Differentials of function fields¶
Sage provides arithmetic with differentials of function fields.
EXAMPLES:
The module of differentials on a function field forms an one-dimensional vector space over the function field:
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[]
sage: L.<y> = K.extension(Y^3 + x + x^3*Y)
sage: f = x + y
sage: g = 1 / y
sage: df = f.differential()
sage: dg = g.differential()
sage: dfdg = f.derivative() / g.derivative()
sage: df == dfdg * dg
True
sage: df
(x*y^2 + 1/x*y + 1) d(x)
sage: df.parent()
Space of differentials of Function field in y defined by y^3 + x^3*y + x
>>> from sage.all import *
>>> # needs sage.rings.finite_rings sage.rings.function_field
>>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1)
>>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)
>>> f = x + y
>>> g = Integer(1) / y
>>> df = f.differential()
>>> dg = g.differential()
>>> dfdg = f.derivative() / g.derivative()
>>> df == dfdg * dg
True
>>> df
(x*y^2 + 1/x*y + 1) d(x)
>>> df.parent()
Space of differentials of Function field in y defined by y^3 + x^3*y + x
# needs sage.rings.finite_rings sage.rings.function_field K.<x> = FunctionField(GF(4)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) f = x + y g = 1 / y df = f.differential() dg = g.differential() dfdg = f.derivative() / g.derivative() df == dfdg * dg df df.parent()
We can compute a canonical divisor:
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: k = df.divisor()
sage: k.degree()
4
sage: k.degree() == 2 * L.genus() - 2
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings sage.rings.function_field
>>> k = df.divisor()
>>> k.degree()
4
>>> k.degree() == Integer(2) * L.genus() - Integer(2)
True
# needs sage.rings.finite_rings sage.rings.function_field k = df.divisor() k.degree() k.degree() == 2 * L.genus() - 2
Exact differentials vanish and logarithmic differentials are stable under the Cartier operation:
sage: # needs sage.rings.finite_rings sage.rings.function_field
sage: df.cartier()
0
sage: w = 1/f * df
sage: w.cartier() == w
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings sage.rings.function_field
>>> df.cartier()
0
>>> w = Integer(1)/f * df
>>> w.cartier() == w
True
# needs sage.rings.finite_rings sage.rings.function_field df.cartier() w = 1/f * df w.cartier() == w
AUTHORS:
Kwankyu Lee (2017-04-30): initial version
- class sage.rings.function_field.differential.DifferentialsSpace(field, category=None)[source]¶
Bases:
UniqueRepresentation
,Parent
Space of differentials of a function field.
INPUT:
field
– function field
EXAMPLES:
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings sage: L.<y> = K.extension(Y^3 + x^3*Y + x) # needs sage.rings.finite_rings sage.rings.function_field sage: L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field Space of differentials of Function field in y defined by y^3 + x^3*y + x
>>> from sage.all import * >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1)# needs sage.rings.finite_rings >>> L = K.extension(Y**Integer(3) + x**Integer(3)*Y + x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.finite_rings sage.rings.function_field >>> L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field Space of differentials of Function field in y defined by y^3 + x^3*y + x
K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings L.<y> = K.extension(Y^3 + x^3*Y + x) # needs sage.rings.finite_rings sage.rings.function_field L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field
The space of differentials is a one-dimensional module over the function field. So a base differential is chosen to represent differentials. Usually the generator of the base rational function field is a separating element and used to generate the base differential. Otherwise a separating element is automatically found and used to generate the base differential relative to which other differentials are denoted:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(GF(5)) sage: R.<y> = K[] sage: L.<y> = K.extension(y^5 - 1/x) sage: L(x).differential() 0 sage: y.differential() d(y) sage: (y^2).differential() (2*y) d(y)
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(GF(Integer(5)), names=('x',)); (x,) = K._first_ngens(1) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(5) - Integer(1)/x, names=('y',)); (y,) = L._first_ngens(1) >>> L(x).differential() 0 >>> y.differential() d(y) >>> (y**Integer(2)).differential() (2*y) d(y)
# needs sage.rings.function_field K.<x> = FunctionField(GF(5)) R.<y> = K[] L.<y> = K.extension(y^5 - 1/x) L(x).differential() y.differential() (y^2).differential()
- Element[source]¶
alias of
FunctionFieldDifferential
- basis()[source]¶
Return a basis.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage.rings.function_field sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x^3*Y + x) sage: S = L.space_of_differentials() sage: S.basis() Family (d(x),)
>>> from sage.all import * >>> # needs sage.rings.finite_rings sage.rings.function_field >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x**Integer(3)*Y + x, names=('y',)); (y,) = L._first_ngens(1) >>> S = L.space_of_differentials() >>> S.basis() Family (d(x),)
# needs sage.rings.finite_rings sage.rings.function_field K.<x> = FunctionField(GF(4)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x^3*Y + x) S = L.space_of_differentials() S.basis()
- function_field()[source]¶
Return the function field to which the space of differentials is attached.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage.rings.function_field sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x^3*Y + x) sage: S = L.space_of_differentials() sage: S.function_field() Function field in y defined by y^3 + x^3*y + x
>>> from sage.all import * >>> # needs sage.rings.finite_rings sage.rings.function_field >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x**Integer(3)*Y + x, names=('y',)); (y,) = L._first_ngens(1) >>> S = L.space_of_differentials() >>> S.function_field() Function field in y defined by y^3 + x^3*y + x
# needs sage.rings.finite_rings sage.rings.function_field K.<x> = FunctionField(GF(4)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x^3*Y + x) S = L.space_of_differentials() S.function_field()
- class sage.rings.function_field.differential.DifferentialsSpaceInclusion[source]¶
Bases:
Morphism
Inclusion morphisms for extensions of function fields.
EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field sage: OK = K.space_of_differentials() sage: OL = L.space_of_differentials() # needs sage.rings.function_field sage: OL.coerce_map_from(OK) # needs sage.rings.function_field Inclusion morphism: From: Space of differentials of Rational function field in x over Rational Field To: Space of differentials of Function field in y defined by y^2 - x*y + 4*x^3
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1); R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - x*y + Integer(4)*x**Integer(3), names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> OK = K.space_of_differentials() >>> OL = L.space_of_differentials() # needs sage.rings.function_field >>> OL.coerce_map_from(OK) # needs sage.rings.function_field Inclusion morphism: From: Space of differentials of Rational function field in x over Rational Field To: Space of differentials of Function field in y defined by y^2 - x*y + 4*x^3
K.<x> = FunctionField(QQ); R.<y> = K[] L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field OK = K.space_of_differentials() OL = L.space_of_differentials() # needs sage.rings.function_field OL.coerce_map_from(OK) # needs sage.rings.function_field
- is_injective()[source]¶
Return
True
, since the inclusion morphism is injective.EXAMPLES:
sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field sage: OK = K.space_of_differentials() sage: OL = L.space_of_differentials() # needs sage.rings.function_field sage: OL.coerce_map_from(OK).is_injective() # needs sage.rings.function_field True
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1); R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - x*y + Integer(4)*x**Integer(3), names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> OK = K.space_of_differentials() >>> OL = L.space_of_differentials() # needs sage.rings.function_field >>> OL.coerce_map_from(OK).is_injective() # needs sage.rings.function_field True
K.<x> = FunctionField(QQ); R.<y> = K[] L.<y> = K.extension(y^2 - x*y + 4*x^3) # needs sage.rings.function_field OK = K.space_of_differentials() OL = L.space_of_differentials() # needs sage.rings.function_field OL.coerce_map_from(OK).is_injective() # needs sage.rings.function_field
- is_surjective()[source]¶
Return
True
if the inclusion morphism is surjective.EXAMPLES:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(QQ); R.<y> = K[] sage: L.<y> = K.extension(y^2 - x*y + 4*x^3) sage: OK = K.space_of_differentials() sage: OL = L.space_of_differentials() sage: OL.coerce_map_from(OK).is_surjective() False sage: S.<z> = L[] sage: M.<z> = L.extension(z - 1) sage: OM = M.space_of_differentials() sage: OM.coerce_map_from(OL).is_surjective() True
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1); R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) - x*y + Integer(4)*x**Integer(3), names=('y',)); (y,) = L._first_ngens(1) >>> OK = K.space_of_differentials() >>> OL = L.space_of_differentials() >>> OL.coerce_map_from(OK).is_surjective() False >>> S = L['z']; (z,) = S._first_ngens(1) >>> M = L.extension(z - Integer(1), names=('z',)); (z,) = M._first_ngens(1) >>> OM = M.space_of_differentials() >>> OM.coerce_map_from(OL).is_surjective() True
# needs sage.rings.function_field K.<x> = FunctionField(QQ); R.<y> = K[] L.<y> = K.extension(y^2 - x*y + 4*x^3) OK = K.space_of_differentials() OL = L.space_of_differentials() OL.coerce_map_from(OK).is_surjective() S.<z> = L[] M.<z> = L.extension(z - 1) OM = M.space_of_differentials() OM.coerce_map_from(OL).is_surjective()
- class sage.rings.function_field.differential.DifferentialsSpace_global(field, category=None)[source]¶
Bases:
DifferentialsSpace
Space of differentials of a global function field.
INPUT:
field
– function field
EXAMPLES:
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings sage: L.<y> = K.extension(Y^3 + x^3*Y + x) # needs sage.rings.finite_rings sage.rings.function_field sage: L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field Space of differentials of Function field in y defined by y^3 + x^3*y + x
>>> from sage.all import * >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1)# needs sage.rings.finite_rings >>> L = K.extension(Y**Integer(3) + x**Integer(3)*Y + x, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.finite_rings sage.rings.function_field >>> L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field Space of differentials of Function field in y defined by y^3 + x^3*y + x
K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings L.<y> = K.extension(Y^3 + x^3*Y + x) # needs sage.rings.finite_rings sage.rings.function_field L.space_of_differentials() # needs sage.rings.finite_rings sage.rings.function_field
- Element[source]¶
alias of
FunctionFieldDifferential_global
- class sage.rings.function_field.differential.FunctionFieldDifferential(parent, f, t=None)[source]¶
Bases:
ModuleElement
Base class for differentials on function fields.
INPUT:
f
– element of the function fieldt
– element of the function field; if \(t\) is not specified, the generator of the base differential is assumed
EXAMPLES:
sage: F.<x> = FunctionField(QQ) sage: f = x/(x^2 + x + 1) sage: f.differential() ((-x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)
>>> from sage.all import * >>> F = FunctionField(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> f = x/(x**Integer(2) + x + Integer(1)) >>> f.differential() ((-x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)
F.<x> = FunctionField(QQ) f = x/(x^2 + x + 1) f.differential()
sage: K.<x> = FunctionField(QQ); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field sage: L(x).differential() # needs sage.rings.function_field d(x) sage: y.differential() # needs sage.rings.function_field ((21/4*x/(x^7 + 27/4))*y^2 + ((3/2*x^7 + 9/4)/(x^8 + 27/4*x))*y + 7/2*x^4/(x^7 + 27/4)) d(x)
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> L(x).differential() # needs sage.rings.function_field d(x) >>> y.differential() # needs sage.rings.function_field ((21/4*x/(x^7 + 27/4))*y^2 + ((3/2*x^7 + 9/4)/(x^8 + 27/4*x))*y + 7/2*x^4/(x^7 + 27/4)) d(x)
K.<x> = FunctionField(QQ); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field L(x).differential() # needs sage.rings.function_field y.differential() # needs sage.rings.function_field
- divisor()[source]¶
Return the divisor of the differential.
EXAMPLES:
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field sage: w = (1/y) * y.differential() # needs sage.rings.function_field sage: w.divisor() # needs sage.rings.function_field - Place (1/x, 1/x^3*y^2 + 1/x) - Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1) - Place (x, y) + Place (x + 2, y + 3) + Place (x^6 + 3*x^5 + 4*x^4 + 2*x^3 + x^2 + 3*x + 4, y + x^5)
>>> from sage.all import * >>> K = FunctionField(GF(Integer(5)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> w = (Integer(1)/y) * y.differential() # needs sage.rings.function_field >>> w.divisor() # needs sage.rings.function_field - Place (1/x, 1/x^3*y^2 + 1/x) - Place (1/x, 1/x^3*y^2 + 1/x^2*y + 1) - Place (x, y) + Place (x + 2, y + 3) + Place (x^6 + 3*x^5 + 4*x^4 + 2*x^3 + x^2 + 3*x + 4, y + x^5)
K.<x> = FunctionField(GF(5)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field w = (1/y) * y.differential() # needs sage.rings.function_field w.divisor() # needs sage.rings.function_field
sage: F.<x> = FunctionField(QQ) sage: w = (1/x).differential() sage: w.divisor() # needs sage.libs.pari -2*Place (x)
>>> from sage.all import * >>> F = FunctionField(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> w = (Integer(1)/x).differential() >>> w.divisor() # needs sage.libs.pari -2*Place (x)
F.<x> = FunctionField(QQ) w = (1/x).differential() w.divisor() # needs sage.libs.pari
- monomial_coefficients(copy=True)[source]¶
Return a dictionary whose keys are indices of basis elements in the support of
self
and whose values are the corresponding coefficients.EXAMPLES:
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field sage: d = y.differential() # needs sage.rings.function_field sage: d # needs sage.rings.function_field ((4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)) d(x) sage: d.monomial_coefficients() # needs sage.rings.function_field {0: (4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)}
>>> from sage.all import * >>> K = FunctionField(GF(Integer(5)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> d = y.differential() # needs sage.rings.function_field >>> d # needs sage.rings.function_field ((4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)) d(x) >>> d.monomial_coefficients() # needs sage.rings.function_field {0: (4*x/(x^7 + 3))*y^2 + ((4*x^7 + 1)/(x^8 + 3*x))*y + x^4/(x^7 + 3)}
K.<x> = FunctionField(GF(5)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field d = y.differential() # needs sage.rings.function_field d # needs sage.rings.function_field d.monomial_coefficients() # needs sage.rings.function_field
- residue(place)[source]¶
Return the residue of the differential at the place.
INPUT:
place
– a place of the function field
OUTPUT: an element of the residue field of the place
EXAMPLES:
We verify the residue theorem in a rational function field:
sage: # needs sage.rings.finite_rings sage: F.<x> = FunctionField(GF(4)) sage: f = 0 sage: while f == 0: ....: f = F.random_element() sage: w = 1/f * f.differential() sage: d = f.divisor() sage: s = d.support() sage: sum([w.residue(p).trace() for p in s]) # needs sage.rings.function_field 0
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = FunctionField(GF(Integer(4)), names=('x',)); (x,) = F._first_ngens(1) >>> f = Integer(0) >>> while f == Integer(0): ... f = F.random_element() >>> w = Integer(1)/f * f.differential() >>> d = f.divisor() >>> s = d.support() >>> sum([w.residue(p).trace() for p in s]) # needs sage.rings.function_field 0
# needs sage.rings.finite_rings F.<x> = FunctionField(GF(4)) f = 0 while f == 0: f = F.random_element() w = 1/f * f.differential() d = f.divisor() s = d.support() sum([w.residue(p).trace() for p in s]) # needs sage.rings.function_field
and in an extension field:
sage: # needs sage.rings.function_field sage: K.<x> = FunctionField(GF(7)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) sage: f = 0 sage: while f == 0: ....: f = L.random_element() sage: w = 1/f * f.differential() sage: d = f.divisor() sage: s = d.support() sage: sum([w.residue(p).trace() for p in s]) 0
>>> from sage.all import * >>> # needs sage.rings.function_field >>> K = FunctionField(GF(Integer(7)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1) >>> f = Integer(0) >>> while f == Integer(0): ... f = L.random_element() >>> w = Integer(1)/f * f.differential() >>> d = f.divisor() >>> s = d.support() >>> sum([w.residue(p).trace() for p in s]) 0
# needs sage.rings.function_field K.<x> = FunctionField(GF(7)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) f = 0 while f == 0: f = L.random_element() w = 1/f * f.differential() d = f.divisor() s = d.support() sum([w.residue(p).trace() for p in s])
and also in a function field of characteristic zero:
sage: # needs sage.rings.function_field sage: R.<x> = FunctionField(QQ) sage: L.<Y> = R[] sage: F.<y> = R.extension(Y^2 - x^4 - 4*x^3 - 2*x^2 - 1) sage: a = 6*x^2 + 5*x + 7 sage: b = 2*x^6 + 8*x^5 + 3*x^4 - 4*x^3 - 1 sage: w = y*a/b*x.differential() sage: d = w.divisor() sage: sum([QQ(w.residue(p)) for p in d.support()]) 0
>>> from sage.all import * >>> # needs sage.rings.function_field >>> R = FunctionField(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> L = R['Y']; (Y,) = L._first_ngens(1) >>> F = R.extension(Y**Integer(2) - x**Integer(4) - Integer(4)*x**Integer(3) - Integer(2)*x**Integer(2) - Integer(1), names=('y',)); (y,) = F._first_ngens(1) >>> a = Integer(6)*x**Integer(2) + Integer(5)*x + Integer(7) >>> b = Integer(2)*x**Integer(6) + Integer(8)*x**Integer(5) + Integer(3)*x**Integer(4) - Integer(4)*x**Integer(3) - Integer(1) >>> w = y*a/b*x.differential() >>> d = w.divisor() >>> sum([QQ(w.residue(p)) for p in d.support()]) 0
# needs sage.rings.function_field R.<x> = FunctionField(QQ) L.<Y> = R[] F.<y> = R.extension(Y^2 - x^4 - 4*x^3 - 2*x^2 - 1) a = 6*x^2 + 5*x + 7 b = 2*x^6 + 8*x^5 + 3*x^4 - 4*x^3 - 1 w = y*a/b*x.differential() d = w.divisor() sum([QQ(w.residue(p)) for p in d.support()])
- valuation(place)[source]¶
Return the valuation of the differential at the place.
INPUT:
place
– a place of the function field
EXAMPLES:
sage: K.<x> = FunctionField(GF(5)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field sage: w = (1/y) * y.differential() # needs sage.rings.function_field sage: [w.valuation(p) for p in L.places()] # needs sage.rings.function_field [-1, -1, -1, 0, 1, 0]
>>> from sage.all import * >>> K = FunctionField(GF(Integer(5)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.function_field >>> w = (Integer(1)/y) * y.differential() # needs sage.rings.function_field >>> [w.valuation(p) for p in L.places()] # needs sage.rings.function_field [-1, -1, -1, 0, 1, 0]
K.<x> = FunctionField(GF(5)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.function_field w = (1/y) * y.differential() # needs sage.rings.function_field [w.valuation(p) for p in L.places()] # needs sage.rings.function_field
- class sage.rings.function_field.differential.FunctionFieldDifferential_global(parent, f, t=None)[source]¶
Bases:
FunctionFieldDifferential
Differentials on global function fields.
EXAMPLES:
sage: F.<x> = FunctionField(GF(7)) sage: f = x/(x^2 + x + 1) sage: f.differential() ((6*x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)
>>> from sage.all import * >>> F = FunctionField(GF(Integer(7)), names=('x',)); (x,) = F._first_ngens(1) >>> f = x/(x**Integer(2) + x + Integer(1)) >>> f.differential() ((6*x^2 + 1)/(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)) d(x)
F.<x> = FunctionField(GF(7)) f = x/(x^2 + x + 1) f.differential()
sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings sage: L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.finite_rings sage.rings.function_field sage: y.differential() # needs sage.rings.finite_rings sage.rings.function_field (x*y^2 + 1/x*y) d(x)
>>> from sage.all import * >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1)# needs sage.rings.finite_rings >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1)# needs sage.rings.finite_rings sage.rings.function_field >>> y.differential() # needs sage.rings.finite_rings sage.rings.function_field (x*y^2 + 1/x*y) d(x)
K.<x> = FunctionField(GF(4)); _.<Y> = K[] # needs sage.rings.finite_rings L.<y> = K.extension(Y^3 + x + x^3*Y) # needs sage.rings.finite_rings sage.rings.function_field y.differential() # needs sage.rings.finite_rings sage.rings.function_field
- cartier()[source]¶
Return the image of the differential by the Cartier operator.
The Cartier operator operates on differentials. Let \(x\) be a separating element of the function field. If a differential \(\omega\) is written in prime-power representation \(\omega=(f_0^p+f_1^px+\dots+f_{p-1}^px^{p-1})dx\), then the Cartier operator maps \(\omega\) to \(f_{p-1}dx\). It is known that this definition does not depend on the choice of \(x\).
The Cartier operator has interesting properties. Notably, the set of exact differentials is precisely the kernel of the Cartier operator and logarithmic differentials are stable under the Cartier operation.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage.rings.function_field sage: K.<x> = FunctionField(GF(4)); _.<Y> = K[] sage: L.<y> = K.extension(Y^3 + x + x^3*Y) sage: f = x/y sage: w = 1/f*f.differential() sage: w.cartier() == w True
>>> from sage.all import * >>> # needs sage.rings.finite_rings sage.rings.function_field >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1); _ = K['Y']; (Y,) = _._first_ngens(1) >>> L = K.extension(Y**Integer(3) + x + x**Integer(3)*Y, names=('y',)); (y,) = L._first_ngens(1) >>> f = x/y >>> w = Integer(1)/f*f.differential() >>> w.cartier() == w True
# needs sage.rings.finite_rings sage.rings.function_field K.<x> = FunctionField(GF(4)); _.<Y> = K[] L.<y> = K.extension(Y^3 + x + x^3*Y) f = x/y w = 1/f*f.differential() w.cartier() == w
sage: # needs sage.rings.finite_rings sage: F.<x> = FunctionField(GF(4)) sage: f = x/(x^2 + x + 1) sage: w = 1/f*f.differential() sage: w.cartier() == w # needs sage.rings.function_field True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> F = FunctionField(GF(Integer(4)), names=('x',)); (x,) = F._first_ngens(1) >>> f = x/(x**Integer(2) + x + Integer(1)) >>> w = Integer(1)/f*f.differential() >>> w.cartier() == w # needs sage.rings.function_field True
# needs sage.rings.finite_rings F.<x> = FunctionField(GF(4)) f = x/(x^2 + x + 1) w = 1/f*f.differential() w.cartier() == w # needs sage.rings.function_field