Projective plane conics over finite fields¶
AUTHORS:
Marco Streng (2010-07-20)
- class sage.schemes.plane_conics.con_finite_field.ProjectiveConic_finite_field(A, f)[source]¶
Bases:
ProjectiveConic_field
,ProjectivePlaneCurve_finite_field
Create a projective plane conic curve over a finite field.
See
Conic
for full documentation.EXAMPLES:
sage: K.<a> = FiniteField(9, 'a') sage: P.<X, Y, Z> = K[] sage: Conic(X^2 + Y^2 - a*Z^2) Projective Conic Curve over Finite Field in a of size 3^2 defined by X^2 + Y^2 + (-a)*Z^2
>>> from sage.all import * >>> K = FiniteField(Integer(9), 'a', names=('a',)); (a,) = K._first_ngens(1) >>> P = K['X, Y, Z']; (X, Y, Z,) = P._first_ngens(3) >>> Conic(X**Integer(2) + Y**Integer(2) - a*Z**Integer(2)) Projective Conic Curve over Finite Field in a of size 3^2 defined by X^2 + Y^2 + (-a)*Z^2
K.<a> = FiniteField(9, 'a') P.<X, Y, Z> = K[] Conic(X^2 + Y^2 - a*Z^2)
sage: P.<X, Y, Z> = FiniteField(5)[] sage: Conic(X^2 + Y^2 - 2*Z^2) Projective Conic Curve over Finite Field of size 5 defined by X^2 + Y^2 - 2*Z^2
>>> from sage.all import * >>> P = FiniteField(Integer(5))['X, Y, Z']; (X, Y, Z,) = P._first_ngens(3) >>> Conic(X**Integer(2) + Y**Integer(2) - Integer(2)*Z**Integer(2)) Projective Conic Curve over Finite Field of size 5 defined by X^2 + Y^2 - 2*Z^2
P.<X, Y, Z> = FiniteField(5)[] Conic(X^2 + Y^2 - 2*Z^2)
- count_points(n)[source]¶
If the base field \(B\) of
self
is finite of order \(q\), then returns the number of points over \(\GF{q}, ..., \GF{q^n}\).EXAMPLES:
sage: P.<x,y,z> = GF(3)[] sage: c = Curve(x^2+y^2+z^2); c Projective Conic Curve over Finite Field of size 3 defined by x^2 + y^2 + z^2 sage: c.count_points(4) [4, 10, 28, 82]
>>> from sage.all import * >>> P = GF(Integer(3))['x, y, z']; (x, y, z,) = P._first_ngens(3) >>> c = Curve(x**Integer(2)+y**Integer(2)+z**Integer(2)); c Projective Conic Curve over Finite Field of size 3 defined by x^2 + y^2 + z^2 >>> c.count_points(Integer(4)) [4, 10, 28, 82]
P.<x,y,z> = GF(3)[] c = Curve(x^2+y^2+z^2); c c.count_points(4)
- has_rational_point(point=False, read_cache=True, algorithm='default')[source]¶
Always returns
True
becauseself
has a point defined over its finite base field \(B\).If
point
is True, then returns a second output \(S\), which is a rational point if one exists.Points are cached. If
read_cache
is True, then cached information is used for the output if available. If no cached point is available orread_cache
is False, then random \(y\)-coordinates are tried ifself
is smooth and a singular point is returned otherwise.EXAMPLES:
sage: Conic(FiniteField(37), [1, 2, 3, 4, 5, 6]).has_rational_point() True sage: C = Conic(FiniteField(2), [1, 1, 1, 1, 1, 0]); C Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z sage: C.has_rational_point(point = True) # output is random (True, (0 : 0 : 1)) sage: p = next_prime(10^50) sage: F = FiniteField(p) sage: C = Conic(F, [1, 2, 3]); C Projective Conic Curve over Finite Field of size 100000000000000000000000000000000000000000000000151 defined by x^2 + 2*y^2 + 3*z^2 sage: C.has_rational_point(point = True) # output is random (True, (14971942941468509742682168602989039212496867586852 : 75235465708017792892762202088174741054630437326388 : 1) sage: F.<a> = FiniteField(7^20) sage: C = Conic([1, a, -5]); C Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + a*y^2 + 2*z^2 sage: C.has_rational_point(point = True) # output is random (True, (a^18 + 2*a^17 + 4*a^16 + 6*a^13 + a^12 + 6*a^11 + 3*a^10 + 4*a^9 + 2*a^8 + 4*a^7 + a^6 + 4*a^4 + 6*a^2 + 3*a + 6 : 5*a^19 + 5*a^18 + 5*a^17 + a^16 + 2*a^15 + 3*a^14 + 4*a^13 + 5*a^12 + a^11 + 3*a^10 + 2*a^8 + 3*a^7 + 4*a^6 + 4*a^5 + 6*a^3 + 5*a^2 + 2*a + 4 : 1))
>>> from sage.all import * >>> Conic(FiniteField(Integer(37)), [Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)]).has_rational_point() True >>> C = Conic(FiniteField(Integer(2)), [Integer(1), Integer(1), Integer(1), Integer(1), Integer(1), Integer(0)]); C Projective Conic Curve over Finite Field of size 2 defined by x^2 + x*y + y^2 + x*z + y*z >>> C.has_rational_point(point = True) # output is random (True, (0 : 0 : 1)) >>> p = next_prime(Integer(10)**Integer(50)) >>> F = FiniteField(p) >>> C = Conic(F, [Integer(1), Integer(2), Integer(3)]); C Projective Conic Curve over Finite Field of size 100000000000000000000000000000000000000000000000151 defined by x^2 + 2*y^2 + 3*z^2 >>> C.has_rational_point(point = True) # output is random (True, (14971942941468509742682168602989039212496867586852 : 75235465708017792892762202088174741054630437326388 : 1) >>> F = FiniteField(Integer(7)**Integer(20), names=('a',)); (a,) = F._first_ngens(1) >>> C = Conic([Integer(1), a, -Integer(5)]); C Projective Conic Curve over Finite Field in a of size 7^20 defined by x^2 + a*y^2 + 2*z^2 >>> C.has_rational_point(point = True) # output is random (True, (a^18 + 2*a^17 + 4*a^16 + 6*a^13 + a^12 + 6*a^11 + 3*a^10 + 4*a^9 + 2*a^8 + 4*a^7 + a^6 + 4*a^4 + 6*a^2 + 3*a + 6 : 5*a^19 + 5*a^18 + 5*a^17 + a^16 + 2*a^15 + 3*a^14 + 4*a^13 + 5*a^12 + a^11 + 3*a^10 + 2*a^8 + 3*a^7 + 4*a^6 + 4*a^5 + 6*a^3 + 5*a^2 + 2*a + 4 : 1))
Conic(FiniteField(37), [1, 2, 3, 4, 5, 6]).has_rational_point() C = Conic(FiniteField(2), [1, 1, 1, 1, 1, 0]); C C.has_rational_point(point = True) # output is random p = next_prime(10^50) F = FiniteField(p) C = Conic(F, [1, 2, 3]); C C.has_rational_point(point = True) # output is random F.<a> = FiniteField(7^20) C = Conic([1, a, -5]); C C.has_rational_point(point = True) # output is random