Interface to several Rubik’s cube solvers.¶
The first is by Michael Reid, and tries to find an optimal solution given the cube’s state, and may take a long time. See http://www.math.ucf.edu/~reid/Rubik/optimal_solver.html
The second is by Eric Dietz, and uses a standard (?) algorithm to solve the cube one level at a time. It is extremely fast, but often returns a far from optimal solution. See https://web.archive.org/web/20121212175710/http://www.wrongway.org/?rubiksource
The third is by Dik Winter and implements Kociemba’s algorithm which finds reasonable solutions relatively quickly, and if it is kept running will eventually find the optimal solution.
AUTHOR:
– Optimal was written by Michael Reid <reid@math.ucf.edu> (2004) – Cubex was written by Eric Dietz <root@wrongway.org> (2003) – Kociemba was written by Dik T. Winter <dik.winter@cwi.nl> (1993) – Initial interface by Robert Bradshaw (2007-08)
- class sage.interfaces.rubik.CubexSolver[source]¶
Bases:
object
- solve(facets)[source]¶
EXAMPLES:
sage: # optional - rubiks sage: from sage.interfaces.rubik import * sage: C = RubiksCube("R U") sage: CubexSolver().solve(C.facets()) 'R U' sage: C = RubiksCube("R U F L B D") sage: sol = CubexSolver().solve(C.facets()); sol "U' L' L' U L U' L U D L L D' L' D L' D' L D L' U' L D' L' U L' B' U' L' U B L D L D' U' L' U L B L B' L' U L U' L' F' L' F L' F L F' L' D' L' D D L D' B L B' L B' L B F' L F F B' L F' B D' D' L D B' B' L' D' B U' U' L' B' D' F' F' L D F'" sage: RubiksCube(sol) == C True sage: C = RubiksCube("R2 F'") sage: CubexSolver().solve(C.facets()) "R' R' F'" sage: C = RubiksCube().scramble() sage: sol = CubexSolver().solve(C.facets()) sage: C == RubiksCube(sol) True
>>> from sage.all import * >>> # optional - rubiks >>> from sage.interfaces.rubik import * >>> C = RubiksCube("R U") >>> CubexSolver().solve(C.facets()) 'R U' >>> C = RubiksCube("R U F L B D") >>> sol = CubexSolver().solve(C.facets()); sol "U' L' L' U L U' L U D L L D' L' D L' D' L D L' U' L D' L' U L' B' U' L' U B L D L D' U' L' U L B L B' L' U L U' L' F' L' F L' F L F' L' D' L' D D L D' B L B' L B' L B F' L F F B' L F' B D' D' L D B' B' L' D' B U' U' L' B' D' F' F' L D F'" >>> RubiksCube(sol) == C True >>> C = RubiksCube("R2 F'") >>> CubexSolver().solve(C.facets()) "R' R' F'" >>> C = RubiksCube().scramble() >>> sol = CubexSolver().solve(C.facets()) >>> C == RubiksCube(sol) True
# optional - rubiks from sage.interfaces.rubik import * C = RubiksCube("R U") CubexSolver().solve(C.facets()) C = RubiksCube("R U F L B D") sol = CubexSolver().solve(C.facets()); sol RubiksCube(sol) == C C = RubiksCube("R2 F'") CubexSolver().solve(C.facets()) C = RubiksCube().scramble() sol = CubexSolver().solve(C.facets()) C == RubiksCube(sol)
- class sage.interfaces.rubik.DikSolver[source]¶
Bases:
object
- facet_map = [1, 2, 3, 4, 0, 5, 6, 7, 8, 9, 10, 11, 17, 18, 19, 25, 26, 27, 33, 34, 35, 12, 0, 13, 20, 0, 21, 28, 0, 29, 36, 0, 37, 14, 15, 16, 22, 23, 24, 30, 31, 32, 38, 39, 40, 41, 42, 43, 44, 0, 45, 46, 47, 48]¶
- rot_map = {'B': 'U', 'D': 'B', 'F': 'D', 'L': 'L', 'R': 'R', 'U': 'F'}¶
- solve(facets, timeout=10, extra_time=2)[source]¶
EXAMPLES:
sage: # optional - rubiks sage: from sage.interfaces.rubik import * sage: C = RubiksCube().move("R U") sage: DikSolver().solve(C.facets()) 'R U' sage: C = RubiksCube().move("R U F L B D") sage: DikSolver().solve(C.facets()) 'R U F L B D' sage: C = RubiksCube().move("R2 F'") sage: DikSolver().solve(C.facets()) "R2 F'"
>>> from sage.all import * >>> # optional - rubiks >>> from sage.interfaces.rubik import * >>> C = RubiksCube().move("R U") >>> DikSolver().solve(C.facets()) 'R U' >>> C = RubiksCube().move("R U F L B D") >>> DikSolver().solve(C.facets()) 'R U F L B D' >>> C = RubiksCube().move("R2 F'") >>> DikSolver().solve(C.facets()) "R2 F'"
# optional - rubiks from sage.interfaces.rubik import * C = RubiksCube().move("R U") DikSolver().solve(C.facets()) C = RubiksCube().move("R U F L B D") DikSolver().solve(C.facets()) C = RubiksCube().move("R2 F'") DikSolver().solve(C.facets())
- class sage.interfaces.rubik.OptimalSolver(verbose=False, wait=True)[source]¶
Bases:
object
Interface to Michael Reid’s optimal Rubik’s Cube solver.
- solve(facets)[source]¶
The initial startup and precomputation are substantial…
Todo
Let it keep searching once it found a solution?
EXAMPLES:
sage: # optional - rubiks sage: from sage.interfaces.rubik import * sage: solver = DikSolver() sage: solver = OptimalSolver() # long time (28s on sage.math, 2012) Initializing tables... Done. sage: C = RubiksCube("R U") sage: solver.solve(C.facets()) 'R U' sage: C = RubiksCube("R U F L B D") sage: solver.solve(C.facets()) 'R U F L B D' sage: C = RubiksCube("R2 D2") sage: solver.solve(C.facets()) 'R2 D2'
>>> from sage.all import * >>> # optional - rubiks >>> from sage.interfaces.rubik import * >>> solver = DikSolver() >>> solver = OptimalSolver() # long time (28s on sage.math, 2012) Initializing tables... Done. >>> C = RubiksCube("R U") >>> solver.solve(C.facets()) 'R U' >>> C = RubiksCube("R U F L B D") >>> solver.solve(C.facets()) 'R U F L B D' >>> C = RubiksCube("R2 D2") >>> solver.solve(C.facets()) 'R2 D2'
# optional - rubiks from sage.interfaces.rubik import * solver = DikSolver() solver = OptimalSolver() # long time (28s on sage.math, 2012) C = RubiksCube("R U") solver.solve(C.facets()) C = RubiksCube("R U F L B D") solver.solve(C.facets()) C = RubiksCube("R2 D2") solver.solve(C.facets())
- class sage.interfaces.rubik.SingNot(s)[source]¶
Bases:
object
This class is to resolve difference between various Singmaster notation.
Case is ignored, and the second and third letters may be swapped.
EXAMPLES:
sage: from sage.interfaces.rubik import SingNot sage: SingNot("acb") == SingNot("ACB") True sage: SingNot("acb") == SingNot("bca") False
>>> from sage.all import * >>> from sage.interfaces.rubik import SingNot >>> SingNot("acb") == SingNot("ACB") True >>> SingNot("acb") == SingNot("bca") False
from sage.interfaces.rubik import SingNot SingNot("acb") == SingNot("ACB") SingNot("acb") == SingNot("bca")