The coercion model¶
The coercion model manages how elements of one parent get related to elements of another. For example, the integer 2 can canonically be viewed as an element of the rational numbers. (The parent of a non-element is its Python type.)
sage: ZZ(2).parent()
Integer Ring
sage: QQ(2).parent()
Rational Field
>>> from sage.all import *
>>> ZZ(Integer(2)).parent()
Integer Ring
>>> QQ(Integer(2)).parent()
Rational Field
ZZ(2).parent() QQ(2).parent()
The most prominent role of the coercion model is to make sense of binary operations between elements that have distinct parents. It does this by finding a parent where both elements make sense, and doing the operation there. For example:
sage: a = 1/2; a.parent()
Rational Field
sage: b = ZZ['x'].gen(); b.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: a + b
x + 1/2
sage: (a + b).parent()
Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import *
>>> a = Integer(1)/Integer(2); a.parent()
Rational Field
>>> b = ZZ['x'].gen(); b.parent()
Univariate Polynomial Ring in x over Integer Ring
>>> a + b
x + 1/2
>>> (a + b).parent()
Univariate Polynomial Ring in x over Rational Field
a = 1/2; a.parent() b = ZZ['x'].gen(); b.parent() a + b (a + b).parent()
If there is a coercion (see below) from one of the parents to the other,
the operation is always performed in the codomain of that coercion. Otherwise
a reasonable attempt to create a new parent with coercion maps from both
original parents is made. The results of these discoveries are cached.
On failure, a TypeError
is always raised.
Some arithmetic operations (such as multiplication) can indicate an action rather than arithmetic in a common parent. For example:
sage: E = EllipticCurve('37a') # needs sage.schemes
sage: P = E(0,0) # needs sage.schemes
sage: 5*P # needs sage.schemes
(1/4 : -5/8 : 1)
>>> from sage.all import *
>>> E = EllipticCurve('37a') # needs sage.schemes
>>> P = E(Integer(0),Integer(0)) # needs sage.schemes
>>> Integer(5)*P # needs sage.schemes
(1/4 : -5/8 : 1)
E = EllipticCurve('37a') # needs sage.schemes P = E(0,0) # needs sage.schemes 5*P # needs sage.schemes
where there is action of \(\ZZ\) on the points of \(E\) given by the additive group law. Parents can specify how they act on or are acted upon by other parents.
There are two kinds of ways to get from one parent to another, coercions and conversions.
Coercions are canonical (possibly modulo a finite number of deterministic choices) morphisms, and the set of all coercions between all parents forms a commuting diagram (modulo possibly rounding issues). \(\ZZ \rightarrow \QQ\) is an example of a coercion. These are invoked implicitly by the coercion model.
Conversions try to construct an element out of their input if at all possible. Examples include sections of coercions, creating an element from a string or list, etc. and may fail on some inputs of a given type while succeeding on others (i.e. they may not be defined on the whole domain). Conversions are always explicitly invoked, and never used by the coercion model to resolve binary operations.
For more information on how to specify coercions, conversions, and actions,
see the documentation for Parent
.
- class sage.structure.coerce.CoercionModel[source]¶
Bases:
object
See also
sage.categories.pushout
EXAMPLES:
sage: f = ZZ['t', 'x'].0 + QQ['x'].0 + CyclotomicField(13).gen(); f # needs sage.rings.number_field t + x + zeta13 sage: f.parent() # needs sage.rings.number_field Multivariate Polynomial Ring in t, x over Cyclotomic Field of order 13 and degree 12 sage: ZZ['x','y'].0 + ~Frac(QQ['y']).0 (x*y + 1)/y sage: MatrixSpace(ZZ['x'], 2, 2)(2) + ~Frac(QQ['x']).0 # needs sage.modules [(2*x + 1)/x 0] [ 0 (2*x + 1)/x] sage: f = ZZ['x,y,z'].0 + QQ['w,x,z,a'].0; f w + x sage: f.parent() Multivariate Polynomial Ring in w, x, y, z, a over Rational Field sage: ZZ['x,y,z'].0 + ZZ['w,x,z,a'].1 2*x
>>> from sage.all import * >>> f = ZZ['t', 'x'].gen(0) + QQ['x'].gen(0) + CyclotomicField(Integer(13)).gen(); f # needs sage.rings.number_field t + x + zeta13 >>> f.parent() # needs sage.rings.number_field Multivariate Polynomial Ring in t, x over Cyclotomic Field of order 13 and degree 12 >>> ZZ['x','y'].gen(0) + ~Frac(QQ['y']).gen(0) (x*y + 1)/y >>> MatrixSpace(ZZ['x'], Integer(2), Integer(2))(Integer(2)) + ~Frac(QQ['x']).gen(0) # needs sage.modules [(2*x + 1)/x 0] [ 0 (2*x + 1)/x] >>> f = ZZ['x,y,z'].gen(0) + QQ['w,x,z,a'].gen(0); f w + x >>> f.parent() Multivariate Polynomial Ring in w, x, y, z, a over Rational Field >>> ZZ['x,y,z'].gen(0) + ZZ['w,x,z,a'].gen(1) 2*x
f = ZZ['t', 'x'].0 + QQ['x'].0 + CyclotomicField(13).gen(); f # needs sage.rings.number_field f.parent() # needs sage.rings.number_field ZZ['x','y'].0 + ~Frac(QQ['y']).0 MatrixSpace(ZZ['x'], 2, 2)(2) + ~Frac(QQ['x']).0 # needs sage.modules f = ZZ['x,y,z'].0 + QQ['w,x,z,a'].0; f f.parent() ZZ['x,y,z'].0 + ZZ['w,x,z,a'].1
AUTHOR:
Robert Bradshaw
- analyse(xp, yp, op='mul')[source]¶
Emulate the process of doing arithmetic between xp and yp, returning a list of steps and the parent that the result will live in.
The
explain()
method is easier to use, but if one wants access to the actual morphism and action objects (rather than their string representations), then this is the function to use.EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: GF7 = GF(7) sage: steps, res = cm.analyse(GF7, ZZ) sage: steps ['Coercion on right operand via', Natural morphism: From: Integer Ring To: Finite Field of size 7, 'Arithmetic performed after coercions.'] sage: res Finite Field of size 7 sage: f = steps[1]; type(f) <class 'sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod'> sage: f(100) 2
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> GF7 = GF(Integer(7)) >>> steps, res = cm.analyse(GF7, ZZ) >>> steps ['Coercion on right operand via', Natural morphism: From: Integer Ring To: Finite Field of size 7, 'Arithmetic performed after coercions.'] >>> res Finite Field of size 7 >>> f = steps[Integer(1)]; type(f) <class 'sage.rings.finite_rings.integer_mod.Integer_to_IntegerMod'> >>> f(Integer(100)) 2
cm = sage.structure.element.get_coercion_model() GF7 = GF(7) steps, res = cm.analyse(GF7, ZZ) steps res f = steps[1]; type(f) f(100)
- bin_op(x, y, op)[source]¶
Execute the operation
op
on \(x\) and \(y\).It first looks for an action corresponding to
op
, and failing that, it tries to coerce \(x\) and \(y\) into a common parent and callsop
on them.If it cannot make sense of the operation, a
TypeError
is raised.INPUT:
x
– the left operandy
– the right operandop
– a python function taking 2 argumentsNote
op
is often an arithmetic operation, but need not be so.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.bin_op(1/2, 5, operator.mul) 5/2
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.bin_op(Integer(1)/Integer(2), Integer(5), operator.mul) 5/2
cm = sage.structure.element.get_coercion_model() cm.bin_op(1/2, 5, operator.mul)
The operator can be any callable:
sage: R.<x> = ZZ['x'] sage: cm.bin_op(x^2 - 1, x + 1, gcd) x + 1
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> cm.bin_op(x**Integer(2) - Integer(1), x + Integer(1), gcd) x + 1
R.<x> = ZZ['x'] cm.bin_op(x^2 - 1, x + 1, gcd)
Actions are detected and performed:
sage: M = matrix(ZZ, 2, 2, range(4)) # needs sage.modules sage: V = vector(ZZ, [5,7]) # needs sage.modules sage: cm.bin_op(M, V, operator.mul) # needs sage.modules (7, 31)
>>> from sage.all import * >>> M = matrix(ZZ, Integer(2), Integer(2), range(Integer(4))) # needs sage.modules >>> V = vector(ZZ, [Integer(5),Integer(7)]) # needs sage.modules >>> cm.bin_op(M, V, operator.mul) # needs sage.modules (7, 31)
M = matrix(ZZ, 2, 2, range(4)) # needs sage.modules V = vector(ZZ, [5,7]) # needs sage.modules cm.bin_op(M, V, operator.mul) # needs sage.modules
- canonical_coercion(x, y)[source]¶
Given two elements \(x\) and \(y\), with parents \(S\) and \(R\) respectively, find a common parent \(Z\) such that there are coercions \(f: S \to Z\) and \(g: R \to Z\) and return \(f(x), g(y)\), which will have the same parent.
Raises a type error if no such \(Z\) can be found.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.canonical_coercion(mod(2, 10), 17) (2, 7) sage: # needs sage.modules sage: x, y = cm.canonical_coercion(1/2, matrix(ZZ, 2, 2, range(4))) sage: x [1/2 0] [ 0 1/2] sage: y [0 1] [2 3] sage: parent(x) is parent(y) True
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.canonical_coercion(mod(Integer(2), Integer(10)), Integer(17)) (2, 7) >>> # needs sage.modules >>> x, y = cm.canonical_coercion(Integer(1)/Integer(2), matrix(ZZ, Integer(2), Integer(2), range(Integer(4)))) >>> x [1/2 0] [ 0 1/2] >>> y [0 1] [2 3] >>> parent(x) is parent(y) True
cm = sage.structure.element.get_coercion_model() cm.canonical_coercion(mod(2, 10), 17) # needs sage.modules x, y = cm.canonical_coercion(1/2, matrix(ZZ, 2, 2, range(4))) x y parent(x) is parent(y)
There is some support for non-Sage datatypes as well:
sage: x, y = cm.canonical_coercion(int(5), 10) sage: type(x), type(y) (<class 'sage.rings.integer.Integer'>, <class 'sage.rings.integer.Integer'>) sage: x, y = cm.canonical_coercion(int(5), complex(3)) sage: type(x), type(y) (<class 'complex'>, <class 'complex'>) sage: class MyClass: ....: def _sage_(self): ....: return 13 sage: a, b = cm.canonical_coercion(MyClass(), 1/3) sage: a, b (13, 1/3) sage: type(a) <class 'sage.rings.rational.Rational'>
>>> from sage.all import * >>> x, y = cm.canonical_coercion(int(Integer(5)), Integer(10)) >>> type(x), type(y) (<class 'sage.rings.integer.Integer'>, <class 'sage.rings.integer.Integer'>) >>> x, y = cm.canonical_coercion(int(Integer(5)), complex(Integer(3))) >>> type(x), type(y) (<class 'complex'>, <class 'complex'>) >>> class MyClass: ... def _sage_(self): ... return Integer(13) >>> a, b = cm.canonical_coercion(MyClass(), Integer(1)/Integer(3)) >>> a, b (13, 1/3) >>> type(a) <class 'sage.rings.rational.Rational'>
x, y = cm.canonical_coercion(int(5), 10) type(x), type(y) x, y = cm.canonical_coercion(int(5), complex(3)) type(x), type(y) class MyClass: def _sage_(self): return 13 a, b = cm.canonical_coercion(MyClass(), 1/3) a, b type(a)
We also make an exception for 0, even if \(\ZZ\) does not map in:
sage: canonical_coercion(vector([1, 2, 3]), 0) # needs sage.modules ((1, 2, 3), (0, 0, 0)) sage: canonical_coercion(GF(5)(0), float(0)) (0, 0)
>>> from sage.all import * >>> canonical_coercion(vector([Integer(1), Integer(2), Integer(3)]), Integer(0)) # needs sage.modules ((1, 2, 3), (0, 0, 0)) >>> canonical_coercion(GF(Integer(5))(Integer(0)), float(Integer(0))) (0, 0)
canonical_coercion(vector([1, 2, 3]), 0) # needs sage.modules canonical_coercion(GF(5)(0), float(0))
- coercion_maps(R, S)[source]¶
Give two parents \(R\) and \(S\), return a pair of coercion maps \(f: R \rightarrow Z\) and \(g: S \rightarrow Z\) , if such a \(Z\) can be found.
In the (common) case that \(R=Z\) or \(S=Z\) then
None
is returned for \(f\) or \(g\) respectively rather than constructing (and subsequently calling) the identity morphism.If no suitable \(f, g\) can be found, a single
None
is returned. This result is cached.Note
By Issue #14711, coerce maps should be copied when using them outside of the coercion system, because they may become defunct by garbage collection.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: f, g = cm.coercion_maps(ZZ, QQ) sage: print(copy(f)) Natural morphism: From: Integer Ring To: Rational Field sage: print(g) None sage: ZZx = ZZ['x'] sage: f, g = cm.coercion_maps(ZZx, QQ) sage: print(f) (map internal to coercion system -- copy before use) Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field sage: print(g) (map internal to coercion system -- copy before use) Polynomial base injection morphism: From: Rational Field To: Univariate Polynomial Ring in x over Rational Field sage: K = GF(7) sage: cm.coercion_maps(QQ, K) is None True
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> f, g = cm.coercion_maps(ZZ, QQ) >>> print(copy(f)) Natural morphism: From: Integer Ring To: Rational Field >>> print(g) None >>> ZZx = ZZ['x'] >>> f, g = cm.coercion_maps(ZZx, QQ) >>> print(f) (map internal to coercion system -- copy before use) Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field >>> print(g) (map internal to coercion system -- copy before use) Polynomial base injection morphism: From: Rational Field To: Univariate Polynomial Ring in x over Rational Field >>> K = GF(Integer(7)) >>> cm.coercion_maps(QQ, K) is None True
cm = sage.structure.element.get_coercion_model() f, g = cm.coercion_maps(ZZ, QQ) print(copy(f)) print(g) ZZx = ZZ['x'] f, g = cm.coercion_maps(ZZx, QQ) print(f) print(g) K = GF(7) cm.coercion_maps(QQ, K) is None
Note that to break symmetry, if there is a coercion map in both directions, the parent on the left is used:
sage: # needs sage.modules sage: V = QQ^3 sage: W = V.__class__(QQ, 3) sage: V == W True sage: V is W False sage: cm = sage.structure.element.get_coercion_model() sage: cm.coercion_maps(V, W) (None, (map internal to coercion system -- copy before use) Coercion map: From: Vector space of dimension 3 over Rational Field To: Vector space of dimension 3 over Rational Field) sage: cm.coercion_maps(W, V) (None, (map internal to coercion system -- copy before use) Coercion map: From: Vector space of dimension 3 over Rational Field To: Vector space of dimension 3 over Rational Field) sage: v = V([1,2,3]) sage: w = W([1,2,3]) sage: parent(v + w) is V True sage: parent(w + v) is W True
>>> from sage.all import * >>> # needs sage.modules >>> V = QQ**Integer(3) >>> W = V.__class__(QQ, Integer(3)) >>> V == W True >>> V is W False >>> cm = sage.structure.element.get_coercion_model() >>> cm.coercion_maps(V, W) (None, (map internal to coercion system -- copy before use) Coercion map: From: Vector space of dimension 3 over Rational Field To: Vector space of dimension 3 over Rational Field) >>> cm.coercion_maps(W, V) (None, (map internal to coercion system -- copy before use) Coercion map: From: Vector space of dimension 3 over Rational Field To: Vector space of dimension 3 over Rational Field) >>> v = V([Integer(1),Integer(2),Integer(3)]) >>> w = W([Integer(1),Integer(2),Integer(3)]) >>> parent(v + w) is V True >>> parent(w + v) is W True
# needs sage.modules V = QQ^3 W = V.__class__(QQ, 3) V == W V is W cm = sage.structure.element.get_coercion_model() cm.coercion_maps(V, W) cm.coercion_maps(W, V) v = V([1,2,3]) w = W([1,2,3]) parent(v + w) is V parent(w + v) is W
- common_parent(*args)[source]¶
Compute a common parent for all the inputs.
It’s essentially an \(n\)-ary canonical coercion except it can operate on parents rather than just elements.
INPUT:
args
– set of elements and/or parents
OUTPUT:
A
Parent
into which each input should coerce, or raises aTypeError
if no suchParent
can be found.EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.common_parent(ZZ, QQ) Rational Field sage: cm.common_parent(ZZ, QQ, RR) # needs sage.rings.real_mpfr Real Field with 53 bits of precision sage: ZZT = ZZ[['T']] sage: QQT = QQ['T'] sage: cm.common_parent(ZZT, QQT, RDF) Power Series Ring in T over Real Double Field sage: cm.common_parent(4r, 5r) <class 'int'> sage: cm.common_parent(int, float, ZZ) <class 'float'> sage: real_fields = [RealField(prec) for prec in [10,20..100]] # needs sage.rings.real_mpfr sage: cm.common_parent(*real_fields) # needs sage.rings.real_mpfr Real Field with 10 bits of precision
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.common_parent(ZZ, QQ) Rational Field >>> cm.common_parent(ZZ, QQ, RR) # needs sage.rings.real_mpfr Real Field with 53 bits of precision >>> ZZT = ZZ[['T']] >>> QQT = QQ['T'] >>> cm.common_parent(ZZT, QQT, RDF) Power Series Ring in T over Real Double Field >>> cm.common_parent(4, 5) <class 'int'> >>> cm.common_parent(int, float, ZZ) <class 'float'> >>> real_fields = [RealField(prec) for prec in (ellipsis_range(Integer(10),Integer(20),Ellipsis,Integer(100)))] # needs sage.rings.real_mpfr >>> cm.common_parent(*real_fields) # needs sage.rings.real_mpfr Real Field with 10 bits of precision
cm = sage.structure.element.get_coercion_model() cm.common_parent(ZZ, QQ) cm.common_parent(ZZ, QQ, RR) # needs sage.rings.real_mpfr ZZT = ZZ[['T']] QQT = QQ['T'] cm.common_parent(ZZT, QQT, RDF) cm.common_parent(4r, 5r) cm.common_parent(int, float, ZZ) real_fields = [RealField(prec) for prec in [10,20..100]] # needs sage.rings.real_mpfr cm.common_parent(*real_fields) # needs sage.rings.real_mpfr
There are some cases where the ordering does matter, but if a parent can be found it is always the same:
sage: QQxy = QQ['x,y'] sage: QQyz = QQ['y,z'] sage: cm.common_parent(QQxy, QQyz) == cm.common_parent(QQyz, QQxy) True sage: QQzt = QQ['z,t'] sage: cm.common_parent(QQxy, QQyz, QQzt) Multivariate Polynomial Ring in x, y, z, t over Rational Field sage: cm.common_parent(QQxy, QQzt, QQyz) Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Multivariate Polynomial Ring in x, y over Rational Field' and 'Multivariate Polynomial Ring in z, t over Rational Field'
>>> from sage.all import * >>> QQxy = QQ['x,y'] >>> QQyz = QQ['y,z'] >>> cm.common_parent(QQxy, QQyz) == cm.common_parent(QQyz, QQxy) True >>> QQzt = QQ['z,t'] >>> cm.common_parent(QQxy, QQyz, QQzt) Multivariate Polynomial Ring in x, y, z, t over Rational Field >>> cm.common_parent(QQxy, QQzt, QQyz) Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Multivariate Polynomial Ring in x, y over Rational Field' and 'Multivariate Polynomial Ring in z, t over Rational Field'
QQxy = QQ['x,y'] QQyz = QQ['y,z'] cm.common_parent(QQxy, QQyz) == cm.common_parent(QQyz, QQxy) QQzt = QQ['z,t'] cm.common_parent(QQxy, QQyz, QQzt) cm.common_parent(QQxy, QQzt, QQyz)
- discover_action(R, S, op, r=None, s=None)[source]¶
INPUT:
R
– the leftParent
(or type)S
– the rightParent
(or type)op
– the operand, typically an element of theoperator
moduler
– (optional) element of \(R\)s
– (optional) element of \(S\)
OUTPUT: an action \(A\) such that \(s\)
op
\(r\) is given by \(A(s,r)\)The steps taken are illustrated below.
EXAMPLES:
sage: P.<x> = ZZ['x'] sage: P.get_action(ZZ) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring sage: ZZ.get_action(P) is None True sage: cm = sage.structure.element.get_coercion_model()
>>> from sage.all import * >>> P = ZZ['x']; (x,) = P._first_ngens(1) >>> P.get_action(ZZ) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring >>> ZZ.get_action(P) is None True >>> cm = sage.structure.element.get_coercion_model()
P.<x> = ZZ['x'] P.get_action(ZZ) ZZ.get_action(P) is None cm = sage.structure.element.get_coercion_model()
If \(R\) or \(S\) is a
Parent
, ask it for an action by/on \(R\):sage: cm.discover_action(ZZ, P, operator.mul) Left scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring
>>> from sage.all import * >>> cm.discover_action(ZZ, P, operator.mul) Left scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring
cm.discover_action(ZZ, P, operator.mul)
If \(R\) or \(S\) a type, recursively call
get_action()
with the Sage versions of \(R\) and/or \(S\):sage: cm.discover_action(P, int, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Native morphism: From: Set of Python objects of class 'int' To: Integer Ring
>>> from sage.all import * >>> cm.discover_action(P, int, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Native morphism: From: Set of Python objects of class 'int' To: Integer Ring
cm.discover_action(P, int, operator.mul)
If
op
is division, look for action onright
by inverse:sage: cm.discover_action(P, ZZ, operator.truediv) Right inverse action by Rational Field on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field
>>> from sage.all import * >>> cm.discover_action(P, ZZ, operator.truediv) Right inverse action by Rational Field on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field
cm.discover_action(P, ZZ, operator.truediv)
Check that Issue #17740 is fixed:
sage: R = GF(5)['x'] sage: cm.discover_action(R, ZZ, operator.truediv) Right inverse action by Finite Field of size 5 on Univariate Polynomial Ring in x over Finite Field of size 5 with precomposition on right by Natural morphism: From: Integer Ring To: Finite Field of size 5 sage: cm.bin_op(R.gen(), 7, operator.truediv).parent() Univariate Polynomial Ring in x over Finite Field of size 5
>>> from sage.all import * >>> R = GF(Integer(5))['x'] >>> cm.discover_action(R, ZZ, operator.truediv) Right inverse action by Finite Field of size 5 on Univariate Polynomial Ring in x over Finite Field of size 5 with precomposition on right by Natural morphism: From: Integer Ring To: Finite Field of size 5 >>> cm.bin_op(R.gen(), Integer(7), operator.truediv).parent() Univariate Polynomial Ring in x over Finite Field of size 5
R = GF(5)['x'] cm.discover_action(R, ZZ, operator.truediv) cm.bin_op(R.gen(), 7, operator.truediv).parent()
Check that Issue #18221 is fixed:
sage: # needs sage.combinat sage.modules sage: F.<x> = FreeAlgebra(QQ) sage: x / 2 1/2*x sage: cm.discover_action(F, ZZ, operator.truediv) Right inverse action by Rational Field on Free Algebra on 1 generator (x,) over Rational Field with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field
>>> from sage.all import * >>> # needs sage.combinat sage.modules >>> F = FreeAlgebra(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> x / Integer(2) 1/2*x >>> cm.discover_action(F, ZZ, operator.truediv) Right inverse action by Rational Field on Free Algebra on 1 generator (x,) over Rational Field with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field
# needs sage.combinat sage.modules F.<x> = FreeAlgebra(QQ) x / 2 cm.discover_action(F, ZZ, operator.truediv)
- discover_coercion(R, S)[source]¶
This actually implements the finding of coercion maps as described in the
coercion_maps()
method.EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model()
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model()
cm = sage.structure.element.get_coercion_model()
If R is S, then two identity morphisms suffice:
sage: cm.discover_coercion(SR, SR) # needs sage.symbolic (None, None)
>>> from sage.all import * >>> cm.discover_coercion(SR, SR) # needs sage.symbolic (None, None)
cm.discover_coercion(SR, SR) # needs sage.symbolic
If there is a coercion map either direction, use that:
sage: cm.discover_coercion(ZZ, QQ) ((map internal to coercion system -- copy before use) Natural morphism: From: Integer Ring To: Rational Field, None) sage: cm.discover_coercion(RR, QQ) # needs sage.rings.real_mpfr (None, (map internal to coercion system -- copy before use) Generic map: From: Rational Field To: Real Field with 53 bits of precision)
>>> from sage.all import * >>> cm.discover_coercion(ZZ, QQ) ((map internal to coercion system -- copy before use) Natural morphism: From: Integer Ring To: Rational Field, None) >>> cm.discover_coercion(RR, QQ) # needs sage.rings.real_mpfr (None, (map internal to coercion system -- copy before use) Generic map: From: Rational Field To: Real Field with 53 bits of precision)
cm.discover_coercion(ZZ, QQ) cm.discover_coercion(RR, QQ) # needs sage.rings.real_mpfr
Otherwise, try and compute an appropriate cover:
sage: ZZxy = ZZ['x,y'] sage: cm.discover_coercion(ZZxy, RDF) ((map internal to coercion system -- copy before use) Call morphism: From: Multivariate Polynomial Ring in x, y over Integer Ring To: Multivariate Polynomial Ring in x, y over Real Double Field, (map internal to coercion system -- copy before use) Polynomial base injection morphism: From: Real Double Field To: Multivariate Polynomial Ring in x, y over Real Double Field)
>>> from sage.all import * >>> ZZxy = ZZ['x,y'] >>> cm.discover_coercion(ZZxy, RDF) ((map internal to coercion system -- copy before use) Call morphism: From: Multivariate Polynomial Ring in x, y over Integer Ring To: Multivariate Polynomial Ring in x, y over Real Double Field, (map internal to coercion system -- copy before use) Polynomial base injection morphism: From: Real Double Field To: Multivariate Polynomial Ring in x, y over Real Double Field)
ZZxy = ZZ['x,y'] cm.discover_coercion(ZZxy, RDF)
Sometimes there is a reasonable “cover,” but no canonical coercion:
sage: sage.categories.pushout.pushout(QQ, QQ^3) # needs sage.modules Vector space of dimension 3 over Rational Field sage: print(cm.discover_coercion(QQ, QQ^3)) # needs sage.modules None
>>> from sage.all import * >>> sage.categories.pushout.pushout(QQ, QQ**Integer(3)) # needs sage.modules Vector space of dimension 3 over Rational Field >>> print(cm.discover_coercion(QQ, QQ**Integer(3))) # needs sage.modules None
sage.categories.pushout.pushout(QQ, QQ^3) # needs sage.modules print(cm.discover_coercion(QQ, QQ^3)) # needs sage.modules
- division_parent(P)[source]¶
Deduces where the result of division in
P
lies by calculating the inverse ofP.one()
orP.an_element()
.The result is cached.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.division_parent(ZZ) Rational Field sage: cm.division_parent(QQ) Rational Field sage: ZZx = ZZ['x'] sage: cm.division_parent(ZZx) Fraction Field of Univariate Polynomial Ring in x over Integer Ring sage: K = GF(41) sage: cm.division_parent(K) Finite Field of size 41 sage: Zmod100 = Integers(100) sage: cm.division_parent(Zmod100) Ring of integers modulo 100 sage: S5 = SymmetricGroup(5) # needs sage.groups sage: cm.division_parent(S5) # needs sage.groups Symmetric group of order 5! as a permutation group
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.division_parent(ZZ) Rational Field >>> cm.division_parent(QQ) Rational Field >>> ZZx = ZZ['x'] >>> cm.division_parent(ZZx) Fraction Field of Univariate Polynomial Ring in x over Integer Ring >>> K = GF(Integer(41)) >>> cm.division_parent(K) Finite Field of size 41 >>> Zmod100 = Integers(Integer(100)) >>> cm.division_parent(Zmod100) Ring of integers modulo 100 >>> S5 = SymmetricGroup(Integer(5)) # needs sage.groups >>> cm.division_parent(S5) # needs sage.groups Symmetric group of order 5! as a permutation group
cm = sage.structure.element.get_coercion_model() cm.division_parent(ZZ) cm.division_parent(QQ) ZZx = ZZ['x'] cm.division_parent(ZZx) K = GF(41) cm.division_parent(K) Zmod100 = Integers(100) cm.division_parent(Zmod100) S5 = SymmetricGroup(5) # needs sage.groups cm.division_parent(S5) # needs sage.groups
- exception_stack()[source]¶
Return the list of exceptions that were caught in the course of executing the last binary operation. Useful for diagnosis when user-defined maps or actions raise exceptions that are caught in the course of coercion detection.
If all went well, this should be the empty list. If things aren’t happening as you expect, this is a good place to check. See also
coercion_traceback()
.EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.record_exceptions() sage: 1/2 + 2 5/2 sage: cm.exception_stack() [] sage: 1/2 + GF(3)(2) Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for +: 'Rational Field' and 'Finite Field of size 3'
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.record_exceptions() >>> Integer(1)/Integer(2) + Integer(2) 5/2 >>> cm.exception_stack() [] >>> Integer(1)/Integer(2) + GF(Integer(3))(Integer(2)) Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for +: 'Rational Field' and 'Finite Field of size 3'
cm = sage.structure.element.get_coercion_model() cm.record_exceptions() 1/2 + 2 cm.exception_stack() 1/2 + GF(3)(2)
Now see what the actual problem was:
sage: import traceback sage: cm.exception_stack() ['Traceback (most recent call last):...', 'Traceback (most recent call last):...'] sage: print(cm.exception_stack()[-1]) Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Rational Field' and 'Finite Field of size 3'
>>> from sage.all import * >>> import traceback >>> cm.exception_stack() ['Traceback (most recent call last):...', 'Traceback (most recent call last):...'] >>> print(cm.exception_stack()[-Integer(1)]) Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Rational Field' and 'Finite Field of size 3'
import traceback cm.exception_stack() print(cm.exception_stack()[-1])
This is typically accessed via the
coercion_traceback()
function.sage: coercion_traceback() Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Rational Field' and 'Finite Field of size 3'
>>> from sage.all import * >>> coercion_traceback() Traceback (most recent call last): ... TypeError: no common canonical parent for objects with parents: 'Rational Field' and 'Finite Field of size 3'
coercion_traceback()
- explain(xp, yp, op='mul', verbosity=2)[source]¶
This function can be used to understand what coercions will happen for an arithmetic operation between xp and yp (which may be either elements or parents). If the parent of the result can be determined then it will be returned.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.explain(ZZ, ZZ) Identical parents, arithmetic performed immediately. Result lives in Integer Ring Integer Ring sage: cm.explain(QQ, int) Coercion on right operand via Native morphism: From: Set of Python objects of class 'int' To: Rational Field Arithmetic performed after coercions. Result lives in Rational Field Rational Field sage: R = ZZ['x'] sage: cm.explain(R, QQ) Action discovered. Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field sage: cm.explain(ZZ['x'], QQ, operator.add) Coercion on left operand via Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field Defn: Induced from base ring by Natural morphism: From: Integer Ring To: Rational Field Coercion on right operand via Polynomial base injection morphism: From: Rational Field To: Univariate Polynomial Ring in x over Rational Field Arithmetic performed after coercions. Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.explain(ZZ, ZZ) Identical parents, arithmetic performed immediately. Result lives in Integer Ring Integer Ring >>> cm.explain(QQ, int) Coercion on right operand via Native morphism: From: Set of Python objects of class 'int' To: Rational Field Arithmetic performed after coercions. Result lives in Rational Field Rational Field >>> R = ZZ['x'] >>> cm.explain(R, QQ) Action discovered. Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field >>> cm.explain(ZZ['x'], QQ, operator.add) Coercion on left operand via Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field Defn: Induced from base ring by Natural morphism: From: Integer Ring To: Rational Field Coercion on right operand via Polynomial base injection morphism: From: Rational Field To: Univariate Polynomial Ring in x over Rational Field Arithmetic performed after coercions. Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field
cm = sage.structure.element.get_coercion_model() cm.explain(ZZ, ZZ) cm.explain(QQ, int) R = ZZ['x'] cm.explain(R, QQ) cm.explain(ZZ['x'], QQ, operator.add)
Sometimes with non-sage types there is not enough information to deduce what will actually happen:
sage: R100 = RealField(100) # needs sage.rings.real_mpfr sage: cm.explain(R100, float, operator.add) # needs sage.rings.real_mpfr Right operand is numeric, will attempt coercion in both directions. Unknown result parent. sage: parent(R100(1) + float(1)) # needs sage.rings.real_mpfr <class 'float'> sage: cm.explain(QQ, float, operator.add) Right operand is numeric, will attempt coercion in both directions. Unknown result parent. sage: parent(QQ(1) + float(1)) <class 'float'>
>>> from sage.all import * >>> R100 = RealField(Integer(100)) # needs sage.rings.real_mpfr >>> cm.explain(R100, float, operator.add) # needs sage.rings.real_mpfr Right operand is numeric, will attempt coercion in both directions. Unknown result parent. >>> parent(R100(Integer(1)) + float(Integer(1))) # needs sage.rings.real_mpfr <class 'float'> >>> cm.explain(QQ, float, operator.add) Right operand is numeric, will attempt coercion in both directions. Unknown result parent. >>> parent(QQ(Integer(1)) + float(Integer(1))) <class 'float'>
R100 = RealField(100) # needs sage.rings.real_mpfr cm.explain(R100, float, operator.add) # needs sage.rings.real_mpfr parent(R100(1) + float(1)) # needs sage.rings.real_mpfr cm.explain(QQ, float, operator.add) parent(QQ(1) + float(1))
Special care is taken to deal with division:
sage: cm.explain(ZZ, ZZ, operator.truediv) Identical parents, arithmetic performed immediately. Result lives in Rational Field Rational Field sage: ZZx = ZZ['x'] sage: QQx = QQ['x'] sage: cm.explain(ZZx, QQx, operator.truediv) Coercion on left operand via Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field Defn: Induced from base ring by Natural morphism: From: Integer Ring To: Rational Field Arithmetic performed after coercions. Result lives in Fraction Field of Univariate Polynomial Ring in x over Rational Field Fraction Field of Univariate Polynomial Ring in x over Rational Field sage: cm.explain(int, ZZ, operator.truediv) Coercion on left operand via Native morphism: From: Set of Python objects of class 'int' To: Integer Ring Arithmetic performed after coercions. Result lives in Rational Field Rational Field sage: cm.explain(ZZx, ZZ, operator.truediv) Action discovered. Right inverse action by Rational Field on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field
>>> from sage.all import * >>> cm.explain(ZZ, ZZ, operator.truediv) Identical parents, arithmetic performed immediately. Result lives in Rational Field Rational Field >>> ZZx = ZZ['x'] >>> QQx = QQ['x'] >>> cm.explain(ZZx, QQx, operator.truediv) Coercion on left operand via Ring morphism: From: Univariate Polynomial Ring in x over Integer Ring To: Univariate Polynomial Ring in x over Rational Field Defn: Induced from base ring by Natural morphism: From: Integer Ring To: Rational Field Arithmetic performed after coercions. Result lives in Fraction Field of Univariate Polynomial Ring in x over Rational Field Fraction Field of Univariate Polynomial Ring in x over Rational Field >>> cm.explain(int, ZZ, operator.truediv) Coercion on left operand via Native morphism: From: Set of Python objects of class 'int' To: Integer Ring Arithmetic performed after coercions. Result lives in Rational Field Rational Field >>> cm.explain(ZZx, ZZ, operator.truediv) Action discovered. Right inverse action by Rational Field on Univariate Polynomial Ring in x over Integer Ring with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field Result lives in Univariate Polynomial Ring in x over Rational Field Univariate Polynomial Ring in x over Rational Field
cm.explain(ZZ, ZZ, operator.truediv) ZZx = ZZ['x'] QQx = QQ['x'] cm.explain(ZZx, QQx, operator.truediv) cm.explain(int, ZZ, operator.truediv) cm.explain(ZZx, ZZ, operator.truediv)
Note
This function is accurate only in so far as
analyse()
is kept in sync with thebin_op()
andcanonical_coercion()
which are kept separate for maximal efficiency.
- get_action(R, S, op='mul', r=None, s=None)[source]¶
Get the action of R on S or S on R associated to the operation op.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: ZZx = ZZ['x'] sage: cm.get_action(ZZx, ZZ, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring sage: cm.get_action(ZZx, QQ, operator.mul) Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring sage: QQx = QQ['x'] sage: cm.get_action(QQx, int, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Rational Field with precomposition on right by Native morphism: From: Set of Python objects of class 'int' To: Integer Ring sage: A = cm.get_action(QQx, ZZ, operator.truediv); A Right inverse action by Rational Field on Univariate Polynomial Ring in x over Rational Field with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field sage: x = QQx.gen() sage: A(x+10, 5) 1/5*x + 2
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> ZZx = ZZ['x'] >>> cm.get_action(ZZx, ZZ, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Integer Ring >>> cm.get_action(ZZx, QQ, operator.mul) Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring >>> QQx = QQ['x'] >>> cm.get_action(QQx, int, operator.mul) Right scalar multiplication by Integer Ring on Univariate Polynomial Ring in x over Rational Field with precomposition on right by Native morphism: From: Set of Python objects of class 'int' To: Integer Ring >>> A = cm.get_action(QQx, ZZ, operator.truediv); A Right inverse action by Rational Field on Univariate Polynomial Ring in x over Rational Field with precomposition on right by Natural morphism: From: Integer Ring To: Rational Field >>> x = QQx.gen() >>> A(x+Integer(10), Integer(5)) 1/5*x + 2
cm = sage.structure.element.get_coercion_model() ZZx = ZZ['x'] cm.get_action(ZZx, ZZ, operator.mul) cm.get_action(ZZx, QQ, operator.mul) QQx = QQ['x'] cm.get_action(QQx, int, operator.mul) A = cm.get_action(QQx, ZZ, operator.truediv); A x = QQx.gen() A(x+10, 5)
- get_cache()[source]¶
This returns the current cache of coercion maps and actions, primarily useful for debugging and introspection.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: cm.canonical_coercion(1, 2/3) (1, 2/3) sage: maps, actions = cm.get_cache()
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> cm.canonical_coercion(Integer(1), Integer(2)/Integer(3)) (1, 2/3) >>> maps, actions = cm.get_cache()
cm = sage.structure.element.get_coercion_model() cm.canonical_coercion(1, 2/3) maps, actions = cm.get_cache()
Now let us see what happens when we do a binary operations with an integer and a rational:
sage: left_morphism_ref, right_morphism_ref = maps[ZZ, QQ]
>>> from sage.all import * >>> left_morphism_ref, right_morphism_ref = maps[ZZ, QQ]
left_morphism_ref, right_morphism_ref = maps[ZZ, QQ]
Note that by Issue #14058 the coercion model only stores a weak reference to the coercion maps in this case:
sage: left_morphism_ref <weakref at ...; to 'sage.rings.rational.Z_to_Q' at ...>
>>> from sage.all import * >>> left_morphism_ref <weakref at ...; to 'sage.rings.rational.Z_to_Q' at ...>
left_morphism_ref
Moreover, the weakly referenced coercion map uses only a weak reference to the codomain:
sage: left_morphism_ref() (map internal to coercion system -- copy before use) Natural morphism: From: Integer Ring To: Rational Field
>>> from sage.all import * >>> left_morphism_ref() (map internal to coercion system -- copy before use) Natural morphism: From: Integer Ring To: Rational Field
left_morphism_ref()
To get an actual valid map, we simply copy the weakly referenced coercion map:
sage: print(copy(left_morphism_ref())) Natural morphism: From: Integer Ring To: Rational Field sage: print(right_morphism_ref) None
>>> from sage.all import * >>> print(copy(left_morphism_ref())) Natural morphism: From: Integer Ring To: Rational Field >>> print(right_morphism_ref) None
print(copy(left_morphism_ref())) print(right_morphism_ref)
We can see that it coerces the left operand from an integer to a rational, and doesn’t do anything to the right.
Now for some actions:
sage: R.<x> = ZZ['x'] sage: 1/2 * x 1/2*x sage: maps, actions = cm.get_cache() sage: act = actions[QQ, R, operator.mul]; act Left scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring sage: act.actor() Rational Field sage: act.domain() Univariate Polynomial Ring in x over Integer Ring sage: act.codomain() Univariate Polynomial Ring in x over Rational Field sage: act(1/5, x+10) 1/5*x + 2
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> Integer(1)/Integer(2) * x 1/2*x >>> maps, actions = cm.get_cache() >>> act = actions[QQ, R, operator.mul]; act Left scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring >>> act.actor() Rational Field >>> act.domain() Univariate Polynomial Ring in x over Integer Ring >>> act.codomain() Univariate Polynomial Ring in x over Rational Field >>> act(Integer(1)/Integer(5), x+Integer(10)) 1/5*x + 2
R.<x> = ZZ['x'] 1/2 * x maps, actions = cm.get_cache() act = actions[QQ, R, operator.mul]; act act.actor() act.domain() act.codomain() act(1/5, x+10)
- record_exceptions(value=True)[source]¶
Enables (or disables) recording of the exceptions suppressed during arithmetic.
Each time that record_exceptions is called (either enabling or disabling the record), the exception_stack is cleared.
- reset_cache()[source]¶
Clear the coercion cache.
This should have no impact on the result of arithmetic operations, as the exact same coercions and actions will be re-discovered when needed.
It may be useful for debugging, and may also free some memory.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: len(cm.get_cache()[0]) # random 42 sage: cm.reset_cache() sage: cm.get_cache() ({}, {})
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> len(cm.get_cache()[Integer(0)]) # random 42 >>> cm.reset_cache() >>> cm.get_cache() ({}, {})
cm = sage.structure.element.get_coercion_model() len(cm.get_cache()[0]) # random cm.reset_cache() cm.get_cache()
- richcmp(x, y, op)[source]¶
Given two arbitrary objects
x
andy
, coerce them to a common parent and compare them using rich comparison operatorop
.EXAMPLES:
sage: from sage.structure.element import get_coercion_model sage: from sage.structure.richcmp import op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE sage: richcmp = get_coercion_model().richcmp sage: richcmp(None, None, op_EQ) True sage: richcmp(None, 1, op_LT) True sage: richcmp("hello", None, op_LE) False sage: richcmp(-1, 1, op_GE) False sage: richcmp(int(1), float(2), op_GE) False
>>> from sage.all import * >>> from sage.structure.element import get_coercion_model >>> from sage.structure.richcmp import op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE >>> richcmp = get_coercion_model().richcmp >>> richcmp(None, None, op_EQ) True >>> richcmp(None, Integer(1), op_LT) True >>> richcmp("hello", None, op_LE) False >>> richcmp(-Integer(1), Integer(1), op_GE) False >>> richcmp(int(Integer(1)), float(Integer(2)), op_GE) False
from sage.structure.element import get_coercion_model from sage.structure.richcmp import op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE richcmp = get_coercion_model().richcmp richcmp(None, None, op_EQ) richcmp(None, 1, op_LT) richcmp("hello", None, op_LE) richcmp(-1, 1, op_GE) richcmp(int(1), float(2), op_GE)
If there is no coercion, we only support
==
and!=
:sage: x = QQ.one(); y = GF(2).one() sage: richcmp(x, y, op_EQ) False sage: richcmp(x, y, op_NE) True sage: richcmp(x, y, op_GT) Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for >: 'Rational Field' and 'Finite Field of size 2'
>>> from sage.all import * >>> x = QQ.one(); y = GF(Integer(2)).one() >>> richcmp(x, y, op_EQ) False >>> richcmp(x, y, op_NE) True >>> richcmp(x, y, op_GT) Traceback (most recent call last): ... TypeError: unsupported operand parent(s) for >: 'Rational Field' and 'Finite Field of size 2'
x = QQ.one(); y = GF(2).one() richcmp(x, y, op_EQ) richcmp(x, y, op_NE) richcmp(x, y, op_GT)
We support non-Sage types with the usual Python convention:
sage: class AlwaysEqual(): ....: def __eq__(self, other): ....: return True sage: x = AlwaysEqual() sage: x == 1 True sage: 1 == x True
>>> from sage.all import * >>> class AlwaysEqual(): ... def __eq__(self, other): ... return True >>> x = AlwaysEqual() >>> x == Integer(1) True >>> Integer(1) == x True
class AlwaysEqual(): def __eq__(self, other): return True x = AlwaysEqual() x == 1 1 == x
- verify_action(action, R, S, op, fix=True)[source]¶
Verify that
action
takes an element of R on the left and S on the right, raising an error if not.This is used for consistency checking in the coercion model.
EXAMPLES:
sage: R.<x> = ZZ['x'] sage: cm = sage.structure.element.get_coercion_model() sage: cm.verify_action(R.get_action(QQ), R, QQ, operator.mul) Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring sage: cm.verify_action(R.get_action(QQ), RDF, R, operator.mul) Traceback (most recent call last): ... RuntimeError: There is a BUG in the coercion model: Action found for R <built-in function mul> S does not have the correct domains R = Real Double Field S = Univariate Polynomial Ring in x over Integer Ring (should be Univariate Polynomial Ring in x over Integer Ring, Rational Field) action = Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring (<class 'sage.structure.coerce_actions.RightModuleAction'>)
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> cm = sage.structure.element.get_coercion_model() >>> cm.verify_action(R.get_action(QQ), R, QQ, operator.mul) Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring >>> cm.verify_action(R.get_action(QQ), RDF, R, operator.mul) Traceback (most recent call last): ... RuntimeError: There is a BUG in the coercion model: Action found for R <built-in function mul> S does not have the correct domains R = Real Double Field S = Univariate Polynomial Ring in x over Integer Ring (should be Univariate Polynomial Ring in x over Integer Ring, Rational Field) action = Right scalar multiplication by Rational Field on Univariate Polynomial Ring in x over Integer Ring (<class 'sage.structure.coerce_actions.RightModuleAction'>)
R.<x> = ZZ['x'] cm = sage.structure.element.get_coercion_model() cm.verify_action(R.get_action(QQ), R, QQ, operator.mul) cm.verify_action(R.get_action(QQ), RDF, R, operator.mul)
- verify_coercion_maps(R, S, homs, fix=False)[source]¶
Make sure this is a valid pair of homomorphisms from \(R\) and \(S\) to a common parent. This function is used to protect the user against buggy parents.
EXAMPLES:
sage: cm = sage.structure.element.get_coercion_model() sage: homs = QQ.coerce_map_from(ZZ), None sage: cm.verify_coercion_maps(ZZ, QQ, homs) == homs True sage: homs = QQ.coerce_map_from(ZZ), RR.coerce_map_from(QQ) sage: cm.verify_coercion_maps(ZZ, QQ, homs) == homs Traceback (most recent call last): ... RuntimeError: ('BUG in coercion model, codomains must be identical', Natural morphism: From: Integer Ring To: Rational Field, Generic map: From: Rational Field To: Real Field with 53 bits of precision)
>>> from sage.all import * >>> cm = sage.structure.element.get_coercion_model() >>> homs = QQ.coerce_map_from(ZZ), None >>> cm.verify_coercion_maps(ZZ, QQ, homs) == homs True >>> homs = QQ.coerce_map_from(ZZ), RR.coerce_map_from(QQ) >>> cm.verify_coercion_maps(ZZ, QQ, homs) == homs Traceback (most recent call last): ... RuntimeError: ('BUG in coercion model, codomains must be identical', Natural morphism: From: Integer Ring To: Rational Field, Generic map: From: Rational Field To: Real Field with 53 bits of precision)
cm = sage.structure.element.get_coercion_model() homs = QQ.coerce_map_from(ZZ), None cm.verify_coercion_maps(ZZ, QQ, homs) == homs homs = QQ.coerce_map_from(ZZ), RR.coerce_map_from(QQ) cm.verify_coercion_maps(ZZ, QQ, homs) == homs
- sage.structure.coerce.is_mpmath_type(t)[source]¶
Check whether the type
t
is a type whose name starts with eithermpmath.
orsage.libs.mpmath.
.EXAMPLES:
sage: # needs mpmath sage: from sage.structure.coerce import is_mpmath_type sage: is_mpmath_type(int) False sage: import mpmath sage: is_mpmath_type(mpmath.mpc(2)) False sage: is_mpmath_type(type(mpmath.mpc(2))) True sage: is_mpmath_type(type(mpmath.mpf(2))) True
>>> from sage.all import * >>> # needs mpmath >>> from sage.structure.coerce import is_mpmath_type >>> is_mpmath_type(int) False >>> import mpmath >>> is_mpmath_type(mpmath.mpc(Integer(2))) False >>> is_mpmath_type(type(mpmath.mpc(Integer(2)))) True >>> is_mpmath_type(type(mpmath.mpf(Integer(2)))) True
# needs mpmath from sage.structure.coerce import is_mpmath_type is_mpmath_type(int) import mpmath is_mpmath_type(mpmath.mpc(2)) is_mpmath_type(type(mpmath.mpc(2))) is_mpmath_type(type(mpmath.mpf(2)))
- sage.structure.coerce.is_numpy_type(t)[source]¶
Return
True
if and only if \(t\) is a type whose name starts withnumpy.
EXAMPLES:
sage: from sage.structure.coerce import is_numpy_type sage: # needs numpy sage: import numpy sage: is_numpy_type(numpy.int16) True sage: is_numpy_type(numpy.floating) True sage: is_numpy_type(numpy.ndarray) True sage: is_numpy_type(numpy.matrix) True sage: is_numpy_type(int) False sage: is_numpy_type(Integer) False sage: is_numpy_type(Sudoku) # needs sage.combinat False sage: is_numpy_type(None) False
>>> from sage.all import * >>> from sage.structure.coerce import is_numpy_type >>> # needs numpy >>> import numpy >>> is_numpy_type(numpy.int16) True >>> is_numpy_type(numpy.floating) True >>> is_numpy_type(numpy.ndarray) True >>> is_numpy_type(numpy.matrix) True >>> is_numpy_type(int) False >>> is_numpy_type(Integer) False >>> is_numpy_type(Sudoku) # needs sage.combinat False >>> is_numpy_type(None) False
from sage.structure.coerce import is_numpy_type # needs numpy import numpy is_numpy_type(numpy.int16) is_numpy_type(numpy.floating) is_numpy_type(numpy.ndarray) is_numpy_type(numpy.matrix) is_numpy_type(int) is_numpy_type(Integer) is_numpy_type(Sudoku) # needs sage.combinat is_numpy_type(None)
- sage.structure.coerce.parent_is_integers(P)[source]¶
Check whether the type or parent represents the ring of integers.
EXAMPLES:
sage: from sage.structure.coerce import parent_is_integers sage: parent_is_integers(int) True sage: parent_is_integers(float) False sage: parent_is_integers(bool) True sage: parent_is_integers(dict) False sage: import numpy # needs numpy sage: parent_is_integers(numpy.int16) # needs numpy True sage: parent_is_integers(numpy.uint64) # needs numpy True sage: parent_is_integers(float) False sage: import gmpy2 sage: parent_is_integers(gmpy2.mpz) True sage: parent_is_integers(gmpy2.mpq) False
>>> from sage.all import * >>> from sage.structure.coerce import parent_is_integers >>> parent_is_integers(int) True >>> parent_is_integers(float) False >>> parent_is_integers(bool) True >>> parent_is_integers(dict) False >>> import numpy # needs numpy >>> parent_is_integers(numpy.int16) # needs numpy True >>> parent_is_integers(numpy.uint64) # needs numpy True >>> parent_is_integers(float) False >>> import gmpy2 >>> parent_is_integers(gmpy2.mpz) True >>> parent_is_integers(gmpy2.mpq) False
from sage.structure.coerce import parent_is_integers parent_is_integers(int) parent_is_integers(float) parent_is_integers(bool) parent_is_integers(dict) import numpy # needs numpy parent_is_integers(numpy.int16) # needs numpy parent_is_integers(numpy.uint64) # needs numpy parent_is_integers(float) import gmpy2 parent_is_integers(gmpy2.mpz) parent_is_integers(gmpy2.mpq)
Ensure (Issue #27893) is fixed:
sage: K.<f> = QQ[] sage: gmpy2.mpz(2) * f 2*f
>>> from sage.all import * >>> K = QQ['f']; (f,) = K._first_ngens(1) >>> gmpy2.mpz(Integer(2)) * f 2*f
K.<f> = QQ[] gmpy2.mpz(2) * f
- sage.structure.coerce.parent_is_numerical(P)[source]¶
Test if elements of the parent or type
P
can be numerically evaluated as complex numbers (in a canonical way).EXAMPLES:
sage: from sage.structure.coerce import parent_is_numerical sage: import gmpy2 sage: [parent_is_numerical(R) for R in [QQ, int, complex, gmpy2.mpc]] # needs sage.rings.complex_double [True, True, True, True] sage: [parent_is_numerical(R) for R in [RR, CC]] # needs sage.rings.real_mpfr [True, True] sage: parent_is_numerical(QuadraticField(-1)) # needs sage.rings.number_field True sage: import numpy; parent_is_numerical(numpy.complexfloating) # needs numpy True sage: parent_is_numerical(SR) # needs sage.symbolic False sage: [parent_is_numerical(R) for R in [QQ['x'], QQ[['x']], str]] [False, False, False] sage: [parent_is_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint [False, False, False, False]
>>> from sage.all import * >>> from sage.structure.coerce import parent_is_numerical >>> import gmpy2 >>> [parent_is_numerical(R) for R in [QQ, int, complex, gmpy2.mpc]] # needs sage.rings.complex_double [True, True, True, True] >>> [parent_is_numerical(R) for R in [RR, CC]] # needs sage.rings.real_mpfr [True, True] >>> parent_is_numerical(QuadraticField(-Integer(1))) # needs sage.rings.number_field True >>> import numpy; parent_is_numerical(numpy.complexfloating) # needs numpy True >>> parent_is_numerical(SR) # needs sage.symbolic False >>> [parent_is_numerical(R) for R in [QQ['x'], QQ[['x']], str]] [False, False, False] >>> [parent_is_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint [False, False, False, False]
from sage.structure.coerce import parent_is_numerical import gmpy2 [parent_is_numerical(R) for R in [QQ, int, complex, gmpy2.mpc]] # needs sage.rings.complex_double [parent_is_numerical(R) for R in [RR, CC]] # needs sage.rings.real_mpfr parent_is_numerical(QuadraticField(-1)) # needs sage.rings.number_field import numpy; parent_is_numerical(numpy.complexfloating) # needs numpy parent_is_numerical(SR) # needs sage.symbolic [parent_is_numerical(R) for R in [QQ['x'], QQ[['x']], str]] [parent_is_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint
- sage.structure.coerce.parent_is_real_numerical(P)[source]¶
Test if elements of the parent or type
P
can be numerically evaluated as real numbers (in a canonical way).EXAMPLES:
sage: from sage.structure.coerce import parent_is_real_numerical sage: import gmpy2 sage: [parent_is_real_numerical(R) for R in [RR, QQ, ZZ, RLF, int, float, gmpy2.mpq]] [True, True, True, True, True, True, True] sage: parent_is_real_numerical(QuadraticField(2)) # needs sage.rings.number_field True sage: import numpy; parent_is_real_numerical(numpy.integer) # needs numpy True sage: parent_is_real_numerical(QuadraticField(-1)) # needs sage.rings.number_field False sage: [parent_is_real_numerical(R) # needs numpy ....: for R in [CC, complex, gmpy2.mpc, numpy.complexfloating]] [False, False, False, False] sage: [parent_is_real_numerical(R) for R in [QQ['x'], QQ[['x']], str]] [False, False, False] sage: parent_is_real_numerical(SR) # needs sage.symbolic False sage: [parent_is_real_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint [False, False, False, False]
>>> from sage.all import * >>> from sage.structure.coerce import parent_is_real_numerical >>> import gmpy2 >>> [parent_is_real_numerical(R) for R in [RR, QQ, ZZ, RLF, int, float, gmpy2.mpq]] [True, True, True, True, True, True, True] >>> parent_is_real_numerical(QuadraticField(Integer(2))) # needs sage.rings.number_field True >>> import numpy; parent_is_real_numerical(numpy.integer) # needs numpy True >>> parent_is_real_numerical(QuadraticField(-Integer(1))) # needs sage.rings.number_field False >>> [parent_is_real_numerical(R) # needs numpy ... for R in [CC, complex, gmpy2.mpc, numpy.complexfloating]] [False, False, False, False] >>> [parent_is_real_numerical(R) for R in [QQ['x'], QQ[['x']], str]] [False, False, False] >>> parent_is_real_numerical(SR) # needs sage.symbolic False >>> [parent_is_real_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint [False, False, False, False]
from sage.structure.coerce import parent_is_real_numerical import gmpy2 [parent_is_real_numerical(R) for R in [RR, QQ, ZZ, RLF, int, float, gmpy2.mpq]] parent_is_real_numerical(QuadraticField(2)) # needs sage.rings.number_field import numpy; parent_is_real_numerical(numpy.integer) # needs numpy parent_is_real_numerical(QuadraticField(-1)) # needs sage.rings.number_field [parent_is_real_numerical(R) # needs numpy for R in [CC, complex, gmpy2.mpc, numpy.complexfloating]] [parent_is_real_numerical(R) for R in [QQ['x'], QQ[['x']], str]] parent_is_real_numerical(SR) # needs sage.symbolic [parent_is_real_numerical(R) for R in [RIF, RBF, CIF, CBF]] # needs sage.libs.flint
- sage.structure.coerce.py_scalar_parent(py_type)[source]¶
Return the Sage equivalent of the given python type, if one exists. If there is no equivalent, return
None
.EXAMPLES:
sage: from sage.structure.coerce import py_scalar_parent sage: py_scalar_parent(int) Integer Ring sage: py_scalar_parent(float) Real Double Field sage: py_scalar_parent(complex) # needs sage.rings.complex_double Complex Double Field sage: py_scalar_parent(bool) Integer Ring sage: py_scalar_parent(dict), (None,) sage: import fractions sage: py_scalar_parent(fractions.Fraction) Rational Field sage: # needs numpy sage: import numpy sage: py_scalar_parent(numpy.int16) Integer Ring sage: py_scalar_parent(numpy.int32) Integer Ring sage: py_scalar_parent(numpy.uint64) Integer Ring sage: py_scalar_parent(numpy.double) Real Double Field sage: import gmpy2 sage: py_scalar_parent(gmpy2.mpz) Integer Ring sage: py_scalar_parent(gmpy2.mpq) Rational Field sage: py_scalar_parent(gmpy2.mpfr) Real Double Field sage: py_scalar_parent(gmpy2.mpc) # needs sage.rings.complex_double Complex Double Field
>>> from sage.all import * >>> from sage.structure.coerce import py_scalar_parent >>> py_scalar_parent(int) Integer Ring >>> py_scalar_parent(float) Real Double Field >>> py_scalar_parent(complex) # needs sage.rings.complex_double Complex Double Field >>> py_scalar_parent(bool) Integer Ring >>> py_scalar_parent(dict), (None,) >>> import fractions >>> py_scalar_parent(fractions.Fraction) Rational Field >>> # needs numpy >>> import numpy >>> py_scalar_parent(numpy.int16) Integer Ring >>> py_scalar_parent(numpy.int32) Integer Ring >>> py_scalar_parent(numpy.uint64) Integer Ring >>> py_scalar_parent(numpy.double) Real Double Field >>> import gmpy2 >>> py_scalar_parent(gmpy2.mpz) Integer Ring >>> py_scalar_parent(gmpy2.mpq) Rational Field >>> py_scalar_parent(gmpy2.mpfr) Real Double Field >>> py_scalar_parent(gmpy2.mpc) # needs sage.rings.complex_double Complex Double Field
from sage.structure.coerce import py_scalar_parent py_scalar_parent(int) py_scalar_parent(float) py_scalar_parent(complex) # needs sage.rings.complex_double py_scalar_parent(bool) py_scalar_parent(dict), import fractions py_scalar_parent(fractions.Fraction) # needs numpy import numpy py_scalar_parent(numpy.int16) py_scalar_parent(numpy.int32) py_scalar_parent(numpy.uint64) py_scalar_parent(numpy.double) import gmpy2 py_scalar_parent(gmpy2.mpz) py_scalar_parent(gmpy2.mpq) py_scalar_parent(gmpy2.mpfr) py_scalar_parent(gmpy2.mpc) # needs sage.rings.complex_double
- sage.structure.coerce.py_scalar_to_element(x)[source]¶
Convert
x
to a SageElement
if possible.If
x
was already anElement
or if there is no obvious conversion possible, just returnx
itself.EXAMPLES:
sage: from sage.structure.coerce import py_scalar_to_element sage: x = py_scalar_to_element(42) sage: x, parent(x) (42, Integer Ring) sage: x = py_scalar_to_element(int(42)) sage: x, parent(x) (42, Integer Ring) sage: x = py_scalar_to_element(float(42)) sage: x, parent(x) (42.0, Real Double Field) sage: x = py_scalar_to_element(complex(42)) # needs sage.rings.complex_double sage: x, parent(x) # needs sage.rings.complex_double (42.0, Complex Double Field) sage: py_scalar_to_element('hello') 'hello' sage: from fractions import Fraction sage: f = Fraction(int(2^100), int(3^100)) sage: py_scalar_to_element(f) 1267650600228229401496703205376/515377520732011331036461129765621272702107522001
>>> from sage.all import * >>> from sage.structure.coerce import py_scalar_to_element >>> x = py_scalar_to_element(Integer(42)) >>> x, parent(x) (42, Integer Ring) >>> x = py_scalar_to_element(int(Integer(42))) >>> x, parent(x) (42, Integer Ring) >>> x = py_scalar_to_element(float(Integer(42))) >>> x, parent(x) (42.0, Real Double Field) >>> x = py_scalar_to_element(complex(Integer(42))) # needs sage.rings.complex_double >>> x, parent(x) # needs sage.rings.complex_double (42.0, Complex Double Field) >>> py_scalar_to_element('hello') 'hello' >>> from fractions import Fraction >>> f = Fraction(int(Integer(2)**Integer(100)), int(Integer(3)**Integer(100))) >>> py_scalar_to_element(f) 1267650600228229401496703205376/515377520732011331036461129765621272702107522001
from sage.structure.coerce import py_scalar_to_element x = py_scalar_to_element(42) x, parent(x) x = py_scalar_to_element(int(42)) x, parent(x) x = py_scalar_to_element(float(42)) x, parent(x) x = py_scalar_to_element(complex(42)) # needs sage.rings.complex_double x, parent(x) # needs sage.rings.complex_double py_scalar_to_element('hello') from fractions import Fraction f = Fraction(int(2^100), int(3^100)) py_scalar_to_element(f)
Note that bools are converted to 0 or 1:
sage: py_scalar_to_element(False), py_scalar_to_element(True) (0, 1)
>>> from sage.all import * >>> py_scalar_to_element(False), py_scalar_to_element(True) (0, 1)
py_scalar_to_element(False), py_scalar_to_element(True)
Test gmpy2’s types:
sage: import gmpy2 sage: x = py_scalar_to_element(gmpy2.mpz(42)) sage: x, parent(x) (42, Integer Ring) sage: x = py_scalar_to_element(gmpy2.mpq('3/4')) sage: x, parent(x) (3/4, Rational Field) sage: x = py_scalar_to_element(gmpy2.mpfr(42.57)) sage: x, parent(x) (42.57, Real Double Field) sage: x = py_scalar_to_element(gmpy2.mpc(int(42), int(42))) # needs sage.rings.complex_double sage: x, parent(x) # needs sage.rings.complex_double (42.0 + 42.0*I, Complex Double Field)
>>> from sage.all import * >>> import gmpy2 >>> x = py_scalar_to_element(gmpy2.mpz(Integer(42))) >>> x, parent(x) (42, Integer Ring) >>> x = py_scalar_to_element(gmpy2.mpq('3/4')) >>> x, parent(x) (3/4, Rational Field) >>> x = py_scalar_to_element(gmpy2.mpfr(RealNumber('42.57'))) >>> x, parent(x) (42.57, Real Double Field) >>> x = py_scalar_to_element(gmpy2.mpc(int(Integer(42)), int(Integer(42)))) # needs sage.rings.complex_double >>> x, parent(x) # needs sage.rings.complex_double (42.0 + 42.0*I, Complex Double Field)
import gmpy2 x = py_scalar_to_element(gmpy2.mpz(42)) x, parent(x) x = py_scalar_to_element(gmpy2.mpq('3/4')) x, parent(x) x = py_scalar_to_element(gmpy2.mpfr(42.57)) x, parent(x) x = py_scalar_to_element(gmpy2.mpc(int(42), int(42))) # needs sage.rings.complex_double x, parent(x) # needs sage.rings.complex_double
Test compatibility with
py_scalar_parent()
:sage: from sage.structure.coerce import py_scalar_parent sage: elt = [True, int(42), float(42), complex(42)] sage: for x in elt: # needs sage.rings.complex_double ....: assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() sage: import numpy # needs numpy sage: elt = [numpy.int8('-12'), numpy.uint8('143'), # needs numpy ....: numpy.int16('-33'), numpy.uint16('122'), ....: numpy.int32('-19'), numpy.uint32('44'), ....: numpy.int64('-3'), numpy.uint64('552'), ....: numpy.float16('-1.23'), numpy.float32('-2.22'), ....: numpy.float64('-3.412'), numpy.complex64(1.2+I), ....: numpy.complex128(-2+I)] sage: for x in elt: # needs numpy ....: assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() sage: elt = [gmpy2.mpz(42), gmpy2.mpq('3/4'), ....: gmpy2.mpfr(42.57), gmpy2.mpc(int(42), int(42))] sage: for x in elt: # needs sage.rings.complex_double ....: assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent()
>>> from sage.all import * >>> from sage.structure.coerce import py_scalar_parent >>> elt = [True, int(Integer(42)), float(Integer(42)), complex(Integer(42))] >>> for x in elt: # needs sage.rings.complex_double ... assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() >>> import numpy # needs numpy >>> elt = [numpy.int8('-12'), numpy.uint8('143'), # needs numpy ... numpy.int16('-33'), numpy.uint16('122'), ... numpy.int32('-19'), numpy.uint32('44'), ... numpy.int64('-3'), numpy.uint64('552'), ... numpy.float16('-1.23'), numpy.float32('-2.22'), ... numpy.float64('-3.412'), numpy.complex64(RealNumber('1.2')+I), ... numpy.complex128(-Integer(2)+I)] >>> for x in elt: # needs numpy ... assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() >>> elt = [gmpy2.mpz(Integer(42)), gmpy2.mpq('3/4'), ... gmpy2.mpfr(RealNumber('42.57')), gmpy2.mpc(int(Integer(42)), int(Integer(42)))] >>> for x in elt: # needs sage.rings.complex_double ... assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent()
from sage.structure.coerce import py_scalar_parent elt = [True, int(42), float(42), complex(42)] for x in elt: # needs sage.rings.complex_double assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() import numpy # needs numpy elt = [numpy.int8('-12'), numpy.uint8('143'), # needs numpy numpy.int16('-33'), numpy.uint16('122'), numpy.int32('-19'), numpy.uint32('44'), numpy.int64('-3'), numpy.uint64('552'), numpy.float16('-1.23'), numpy.float32('-2.22'), numpy.float64('-3.412'), numpy.complex64(1.2+I), numpy.complex128(-2+I)] for x in elt: # needs numpy assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent() elt = [gmpy2.mpz(42), gmpy2.mpq('3/4'), gmpy2.mpfr(42.57), gmpy2.mpc(int(42), int(42))] for x in elt: # needs sage.rings.complex_double assert py_scalar_parent(type(x)) == py_scalar_to_element(x).parent()