>> strip_symbolic(SR(Integer(2))); _.parent() 2 Integer Ring >>> strip_symbolic(SR(Integer(2)/Integer(3))); _.parent() 2/3 Rational Field >>> strip_symbolic(SR('x')); _.parent() x Symbolic Ring >>> strip_symbolic(pi); _.parent() pi Symbolic Ring
from sage.rings.asymptotic.misc import strip_symbolic strip_symbolic(SR(2)); _.parent() strip_symbolic(SR(2/3)); _.parent() strip_symbolic(SR('x')); _.parent() strip_symbolic(pi); _.parent()
- sage.rings.asymptotic.misc.substitute_raise_exception(element, e)[source]¶
Raise an error describing what went wrong with the substitution.
INPUT:
element
– an elemente
– an exception which is included in the raised error message
OUTPUT: raise an exception of the same type as
e
- sage.rings.asymptotic.misc.transform_category(category, subcategory_mapping, axiom_mapping, initial_category=None)[source]¶
Transform
category
to a new category according to the given mappings.INPUT:
category
– a categorysubcategory_mapping
– list (or other iterable) of triples(from, to, mandatory)
, wherefrom
andto
are categories andmandatory
is a boolean.
axiom_mapping
– list (or other iterable) of triples(from, to, mandatory)
, wherefrom
andto
are strings describing axioms andmandatory
is a boolean.
initial_category
– (default:None
) a category. When transforming the given category, thisinitial_category
is used as a starting point of the result. This means the resulting category will be a subcategory ofinitial_category
. Ifinitial_category
isNone
, then thecategory of objects
is used.
OUTPUT: a category
Note
Consider a subcategory mapping
(from, to, mandatory)
. Ifcategory
is a subcategory offrom
, then the returned category will be a subcategory ofto
. Otherwise and ifmandatory
is set, then an error is raised.Consider an axiom mapping
(from, to, mandatory)
. Ifcategory
is has axiomfrom
, then the returned category will have axiomto
. Otherwise and ifmandatory
is set, then an error is raised.EXAMPLES:
sage: from sage.rings.asymptotic.misc import transform_category sage: from sage.categories.additive_semigroups import AdditiveSemigroups sage: from sage.categories.additive_monoids import AdditiveMonoids sage: from sage.categories.additive_groups import AdditiveGroups sage: S = [ ....: (Sets(), Sets(), True), ....: (Posets(), Posets(), False), ....: (AdditiveMagmas(), Magmas(), False)] sage: A = [ ....: ('AdditiveAssociative', 'Associative', False), ....: ('AdditiveUnital', 'Unital', False), ....: ('AdditiveInverse', 'Inverse', False), ....: ('AdditiveCommutative', 'Commutative', False)] sage: transform_category(Objects(), S, A) Traceback (most recent call last): ... ValueError: Category of objects is not a subcategory of Category of sets. sage: transform_category(Sets(), S, A) Category of sets sage: transform_category(Posets(), S, A) Category of posets sage: transform_category(AdditiveSemigroups(), S, A) Category of semigroups sage: transform_category(AdditiveMonoids(), S, A) Category of monoids sage: transform_category(AdditiveGroups(), S, A) Category of groups sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A) Category of commutative groups
>>> from sage.all import * >>> from sage.rings.asymptotic.misc import transform_category >>> from sage.categories.additive_semigroups import AdditiveSemigroups >>> from sage.categories.additive_monoids import AdditiveMonoids >>> from sage.categories.additive_groups import AdditiveGroups >>> S = [ ... (Sets(), Sets(), True), ... (Posets(), Posets(), False), ... (AdditiveMagmas(), Magmas(), False)] >>> A = [ ... ('AdditiveAssociative', 'Associative', False), ... ('AdditiveUnital', 'Unital', False), ... ('AdditiveInverse', 'Inverse', False), ... ('AdditiveCommutative', 'Commutative', False)] >>> transform_category(Objects(), S, A) Traceback (most recent call last): ... ValueError: Category of objects is not a subcategory of Category of sets. >>> transform_category(Sets(), S, A) Category of sets >>> transform_category(Posets(), S, A) Category of posets >>> transform_category(AdditiveSemigroups(), S, A) Category of semigroups >>> transform_category(AdditiveMonoids(), S, A) Category of monoids >>> transform_category(AdditiveGroups(), S, A) Category of groups >>> transform_category(AdditiveGroups().AdditiveCommutative(), S, A) Category of commutative groups
from sage.rings.asymptotic.misc import transform_category from sage.categories.additive_semigroups import AdditiveSemigroups from sage.categories.additive_monoids import AdditiveMonoids from sage.categories.additive_groups import AdditiveGroups S = [ (Sets(), Sets(), True), (Posets(), Posets(), False), (AdditiveMagmas(), Magmas(), False)] A = [ ('AdditiveAssociative', 'Associative', False), ('AdditiveUnital', 'Unital', False), ('AdditiveInverse', 'Inverse', False), ('AdditiveCommutative', 'Commutative', False)] transform_category(Objects(), S, A) transform_category(Sets(), S, A) transform_category(Posets(), S, A) transform_category(AdditiveSemigroups(), S, A) transform_category(AdditiveMonoids(), S, A) transform_category(AdditiveGroups(), S, A) transform_category(AdditiveGroups().AdditiveCommutative(), S, A)
sage: transform_category(AdditiveGroups().AdditiveCommutative(), S, A, ....: initial_category=Posets()) Join of Category of commutative groups and Category of posets
>>> from sage.all import * >>> transform_category(AdditiveGroups().AdditiveCommutative(), S, A, ... initial_category=Posets()) Join of Category of commutative groups and Category of posets
transform_category(AdditiveGroups().AdditiveCommutative(), S, A, initial_category=Posets())
sage: transform_category(ZZ.category(), S, A) Category of commutative groups sage: transform_category(QQ.category(), S, A) Category of commutative groups sage: transform_category(SR.category(), S, A) Category of commutative groups sage: transform_category(Fields(), S, A) Category of commutative groups sage: transform_category(ZZ['t'].category(), S, A) Category of commutative groups
>>> from sage.all import * >>> transform_category(ZZ.category(), S, A) Category of commutative groups >>> transform_category(QQ.category(), S, A) Category of commutative groups >>> transform_category(SR.category(), S, A) Category of commutative groups >>> transform_category(Fields(), S, A) Category of commutative groups >>> transform_category(ZZ['t'].category(), S, A) Category of commutative groups
transform_category(ZZ.category(), S, A) transform_category(QQ.category(), S, A) transform_category(SR.category(), S, A) transform_category(Fields(), S, A) transform_category(ZZ['t'].category(), S, A)
sage: A[-1] = ('Commutative', 'AdditiveCommutative', True) sage: transform_category(Groups(), S, A) Traceback (most recent call last): ... ValueError: Category of groups does not have axiom Commutative.
>>> from sage.all import * >>> A[-Integer(1)] = ('Commutative', 'AdditiveCommutative', True) >>> transform_category(Groups(), S, A) Traceback (most recent call last): ... ValueError: Category of groups does not have axiom Commutative.
A[-1] = ('Commutative', 'AdditiveCommutative', True) transform_category(Groups(), S, A)