Branching Rules¶
- class sage.combinat.root_system.branching_rules.BranchingRule(R, S, f, name='default', intermediate_types=[], intermediate_names=[])[source]¶
Bases:
SageObject
A class for branching rules.
- Rtype()[source]¶
In a branching rule R => S, returns the Cartan Type of the ambient group R.
EXAMPLES:
sage: branching_rule("A3","A2","levi").Rtype() ['A', 3]
>>> from sage.all import * >>> branching_rule("A3","A2","levi").Rtype() ['A', 3]
branching_rule("A3","A2","levi").Rtype()
- Stype()[source]¶
In a branching rule R => S, returns the Cartan Type of the subgroup S.
EXAMPLES:
sage: branching_rule("A3","A2","levi").Stype() ['A', 2]
>>> from sage.all import * >>> branching_rule("A3","A2","levi").Stype() ['A', 2]
branching_rule("A3","A2","levi").Stype()
- branch(chi, style=None)[source]¶
INPUT:
chi
– a character of the WeylCharacterRing with Cartan type self.Rtype()
Returns the branched character.
EXAMPLES:
sage: G2=WeylCharacterRing("G2",style='coroots') sage: chi=G2(1,1); chi.degree() 64 sage: b=G2.maximal_subgroup("A2"); b extended branching rule G2 => A2 sage: b.branch(chi) A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1) sage: A2=WeylCharacterRing("A2",style='coroots'); A2 The Weyl Character Ring of Type A2 with Integer Ring coefficients sage: chi.branch(A2,rule=b) A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1)
>>> from sage.all import * >>> G2=WeylCharacterRing("G2",style='coroots') >>> chi=G2(Integer(1),Integer(1)); chi.degree() 64 >>> b=G2.maximal_subgroup("A2"); b extended branching rule G2 => A2 >>> b.branch(chi) A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1) >>> A2=WeylCharacterRing("A2",style='coroots'); A2 The Weyl Character Ring of Type A2 with Integer Ring coefficients >>> chi.branch(A2,rule=b) A2(0,1) + A2(1,0) + A2(0,2) + 2*A2(1,1) + A2(2,0) + A2(1,2) + A2(2,1)
G2=WeylCharacterRing("G2",style='coroots') chi=G2(1,1); chi.degree() b=G2.maximal_subgroup("A2"); b b.branch(chi) A2=WeylCharacterRing("A2",style='coroots'); A2 chi.branch(A2,rule=b)
- describe(verbose=False, debug=False, no_r=False)[source]¶
Describe how extended roots restrict under
self
.EXAMPLES:
sage: branching_rule("G2","A2","extended").describe() 3 O=<=O---O 1 2 0 G2~ root restrictions G2 => A2: O---O 1 2 A2 0 => 2 2 => 1 For more detailed information use verbose=True
>>> from sage.all import * >>> branching_rule("G2","A2","extended").describe() <BLANKLINE> 3 O=<=O---O 1 2 0 G2~ <BLANKLINE> root restrictions G2 => A2: <BLANKLINE> O---O 1 2 A2 <BLANKLINE> 0 => 2 2 => 1 <BLANKLINE> For more detailed information use verbose=True
branching_rule("G2","A2","extended").describe()
In this example,
is the affine root, that is, the negative of the highest root, for . If is printed, this means that the -th simple (or affine) root of the ambient group restricts to the -th simple root of the subgroup. For reference the Dynkin diagrams are also printed. The extended Dynkin diagram of the ambient group is printed if the affine root restricts to a simple root. More information is printed if the parameter is true.
- sage.combinat.root_system.branching_rules.branch_weyl_character(chi, R, S, rule='default')[source]¶
A branching rule describes the restriction of representations from a Lie group or algebra
to a subgroup . See for example, R. C. King, Branching rules for classical Lie groups using tensor and spinor methods. J. Phys. A 8 (1975), 429-449, Howe, Tan and Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2005), no. 4, 1601-1626, McKay and Patera, Tables of Dimensions, Indices and Branching Rules for Representations of Simple Lie Algebras (Marcel Dekker, 1981), and Fauser, Jarvis, King and Wybourne, New branching rules induced by plethysm. J. Phys. A 39 (2006), no. 11, 2611–2655. If we will write to denote the branching rule, which is a homomorphism of WeylCharacterRings.INPUT:
chi
– a character ofR
– the Weyl Character Ring ofS
– the Weyl Character Ring ofrule
– an element of theBranchingRule
class or one (most usually) a keyword such as:'levi'
'automorphic'
'symmetric'
'extended'
'orthogonal_sum'
'tensor'
'triality'
'miscellaneous'
The
BranchingRule
class is a wrapper for functions from the weight lattice of to the weight lattice of . An instance of this class encodes an embedding of into . The usual way to specify an embedding is to supply a keyword, which tells Sage to use one of the built-in rules. We will discuss these first.To explain the predefined rules, we survey the most important branching rules. These may be classified into several cases, and once this is understood, the detailed classification can be read off from the Dynkin diagrams. Dynkin classified the maximal subgroups of Lie groups in Mat. Sbornik N.S. 30(72):349-462 (1952).
We will list give predefined rules that cover most cases where the branching rule is to a maximal subgroup. For convenience, we also give some branching rules to subgroups that are not maximal. For example, a Levi subgroup may or may not be maximal.
For example, there is a “levi” branching rule defined from
(with Cartan type ) to (with Cartan type ), so we may compute the branching rule as follows:EXAMPLES:
sage: A3=WeylCharacterRing("A3",style='coroots') sage: A2=WeylCharacterRing("A2",style='coroots') sage: [A3(fw).branch(A2,rule='levi') for fw in A3.fundamental_weights()] [A2(0,0) + A2(1,0), A2(0,1) + A2(1,0), A2(0,0) + A2(0,1)]
>>> from sage.all import * >>> A3=WeylCharacterRing("A3",style='coroots') >>> A2=WeylCharacterRing("A2",style='coroots') >>> [A3(fw).branch(A2,rule='levi') for fw in A3.fundamental_weights()] [A2(0,0) + A2(1,0), A2(0,1) + A2(1,0), A2(0,0) + A2(0,1)]
A3=WeylCharacterRing("A3",style='coroots') A2=WeylCharacterRing("A2",style='coroots') [A3(fw).branch(A2,rule='levi') for fw in A3.fundamental_weights()]
In this case the Levi branching rule is the default branching rule so we may omit the specification rule=”levi”.
If a subgroup is not maximal, you may specify a branching rule by finding a chain of intermediate subgroups. For this purpose, branching rules may be multiplied as in the following example.
EXAMPLES:
sage: A4=WeylCharacterRing("A4",style='coroots') sage: A2=WeylCharacterRing("A2",style='coroots') sage: br=branching_rule("A4","A3")*branching_rule("A3","A2") sage: A4(1,0,0,0).branch(A2,rule=br) 2*A2(0,0) + A2(1,0)
>>> from sage.all import * >>> A4=WeylCharacterRing("A4",style='coroots') >>> A2=WeylCharacterRing("A2",style='coroots') >>> br=branching_rule("A4","A3")*branching_rule("A3","A2") >>> A4(Integer(1),Integer(0),Integer(0),Integer(0)).branch(A2,rule=br) 2*A2(0,0) + A2(1,0)
A4=WeylCharacterRing("A4",style='coroots') A2=WeylCharacterRing("A2",style='coroots') br=branching_rule("A4","A3")*branching_rule("A3","A2") A4(1,0,0,0).branch(A2,rule=br)
You may try omitting the rule if it is “obvious”. Default rules are provided for the following cases:
The above default rules correspond to embedding the group
, or into the corresponding general or special linear group by the standard representation. Default rules are also specified for the following cases:These correspond to the embedding of
into where or . Finally, the branching rule for the embedding of a Levi subgroup is also implemented as a default rule.EXAMPLES:
sage: A1 = WeylCharacterRing("A1", style='coroots') sage: A2 = WeylCharacterRing("A2", style='coroots') sage: D4 = WeylCharacterRing("D4", style='coroots') sage: B3 = WeylCharacterRing("B3", style='coroots') sage: B4 = WeylCharacterRing("B4", style='coroots') sage: A6 = WeylCharacterRing("A6", style='coroots') sage: A7 = WeylCharacterRing("A7", style='coroots') sage: def try_default_rule(R, S): return [R(f).branch(S) for f in R.fundamental_weights()] sage: try_default_rule(A2,A1) [A1(0) + A1(1), A1(0) + A1(1)] sage: try_default_rule(D4,B3) [B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(0,1,0), B3(0,0,1), B3(0,0,1)] sage: try_default_rule(B4,D4) [D4(0,0,0,0) + D4(1,0,0,0), D4(1,0,0,0) + D4(0,1,0,0), D4(0,1,0,0) + D4(0,0,1,1), D4(0,0,1,0) + D4(0,0,0,1)] sage: try_default_rule(A7,D4) [D4(1,0,0,0), D4(0,1,0,0), D4(0,0,1,1), D4(0,0,2,0) + D4(0,0,0,2), D4(0,0,1,1), D4(0,1,0,0), D4(1,0,0,0)] sage: try_default_rule(A6,B3) [B3(1,0,0), B3(0,1,0), B3(0,0,2), B3(0,0,2), B3(0,1,0), B3(1,0,0)]
>>> from sage.all import * >>> A1 = WeylCharacterRing("A1", style='coroots') >>> A2 = WeylCharacterRing("A2", style='coroots') >>> D4 = WeylCharacterRing("D4", style='coroots') >>> B3 = WeylCharacterRing("B3", style='coroots') >>> B4 = WeylCharacterRing("B4", style='coroots') >>> A6 = WeylCharacterRing("A6", style='coroots') >>> A7 = WeylCharacterRing("A7", style='coroots') >>> def try_default_rule(R, S): return [R(f).branch(S) for f in R.fundamental_weights()] >>> try_default_rule(A2,A1) [A1(0) + A1(1), A1(0) + A1(1)] >>> try_default_rule(D4,B3) [B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(0,1,0), B3(0,0,1), B3(0,0,1)] >>> try_default_rule(B4,D4) [D4(0,0,0,0) + D4(1,0,0,0), D4(1,0,0,0) + D4(0,1,0,0), D4(0,1,0,0) + D4(0,0,1,1), D4(0,0,1,0) + D4(0,0,0,1)] >>> try_default_rule(A7,D4) [D4(1,0,0,0), D4(0,1,0,0), D4(0,0,1,1), D4(0,0,2,0) + D4(0,0,0,2), D4(0,0,1,1), D4(0,1,0,0), D4(1,0,0,0)] >>> try_default_rule(A6,B3) [B3(1,0,0), B3(0,1,0), B3(0,0,2), B3(0,0,2), B3(0,1,0), B3(1,0,0)]
A1 = WeylCharacterRing("A1", style='coroots') A2 = WeylCharacterRing("A2", style='coroots') D4 = WeylCharacterRing("D4", style='coroots') B3 = WeylCharacterRing("B3", style='coroots') B4 = WeylCharacterRing("B4", style='coroots') A6 = WeylCharacterRing("A6", style='coroots') A7 = WeylCharacterRing("A7", style='coroots') def try_default_rule(R, S): return [R(f).branch(S) for f in R.fundamental_weights()] try_default_rule(A2,A1) try_default_rule(D4,B3) try_default_rule(B4,D4) try_default_rule(A7,D4) try_default_rule(A6,B3)
If a default rule is not known, you may cue Sage as to what the Lie group embedding is by supplying a rule from the list of predefined rules. We will treat these next.
Levi Type
These can be read off from the Dynkin diagram. If removing a node from the Dynkin diagram produces another Dynkin diagram, there is a branching rule. A Levi subgroup may or may not be maximal. If it is maximal, there may or may not be a built-in branching rule for but you may obtain the Levi branching rule by first branching to a suitable maximal subgroup. For these rules use the option
rule="levi"
:Not all Levi subgroups are maximal subgroups. If the Levi is not maximal there may or may not be a preprogrammed
rule="levi"
for it. If there is not, the branching rule may still be obtained by going through an intermediate subgroup that is maximal using rule=”extended”. Thus the other Levi branching rule from corresponding to the long root is available by first branching then . Similarly the branching rules to the Levi subgroup:may be obtained by first branching
, or .EXAMPLES:
sage: A1 = WeylCharacterRing("A1") sage: A2 = WeylCharacterRing("A2") sage: A3 = WeylCharacterRing("A3") sage: A4 = WeylCharacterRing("A4") sage: A5 = WeylCharacterRing("A5") sage: B2 = WeylCharacterRing("B2") sage: B3 = WeylCharacterRing("B3") sage: B4 = WeylCharacterRing("B4") sage: C2 = WeylCharacterRing("C2") sage: C3 = WeylCharacterRing("C3") sage: D3 = WeylCharacterRing("D3") sage: D4 = WeylCharacterRing("D4") sage: G2 = WeylCharacterRing("G2") sage: F4 = WeylCharacterRing("F4",style='coroots') sage: E6=WeylCharacterRing("E6",style='coroots') sage: E7=WeylCharacterRing("E7",style='coroots') sage: D5=WeylCharacterRing("D5",style='coroots') sage: D6=WeylCharacterRing("D6",style='coroots') sage: [B3(w).branch(A2,rule='levi') for w in B3.fundamental_weights()] [A2(0,0,0) + A2(1,0,0) + A2(0,0,-1), A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1), A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]
>>> from sage.all import * >>> A1 = WeylCharacterRing("A1") >>> A2 = WeylCharacterRing("A2") >>> A3 = WeylCharacterRing("A3") >>> A4 = WeylCharacterRing("A4") >>> A5 = WeylCharacterRing("A5") >>> B2 = WeylCharacterRing("B2") >>> B3 = WeylCharacterRing("B3") >>> B4 = WeylCharacterRing("B4") >>> C2 = WeylCharacterRing("C2") >>> C3 = WeylCharacterRing("C3") >>> D3 = WeylCharacterRing("D3") >>> D4 = WeylCharacterRing("D4") >>> G2 = WeylCharacterRing("G2") >>> F4 = WeylCharacterRing("F4",style='coroots') >>> E6=WeylCharacterRing("E6",style='coroots') >>> E7=WeylCharacterRing("E7",style='coroots') >>> D5=WeylCharacterRing("D5",style='coroots') >>> D6=WeylCharacterRing("D6",style='coroots') >>> [B3(w).branch(A2,rule='levi') for w in B3.fundamental_weights()] [A2(0,0,0) + A2(1,0,0) + A2(0,0,-1), A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1), A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]
A1 = WeylCharacterRing("A1") A2 = WeylCharacterRing("A2") A3 = WeylCharacterRing("A3") A4 = WeylCharacterRing("A4") A5 = WeylCharacterRing("A5") B2 = WeylCharacterRing("B2") B3 = WeylCharacterRing("B3") B4 = WeylCharacterRing("B4") C2 = WeylCharacterRing("C2") C3 = WeylCharacterRing("C3") D3 = WeylCharacterRing("D3") D4 = WeylCharacterRing("D4") G2 = WeylCharacterRing("G2") F4 = WeylCharacterRing("F4",style='coroots') E6=WeylCharacterRing("E6",style='coroots') E7=WeylCharacterRing("E7",style='coroots') D5=WeylCharacterRing("D5",style='coroots') D6=WeylCharacterRing("D6",style='coroots') [B3(w).branch(A2,rule='levi') for w in B3.fundamental_weights()]
The last example must be understood as follows. The representation of
being branched is spin, which is not a representation of but of its double cover . The group is really GL(3) and the double cover of induces a cover of that is trivial over but not over the center of . The weight lattice for this consists of triples of half integers such that and are in , and this is reflected in the last decomposition.sage: [C3(w).branch(A2,rule='levi') for w in C3.fundamental_weights()] [A2(1,0,0) + A2(0,0,-1), A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1), A2(-1,-1,-1) + A2(1,-1,-1) + A2(1,1,-1) + A2(1,1,1)] sage: [D4(w).branch(A3,rule='levi') for w in D4.fundamental_weights()] [A3(1,0,0,0) + A3(0,0,0,-1), A3(0,0,0,0) + A3(1,1,0,0) + A3(1,0,0,-1) + A3(0,0,-1,-1), A3(1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,-1/2), A3(-1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,1/2)] sage: [B3(w).branch(B2,rule='levi') for w in B3.fundamental_weights()] [2*B2(0,0) + B2(1,0), B2(0,0) + 2*B2(1,0) + B2(1,1), 2*B2(1/2,1/2)] sage: C3 = WeylCharacterRing(['C',3]) sage: [C3(w).branch(C2,rule='levi') for w in C3.fundamental_weights()] [2*C2(0,0) + C2(1,0), C2(0,0) + 2*C2(1,0) + C2(1,1), C2(1,0) + 2*C2(1,1)] sage: [D5(w).branch(D4,rule='levi') for w in D5.fundamental_weights()] [2*D4(0,0,0,0) + D4(1,0,0,0), D4(0,0,0,0) + 2*D4(1,0,0,0) + D4(1,1,0,0), D4(1,0,0,0) + 2*D4(1,1,0,0) + D4(1,1,1,0), D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2), D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2)] sage: G2(1,0,-1).branch(A1,rule='levi') A1(1,0) + A1(1,-1) + A1(0,-1) sage: E6=WeylCharacterRing("E6",style='coroots') sage: D5=WeylCharacterRing("D5",style='coroots') sage: fw = E6.fundamental_weights() sage: [E6(fw[i]).branch(D5,rule='levi') for i in [1,2,6]] [D5(0,0,0,0,0) + D5(0,0,0,0,1) + D5(1,0,0,0,0), D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(0,0,0,0,1) + D5(0,1,0,0,0), D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(1,0,0,0,0)] sage: E7=WeylCharacterRing("E7",style='coroots') sage: A3xA3xA1=WeylCharacterRing("A3xA3xA1",style='coroots') sage: E7(1,0,0,0,0,0,0).branch(A3xA3xA1,rule='extended') # long time (0.7s) A3xA3xA1(0,0,1,0,0,1,1) + A3xA3xA1(0,1,0,0,1,0,0) + A3xA3xA1(1,0,0,1,0,0,1) + A3xA3xA1(1,0,1,0,0,0,0) + A3xA3xA1(0,0,0,1,0,1,0) + A3xA3xA1(0,0,0,0,0,0,2) sage: fw = E7.fundamental_weights() sage: [E7(fw[i]).branch(D6,rule='levi') for i in [1,2,7]] # long time (0.3s) [3*D6(0,0,0,0,0,0) + 2*D6(0,0,0,0,1,0) + D6(0,1,0,0,0,0), 3*D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0) + 2*D6(0,0,1,0,0,0) + D6(1,0,0,0,1,0), D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0)] sage: D7=WeylCharacterRing("D7",style='coroots') sage: E8=WeylCharacterRing("E8",style='coroots') sage: D7=WeylCharacterRing("D7",style='coroots') sage: E8(1,0,0,0,0,0,0,0).branch(D7,rule='levi') # long time (7s) 3*D7(0,0,0,0,0,0,0) + 2*D7(0,0,0,0,0,1,0) + 2*D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,0) + D7(0,1,0,0,0,0,0) + 2*D7(0,0,1,0,0,0,0) + D7(0,0,0,1,0,0,0) + D7(1,0,0,0,0,1,0) + D7(1,0,0,0,0,0,1) + D7(2,0,0,0,0,0,0) sage: E8(0,0,0,0,0,0,0,1).branch(D7,rule='levi') # long time (0.6s) D7(0,0,0,0,0,0,0) + D7(0,0,0,0,0,1,0) + D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,0) + D7(0,1,0,0,0,0,0) sage: [F4(fw).branch(B3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) [B3(0,0,0) + 2*B3(1/2,1/2,1/2) + 2*B3(1,0,0) + B3(1,1,0), B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 5*B3(1,0,0) + 7*B3(1,1,0) + 3*B3(1,1,1) + 6*B3(3/2,1/2,1/2) + 2*B3(3/2,3/2,1/2) + B3(2,0,0) + 2*B3(2,1,0) + B3(2,1,1), 3*B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 4*B3(1,0,0) + 3*B3(1,1,0) + B3(1,1,1) + 2*B3(3/2,1/2,1/2), 3*B3(0,0,0) + 2*B3(1/2,1/2,1/2) + B3(1,0,0)] sage: [F4(fw).branch(C3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) [3*C3(0,0,0) + 2*C3(1,1,1) + C3(2,0,0), 3*C3(0,0,0) + 6*C3(1,1,1) + 4*C3(2,0,0) + 2*C3(2,1,0) + 3*C3(2,2,0) + C3(2,2,2) + C3(3,1,0) + 2*C3(3,1,1), 2*C3(1,0,0) + 3*C3(1,1,0) + C3(2,0,0) + 2*C3(2,1,0) + C3(2,1,1), 2*C3(1,0,0) + C3(1,1,0)] sage: A1xA1 = WeylCharacterRing("A1xA1") sage: [A3(hwv).branch(A1xA1,rule='levi') for hwv in A3.fundamental_weights()] [A1xA1(1,0,0,0) + A1xA1(0,0,1,0), A1xA1(1,1,0,0) + A1xA1(1,0,1,0) + A1xA1(0,0,1,1), A1xA1(1,1,1,0) + A1xA1(1,0,1,1)] sage: A1xB1=WeylCharacterRing("A1xB1",style='coroots') sage: [B3(x).branch(A1xB1,rule='levi') for x in B3.fundamental_weights()] [2*A1xB1(1,0) + A1xB1(0,2), 3*A1xB1(0,0) + 2*A1xB1(1,2) + A1xB1(2,0) + A1xB1(0,2), A1xB1(1,1) + 2*A1xB1(0,1)]
>>> from sage.all import * >>> [C3(w).branch(A2,rule='levi') for w in C3.fundamental_weights()] [A2(1,0,0) + A2(0,0,-1), A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1), A2(-1,-1,-1) + A2(1,-1,-1) + A2(1,1,-1) + A2(1,1,1)] >>> [D4(w).branch(A3,rule='levi') for w in D4.fundamental_weights()] [A3(1,0,0,0) + A3(0,0,0,-1), A3(0,0,0,0) + A3(1,1,0,0) + A3(1,0,0,-1) + A3(0,0,-1,-1), A3(1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,-1/2), A3(-1/2,-1/2,-1/2,-1/2) + A3(1/2,1/2,-1/2,-1/2) + A3(1/2,1/2,1/2,1/2)] >>> [B3(w).branch(B2,rule='levi') for w in B3.fundamental_weights()] [2*B2(0,0) + B2(1,0), B2(0,0) + 2*B2(1,0) + B2(1,1), 2*B2(1/2,1/2)] >>> C3 = WeylCharacterRing(['C',Integer(3)]) >>> [C3(w).branch(C2,rule='levi') for w in C3.fundamental_weights()] [2*C2(0,0) + C2(1,0), C2(0,0) + 2*C2(1,0) + C2(1,1), C2(1,0) + 2*C2(1,1)] >>> [D5(w).branch(D4,rule='levi') for w in D5.fundamental_weights()] [2*D4(0,0,0,0) + D4(1,0,0,0), D4(0,0,0,0) + 2*D4(1,0,0,0) + D4(1,1,0,0), D4(1,0,0,0) + 2*D4(1,1,0,0) + D4(1,1,1,0), D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2), D4(1/2,1/2,1/2,-1/2) + D4(1/2,1/2,1/2,1/2)] >>> G2(Integer(1),Integer(0),-Integer(1)).branch(A1,rule='levi') A1(1,0) + A1(1,-1) + A1(0,-1) >>> E6=WeylCharacterRing("E6",style='coroots') >>> D5=WeylCharacterRing("D5",style='coroots') >>> fw = E6.fundamental_weights() >>> [E6(fw[i]).branch(D5,rule='levi') for i in [Integer(1),Integer(2),Integer(6)]] [D5(0,0,0,0,0) + D5(0,0,0,0,1) + D5(1,0,0,0,0), D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(0,0,0,0,1) + D5(0,1,0,0,0), D5(0,0,0,0,0) + D5(0,0,0,1,0) + D5(1,0,0,0,0)] >>> E7=WeylCharacterRing("E7",style='coroots') >>> A3xA3xA1=WeylCharacterRing("A3xA3xA1",style='coroots') >>> E7(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A3xA3xA1,rule='extended') # long time (0.7s) A3xA3xA1(0,0,1,0,0,1,1) + A3xA3xA1(0,1,0,0,1,0,0) + A3xA3xA1(1,0,0,1,0,0,1) + A3xA3xA1(1,0,1,0,0,0,0) + A3xA3xA1(0,0,0,1,0,1,0) + A3xA3xA1(0,0,0,0,0,0,2) >>> fw = E7.fundamental_weights() >>> [E7(fw[i]).branch(D6,rule='levi') for i in [Integer(1),Integer(2),Integer(7)]] # long time (0.3s) [3*D6(0,0,0,0,0,0) + 2*D6(0,0,0,0,1,0) + D6(0,1,0,0,0,0), 3*D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0) + 2*D6(0,0,1,0,0,0) + D6(1,0,0,0,1,0), D6(0,0,0,0,0,1) + 2*D6(1,0,0,0,0,0)] >>> D7=WeylCharacterRing("D7",style='coroots') >>> E8=WeylCharacterRing("E8",style='coroots') >>> D7=WeylCharacterRing("D7",style='coroots') >>> E8(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(D7,rule='levi') # long time (7s) 3*D7(0,0,0,0,0,0,0) + 2*D7(0,0,0,0,0,1,0) + 2*D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,0) + D7(0,1,0,0,0,0,0) + 2*D7(0,0,1,0,0,0,0) + D7(0,0,0,1,0,0,0) + D7(1,0,0,0,0,1,0) + D7(1,0,0,0,0,0,1) + D7(2,0,0,0,0,0,0) >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(D7,rule='levi') # long time (0.6s) D7(0,0,0,0,0,0,0) + D7(0,0,0,0,0,1,0) + D7(0,0,0,0,0,0,1) + 2*D7(1,0,0,0,0,0,0) + D7(0,1,0,0,0,0,0) >>> [F4(fw).branch(B3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) [B3(0,0,0) + 2*B3(1/2,1/2,1/2) + 2*B3(1,0,0) + B3(1,1,0), B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 5*B3(1,0,0) + 7*B3(1,1,0) + 3*B3(1,1,1) + 6*B3(3/2,1/2,1/2) + 2*B3(3/2,3/2,1/2) + B3(2,0,0) + 2*B3(2,1,0) + B3(2,1,1), 3*B3(0,0,0) + 6*B3(1/2,1/2,1/2) + 4*B3(1,0,0) + 3*B3(1,1,0) + B3(1,1,1) + 2*B3(3/2,1/2,1/2), 3*B3(0,0,0) + 2*B3(1/2,1/2,1/2) + B3(1,0,0)] >>> [F4(fw).branch(C3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) [3*C3(0,0,0) + 2*C3(1,1,1) + C3(2,0,0), 3*C3(0,0,0) + 6*C3(1,1,1) + 4*C3(2,0,0) + 2*C3(2,1,0) + 3*C3(2,2,0) + C3(2,2,2) + C3(3,1,0) + 2*C3(3,1,1), 2*C3(1,0,0) + 3*C3(1,1,0) + C3(2,0,0) + 2*C3(2,1,0) + C3(2,1,1), 2*C3(1,0,0) + C3(1,1,0)] >>> A1xA1 = WeylCharacterRing("A1xA1") >>> [A3(hwv).branch(A1xA1,rule='levi') for hwv in A3.fundamental_weights()] [A1xA1(1,0,0,0) + A1xA1(0,0,1,0), A1xA1(1,1,0,0) + A1xA1(1,0,1,0) + A1xA1(0,0,1,1), A1xA1(1,1,1,0) + A1xA1(1,0,1,1)] >>> A1xB1=WeylCharacterRing("A1xB1",style='coroots') >>> [B3(x).branch(A1xB1,rule='levi') for x in B3.fundamental_weights()] [2*A1xB1(1,0) + A1xB1(0,2), 3*A1xB1(0,0) + 2*A1xB1(1,2) + A1xB1(2,0) + A1xB1(0,2), A1xB1(1,1) + 2*A1xB1(0,1)]
[C3(w).branch(A2,rule='levi') for w in C3.fundamental_weights()] [D4(w).branch(A3,rule='levi') for w in D4.fundamental_weights()] [B3(w).branch(B2,rule='levi') for w in B3.fundamental_weights()] C3 = WeylCharacterRing(['C',3]) [C3(w).branch(C2,rule='levi') for w in C3.fundamental_weights()] [D5(w).branch(D4,rule='levi') for w in D5.fundamental_weights()] G2(1,0,-1).branch(A1,rule='levi') E6=WeylCharacterRing("E6",style='coroots') D5=WeylCharacterRing("D5",style='coroots') fw = E6.fundamental_weights() [E6(fw[i]).branch(D5,rule='levi') for i in [1,2,6]] E7=WeylCharacterRing("E7",style='coroots') A3xA3xA1=WeylCharacterRing("A3xA3xA1",style='coroots') E7(1,0,0,0,0,0,0).branch(A3xA3xA1,rule='extended') # long time (0.7s) fw = E7.fundamental_weights() [E7(fw[i]).branch(D6,rule='levi') for i in [1,2,7]] # long time (0.3s) D7=WeylCharacterRing("D7",style='coroots') E8=WeylCharacterRing("E8",style='coroots') D7=WeylCharacterRing("D7",style='coroots') E8(1,0,0,0,0,0,0,0).branch(D7,rule='levi') # long time (7s) E8(0,0,0,0,0,0,0,1).branch(D7,rule='levi') # long time (0.6s) [F4(fw).branch(B3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) [F4(fw).branch(C3,rule='levi') for fw in F4.fundamental_weights()] # long time (1s) A1xA1 = WeylCharacterRing("A1xA1") [A3(hwv).branch(A1xA1,rule='levi') for hwv in A3.fundamental_weights()] A1xB1=WeylCharacterRing("A1xB1",style='coroots') [B3(x).branch(A1xB1,rule='levi') for x in B3.fundamental_weights()]
Automorphic Type
If the Dynkin diagram has a symmetry, then there is an automorphism that is a special case of a branching rule. There is also an exotic “triality” automorphism of
having order 3. Userule="automorphic"
(or forrule="triality"
):EXAMPLES:
sage: [A3(chi).branch(A3,rule='automorphic') for chi in A3.fundamental_weights()] [A3(0,0,0,-1), A3(0,0,-1,-1), A3(0,-1,-1,-1)] sage: [D4(chi).branch(D4,rule='automorphic') for chi in D4.fundamental_weights()] [D4(1,0,0,0), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1/2,1/2,1/2,-1/2)]
>>> from sage.all import * >>> [A3(chi).branch(A3,rule='automorphic') for chi in A3.fundamental_weights()] [A3(0,0,0,-1), A3(0,0,-1,-1), A3(0,-1,-1,-1)] >>> [D4(chi).branch(D4,rule='automorphic') for chi in D4.fundamental_weights()] [D4(1,0,0,0), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1/2,1/2,1/2,-1/2)]
[A3(chi).branch(A3,rule='automorphic') for chi in A3.fundamental_weights()] [D4(chi).branch(D4,rule='automorphic') for chi in D4.fundamental_weights()]
Here is an example with
triality:sage: [D4(chi).branch(D4,rule='triality') for chi in D4.fundamental_weights()] [D4(1/2,1/2,1/2,-1/2), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1,0,0,0)]
>>> from sage.all import * >>> [D4(chi).branch(D4,rule='triality') for chi in D4.fundamental_weights()] [D4(1/2,1/2,1/2,-1/2), D4(1,1,0,0), D4(1/2,1/2,1/2,1/2), D4(1,0,0,0)]
[D4(chi).branch(D4,rule='triality') for chi in D4.fundamental_weights()]
Symmetric Type
Related to the automorphic type, when
admits an outer automorphism (usually of degree 2) we may consider the branching rule to the isotropy subgroup . Outer automorphisms correspond to symmetries of the Dynkin diagram. For such isotropy subgroups userule="symmetric"
. We may thus obtain the following branching rules.The last branching rule,
is not to a maximal subgroup since , but it is included for convenience.In some cases, two outer automorphisms that differ by an inner automorphism may have different fixed subgroups. Thus, while the Dynkin diagram of
has a single involutory automorphism, there are two involutions of the group (differing by an inner automorphism) with fixed subgroups and . Similarly , of Cartan type , has subgroups and , both fixed subgroups of outer automorphisms that differ from each other by an inner automorphism.In many cases the Dynkin diagram of
can be obtained by folding the Dynkin diagram of .EXAMPLES:
sage: [w.branch(B2,rule='symmetric') for w in [A4(1,0,0,0,0),A4(1,1,0,0,0),A4(1,1,1,0,0),A4(2,0,0,0,0)]] [B2(1,0), B2(1,1), B2(1,1), B2(0,0) + B2(2,0)] sage: [A5(w).branch(C3,rule='symmetric') for w in A5.fundamental_weights()] [C3(1,0,0), C3(0,0,0) + C3(1,1,0), C3(1,0,0) + C3(1,1,1), C3(0,0,0) + C3(1,1,0), C3(1,0,0)] sage: [A5(w).branch(D3,rule='symmetric') for w in A5.fundamental_weights()] [D3(1,0,0), D3(1,1,0), D3(1,1,-1) + D3(1,1,1), D3(1,1,0), D3(1,0,0)] sage: [D4(x).branch(B3,rule='symmetric') for x in D4.fundamental_weights()] [B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(1,1,0), B3(1/2,1/2,1/2), B3(1/2,1/2,1/2)] sage: [D4(x).branch(G2,rule='symmetric') for x in D4.fundamental_weights()] [G2(0,0,0) + G2(1,0,-1), 2*G2(1,0,-1) + G2(2,-1,-1), G2(0,0,0) + G2(1,0,-1), G2(0,0,0) + G2(1,0,-1)] sage: [E6(fw).branch(F4,rule='symmetric') for fw in E6.fundamental_weights()] # long time (4s) [F4(0,0,0,0) + F4(0,0,0,1), F4(0,0,0,1) + F4(1,0,0,0), F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0), F4(1,0,0,0) + 2*F4(0,0,1,0) + F4(1,0,0,1) + F4(0,1,0,0), F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0), F4(0,0,0,0) + F4(0,0,0,1)] sage: E6=WeylCharacterRing("E6",style='coroots') sage: C4=WeylCharacterRing("C4",style='coroots') sage: chi = E6(1,0,0,0,0,0); chi.degree() 27 sage: chi.branch(C4,rule='symmetric') C4(0,1,0,0)
>>> from sage.all import * >>> [w.branch(B2,rule='symmetric') for w in [A4(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0)),A4(Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)),A4(Integer(1),Integer(1),Integer(1),Integer(0),Integer(0)),A4(Integer(2),Integer(0),Integer(0),Integer(0),Integer(0))]] [B2(1,0), B2(1,1), B2(1,1), B2(0,0) + B2(2,0)] >>> [A5(w).branch(C3,rule='symmetric') for w in A5.fundamental_weights()] [C3(1,0,0), C3(0,0,0) + C3(1,1,0), C3(1,0,0) + C3(1,1,1), C3(0,0,0) + C3(1,1,0), C3(1,0,0)] >>> [A5(w).branch(D3,rule='symmetric') for w in A5.fundamental_weights()] [D3(1,0,0), D3(1,1,0), D3(1,1,-1) + D3(1,1,1), D3(1,1,0), D3(1,0,0)] >>> [D4(x).branch(B3,rule='symmetric') for x in D4.fundamental_weights()] [B3(0,0,0) + B3(1,0,0), B3(1,0,0) + B3(1,1,0), B3(1/2,1/2,1/2), B3(1/2,1/2,1/2)] >>> [D4(x).branch(G2,rule='symmetric') for x in D4.fundamental_weights()] [G2(0,0,0) + G2(1,0,-1), 2*G2(1,0,-1) + G2(2,-1,-1), G2(0,0,0) + G2(1,0,-1), G2(0,0,0) + G2(1,0,-1)] >>> [E6(fw).branch(F4,rule='symmetric') for fw in E6.fundamental_weights()] # long time (4s) [F4(0,0,0,0) + F4(0,0,0,1), F4(0,0,0,1) + F4(1,0,0,0), F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0), F4(1,0,0,0) + 2*F4(0,0,1,0) + F4(1,0,0,1) + F4(0,1,0,0), F4(0,0,0,1) + F4(1,0,0,0) + F4(0,0,1,0), F4(0,0,0,0) + F4(0,0,0,1)] >>> E6=WeylCharacterRing("E6",style='coroots') >>> C4=WeylCharacterRing("C4",style='coroots') >>> chi = E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)); chi.degree() 27 >>> chi.branch(C4,rule='symmetric') C4(0,1,0,0)
[w.branch(B2,rule='symmetric') for w in [A4(1,0,0,0,0),A4(1,1,0,0,0),A4(1,1,1,0,0),A4(2,0,0,0,0)]] [A5(w).branch(C3,rule='symmetric') for w in A5.fundamental_weights()] [A5(w).branch(D3,rule='symmetric') for w in A5.fundamental_weights()] [D4(x).branch(B3,rule='symmetric') for x in D4.fundamental_weights()] [D4(x).branch(G2,rule='symmetric') for x in D4.fundamental_weights()] [E6(fw).branch(F4,rule='symmetric') for fw in E6.fundamental_weights()] # long time (4s) E6=WeylCharacterRing("E6",style='coroots') C4=WeylCharacterRing("C4",style='coroots') chi = E6(1,0,0,0,0,0); chi.degree() chi.branch(C4,rule='symmetric')
Extended Type
If removing a node from the extended Dynkin diagram results in a Dynkin diagram, then there is a branching rule. Use
rule="extended"
for these. We will also use this classification for some rules that are not of this type, mainly involving type , such as .Here is the extended Dynkin diagram for
:0 6 O O | | | | O---O---O---O---O 1 2 3 4 6
Removing the node 3 results in an embedding
. This corresponds to the embedding , and is of extended type. On the other hand the embedding (e.g. ) cannot be explained this way but for uniformity is implemented underrule="extended"
.The following rules are implemented as special cases of
rule="extended"
:Note that
has only a limited number of representations of reasonably low degree.EXAMPLES:
sage: [B3(x).branch(D3,rule='extended') for x in B3.fundamental_weights()] [D3(0,0,0) + D3(1,0,0), D3(1,0,0) + D3(1,1,0), D3(1/2,1/2,-1/2) + D3(1/2,1/2,1/2)] sage: [G2(w).branch(A2, rule='extended') for w in G2.fundamental_weights()] [A2(0,0,0) + A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3), A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3) + A2(1,0,-1)] sage: [F4(fw).branch(B4,rule='extended') for fw in F4.fundamental_weights()] # long time (2s) [B4(1/2,1/2,1/2,1/2) + B4(1,1,0,0), B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/2) + B4(3/2,3/2,1/2,1/2) + B4(2,1,1,0), B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0) + B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/2), B4(0,0,0,0) + B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0)] sage: E6 = WeylCharacterRing("E6", style='coroots') sage: A2xA2xA2 = WeylCharacterRing("A2xA2xA2",style='coroots') sage: A5xA1 = WeylCharacterRing("A5xA1",style='coroots') sage: G2 = WeylCharacterRing("G2", style='coroots') sage: A1xA1 = WeylCharacterRing("A1xA1", style='coroots') sage: F4 = WeylCharacterRing("F4",style='coroots') sage: A3xA1 = WeylCharacterRing("A3xA1", style='coroots') sage: A2xA2 = WeylCharacterRing("A2xA2", style='coroots') sage: A1xC3 = WeylCharacterRing("A1xC3",style='coroots') sage: E6(1,0,0,0,0,0).branch(A5xA1,rule='extended') # (0.7s) A5xA1(0,0,0,1,0,0) + A5xA1(1,0,0,0,0,1) sage: E6(1,0,0,0,0,0).branch(A2xA2xA2, rule='extended') # (0.7s) A2xA2xA2(0,1,1,0,0,0) + A2xA2xA2(1,0,0,0,0,1) + A2xA2xA2(0,0,0,1,1,0) sage: E7 = WeylCharacterRing("E7",style='coroots') sage: A7 = WeylCharacterRing("A7",style='coroots') sage: E7(1,0,0,0,0,0,0).branch(A7,rule='extended') A7(0,0,0,1,0,0,0) + A7(1,0,0,0,0,0,1) sage: D6xA1 = WeylCharacterRing("D6xA1",style='coroots') sage: E7(1,0,0,0,0,0,0).branch(D6xA1,rule='extended') D6xA1(0,0,0,0,1,0,1) + D6xA1(0,1,0,0,0,0,0) + D6xA1(0,0,0,0,0,0,2) sage: A5xA2 = WeylCharacterRing("A5xA2",style='coroots') sage: E7(1,0,0,0,0,0,0).branch(A5xA2,rule='extended') A5xA2(0,0,0,1,0,1,0) + A5xA2(0,1,0,0,0,0,1) + A5xA2(1,0,0,0,1,0,0) + A5xA2(0,0,0,0,0,1,1) sage: E8 = WeylCharacterRing("E8",style='coroots') sage: D8 = WeylCharacterRing("D8",style='coroots') sage: A8 = WeylCharacterRing("A8",style='coroots') sage: E8(0,0,0,0,0,0,0,1).branch(D8,rule='extended') # long time (0.56s) D8(0,0,0,0,0,0,1,0) + D8(0,1,0,0,0,0,0,0) sage: E8(0,0,0,0,0,0,0,1).branch(A8,rule='extended') # long time (0.73s) A8(0,0,0,0,0,1,0,0) + A8(0,0,1,0,0,0,0,0) + A8(1,0,0,0,0,0,0,1) sage: F4(1,0,0,0).branch(A1xC3,rule='extended') # (0.05s) A1xC3(1,0,0,1) + A1xC3(2,0,0,0) + A1xC3(0,2,0,0) sage: G2(0,1).branch(A1xA1, rule='extended') A1xA1(2,0) + A1xA1(3,1) + A1xA1(0,2) sage: F4(0,0,0,1).branch(A2xA2, rule='extended') # (0.4s) A2xA2(0,1,0,1) + A2xA2(1,0,1,0) + A2xA2(0,0,1,1) sage: F4(0,0,0,1).branch(A3xA1,rule='extended') # (0.34s) A3xA1(0,0,0,0) + A3xA1(0,0,1,1) + A3xA1(0,1,0,0) + A3xA1(1,0,0,1) + A3xA1(0,0,0,2) sage: D4=WeylCharacterRing("D4",style='coroots') sage: D2xD2=WeylCharacterRing("D2xD2",style='coroots') # We get D4 => A1xA1xA1xA1 by remembering that A1xA1 = D2. sage: [D4(fw).branch(D2xD2, rule='extended') for fw in D4.fundamental_weights()] [D2xD2(1,1,0,0) + D2xD2(0,0,1,1), D2xD2(2,0,0,0) + D2xD2(0,2,0,0) + D2xD2(1,1,1,1) + D2xD2(0,0,2,0) + D2xD2(0,0,0,2), D2xD2(1,0,0,1) + D2xD2(0,1,1,0), D2xD2(1,0,1,0) + D2xD2(0,1,0,1)]
>>> from sage.all import * >>> [B3(x).branch(D3,rule='extended') for x in B3.fundamental_weights()] [D3(0,0,0) + D3(1,0,0), D3(1,0,0) + D3(1,1,0), D3(1/2,1/2,-1/2) + D3(1/2,1/2,1/2)] >>> [G2(w).branch(A2, rule='extended') for w in G2.fundamental_weights()] [A2(0,0,0) + A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3), A2(1/3,1/3,-2/3) + A2(2/3,-1/3,-1/3) + A2(1,0,-1)] >>> [F4(fw).branch(B4,rule='extended') for fw in F4.fundamental_weights()] # long time (2s) [B4(1/2,1/2,1/2,1/2) + B4(1,1,0,0), B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/2) + B4(3/2,3/2,1/2,1/2) + B4(2,1,1,0), B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0) + B4(1,1,0,0) + B4(1,1,1,0) + B4(3/2,1/2,1/2,1/2), B4(0,0,0,0) + B4(1/2,1/2,1/2,1/2) + B4(1,0,0,0)] >>> E6 = WeylCharacterRing("E6", style='coroots') >>> A2xA2xA2 = WeylCharacterRing("A2xA2xA2",style='coroots') >>> A5xA1 = WeylCharacterRing("A5xA1",style='coroots') >>> G2 = WeylCharacterRing("G2", style='coroots') >>> A1xA1 = WeylCharacterRing("A1xA1", style='coroots') >>> F4 = WeylCharacterRing("F4",style='coroots') >>> A3xA1 = WeylCharacterRing("A3xA1", style='coroots') >>> A2xA2 = WeylCharacterRing("A2xA2", style='coroots') >>> A1xC3 = WeylCharacterRing("A1xC3",style='coroots') >>> E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A5xA1,rule='extended') # (0.7s) A5xA1(0,0,0,1,0,0) + A5xA1(1,0,0,0,0,1) >>> E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A2xA2xA2, rule='extended') # (0.7s) A2xA2xA2(0,1,1,0,0,0) + A2xA2xA2(1,0,0,0,0,1) + A2xA2xA2(0,0,0,1,1,0) >>> E7 = WeylCharacterRing("E7",style='coroots') >>> A7 = WeylCharacterRing("A7",style='coroots') >>> E7(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A7,rule='extended') A7(0,0,0,1,0,0,0) + A7(1,0,0,0,0,0,1) >>> D6xA1 = WeylCharacterRing("D6xA1",style='coroots') >>> E7(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(D6xA1,rule='extended') D6xA1(0,0,0,0,1,0,1) + D6xA1(0,1,0,0,0,0,0) + D6xA1(0,0,0,0,0,0,2) >>> A5xA2 = WeylCharacterRing("A5xA2",style='coroots') >>> E7(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A5xA2,rule='extended') A5xA2(0,0,0,1,0,1,0) + A5xA2(0,1,0,0,0,0,1) + A5xA2(1,0,0,0,1,0,0) + A5xA2(0,0,0,0,0,1,1) >>> E8 = WeylCharacterRing("E8",style='coroots') >>> D8 = WeylCharacterRing("D8",style='coroots') >>> A8 = WeylCharacterRing("A8",style='coroots') >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(D8,rule='extended') # long time (0.56s) D8(0,0,0,0,0,0,1,0) + D8(0,1,0,0,0,0,0,0) >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A8,rule='extended') # long time (0.73s) A8(0,0,0,0,0,1,0,0) + A8(0,0,1,0,0,0,0,0) + A8(1,0,0,0,0,0,0,1) >>> F4(Integer(1),Integer(0),Integer(0),Integer(0)).branch(A1xC3,rule='extended') # (0.05s) A1xC3(1,0,0,1) + A1xC3(2,0,0,0) + A1xC3(0,2,0,0) >>> G2(Integer(0),Integer(1)).branch(A1xA1, rule='extended') A1xA1(2,0) + A1xA1(3,1) + A1xA1(0,2) >>> F4(Integer(0),Integer(0),Integer(0),Integer(1)).branch(A2xA2, rule='extended') # (0.4s) A2xA2(0,1,0,1) + A2xA2(1,0,1,0) + A2xA2(0,0,1,1) >>> F4(Integer(0),Integer(0),Integer(0),Integer(1)).branch(A3xA1,rule='extended') # (0.34s) A3xA1(0,0,0,0) + A3xA1(0,0,1,1) + A3xA1(0,1,0,0) + A3xA1(1,0,0,1) + A3xA1(0,0,0,2) >>> D4=WeylCharacterRing("D4",style='coroots') >>> D2xD2=WeylCharacterRing("D2xD2",style='coroots') # We get D4 => A1xA1xA1xA1 by remembering that A1xA1 = D2. >>> [D4(fw).branch(D2xD2, rule='extended') for fw in D4.fundamental_weights()] [D2xD2(1,1,0,0) + D2xD2(0,0,1,1), D2xD2(2,0,0,0) + D2xD2(0,2,0,0) + D2xD2(1,1,1,1) + D2xD2(0,0,2,0) + D2xD2(0,0,0,2), D2xD2(1,0,0,1) + D2xD2(0,1,1,0), D2xD2(1,0,1,0) + D2xD2(0,1,0,1)]
[B3(x).branch(D3,rule='extended') for x in B3.fundamental_weights()] [G2(w).branch(A2, rule='extended') for w in G2.fundamental_weights()] [F4(fw).branch(B4,rule='extended') for fw in F4.fundamental_weights()] # long time (2s) E6 = WeylCharacterRing("E6", style='coroots') A2xA2xA2 = WeylCharacterRing("A2xA2xA2",style='coroots') A5xA1 = WeylCharacterRing("A5xA1",style='coroots') G2 = WeylCharacterRing("G2", style='coroots') A1xA1 = WeylCharacterRing("A1xA1", style='coroots') F4 = WeylCharacterRing("F4",style='coroots') A3xA1 = WeylCharacterRing("A3xA1", style='coroots') A2xA2 = WeylCharacterRing("A2xA2", style='coroots') A1xC3 = WeylCharacterRing("A1xC3",style='coroots') E6(1,0,0,0,0,0).branch(A5xA1,rule='extended') # (0.7s) E6(1,0,0,0,0,0).branch(A2xA2xA2, rule='extended') # (0.7s) E7 = WeylCharacterRing("E7",style='coroots') A7 = WeylCharacterRing("A7",style='coroots') E7(1,0,0,0,0,0,0).branch(A7,rule='extended') D6xA1 = WeylCharacterRing("D6xA1",style='coroots') E7(1,0,0,0,0,0,0).branch(D6xA1,rule='extended') A5xA2 = WeylCharacterRing("A5xA2",style='coroots') E7(1,0,0,0,0,0,0).branch(A5xA2,rule='extended') E8 = WeylCharacterRing("E8",style='coroots') D8 = WeylCharacterRing("D8",style='coroots') A8 = WeylCharacterRing("A8",style='coroots') E8(0,0,0,0,0,0,0,1).branch(D8,rule='extended') # long time (0.56s) E8(0,0,0,0,0,0,0,1).branch(A8,rule='extended') # long time (0.73s) F4(1,0,0,0).branch(A1xC3,rule='extended') # (0.05s) G2(0,1).branch(A1xA1, rule='extended') F4(0,0,0,1).branch(A2xA2, rule='extended') # (0.4s) F4(0,0,0,1).branch(A3xA1,rule='extended') # (0.34s) D4=WeylCharacterRing("D4",style='coroots') D2xD2=WeylCharacterRing("D2xD2",style='coroots') # We get D4 => A1xA1xA1xA1 by remembering that A1xA1 = D2. [D4(fw).branch(D2xD2, rule='extended') for fw in D4.fundamental_weights()]
Orthogonal Sum
Using
rule="orthogonal_sum"
, for , you can get any branching rulewhere
is type for or for and is type . In some cases these are also of extended type, as in the case discussed above. But in other cases, for example , they are not of extended type.Tensor
There are branching rules:
corresponding to the tensor product homomorphism. For type
, the homomorphism is . For the classical types, the relevant fact is that if are orthogonal or symplectic spaces, that is, spaces endowed with symmetric or skew-symmetric bilinear forms, then is also an orthogonal space (if and are both orthogonal or both symplectic) or symplectic (if one of and is orthogonal and the other symplectic).The corresponding branching rules are obtained using
rule="tensor"
.EXAMPLES:
sage: A5=WeylCharacterRing("A5", style='coroots') sage: A2xA1=WeylCharacterRing("A2xA1", style='coroots') sage: [A5(hwv).branch(A2xA1, rule='tensor') for hwv in A5.fundamental_weights()] [A2xA1(1,0,1), A2xA1(0,1,2) + A2xA1(2,0,0), A2xA1(1,1,1) + A2xA1(0,0,3), A2xA1(1,0,2) + A2xA1(0,2,0), A2xA1(0,1,1)] sage: B4=WeylCharacterRing("B4",style='coroots') sage: B1xB1=WeylCharacterRing("B1xB1",style='coroots') sage: [B4(f).branch(B1xB1,rule='tensor') for f in B4.fundamental_weights()] [B1xB1(2,2), B1xB1(2,0) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(0,2), B1xB1(2,0) + B1xB1(2,2) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(4,4) + B1xB1(6,0) + B1xB1(0,2) + B1xB1(0,6), B1xB1(1,3) + B1xB1(3,1)] sage: D4=WeylCharacterRing("D4",style='coroots') sage: C2xC1=WeylCharacterRing("C2xC1",style='coroots') sage: [D4(f).branch(C2xC1,rule='tensor') for f in D4.fundamental_weights()] [C2xC1(1,0,1), C2xC1(0,1,2) + C2xC1(2,0,0) + C2xC1(0,0,2), C2xC1(1,0,1), C2xC1(0,1,0) + C2xC1(0,0,2)] sage: C3=WeylCharacterRing("C3",style='coroots') sage: B1xC1=WeylCharacterRing("B1xC1",style='coroots') sage: [C3(f).branch(B1xC1,rule='tensor') for f in C3.fundamental_weights()] [B1xC1(2,1), B1xC1(2,2) + B1xC1(4,0), B1xC1(4,1) + B1xC1(0,3)]
>>> from sage.all import * >>> A5=WeylCharacterRing("A5", style='coroots') >>> A2xA1=WeylCharacterRing("A2xA1", style='coroots') >>> [A5(hwv).branch(A2xA1, rule='tensor') for hwv in A5.fundamental_weights()] [A2xA1(1,0,1), A2xA1(0,1,2) + A2xA1(2,0,0), A2xA1(1,1,1) + A2xA1(0,0,3), A2xA1(1,0,2) + A2xA1(0,2,0), A2xA1(0,1,1)] >>> B4=WeylCharacterRing("B4",style='coroots') >>> B1xB1=WeylCharacterRing("B1xB1",style='coroots') >>> [B4(f).branch(B1xB1,rule='tensor') for f in B4.fundamental_weights()] [B1xB1(2,2), B1xB1(2,0) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(0,2), B1xB1(2,0) + B1xB1(2,2) + B1xB1(2,4) + B1xB1(4,2) + B1xB1(4,4) + B1xB1(6,0) + B1xB1(0,2) + B1xB1(0,6), B1xB1(1,3) + B1xB1(3,1)] >>> D4=WeylCharacterRing("D4",style='coroots') >>> C2xC1=WeylCharacterRing("C2xC1",style='coroots') >>> [D4(f).branch(C2xC1,rule='tensor') for f in D4.fundamental_weights()] [C2xC1(1,0,1), C2xC1(0,1,2) + C2xC1(2,0,0) + C2xC1(0,0,2), C2xC1(1,0,1), C2xC1(0,1,0) + C2xC1(0,0,2)] >>> C3=WeylCharacterRing("C3",style='coroots') >>> B1xC1=WeylCharacterRing("B1xC1",style='coroots') >>> [C3(f).branch(B1xC1,rule='tensor') for f in C3.fundamental_weights()] [B1xC1(2,1), B1xC1(2,2) + B1xC1(4,0), B1xC1(4,1) + B1xC1(0,3)]
A5=WeylCharacterRing("A5", style='coroots') A2xA1=WeylCharacterRing("A2xA1", style='coroots') [A5(hwv).branch(A2xA1, rule='tensor') for hwv in A5.fundamental_weights()] B4=WeylCharacterRing("B4",style='coroots') B1xB1=WeylCharacterRing("B1xB1",style='coroots') [B4(f).branch(B1xB1,rule='tensor') for f in B4.fundamental_weights()] D4=WeylCharacterRing("D4",style='coroots') C2xC1=WeylCharacterRing("C2xC1",style='coroots') [D4(f).branch(C2xC1,rule='tensor') for f in D4.fundamental_weights()] C3=WeylCharacterRing("C3",style='coroots') B1xC1=WeylCharacterRing("B1xC1",style='coroots') [C3(f).branch(B1xC1,rule='tensor') for f in C3.fundamental_weights()]
Symmetric Power
The
-th symmetric and exterior power homomorphisms mapThe corresponding branching rules are not implemented but a special case is. The
-th symmetric power homomorphism has its image inside of if and inside of if . Hence there are branching rules:and these may be obtained using the rule “symmetric_power”.
EXAMPLES:
sage: A1=WeylCharacterRing("A1",style='coroots') sage: B3=WeylCharacterRing("B3",style='coroots') sage: C3=WeylCharacterRing("C3",style='coroots') sage: [B3(fw).branch(A1,rule='symmetric_power') for fw in B3.fundamental_weights()] [A1(6), A1(2) + A1(6) + A1(10), A1(0) + A1(6)] sage: [C3(fw).branch(A1,rule='symmetric_power') for fw in C3.fundamental_weights()] [A1(5), A1(4) + A1(8), A1(3) + A1(9)]
>>> from sage.all import * >>> A1=WeylCharacterRing("A1",style='coroots') >>> B3=WeylCharacterRing("B3",style='coroots') >>> C3=WeylCharacterRing("C3",style='coroots') >>> [B3(fw).branch(A1,rule='symmetric_power') for fw in B3.fundamental_weights()] [A1(6), A1(2) + A1(6) + A1(10), A1(0) + A1(6)] >>> [C3(fw).branch(A1,rule='symmetric_power') for fw in C3.fundamental_weights()] [A1(5), A1(4) + A1(8), A1(3) + A1(9)]
A1=WeylCharacterRing("A1",style='coroots') B3=WeylCharacterRing("B3",style='coroots') C3=WeylCharacterRing("C3",style='coroots') [B3(fw).branch(A1,rule='symmetric_power') for fw in B3.fundamental_weights()] [C3(fw).branch(A1,rule='symmetric_power') for fw in C3.fundamental_weights()]
Miscellaneous
Use
rule="miscellaneous"
for the following embeddings of maximal subgroups, all involving exceptional groups.Except for those embeddings available by
rule="extended"
, these are the only embeddings of these groups as maximal subgroups. There may be other embeddings besides these. For example, there are other more obvious embeddings of and into . However the embeddings in this table are characterized as embeddings as maximal subgroups. Regarding the embeddings of and in , the embeddings in question may be characterized by the condition that the 27-dimensional representations of restrict irreducibly to or . Since has a subgroup isomorphic to , it is worth mentioning that the composite branching rules:branching_rule("E6","G2","miscellaneous")*branching_rule("G2","A2","extended") branching_rule("E6","A2","miscellaneous")
are distinct.
These embeddings are described more completely (with references to the literature) in the thematic tutorial at:
https://doc.sagemath.org/html/en/thematic_tutorials/lie.html
EXAMPLES:
sage: G2 = WeylCharacterRing("G2") sage: [fw1, fw2, fw3] = B3.fundamental_weights() sage: B3(fw1+fw3).branch(G2, rule='miscellaneous') G2(1,0,-1) + G2(2,-1,-1) + G2(2,0,-2) sage: E6 = WeylCharacterRing("E6",style='coroots') sage: G2 = WeylCharacterRing("G2",style='coroots') sage: E6(1,0,0,0,0,0).branch(G2,"miscellaneous") G2(2,0) sage: A2=WeylCharacterRing("A2",style='coroots') sage: E6(1,0,0,0,0,0).branch(A2,rule='miscellaneous') A2(2,2) sage: E6(0,1,0,0,0,0).branch(A2,rule='miscellaneous') A2(1,1) + A2(1,4) + A2(4,1) sage: E6(0,0,0,0,0,2).branch(G2,"miscellaneous") # long time (0.59s) G2(0,0) + G2(2,0) + G2(1,1) + G2(0,2) + G2(4,0) sage: F4=WeylCharacterRing("F4",style='coroots') sage: G2xA1=WeylCharacterRing("G2xA1",style='coroots') sage: F4(0,0,1,0).branch(G2xA1,rule='miscellaneous') G2xA1(1,0,0) + G2xA1(1,0,2) + G2xA1(1,0,4) + G2xA1(1,0,6) + G2xA1(0,1,4) + G2xA1(2,0,2) + G2xA1(0,0,2) + G2xA1(0,0,6) sage: E6 = WeylCharacterRing("E6",style='coroots') sage: A2xG2 = WeylCharacterRing("A2xG2",style='coroots') sage: E6(1,0,0,0,0,0).branch(A2xG2,rule='miscellaneous') A2xG2(0,1,1,0) + A2xG2(2,0,0,0) sage: E7=WeylCharacterRing("E7",style='coroots') sage: G2xC3=WeylCharacterRing("G2xC3",style='coroots') sage: E7(0,1,0,0,0,0,0).branch(G2xC3,rule='miscellaneous') # long time (1.84s) G2xC3(1,0,1,0,0) + G2xC3(1,0,1,1,0) + G2xC3(0,1,0,0,1) + G2xC3(2,0,1,0,0) + G2xC3(0,0,1,1,0) sage: F4xA1=WeylCharacterRing("F4xA1",style='coroots') sage: E7(0,0,0,0,0,0,1).branch(F4xA1,"miscellaneous") F4xA1(0,0,0,1,1) + F4xA1(0,0,0,0,3) sage: A1xA1=WeylCharacterRing("A1xA1",style='coroots') sage: E7(0,0,0,0,0,0,1).branch(A1xA1,rule='miscellaneous') A1xA1(2,5) + A1xA1(4,1) + A1xA1(6,3) sage: A2=WeylCharacterRing("A2",style='coroots') sage: E7(0,0,0,0,0,0,1).branch(A2,rule='miscellaneous') A2(0,6) + A2(6,0) sage: G2xA1=WeylCharacterRing("G2xA1",style='coroots') sage: E7(1,0,0,0,0,0,0).branch(G2xA1,rule='miscellaneous') G2xA1(1,0,4) + G2xA1(0,1,0) + G2xA1(2,0,2) + G2xA1(0,0,2) sage: E8 = WeylCharacterRing("E8",style='coroots') sage: G2xF4 = WeylCharacterRing("G2xF4",style='coroots') sage: E8(0,0,0,0,0,0,0,1).branch(G2xF4,rule='miscellaneous') # long time (0.76s) G2xF4(1,0,0,0,0,1) + G2xF4(0,1,0,0,0,0) + G2xF4(0,0,1,0,0,0) sage: E8=WeylCharacterRing("E8",style='coroots') sage: A1xA2=WeylCharacterRing("A1xA2",style='coroots') sage: E8(0,0,0,0,0,0,0,1).branch(A1xA2,rule='miscellaneous') # long time (0.76s) A1xA2(2,0,0) + A1xA2(2,2,2) + A1xA2(4,0,3) + A1xA2(4,3,0) + A1xA2(6,1,1) + A1xA2(0,1,1) sage: B2=WeylCharacterRing("B2",style='coroots') sage: E8(0,0,0,0,0,0,0,1).branch(B2,rule='miscellaneous') # long time (0.53s) B2(0,2) + B2(0,6) + B2(3,2)
>>> from sage.all import * >>> G2 = WeylCharacterRing("G2") >>> [fw1, fw2, fw3] = B3.fundamental_weights() >>> B3(fw1+fw3).branch(G2, rule='miscellaneous') G2(1,0,-1) + G2(2,-1,-1) + G2(2,0,-2) >>> E6 = WeylCharacterRing("E6",style='coroots') >>> G2 = WeylCharacterRing("G2",style='coroots') >>> E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(G2,"miscellaneous") G2(2,0) >>> A2=WeylCharacterRing("A2",style='coroots') >>> E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A2,rule='miscellaneous') A2(2,2) >>> E6(Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A2,rule='miscellaneous') A2(1,1) + A2(1,4) + A2(4,1) >>> E6(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(2)).branch(G2,"miscellaneous") # long time (0.59s) G2(0,0) + G2(2,0) + G2(1,1) + G2(0,2) + G2(4,0) >>> F4=WeylCharacterRing("F4",style='coroots') >>> G2xA1=WeylCharacterRing("G2xA1",style='coroots') >>> F4(Integer(0),Integer(0),Integer(1),Integer(0)).branch(G2xA1,rule='miscellaneous') G2xA1(1,0,0) + G2xA1(1,0,2) + G2xA1(1,0,4) + G2xA1(1,0,6) + G2xA1(0,1,4) + G2xA1(2,0,2) + G2xA1(0,0,2) + G2xA1(0,0,6) >>> E6 = WeylCharacterRing("E6",style='coroots') >>> A2xG2 = WeylCharacterRing("A2xG2",style='coroots') >>> E6(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(A2xG2,rule='miscellaneous') A2xG2(0,1,1,0) + A2xG2(2,0,0,0) >>> E7=WeylCharacterRing("E7",style='coroots') >>> G2xC3=WeylCharacterRing("G2xC3",style='coroots') >>> E7(Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(G2xC3,rule='miscellaneous') # long time (1.84s) G2xC3(1,0,1,0,0) + G2xC3(1,0,1,1,0) + G2xC3(0,1,0,0,1) + G2xC3(2,0,1,0,0) + G2xC3(0,0,1,1,0) >>> F4xA1=WeylCharacterRing("F4xA1",style='coroots') >>> E7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(F4xA1,"miscellaneous") F4xA1(0,0,0,1,1) + F4xA1(0,0,0,0,3) >>> A1xA1=WeylCharacterRing("A1xA1",style='coroots') >>> E7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1xA1,rule='miscellaneous') A1xA1(2,5) + A1xA1(4,1) + A1xA1(6,3) >>> A2=WeylCharacterRing("A2",style='coroots') >>> E7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A2,rule='miscellaneous') A2(0,6) + A2(6,0) >>> G2xA1=WeylCharacterRing("G2xA1",style='coroots') >>> E7(Integer(1),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)).branch(G2xA1,rule='miscellaneous') G2xA1(1,0,4) + G2xA1(0,1,0) + G2xA1(2,0,2) + G2xA1(0,0,2) >>> E8 = WeylCharacterRing("E8",style='coroots') >>> G2xF4 = WeylCharacterRing("G2xF4",style='coroots') >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(G2xF4,rule='miscellaneous') # long time (0.76s) G2xF4(1,0,0,0,0,1) + G2xF4(0,1,0,0,0,0) + G2xF4(0,0,1,0,0,0) >>> E8=WeylCharacterRing("E8",style='coroots') >>> A1xA2=WeylCharacterRing("A1xA2",style='coroots') >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1xA2,rule='miscellaneous') # long time (0.76s) A1xA2(2,0,0) + A1xA2(2,2,2) + A1xA2(4,0,3) + A1xA2(4,3,0) + A1xA2(6,1,1) + A1xA2(0,1,1) >>> B2=WeylCharacterRing("B2",style='coroots') >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(B2,rule='miscellaneous') # long time (0.53s) B2(0,2) + B2(0,6) + B2(3,2)
G2 = WeylCharacterRing("G2") [fw1, fw2, fw3] = B3.fundamental_weights() B3(fw1+fw3).branch(G2, rule='miscellaneous') E6 = WeylCharacterRing("E6",style='coroots') G2 = WeylCharacterRing("G2",style='coroots') E6(1,0,0,0,0,0).branch(G2,"miscellaneous") A2=WeylCharacterRing("A2",style='coroots') E6(1,0,0,0,0,0).branch(A2,rule='miscellaneous') E6(0,1,0,0,0,0).branch(A2,rule='miscellaneous') E6(0,0,0,0,0,2).branch(G2,"miscellaneous") # long time (0.59s) F4=WeylCharacterRing("F4",style='coroots') G2xA1=WeylCharacterRing("G2xA1",style='coroots') F4(0,0,1,0).branch(G2xA1,rule='miscellaneous') E6 = WeylCharacterRing("E6",style='coroots') A2xG2 = WeylCharacterRing("A2xG2",style='coroots') E6(1,0,0,0,0,0).branch(A2xG2,rule='miscellaneous') E7=WeylCharacterRing("E7",style='coroots') G2xC3=WeylCharacterRing("G2xC3",style='coroots') E7(0,1,0,0,0,0,0).branch(G2xC3,rule='miscellaneous') # long time (1.84s) F4xA1=WeylCharacterRing("F4xA1",style='coroots') E7(0,0,0,0,0,0,1).branch(F4xA1,"miscellaneous") A1xA1=WeylCharacterRing("A1xA1",style='coroots') E7(0,0,0,0,0,0,1).branch(A1xA1,rule='miscellaneous') A2=WeylCharacterRing("A2",style='coroots') E7(0,0,0,0,0,0,1).branch(A2,rule='miscellaneous') G2xA1=WeylCharacterRing("G2xA1",style='coroots') E7(1,0,0,0,0,0,0).branch(G2xA1,rule='miscellaneous') E8 = WeylCharacterRing("E8",style='coroots') G2xF4 = WeylCharacterRing("G2xF4",style='coroots') E8(0,0,0,0,0,0,0,1).branch(G2xF4,rule='miscellaneous') # long time (0.76s) E8=WeylCharacterRing("E8",style='coroots') A1xA2=WeylCharacterRing("A1xA2",style='coroots') E8(0,0,0,0,0,0,0,1).branch(A1xA2,rule='miscellaneous') # long time (0.76s) B2=WeylCharacterRing("B2",style='coroots') E8(0,0,0,0,0,0,0,1).branch(B2,rule='miscellaneous') # long time (0.53s)
A1 maximal subgroups of exceptional groups
There are seven cases where the exceptional group
, , or contains a maximal subgroup of type . These are tabulated in Theorem 1 of Testerman, The construction of the maximal A1’s in the exceptional algebraic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 635-644. The names of these branching rules are roman numerals referring to the seven cases of her Theorem 1. Use these branching rules as in the following examples.EXAMPLES:
sage: A1=WeylCharacterRing("A1",style='coroots') sage: G2=WeylCharacterRing("G2",style='coroots') sage: F4=WeylCharacterRing("F4",style='coroots') sage: E7=WeylCharacterRing("E7",style='coroots') sage: E8=WeylCharacterRing("E8",style='coroots') sage: [G2(f).branch(A1,rule='i') for f in G2.fundamental_weights()] [A1(6), A1(2) + A1(10)] sage: F4(1,0,0,0).branch(A1,rule='ii') A1(2) + A1(10) + A1(14) + A1(22) sage: E7(0,0,0,0,0,0,1).branch(A1,rule='iii') A1(9) + A1(17) + A1(27) sage: E7(0,0,0,0,0,0,1).branch(A1,rule='iv') A1(5) + A1(11) + A1(15) + A1(21) sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule='v') # long time (0.6s) A1(2) + A1(14) + A1(22) + A1(26) + A1(34) + A1(38) + A1(46) + A1(58) sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule='vi') # long time (0.6s) A1(2) + A1(10) + A1(14) + A1(18) + A1(22) + A1(26) + A1(28) + A1(34) + A1(38) + A1(46) sage: E8(0,0,0,0,0,0,0,1).branch(A1,rule='vii') # long time (0.6s) A1(2) + A1(6) + A1(10) + A1(14) + A1(16) + A1(18) + 2*A1(22) + A1(26) + A1(28) + A1(34) + A1(38)
>>> from sage.all import * >>> A1=WeylCharacterRing("A1",style='coroots') >>> G2=WeylCharacterRing("G2",style='coroots') >>> F4=WeylCharacterRing("F4",style='coroots') >>> E7=WeylCharacterRing("E7",style='coroots') >>> E8=WeylCharacterRing("E8",style='coroots') >>> [G2(f).branch(A1,rule='i') for f in G2.fundamental_weights()] [A1(6), A1(2) + A1(10)] >>> F4(Integer(1),Integer(0),Integer(0),Integer(0)).branch(A1,rule='ii') A1(2) + A1(10) + A1(14) + A1(22) >>> E7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1,rule='iii') A1(9) + A1(17) + A1(27) >>> E7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1,rule='iv') A1(5) + A1(11) + A1(15) + A1(21) >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1,rule='v') # long time (0.6s) A1(2) + A1(14) + A1(22) + A1(26) + A1(34) + A1(38) + A1(46) + A1(58) >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1,rule='vi') # long time (0.6s) A1(2) + A1(10) + A1(14) + A1(18) + A1(22) + A1(26) + A1(28) + A1(34) + A1(38) + A1(46) >>> E8(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1)).branch(A1,rule='vii') # long time (0.6s) A1(2) + A1(6) + A1(10) + A1(14) + A1(16) + A1(18) + 2*A1(22) + A1(26) + A1(28) + A1(34) + A1(38)
A1=WeylCharacterRing("A1",style='coroots') G2=WeylCharacterRing("G2",style='coroots') F4=WeylCharacterRing("F4",style='coroots') E7=WeylCharacterRing("E7",style='coroots') E8=WeylCharacterRing("E8",style='coroots') [G2(f).branch(A1,rule='i') for f in G2.fundamental_weights()] F4(1,0,0,0).branch(A1,rule='ii') E7(0,0,0,0,0,0,1).branch(A1,rule='iii') E7(0,0,0,0,0,0,1).branch(A1,rule='iv') E8(0,0,0,0,0,0,0,1).branch(A1,rule='v') # long time (0.6s) E8(0,0,0,0,0,0,0,1).branch(A1,rule='vi') # long time (0.6s) E8(0,0,0,0,0,0,0,1).branch(A1,rule='vii') # long time (0.6s)
Branching Rules From Plethysms
Nearly all branching rules
where is of type , , or are covered by the preceding rules. The functionbranching_rule_from_plethysm()
covers the remaining cases.This is a general rule that includes any branching rule from types
, , , or as a special case. Thus it could be used in place of the above rules and would give the same results. However it is most useful when branching from to a maximal subgroup such that .We consider a homomorphism
where is one of , , or . The functionbranching_rule_from_plethysm()
produces the corresponding branching rule. The main ingredient is the character of the representation of that is the homomorphism to , or .This rule is so powerful that it contains the other rules implemented above as special cases. First let us consider the symmetric fifth power representation of
.sage: A1=WeylCharacterRing("A1",style='coroots') sage: chi=A1([5]) sage: chi.degree() 6 sage: chi.frobenius_schur_indicator() -1
>>> from sage.all import * >>> A1=WeylCharacterRing("A1",style='coroots') >>> chi=A1([Integer(5)]) >>> chi.degree() 6 >>> chi.frobenius_schur_indicator() -1
A1=WeylCharacterRing("A1",style='coroots') chi=A1([5]) chi.degree() chi.frobenius_schur_indicator()
This confirms that the character has degree 6 and is symplectic, so it corresponds to a homomorphism
, and there is a corresponding branching rule .sage: C3 = WeylCharacterRing("C3",style='coroots') sage: sym5rule = branching_rule_from_plethysm(chi,"C3") sage: [C3(hwv).branch(A1,rule=sym5rule) for hwv in C3.fundamental_weights()] [A1(5), A1(4) + A1(8), A1(3) + A1(9)]
>>> from sage.all import * >>> C3 = WeylCharacterRing("C3",style='coroots') >>> sym5rule = branching_rule_from_plethysm(chi,"C3") >>> [C3(hwv).branch(A1,rule=sym5rule) for hwv in C3.fundamental_weights()] [A1(5), A1(4) + A1(8), A1(3) + A1(9)]
C3 = WeylCharacterRing("C3",style='coroots') sym5rule = branching_rule_from_plethysm(chi,"C3") [C3(hwv).branch(A1,rule=sym5rule) for hwv in C3.fundamental_weights()]
This is identical to the results we would obtain using
rule="symmetric_power"
. The next example gives a branching not available by other standard rules.sage: G2 = WeylCharacterRing("G2",style='coroots') sage: D7 = WeylCharacterRing("D7",style='coroots') sage: ad=G2(0,1); ad.degree(); ad.frobenius_schur_indicator() 14 1 sage: spin = D7(0,0,0,0,0,1,0); spin.degree() 64 sage: spin.branch(G2, rule=branching_rule_from_plethysm(ad, "D7")) G2(1,1)
>>> from sage.all import * >>> G2 = WeylCharacterRing("G2",style='coroots') >>> D7 = WeylCharacterRing("D7",style='coroots') >>> ad=G2(Integer(0),Integer(1)); ad.degree(); ad.frobenius_schur_indicator() 14 1 >>> spin = D7(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(1),Integer(0)); spin.degree() 64 >>> spin.branch(G2, rule=branching_rule_from_plethysm(ad, "D7")) G2(1,1)
G2 = WeylCharacterRing("G2",style='coroots') D7 = WeylCharacterRing("D7",style='coroots') ad=G2(0,1); ad.degree(); ad.frobenius_schur_indicator() spin = D7(0,0,0,0,0,1,0); spin.degree() spin.branch(G2, rule=branching_rule_from_plethysm(ad, "D7"))
We have confirmed that the adjoint representation of
gives a homomorphism into , and that the pullback of the one of the two 64 dimensional spin representations to is an irreducible representation of .We do not actually have to create the character or its parent WeylCharacterRing to create the branching rule:
sage: b = branching_rule("C7","C3(0,0,1)","plethysm"); b plethysm (along C3(0,0,1)) branching rule C7 => C3
>>> from sage.all import * >>> b = branching_rule("C7","C3(0,0,1)","plethysm"); b plethysm (along C3(0,0,1)) branching rule C7 => C3
b = branching_rule("C7","C3(0,0,1)","plethysm"); b
Isomorphic Type
Although not usually referred to as a branching rule, the effects of the accidental isomorphisms may be handled using
rule="isomorphic"
:EXAMPLES:
sage: B2 = WeylCharacterRing("B2") sage: C2 = WeylCharacterRing("C2") sage: [B2(x).branch(C2, rule='isomorphic') for x in B2.fundamental_weights()] [C2(1,1), C2(1,0)] sage: [C2(x).branch(B2, rule='isomorphic') for x in C2.fundamental_weights()] [B2(1/2,1/2), B2(1,0)] sage: D3 = WeylCharacterRing("D3") sage: A3 = WeylCharacterRing("A3") sage: [A3(x).branch(D3,rule='isomorphic') for x in A3.fundamental_weights()] [D3(1/2,1/2,1/2), D3(1,0,0), D3(1/2,1/2,-1/2)] sage: [D3(x).branch(A3,rule='isomorphic') for x in D3.fundamental_weights()] [A3(1/2,1/2,-1/2,-1/2), A3(1/4,1/4,1/4,-3/4), A3(3/4,-1/4,-1/4,-1/4)]
>>> from sage.all import * >>> B2 = WeylCharacterRing("B2") >>> C2 = WeylCharacterRing("C2") >>> [B2(x).branch(C2, rule='isomorphic') for x in B2.fundamental_weights()] [C2(1,1), C2(1,0)] >>> [C2(x).branch(B2, rule='isomorphic') for x in C2.fundamental_weights()] [B2(1/2,1/2), B2(1,0)] >>> D3 = WeylCharacterRing("D3") >>> A3 = WeylCharacterRing("A3") >>> [A3(x).branch(D3,rule='isomorphic') for x in A3.fundamental_weights()] [D3(1/2,1/2,1/2), D3(1,0,0), D3(1/2,1/2,-1/2)] >>> [D3(x).branch(A3,rule='isomorphic') for x in D3.fundamental_weights()] [A3(1/2,1/2,-1/2,-1/2), A3(1/4,1/4,1/4,-3/4), A3(3/4,-1/4,-1/4,-1/4)]
B2 = WeylCharacterRing("B2") C2 = WeylCharacterRing("C2") [B2(x).branch(C2, rule='isomorphic') for x in B2.fundamental_weights()] [C2(x).branch(B2, rule='isomorphic') for x in C2.fundamental_weights()] D3 = WeylCharacterRing("D3") A3 = WeylCharacterRing("A3") [A3(x).branch(D3,rule='isomorphic') for x in A3.fundamental_weights()] [D3(x).branch(A3,rule='isomorphic') for x in D3.fundamental_weights()]
Here
can be understood as a representation of . The weights and represent the same representation of - though not of - since is the same as tensored with . So as a representation of ,A3(1/4,1/4,1/4,-3/4)
is the same asA3(1,1,1,0)
. The exterior square representation admits an invariant symmetric bilinear form, so is a representation that lifts to an isomorphism . Conversely, there are two isomorphisms , of which we’ve selected one.In cases like this you might prefer
style="coroots"
:sage: A3 = WeylCharacterRing("A3",style='coroots') sage: D3 = WeylCharacterRing("D3",style='coroots') sage: [D3(fw) for fw in D3.fundamental_weights()] [D3(1,0,0), D3(0,1,0), D3(0,0,1)] sage: [D3(fw).branch(A3,rule='isomorphic') for fw in D3.fundamental_weights()] [A3(0,1,0), A3(0,0,1), A3(1,0,0)] sage: D2 = WeylCharacterRing("D2", style='coroots') sage: A1xA1 = WeylCharacterRing("A1xA1", style='coroots') sage: [D2(fw).branch(A1xA1,rule='isomorphic') for fw in D2.fundamental_weights()] [A1xA1(1,0), A1xA1(0,1)]
>>> from sage.all import * >>> A3 = WeylCharacterRing("A3",style='coroots') >>> D3 = WeylCharacterRing("D3",style='coroots') >>> [D3(fw) for fw in D3.fundamental_weights()] [D3(1,0,0), D3(0,1,0), D3(0,0,1)] >>> [D3(fw).branch(A3,rule='isomorphic') for fw in D3.fundamental_weights()] [A3(0,1,0), A3(0,0,1), A3(1,0,0)] >>> D2 = WeylCharacterRing("D2", style='coroots') >>> A1xA1 = WeylCharacterRing("A1xA1", style='coroots') >>> [D2(fw).branch(A1xA1,rule='isomorphic') for fw in D2.fundamental_weights()] [A1xA1(1,0), A1xA1(0,1)]
A3 = WeylCharacterRing("A3",style='coroots') D3 = WeylCharacterRing("D3",style='coroots') [D3(fw) for fw in D3.fundamental_weights()] [D3(fw).branch(A3,rule='isomorphic') for fw in D3.fundamental_weights()] D2 = WeylCharacterRing("D2", style='coroots') A1xA1 = WeylCharacterRing("A1xA1", style='coroots') [D2(fw).branch(A1xA1,rule='isomorphic') for fw in D2.fundamental_weights()]
Branching From a Reducible WeylCharacterRing
If the Cartan Type of R is reducible, we may project a character onto any of the components, or any combination of components. The rule to project on the first component is specified by the string
'proj1'
, the rule to project on the second component is"proj2". To project on the first and third components, use ``'proj13'
and so on.EXAMPLES:
sage: A2xG2=WeylCharacterRing("A2xG2",style='coroots') sage: A2=WeylCharacterRing("A2",style='coroots') sage: G2=WeylCharacterRing("G2",style='coroots') sage: A2xG2(1,0,1,0).branch(A2,rule='proj1') 7*A2(1,0) sage: A2xG2(1,0,1,0).branch(G2,rule='proj2') 3*G2(1,0) sage: A2xA2xG2=WeylCharacterRing("A2xA2xG2",style='coroots') sage: A2xA2xG2(0,1,1,1,0,1).branch(A2xG2,rule='proj13') 8*A2xG2(0,1,0,1)
>>> from sage.all import * >>> A2xG2=WeylCharacterRing("A2xG2",style='coroots') >>> A2=WeylCharacterRing("A2",style='coroots') >>> G2=WeylCharacterRing("G2",style='coroots') >>> A2xG2(Integer(1),Integer(0),Integer(1),Integer(0)).branch(A2,rule='proj1') 7*A2(1,0) >>> A2xG2(Integer(1),Integer(0),Integer(1),Integer(0)).branch(G2,rule='proj2') 3*G2(1,0) >>> A2xA2xG2=WeylCharacterRing("A2xA2xG2",style='coroots') >>> A2xA2xG2(Integer(0),Integer(1),Integer(1),Integer(1),Integer(0),Integer(1)).branch(A2xG2,rule='proj13') 8*A2xG2(0,1,0,1)
A2xG2=WeylCharacterRing("A2xG2",style='coroots') A2=WeylCharacterRing("A2",style='coroots') G2=WeylCharacterRing("G2",style='coroots') A2xG2(1,0,1,0).branch(A2,rule='proj1') A2xG2(1,0,1,0).branch(G2,rule='proj2') A2xA2xG2=WeylCharacterRing("A2xA2xG2",style='coroots') A2xA2xG2(0,1,1,1,0,1).branch(A2xG2,rule='proj13')
A more general way of specifying a branching rule from a reducible type is to supply a list of rules, one component rule for each component type in the root system. In the following example, we branch the fundamental representations of
down to through the intermediate group . We use multiplicative notation to compose the branching rules. There is no need to construct the intermediate WeylCharacterRing with type .EXAMPLES:
sage: D4 = WeylCharacterRing("D4",style='coroots') sage: A1xA1xA1xA1 = WeylCharacterRing("A1xA1xA1xA1",style='coroots') sage: b = branching_rule("D2","A1xA1","isomorphic") sage: br = branching_rule("D4","D2xD2","extended")*branching_rule("D2xD2","A1xA1xA1xA1",[b,b]) sage: [D4(fw).branch(A1xA1xA1xA1,rule=br) for fw in D4.fundamental_weights()] [A1xA1xA1xA1(1,1,0,0) + A1xA1xA1xA1(0,0,1,1), A1xA1xA1xA1(1,1,1,1) + A1xA1xA1xA1(2,0,0,0) + A1xA1xA1xA1(0,2,0,0) + A1xA1xA1xA1(0,0,2,0) + A1xA1xA1xA1(0,0,0,2), A1xA1xA1xA1(1,0,0,1) + A1xA1xA1xA1(0,1,1,0), A1xA1xA1xA1(1,0,1,0) + A1xA1xA1xA1(0,1,0,1)]
>>> from sage.all import * >>> D4 = WeylCharacterRing("D4",style='coroots') >>> A1xA1xA1xA1 = WeylCharacterRing("A1xA1xA1xA1",style='coroots') >>> b = branching_rule("D2","A1xA1","isomorphic") >>> br = branching_rule("D4","D2xD2","extended")*branching_rule("D2xD2","A1xA1xA1xA1",[b,b]) >>> [D4(fw).branch(A1xA1xA1xA1,rule=br) for fw in D4.fundamental_weights()] [A1xA1xA1xA1(1,1,0,0) + A1xA1xA1xA1(0,0,1,1), A1xA1xA1xA1(1,1,1,1) + A1xA1xA1xA1(2,0,0,0) + A1xA1xA1xA1(0,2,0,0) + A1xA1xA1xA1(0,0,2,0) + A1xA1xA1xA1(0,0,0,2), A1xA1xA1xA1(1,0,0,1) + A1xA1xA1xA1(0,1,1,0), A1xA1xA1xA1(1,0,1,0) + A1xA1xA1xA1(0,1,0,1)]
D4 = WeylCharacterRing("D4",style='coroots') A1xA1xA1xA1 = WeylCharacterRing("A1xA1xA1xA1",style='coroots') b = branching_rule("D2","A1xA1","isomorphic") br = branching_rule("D4","D2xD2","extended")*branching_rule("D2xD2","A1xA1xA1xA1",[b,b]) [D4(fw).branch(A1xA1xA1xA1,rule=br) for fw in D4.fundamental_weights()]
In the list of rules to be supplied in branching from a reducible root system, we may use two key words “omit” and “identity”. The term “omit” means that we omit one factor, projecting onto the remaining factors. The term “identity” is supplied when the irreducible factor Cartan Types of both the target and the source are the same, and the component branching rule is to be the identity map. For example, we have projection maps from
to and , and the corresponding branching may be accomplished as follows. In this example the same could be accomplished usingrule="proj2"
.EXAMPLES:
sage: A3xA2=WeylCharacterRing("A3xA2",style='coroots') sage: A3=WeylCharacterRing("A3",style='coroots') sage: chi = A3xA2(0,1,0,1,0) sage: chi.branch(A3,rule=["identity","omit"]) 3*A3(0,1,0) sage: A2=WeylCharacterRing("A2",style='coroots') sage: chi.branch(A2,rule=["omit","identity"]) 6*A2(1,0)
>>> from sage.all import * >>> A3xA2=WeylCharacterRing("A3xA2",style='coroots') >>> A3=WeylCharacterRing("A3",style='coroots') >>> chi = A3xA2(Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)) >>> chi.branch(A3,rule=["identity","omit"]) 3*A3(0,1,0) >>> A2=WeylCharacterRing("A2",style='coroots') >>> chi.branch(A2,rule=["omit","identity"]) 6*A2(1,0)
A3xA2=WeylCharacterRing("A3xA2",style='coroots') A3=WeylCharacterRing("A3",style='coroots') chi = A3xA2(0,1,0,1,0) chi.branch(A3,rule=["identity","omit"]) A2=WeylCharacterRing("A2",style='coroots') chi.branch(A2,rule=["omit","identity"])
Yet another way of branching from a reducible root system with repeated Cartan types is to embed along the diagonal. The branching rule is equivalent to the tensor product, as the example shows:
sage: G2=WeylCharacterRing("G2",style='coroots') sage: G2xG2=WeylCharacterRing("G2xG2",style='coroots') sage: G2=WeylCharacterRing("G2",style='coroots') sage: G2xG2(1,0,0,1).branch(G2,rule='diagonal') G2(1,0) + G2(2,0) + G2(1,1) sage: G2xG2(1,0,0,1).branch(G2,rule='diagonal') == G2(1,0)*G2(0,1) True
>>> from sage.all import * >>> G2=WeylCharacterRing("G2",style='coroots') >>> G2xG2=WeylCharacterRing("G2xG2",style='coroots') >>> G2=WeylCharacterRing("G2",style='coroots') >>> G2xG2(Integer(1),Integer(0),Integer(0),Integer(1)).branch(G2,rule='diagonal') G2(1,0) + G2(2,0) + G2(1,1) >>> G2xG2(Integer(1),Integer(0),Integer(0),Integer(1)).branch(G2,rule='diagonal') == G2(Integer(1),Integer(0))*G2(Integer(0),Integer(1)) True
G2=WeylCharacterRing("G2",style='coroots') G2xG2=WeylCharacterRing("G2xG2",style='coroots') G2=WeylCharacterRing("G2",style='coroots') G2xG2(1,0,0,1).branch(G2,rule='diagonal') G2xG2(1,0,0,1).branch(G2,rule='diagonal') == G2(1,0)*G2(0,1)
Writing Your Own (Branching) Rules
Suppose you want to branch from a group
to a subgroup . Arrange the embedding so that a Cartan subalgebra of is contained in a Cartan subalgebra of . There is thus a mapping from the weight spaces . Two embeddings will produce identical branching rules if they differ by an element of the Weyl group of .The rule is this map
, which isG.space()
, to , which isH.space()
, which you may implement as a function. As an example, let us consider how to implement the branching rule . Here embedded as a subgroup in . The Cartan subalgebra consists of diagonal matrices with eigenvalues . TheC2.space()
is the two dimensional vector spaces consisting of the linear functionals and on . On the other hand is . A convenient way to see the restriction is to think of it as the adjoint of the map , that is, . Hence we may encode the rule as follows:def rule(x): return [x[0]-x[3],x[1]-x[2]]
or simply:
rule = lambda x: [x[0]-x[3],x[1]-x[2]]
We may now make and use the branching rule as follows.
EXAMPLES:
sage: br = BranchingRule("A3", "C2", lambda x: [x[0]-x[3],x[1]-x[2]], "homemade"); br homemade branching rule A3 => C2 sage: [A3,C2]=[WeylCharacterRing(x,style='coroots') for x in ["A3","C2"]] sage: A3(0,1,0).branch(C2,rule=br) C2(0,0) + C2(0,1)
>>> from sage.all import * >>> br = BranchingRule("A3", "C2", lambda x: [x[Integer(0)]-x[Integer(3)],x[Integer(1)]-x[Integer(2)]], "homemade"); br homemade branching rule A3 => C2 >>> [A3,C2]=[WeylCharacterRing(x,style='coroots') for x in ["A3","C2"]] >>> A3(Integer(0),Integer(1),Integer(0)).branch(C2,rule=br) C2(0,0) + C2(0,1)
br = BranchingRule("A3", "C2", lambda x: [x[0]-x[3],x[1]-x[2]], "homemade"); br [A3,C2]=[WeylCharacterRing(x,style='coroots') for x in ["A3","C2"]] A3(0,1,0).branch(C2,rule=br)
- sage.combinat.root_system.branching_rules.branching_rule(Rtype, Stype, rule='default')[source]¶
Create a branching rule.
INPUT:
R
– the Weyl Character Ring ofS
– the Weyl Character Ring ofrule
– string describing the branching rule as a map from the weight space of to the weight space of
If the rule parameter is omitted, in some cases, a default rule is supplied. See
branch_weyl_character()
.EXAMPLES:
sage: rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") sage: [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()] [[1, 0], [1, 1], [1, 0]]
>>> from sage.all import * >>> rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") >>> [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()] [[1, 0], [1, 1], [1, 0]]
rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()]
- sage.combinat.root_system.branching_rules.branching_rule_from_plethysm(chi, cartan_type, return_matrix=False)[source]¶
Create the branching rule of a plethysm.
INPUT:
chi
– the character of an irreducible representation of a groupcartan_type
– a classical Cartan type ( ,`B`,`C` or )
It is assumed that the image of the irreducible representation pi naturally has its image in the group
.Returns a branching rule for this plethysm.
EXAMPLES:
The adjoint representation
factors through . The branching rule in question will describe how representations of composed with this homomorphism decompose into irreducible characters of :sage: A2 = WeylCharacterRing("A2") sage: A2 = WeylCharacterRing("A2", style='coroots') sage: ad = A2.adjoint_representation(); ad A2(1,1) sage: ad.degree() 8 sage: ad.frobenius_schur_indicator() 1
>>> from sage.all import * >>> A2 = WeylCharacterRing("A2") >>> A2 = WeylCharacterRing("A2", style='coroots') >>> ad = A2.adjoint_representation(); ad A2(1,1) >>> ad.degree() 8 >>> ad.frobenius_schur_indicator() 1
A2 = WeylCharacterRing("A2") A2 = WeylCharacterRing("A2", style='coroots') ad = A2.adjoint_representation(); ad ad.degree() ad.frobenius_schur_indicator()
This confirms that
has degree 8 and is orthogonal, hence factors through which is type :sage: br = branching_rule_from_plethysm(ad,"D4") sage: D4 = WeylCharacterRing("D4") sage: [D4(f).branch(A2,rule = br) for f in D4.fundamental_weights()] [A2(1,1), A2(0,3) + A2(1,1) + A2(3,0), A2(1,1), A2(1,1)]
>>> from sage.all import * >>> br = branching_rule_from_plethysm(ad,"D4") >>> D4 = WeylCharacterRing("D4") >>> [D4(f).branch(A2,rule = br) for f in D4.fundamental_weights()] [A2(1,1), A2(0,3) + A2(1,1) + A2(3,0), A2(1,1), A2(1,1)]
br = branching_rule_from_plethysm(ad,"D4") D4 = WeylCharacterRing("D4") [D4(f).branch(A2,rule = br) for f in D4.fundamental_weights()]
- sage.combinat.root_system.branching_rules.get_branching_rule(Rtype, Stype, rule='default')[source]¶
Create a branching rule.
INPUT:
R
– the Weyl Character Ring ofS
– the Weyl Character Ring ofrule
– string describing the branching rule as a map from the weight space of to the weight space of
If the rule parameter is omitted, in some cases, a default rule is supplied. See
branch_weyl_character()
.EXAMPLES:
sage: rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") sage: [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()] [[1, 0], [1, 1], [1, 0]]
>>> from sage.all import * >>> rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") >>> [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()] [[1, 0], [1, 1], [1, 0]]
rule = branching_rule(CartanType("A3"),CartanType("C2"),"symmetric") [rule(x) for x in WeylCharacterRing("A3").fundamental_weights()]
- sage.combinat.root_system.branching_rules.maximal_subgroups(ct, mode='print_rules')[source]¶
Given a classical Cartan type (of rank less than or equal to 8) this prints the Cartan types of maximal subgroups, with a method of obtaining the branching rule. The string to the right of the colon in the output is a command to create a branching rule.
INPUT:
ct
– a classical irreducible Cartan type
Returns a list of maximal subgroups of ct.
EXAMPLES:
sage: from sage.combinat.root_system.branching_rules import maximal_subgroups sage: maximal_subgroups("D4") B3:branching_rule("D4","B3","symmetric") A2:branching_rule("D4","A2(1,1)","plethysm") A1xC2:branching_rule("D4","C1xC2","tensor")*branching_rule("C1xC2","A1xC2",[branching_rule("C1","A1","isomorphic"),"identity"]) A1xA1xA1xA1:branching_rule("D4","D2xD2","orthogonal_sum")*branching_rule("D2xD2","A1xA1xA1xA1",[branching_rule("D2","A1xA1","isomorphic"),branching_rule("D2","A1xA1","isomorphic")])
>>> from sage.all import * >>> from sage.combinat.root_system.branching_rules import maximal_subgroups >>> maximal_subgroups("D4") B3:branching_rule("D4","B3","symmetric") A2:branching_rule("D4","A2(1,1)","plethysm") A1xC2:branching_rule("D4","C1xC2","tensor")*branching_rule("C1xC2","A1xC2",[branching_rule("C1","A1","isomorphic"),"identity"]) A1xA1xA1xA1:branching_rule("D4","D2xD2","orthogonal_sum")*branching_rule("D2xD2","A1xA1xA1xA1",[branching_rule("D2","A1xA1","isomorphic"),branching_rule("D2","A1xA1","isomorphic")])
from sage.combinat.root_system.branching_rules import maximal_subgroups maximal_subgroups("D4")
See also
maximal_subgroups()