LibGAP-based Groups

This module provides helper class for wrapping GAP groups via libgap. See free_group for an example how they are used.

The parent class keeps track of the GAP element object, to use it in your Python parent you have to derive both from the suitable group parent and ParentLibGAP

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....:     pass
sage: class FooGroup(Group, ParentLibGAP):
....:     Element = FooElement
....:     def __init__(self):
....:         lg = libgap(libgap.CyclicGroup(3))    # dummy
....:         ParentLibGAP.__init__(self, lg)
....:         Group.__init__(self)
>>> from sage.all import *
>>> from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
>>> from sage.groups.group import Group
>>> class FooElement(ElementLibGAP):
...     pass
>>> class FooGroup(Group, ParentLibGAP):
...     Element = FooElement
...     def __init__(self):
...         lg = libgap(libgap.CyclicGroup(Integer(3)))    # dummy
...         ParentLibGAP.__init__(self, lg)
...         Group.__init__(self)
from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
from sage.groups.group import Group
class FooElement(ElementLibGAP):
    pass
class FooGroup(Group, ParentLibGAP):
    Element = FooElement
    def __init__(self):
        lg = libgap(libgap.CyclicGroup(3))    # dummy
        ParentLibGAP.__init__(self, lg)
        Group.__init__(self)

Note how we call the constructor of both superclasses to initialize Group and ParentLibGAP separately. The parent class implements its output via LibGAP:

sage: FooGroup()
<pc group of size 3 with 1 generator>
sage: type(FooGroup().gap())
<class 'sage.libs.gap.element.GapElement'>
>>> from sage.all import *
>>> FooGroup()
<pc group of size 3 with 1 generator>
>>> type(FooGroup().gap())
<class 'sage.libs.gap.element.GapElement'>
FooGroup()
type(FooGroup().gap())

The element class is a subclass of MultiplicativeGroupElement. To use it, you just inherit from ElementLibGAP

sage: element = FooGroup().an_element()
sage: element
f1
>>> from sage.all import *
>>> element = FooGroup().an_element()
>>> element
f1
element = FooGroup().an_element()
element

The element class implements group operations and printing via LibGAP:

sage: element._repr_()
'f1'
sage: element * element
f1^2
>>> from sage.all import *
>>> element._repr_()
'f1'
>>> element * element
f1^2
element._repr_()
element * element

AUTHORS:

  • Volker Braun

class sage.groups.libgap_wrapper.ElementLibGAP[source]

Bases: MultiplicativeGroupElement

A class for LibGAP-based Sage group elements.

INPUT:

  • parent – the Sage parent

  • libgap_element – the libgap element that is being wrapped

EXAMPLES:

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....:     pass
sage: class FooGroup(Group, ParentLibGAP):
....:     Element = FooElement
....:     def __init__(self):
....:         lg = libgap(libgap.CyclicGroup(3))    # dummy
....:         ParentLibGAP.__init__(self, lg)
....:         Group.__init__(self)
sage: FooGroup()
<pc group of size 3 with 1 generator>
sage: FooGroup().gens()
(f1,)
>>> from sage.all import *
>>> from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
>>> from sage.groups.group import Group
>>> class FooElement(ElementLibGAP):
...     pass
>>> class FooGroup(Group, ParentLibGAP):
...     Element = FooElement
...     def __init__(self):
...         lg = libgap(libgap.CyclicGroup(Integer(3)))    # dummy
...         ParentLibGAP.__init__(self, lg)
...         Group.__init__(self)
>>> FooGroup()
<pc group of size 3 with 1 generator>
>>> FooGroup().gens()
(f1,)
from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
from sage.groups.group import Group
class FooElement(ElementLibGAP):
    pass
class FooGroup(Group, ParentLibGAP):
    Element = FooElement
    def __init__(self):
        lg = libgap(libgap.CyclicGroup(3))    # dummy
        ParentLibGAP.__init__(self, lg)
        Group.__init__(self)
FooGroup()
FooGroup().gens()
gap()[source]

Return a LibGAP representation of the element.

OUTPUT: a GapElement

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x
a*b*a^-1*b^-1
sage: xg = x.gap()
sage: xg
a*b*a^-1*b^-1
sage: type(xg)
<class 'sage.libs.gap.element.GapElement'>
>>> from sage.all import *
>>> G = FreeGroup('a, b', names=('a', 'b',)); (a, b,) = G._first_ngens(2)
>>> x = G([Integer(1), Integer(2), -Integer(1), -Integer(2)])
>>> x
a*b*a^-1*b^-1
>>> xg = x.gap()
>>> xg
a*b*a^-1*b^-1
>>> type(xg)
<class 'sage.libs.gap.element.GapElement'>
G.<a,b> = FreeGroup('a, b')
x = G([1, 2, -1, -2])
x
xg = x.gap()
xg
type(xg)
inverse()[source]

Return the inverse of self.

is_conjugate(other)[source]

Return whether the elements self and other are conjugate.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()
sage: a.is_conjugate(b)
False
sage: a.is_conjugate((a*b^2) * a * ~(a*b^2))
True
>>> from sage.all import *
>>> from sage.groups.libgap_group import GroupLibGAP
>>> G = GroupLibGAP(libgap.GL(Integer(2), Integer(3)))
>>> a,b = G.gens()
>>> a.is_conjugate(b)
False
>>> a.is_conjugate((a*b**Integer(2)) * a * ~(a*b**Integer(2)))
True
from sage.groups.libgap_group import GroupLibGAP
G = GroupLibGAP(libgap.GL(2, 3))
a,b = G.gens()
a.is_conjugate(b)
a.is_conjugate((a*b^2) * a * ~(a*b^2))
is_one()[source]

Test whether the group element is the trivial element.

OUTPUT: boolean

EXAMPLES:

sage: G.<a,b> = FreeGroup('a, b')
sage: x = G([1, 2, -1, -2])
sage: x.is_one()
False
sage: (x * ~x).is_one()
True
>>> from sage.all import *
>>> G = FreeGroup('a, b', names=('a', 'b',)); (a, b,) = G._first_ngens(2)
>>> x = G([Integer(1), Integer(2), -Integer(1), -Integer(2)])
>>> x.is_one()
False
>>> (x * ~x).is_one()
True
G.<a,b> = FreeGroup('a, b')
x = G([1, 2, -1, -2])
x.is_one()
(x * ~x).is_one()
multiplicative_order()[source]

Return the multiplicative order.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()
sage: print(a.order())
2
sage: print(a.multiplicative_order())
2

sage: z = Mod(0, 3)
sage: o = Mod(1, 3)
sage: G(libgap([[o,o],[z,o]])).order()
3
>>> from sage.all import *
>>> from sage.groups.libgap_group import GroupLibGAP
>>> G = GroupLibGAP(libgap.GL(Integer(2), Integer(3)))
>>> a,b = G.gens()
>>> print(a.order())
2
>>> print(a.multiplicative_order())
2

>>> z = Mod(Integer(0), Integer(3))
>>> o = Mod(Integer(1), Integer(3))
>>> G(libgap([[o,o],[z,o]])).order()
3
from sage.groups.libgap_group import GroupLibGAP
G = GroupLibGAP(libgap.GL(2, 3))
a,b = G.gens()
print(a.order())
print(a.multiplicative_order())
z = Mod(0, 3)
o = Mod(1, 3)
G(libgap([[o,o],[z,o]])).order()
normalizer()[source]

Return the normalizer of the cyclic group generated by this element.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(3,3))
sage: a,b = G.gens()
sage: H = a.normalizer()
sage: H
<group of 3x3 matrices over GF(3)>
sage: H.cardinality()
96
sage: all(g*a == a*g for g in H)
True
>>> from sage.all import *
>>> from sage.groups.libgap_group import GroupLibGAP
>>> G = GroupLibGAP(libgap.GL(Integer(3),Integer(3)))
>>> a,b = G.gens()
>>> H = a.normalizer()
>>> H
<group of 3x3 matrices over GF(3)>
>>> H.cardinality()
96
>>> all(g*a == a*g for g in H)
True
from sage.groups.libgap_group import GroupLibGAP
G = GroupLibGAP(libgap.GL(3,3))
a,b = G.gens()
H = a.normalizer()
H
H.cardinality()
all(g*a == a*g for g in H)
nth_roots(n)[source]

Return the set of n-th roots of this group element.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(3,3))
sage: a,b = G.gens()
sage: g = a*b**2*a*~b
sage: r = g.nth_roots(4)
sage: r
[[ [ Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ] ],
 [ [ Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3) ] ]]
sage: r[0]**4 == r[1]**4 == g
True
>>> from sage.all import *
>>> from sage.groups.libgap_group import GroupLibGAP
>>> G = GroupLibGAP(libgap.GL(Integer(3),Integer(3)))
>>> a,b = G.gens()
>>> g = a*b**Integer(2)*a*~b
>>> r = g.nth_roots(Integer(4))
>>> r
[[ [ Z(3), Z(3), Z(3)^0 ], [ Z(3)^0, Z(3)^0, 0*Z(3) ], [ 0*Z(3), Z(3), 0*Z(3) ] ],
 [ [ Z(3)^0, Z(3)^0, Z(3) ], [ Z(3), Z(3), 0*Z(3) ], [ 0*Z(3), Z(3)^0, 0*Z(3) ] ]]
>>> r[Integer(0)]**Integer(4) == r[Integer(1)]**Integer(4) == g
True
from sage.groups.libgap_group import GroupLibGAP
G = GroupLibGAP(libgap.GL(3,3))
a,b = G.gens()
g = a*b**2*a*~b
r = g.nth_roots(4)
r
r[0]**4 == r[1]**4 == g
order()[source]

Return the multiplicative order.

EXAMPLES:

sage: from sage.groups.libgap_group import GroupLibGAP
sage: G = GroupLibGAP(libgap.GL(2, 3))
sage: a,b = G.gens()
sage: print(a.order())
2
sage: print(a.multiplicative_order())
2

sage: z = Mod(0, 3)
sage: o = Mod(1, 3)
sage: G(libgap([[o,o],[z,o]])).order()
3
>>> from sage.all import *
>>> from sage.groups.libgap_group import GroupLibGAP
>>> G = GroupLibGAP(libgap.GL(Integer(2), Integer(3)))
>>> a,b = G.gens()
>>> print(a.order())
2
>>> print(a.multiplicative_order())
2

>>> z = Mod(Integer(0), Integer(3))
>>> o = Mod(Integer(1), Integer(3))
>>> G(libgap([[o,o],[z,o]])).order()
3
from sage.groups.libgap_group import GroupLibGAP
G = GroupLibGAP(libgap.GL(2, 3))
a,b = G.gens()
print(a.order())
print(a.multiplicative_order())
z = Mod(0, 3)
o = Mod(1, 3)
G(libgap([[o,o],[z,o]])).order()
class sage.groups.libgap_wrapper.ParentLibGAP(libgap_parent, ambient=None)[source]

Bases: SageObject

A class for parents to keep track of the GAP parent.

This is not a complete group in Sage, this class is only a base class that you can use to implement your own groups with LibGAP. See libgap_group for a minimal example of a group that is actually usable.

Your implementation definitely needs to supply

  • __reduce__(): serialize the LibGAP group. Since GAP does not support Python pickles natively, you need to figure out yourself how you can recreate the group from a pickle.

INPUT:

  • libgap_parent – the libgap element that is the parent in GAP

  • ambient – a derived class of ParentLibGAP or None (default); the ambient class if libgap_parent has been defined as a subgroup

EXAMPLES:

sage: from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
sage: from sage.groups.group import Group
sage: class FooElement(ElementLibGAP):
....:     pass
sage: class FooGroup(Group, ParentLibGAP):
....:     Element = FooElement
....:     def __init__(self):
....:         lg = libgap(libgap.CyclicGroup(3))    # dummy
....:         ParentLibGAP.__init__(self, lg)
....:         Group.__init__(self)
sage: FooGroup()
<pc group of size 3 with 1 generator>
>>> from sage.all import *
>>> from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
>>> from sage.groups.group import Group
>>> class FooElement(ElementLibGAP):
...     pass
>>> class FooGroup(Group, ParentLibGAP):
...     Element = FooElement
...     def __init__(self):
...         lg = libgap(libgap.CyclicGroup(Integer(3)))    # dummy
...         ParentLibGAP.__init__(self, lg)
...         Group.__init__(self)
>>> FooGroup()
<pc group of size 3 with 1 generator>
from sage.groups.libgap_wrapper import ElementLibGAP, ParentLibGAP
from sage.groups.group import Group
class FooElement(ElementLibGAP):
    pass
class FooGroup(Group, ParentLibGAP):
    Element = FooElement
    def __init__(self):
        lg = libgap(libgap.CyclicGroup(3))    # dummy
        ParentLibGAP.__init__(self, lg)
        Group.__init__(self)
FooGroup()
ambient()[source]

Return the ambient group of a subgroup.

OUTPUT:

A group containing self. If self has not been defined as a subgroup, we just return self.

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.ambient() is G
True
>>> from sage.all import *
>>> G = FreeGroup(Integer(3))
>>> G.ambient() is G
True
G = FreeGroup(3)
G.ambient() is G
gap()[source]

Return the GAP representation of self.

OUTPUT: a GapElement

EXAMPLES:

sage: G = FreeGroup(3);  G
Free Group on generators {x0, x1, x2}
sage: G.gap()
<free group on the generators [ x0, x1, x2 ]>
sage: G.gap().parent()
C library interface to GAP
sage: type(G.gap())
<class 'sage.libs.gap.element.GapElement'>
>>> from sage.all import *
>>> G = FreeGroup(Integer(3));  G
Free Group on generators {x0, x1, x2}
>>> G.gap()
<free group on the generators [ x0, x1, x2 ]>
>>> G.gap().parent()
C library interface to GAP
>>> type(G.gap())
<class 'sage.libs.gap.element.GapElement'>
G = FreeGroup(3);  G
G.gap()
G.gap().parent()
type(G.gap())

This can be useful, for example, to call GAP functions that are not wrapped in Sage:

sage: G = FreeGroup(3)
sage: H = G.gap()
sage: H.DirectProduct(H)
<fp group on the generators [ f1, f2, f3, f4, f5, f6 ]>
sage: H.DirectProduct(H).RelatorsOfFpGroup()
[ f1^-1*f4^-1*f1*f4, f1^-1*f5^-1*f1*f5, f1^-1*f6^-1*f1*f6, f2^-1*f4^-1*f2*f4,
  f2^-1*f5^-1*f2*f5, f2^-1*f6^-1*f2*f6, f3^-1*f4^-1*f3*f4, f3^-1*f5^-1*f3*f5,
  f3^-1*f6^-1*f3*f6 ]
>>> from sage.all import *
>>> G = FreeGroup(Integer(3))
>>> H = G.gap()
>>> H.DirectProduct(H)
<fp group on the generators [ f1, f2, f3, f4, f5, f6 ]>
>>> H.DirectProduct(H).RelatorsOfFpGroup()
[ f1^-1*f4^-1*f1*f4, f1^-1*f5^-1*f1*f5, f1^-1*f6^-1*f1*f6, f2^-1*f4^-1*f2*f4,
  f2^-1*f5^-1*f2*f5, f2^-1*f6^-1*f2*f6, f3^-1*f4^-1*f3*f4, f3^-1*f5^-1*f3*f5,
  f3^-1*f6^-1*f3*f6 ]
G = FreeGroup(3)
H = G.gap()
H.DirectProduct(H)
H.DirectProduct(H).RelatorsOfFpGroup()

We can also convert directly to libgap:

sage: libgap(GL(2, ZZ))
GL(2,Integers)
>>> from sage.all import *
>>> libgap(GL(Integer(2), ZZ))
GL(2,Integers)
libgap(GL(2, ZZ))
gen(i)[source]

Return the \(i\)-th generator of self.

Warning

Indexing starts at \(0\) as usual in Sage/Python. Not as in GAP, where indexing starts at \(1\).

INPUT:

  • i – integer between \(0\) (inclusive) and ngens() (exclusive); the index of the generator

OUTPUT: the \(i\)-th generator of the group

EXAMPLES:

sage: G = FreeGroup('a, b')
sage: G.gen(0)
a
sage: G.gen(1)
b
>>> from sage.all import *
>>> G = FreeGroup('a, b')
>>> G.gen(Integer(0))
a
>>> G.gen(Integer(1))
b
G = FreeGroup('a, b')
G.gen(0)
G.gen(1)
generators()[source]

Return the generators of the group.

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')
sage: H.gens()
(a, b, c)
>>> from sage.all import *
>>> G = FreeGroup(Integer(2))
>>> G.gens()
(x0, x1)
>>> H = FreeGroup('a, b, c')
>>> H.gens()
(a, b, c)
G = FreeGroup(2)
G.gens()
H = FreeGroup('a, b, c')
H.gens()

generators() is an alias for gens()

sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)
>>> from sage.all import *
>>> G = FreeGroup('a, b')
>>> G.generators()
(a, b)
>>> H = FreeGroup(Integer(3), 'x')
>>> H.generators()
(x0, x1, x2)
G = FreeGroup('a, b')
G.generators()
H = FreeGroup(3, 'x')
H.generators()
gens()[source]

Return the generators of the group.

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.gens()
(x0, x1)
sage: H = FreeGroup('a, b, c')
sage: H.gens()
(a, b, c)
>>> from sage.all import *
>>> G = FreeGroup(Integer(2))
>>> G.gens()
(x0, x1)
>>> H = FreeGroup('a, b, c')
>>> H.gens()
(a, b, c)
G = FreeGroup(2)
G.gens()
H = FreeGroup('a, b, c')
H.gens()

generators() is an alias for gens()

sage: G = FreeGroup('a, b')
sage: G.generators()
(a, b)
sage: H = FreeGroup(3, 'x')
sage: H.generators()
(x0, x1, x2)
>>> from sage.all import *
>>> G = FreeGroup('a, b')
>>> G.generators()
(a, b)
>>> H = FreeGroup(Integer(3), 'x')
>>> H.generators()
(x0, x1, x2)
G = FreeGroup('a, b')
G.generators()
H = FreeGroup(3, 'x')
H.generators()
is_subgroup()[source]

Return whether the group was defined as a subgroup of a bigger group.

You can access the containing group with ambient().

OUTPUT: boolean

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.is_subgroup()
False
>>> from sage.all import *
>>> G = FreeGroup(Integer(3))
>>> G.is_subgroup()
False
G = FreeGroup(3)
G.is_subgroup()
maximal_normal_subgroups()[source]

Return the maximal proper normal subgroups of self.

This raises an error if \(G/[G, G]\) is infinite, yielding infinitely many maximal normal subgroups.

EXAMPLES:

sage: SL(2,GF(49)).minimal_normal_subgroups()
[Subgroup with 1 generators (
 [6 0]
 [0 6]
 ) of Special Linear Group of degree 2 over Finite Field in z2 of size 7^2]
>>> from sage.all import *
>>> SL(Integer(2),GF(Integer(49))).minimal_normal_subgroups()
[Subgroup with 1 generators (
 [6 0]
 [0 6]
 ) of Special Linear Group of degree 2 over Finite Field in z2 of size 7^2]
SL(2,GF(49)).minimal_normal_subgroups()
minimal_normal_subgroups()[source]

Return the nontrivial minimal normal subgroups of self.

EXAMPLES:

sage: SL(2,GF(49)).minimal_normal_subgroups()
[Subgroup with 1 generators (
 [6 0]
 [0 6]
 ) of Special Linear Group of degree 2 over Finite Field in z2 of size 7^2]
>>> from sage.all import *
>>> SL(Integer(2),GF(Integer(49))).minimal_normal_subgroups()
[Subgroup with 1 generators (
 [6 0]
 [0 6]
 ) of Special Linear Group of degree 2 over Finite Field in z2 of size 7^2]
SL(2,GF(49)).minimal_normal_subgroups()
ngens()[source]

Return the number of generators of self.

OUTPUT: integer

EXAMPLES:

sage: G = FreeGroup(2)
sage: G.ngens()
2
>>> from sage.all import *
>>> G = FreeGroup(Integer(2))
>>> G.ngens()
2
G = FreeGroup(2)
G.ngens()
one()[source]

Return the identity element of self.

EXAMPLES:

sage: G = FreeGroup(3)
sage: G.one()
1
sage: G.one() == G([])
True
sage: G.one().Tietze()
()
>>> from sage.all import *
>>> G = FreeGroup(Integer(3))
>>> G.one()
1
>>> G.one() == G([])
True
>>> G.one().Tietze()
()
G = FreeGroup(3)
G.one()
G.one() == G([])
G.one().Tietze()
subgroup(generators)[source]

Return the subgroup generated.

INPUT:

  • generators – list/tuple/iterable of group elements

OUTPUT: the subgroup generated by generators

EXAMPLES:

sage: F.<a,b> = FreeGroup()
sage: G = F.subgroup([a^2*b]);  G
Group([ a^2*b ])
sage: G.gens()
(a^2*b,)
>>> from sage.all import *
>>> F = FreeGroup(names=('a', 'b',)); (a, b,) = F._first_ngens(2)
>>> G = F.subgroup([a**Integer(2)*b]);  G
Group([ a^2*b ])
>>> G.gens()
(a^2*b,)
F.<a,b> = FreeGroup()
G = F.subgroup([a^2*b]);  G
G.gens()

We check that coercions between the subgroup and its ambient group work:

sage: F.0 * G.0
a^3*b
>>> from sage.all import *
>>> F.gen(0) * G.gen(0)
a^3*b
F.0 * G.0

Checking that Issue #19270 is fixed:

sage: gens = [w.matrix() for w in WeylGroup(['B', 3])]
sage: G = MatrixGroup(gens)
sage: import itertools
sage: diagonals = itertools.product((1,-1), repeat=3)
sage: subgroup_gens = [diagonal_matrix(L) for L in diagonals]
sage: G.subgroup(subgroup_gens)
Subgroup with 8 generators of Matrix group over Rational Field with 48 generators
>>> from sage.all import *
>>> gens = [w.matrix() for w in WeylGroup(['B', Integer(3)])]
>>> G = MatrixGroup(gens)
>>> import itertools
>>> diagonals = itertools.product((Integer(1),-Integer(1)), repeat=Integer(3))
>>> subgroup_gens = [diagonal_matrix(L) for L in diagonals]
>>> G.subgroup(subgroup_gens)
Subgroup with 8 generators of Matrix group over Rational Field with 48 generators
gens = [w.matrix() for w in WeylGroup(['B', 3])]
G = MatrixGroup(gens)
import itertools
diagonals = itertools.product((1,-1), repeat=3)
subgroup_gens = [diagonal_matrix(L) for L in diagonals]
G.subgroup(subgroup_gens)