Class for computing sums over zeros of motivic \(L\)-functions¶
All computations are done to double precision.
AUTHORS:
Simon Spicer (2014-10): first version
- sage.lfunctions.zero_sums.LFunctionZeroSum(X, *args, **kwds)[source]¶
Constructor for the LFunctionZeroSum class.
INPUT:
X
– a motivic object; currently only implemented for X = an elliptic curve over the rational numbers
OUTPUT: an LFunctionZeroSum object
EXAMPLES:
sage: E = EllipticCurve("389a") sage: Z = LFunctionZeroSum(E); Z Zero sum estimator for L-function attached to Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
>>> from sage.all import * >>> E = EllipticCurve("389a") >>> Z = LFunctionZeroSum(E); Z Zero sum estimator for L-function attached to Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
E = EllipticCurve("389a") Z = LFunctionZeroSum(E); Z
- class sage.lfunctions.zero_sums.LFunctionZeroSum_EllipticCurve[source]¶
Bases:
LFunctionZeroSum_abstract
Subclass for computing certain sums over zeros of an elliptic curve \(L\)-function without having to determine the zeros themselves.
- analytic_rank_upper_bound(max_Delta=None, adaptive=True, root_number='compute', bad_primes=None, ncpus=None)[source]¶
Return an upper bound for the analytic rank of the \(L\)-function \(L_E(s)\) attached to
self
, conditional on the Generalized Riemann Hypothesis, via computing the zero sum \(\sum_{\gamma} f(\Delta\gamma)\), where \(\gamma\) ranges over the imaginary parts of the zeros of \(L(E,s)\) along the critical strip, \(f(x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^2\), and \(\Delta\) is the tightness parameter whose maximum value is specified by max_Delta.This computation can be run on curves with very large conductor (so long as the conductor is known or quickly computable) when Delta is not too large (see below).
Uses Bober’s rank bounding method as described in [Bob2013].
INPUT:
max_Delta
– (default:None
) if notNone
, a positive real value specifying the maximum Delta value used in the zero sum; larger values of Delta yield better bounds - but runtime is exponential in Delta. If left asNone
, Delta is set to \(\min\left\{\frac{1}{\pi}\left(\log(N+1000)/2-\log(2\pi)-\eta\right), 2.5\right\}\), where \(N\) is the conductor of the curve attached toself
, and \(\eta\) is the Euler-Mascheroni constant \(= 0.5772...\); the crossover point is at conductor ~8.3*10^8. For the former value, empirical results show that for about 99.7% of all curves the returned value is the actual analytic rank.adaptive
– boolean (default:True
)If
True
, the computation is first run with small and then successively larger Delta values up to max_Delta. If at any point the computed bound is 0 (or 1 when root_number is -1 orTrue
), the computation halts and that value is returned; otherwise the minimum of the computed bounds is returned.If
False
, the computation is run a single time with Delta=max_Delta, and the resulting bound returned.
root_number
– (default:'compute'
) string or integer'compute'
– the root number ofself
is computed and used to (possibly) lower the analytic rank estimate by 1'ignore'
– the above step is omitted1
– this value is assumed to be the root number ofself
. This is passable so that rank estimation can be done for curves whose root number has been precomputed.-1
– this value is assumed to be the root number ofself
. This is passable so that rank estimation can be done for curves whose root number has been precomputed.
bad_primes
– (default:None
) if notNone
, a list of the primes of bad reduction for the curve attached toself
. This is passable so that rank estimation can be done for curves of large conductor whose bad primes have been precomputed.ncpus
– (default:None
) if notNone
, a positive integer defining the maximum number of CPUs to be used for the computation. If left asNone
, the maximum available number of CPUs will be used. Note: Multiple processors will only be used for Delta values >= 1.75.
Note
Output will be incorrect if the incorrect root number is specified.
Warning
Zero sum computation time is exponential in the tightness parameter \(\Delta\), roughly doubling for every increase of 0.1 thereof. Using \(\Delta=1\) (and adaptive=False) will yield a runtime of a few milliseconds; \(\Delta=2\) takes a few seconds, and \(\Delta=3\) may take upwards of an hour. Increase beyond this at your own risk!
OUTPUT:
A nonnegative integer greater than or equal to the analytic rank of
self
. If the returned value is 0 or 1 (the latter if parity is notFalse
), then this is the true analytic rank ofself
.Note
If you use set_verbose(1), extra information about the computation will be printed.
See also
LFunctionZeroSum()
EllipticCurve.root_number()
set_verbose()
EXAMPLES:
For most elliptic curves with small conductor the central zero(s) of \(L_E(s)\) are fairly isolated, so small values of \(\Delta\) will yield tight rank estimates.
sage: E = EllipticCurve("11a") sage: E.rank() 0 sage: Z = LFunctionZeroSum(E) sage: Z.analytic_rank_upper_bound(max_Delta=1,ncpus=1) 0 sage: E = EllipticCurve([-39,123]) sage: E.rank() 1 sage: Z = LFunctionZeroSum(E) sage: Z.analytic_rank_upper_bound(max_Delta=1) 1
>>> from sage.all import * >>> E = EllipticCurve("11a") >>> E.rank() 0 >>> Z = LFunctionZeroSum(E) >>> Z.analytic_rank_upper_bound(max_Delta=Integer(1),ncpus=Integer(1)) 0 >>> E = EllipticCurve([-Integer(39),Integer(123)]) >>> E.rank() 1 >>> Z = LFunctionZeroSum(E) >>> Z.analytic_rank_upper_bound(max_Delta=Integer(1)) 1
E = EllipticCurve("11a") E.rank() Z = LFunctionZeroSum(E) Z.analytic_rank_upper_bound(max_Delta=1,ncpus=1) E = EllipticCurve([-39,123]) E.rank() Z = LFunctionZeroSum(E) Z.analytic_rank_upper_bound(max_Delta=1)
This is especially true for elliptic curves with large rank.
sage: for r in range(9): ....: E = elliptic_curves.rank(r)[0] ....: print((r, E.analytic_rank_upper_bound(max_Delta=1, ....: adaptive=False,root_number='ignore'))) (0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8)
>>> from sage.all import * >>> for r in range(Integer(9)): ... E = elliptic_curves.rank(r)[Integer(0)] ... print((r, E.analytic_rank_upper_bound(max_Delta=Integer(1), ... adaptive=False,root_number='ignore'))) (0, 0) (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6) (7, 7) (8, 8)
for r in range(9): E = elliptic_curves.rank(r)[0] print((r, E.analytic_rank_upper_bound(max_Delta=1, adaptive=False,root_number='ignore')))
However, some curves have \(L\)-functions with low-lying zeroes, and for these larger values of \(\Delta\) must be used to get tight estimates.
sage: E = EllipticCurve("974b1") sage: r = E.rank(); r 0 sage: Z = LFunctionZeroSum(E) sage: Z.analytic_rank_upper_bound(max_Delta=1,root_number='ignore') 1 sage: Z.analytic_rank_upper_bound(max_Delta=1.3,root_number='ignore') 0
>>> from sage.all import * >>> E = EllipticCurve("974b1") >>> r = E.rank(); r 0 >>> Z = LFunctionZeroSum(E) >>> Z.analytic_rank_upper_bound(max_Delta=Integer(1),root_number='ignore') 1 >>> Z.analytic_rank_upper_bound(max_Delta=RealNumber('1.3'),root_number='ignore') 0
E = EllipticCurve("974b1") r = E.rank(); r Z = LFunctionZeroSum(E) Z.analytic_rank_upper_bound(max_Delta=1,root_number='ignore') Z.analytic_rank_upper_bound(max_Delta=1.3,root_number='ignore')
Knowing the root number of E allows us to use smaller Delta values to get tight bounds, thus speeding up runtime considerably.
sage: Z.analytic_rank_upper_bound(max_Delta=0.6,root_number='compute') 0
>>> from sage.all import * >>> Z.analytic_rank_upper_bound(max_Delta=RealNumber('0.6'),root_number='compute') 0
Z.analytic_rank_upper_bound(max_Delta=0.6,root_number='compute')
The are a small number of curves which have pathologically low-lying zeroes. For these curves, this method will produce a bound that is strictly larger than the analytic rank, unless very large values of Delta are used. The following curve (“256944c1” in the Cremona tables) is a rank 0 curve with a zero at 0.0256…; the smallest Delta value for which the zero sum is strictly less than 2 is ~2.815.
sage: E = EllipticCurve([0, -1, 0, -7460362000712, -7842981500851012704]) sage: N,r = E.conductor(),E.analytic_rank(); N, r (256944, 0) sage: E.analytic_rank_upper_bound(max_Delta=1,adaptive=False) 2 sage: E.analytic_rank_upper_bound(max_Delta=2,adaptive=False) 2
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(0), -Integer(7460362000712), -Integer(7842981500851012704)]) >>> N,r = E.conductor(),E.analytic_rank(); N, r (256944, 0) >>> E.analytic_rank_upper_bound(max_Delta=Integer(1),adaptive=False) 2 >>> E.analytic_rank_upper_bound(max_Delta=Integer(2),adaptive=False) 2
E = EllipticCurve([0, -1, 0, -7460362000712, -7842981500851012704]) N,r = E.conductor(),E.analytic_rank(); N, r E.analytic_rank_upper_bound(max_Delta=1,adaptive=False) E.analytic_rank_upper_bound(max_Delta=2,adaptive=False)
This method is can be called on curves with large conductor.
sage: E = EllipticCurve([-2934,19238]) sage: Z = LFunctionZeroSum(E) sage: Z.analytic_rank_upper_bound() 1
>>> from sage.all import * >>> E = EllipticCurve([-Integer(2934),Integer(19238)]) >>> Z = LFunctionZeroSum(E) >>> Z.analytic_rank_upper_bound() 1
E = EllipticCurve([-2934,19238]) Z = LFunctionZeroSum(E) Z.analytic_rank_upper_bound()
And it can bound rank on curves with very large conductor, so long as you know beforehand/can easily compute the conductor and primes of bad reduction less than \(e^{2\pi\Delta}\). The example below is of the rank 28 curve discovered by Elkies that is the elliptic curve of (currently) largest known rank.
sage: a4 = -20067762415575526585033208209338542750930230312178956502 sage: a6 = 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 sage: E = EllipticCurve([1,-1,1,a4,a6]) sage: bad_primes = [2,3,5,7,11,13,17,19,48463] sage: N = 3455601108357547341532253864901605231198511505793733138900595189472144724781456635380154149870961231592352897621963802238155192936274322687070 sage: Z = LFunctionZeroSum(E,N) sage: Z.analytic_rank_upper_bound(max_Delta=2.37,adaptive=False, # long time ....: root_number=1,bad_primes=bad_primes,ncpus=2) 32
>>> from sage.all import * >>> a4 = -Integer(20067762415575526585033208209338542750930230312178956502) >>> a6 = Integer(34481611795030556467032985690390720374855944359319180361266008296291939448732243429) >>> E = EllipticCurve([Integer(1),-Integer(1),Integer(1),a4,a6]) >>> bad_primes = [Integer(2),Integer(3),Integer(5),Integer(7),Integer(11),Integer(13),Integer(17),Integer(19),Integer(48463)] >>> N = Integer(3455601108357547341532253864901605231198511505793733138900595189472144724781456635380154149870961231592352897621963802238155192936274322687070) >>> Z = LFunctionZeroSum(E,N) >>> Z.analytic_rank_upper_bound(max_Delta=RealNumber('2.37'),adaptive=False, # long time ... root_number=Integer(1),bad_primes=bad_primes,ncpus=Integer(2)) 32
a4 = -20067762415575526585033208209338542750930230312178956502 a6 = 34481611795030556467032985690390720374855944359319180361266008296291939448732243429 E = EllipticCurve([1,-1,1,a4,a6]) bad_primes = [2,3,5,7,11,13,17,19,48463] N = 3455601108357547341532253864901605231198511505793733138900595189472144724781456635380154149870961231592352897621963802238155192936274322687070 Z = LFunctionZeroSum(E,N) Z.analytic_rank_upper_bound(max_Delta=2.37,adaptive=False, # long time root_number=1,bad_primes=bad_primes,ncpus=2)
- cn(n)[source]¶
Return the \(n\)-th Dirichlet coefficient of the logarithmic derivative of the \(L\)-function attached to
self
, shifted so that the critical line lies on the imaginary axis.The returned value is zero if \(n\) is not a perfect prime power; when \(n=p^e\) for \(p\) a prime of bad reduction it is \(-a_p^e log(p)/p^e\), where \(a_p\) is \(+1, -1\) or \(0\) according to the reduction type of \(p\); and when \(n=p^e\) for a prime \(p\) of good reduction, the value is \(-(\alpha_p^e + \beta_p^e) \log(p)/p^e\), where \(\alpha_p\) and \(\beta_p\) are the two complex roots of the characteristic equation of Frobenius at \(p\) on \(E\).
INPUT:
n
– nonnegative integer
OUTPUT:
A real number which (by Hasse’s Theorem) is at most \(2\frac{log(n)}{\sqrt{n}}\) in magnitude.
EXAMPLES:
sage: E = EllipticCurve("11a") sage: Z = LFunctionZeroSum(E) sage: for n in range(12): print((n, Z.cn(n))) # tol 1.0e-13 (0, 0.0) (1, 0.0) (2, 0.6931471805599453) (3, 0.3662040962227033) (4, 0.0) (5, -0.32188758248682003) (6, 0.0) (7, 0.555974328301518) (8, -0.34657359027997264) (9, 0.6103401603711721) (10, 0.0) (11, -0.21799047934530644)
>>> from sage.all import * >>> E = EllipticCurve("11a") >>> Z = LFunctionZeroSum(E) >>> for n in range(Integer(12)): print((n, Z.cn(n))) # tol 1.0e-13 (0, 0.0) (1, 0.0) (2, 0.6931471805599453) (3, 0.3662040962227033) (4, 0.0) (5, -0.32188758248682003) (6, 0.0) (7, 0.555974328301518) (8, -0.34657359027997264) (9, 0.6103401603711721) (10, 0.0) (11, -0.21799047934530644)
E = EllipticCurve("11a") Z = LFunctionZeroSum(E) for n in range(12): print((n, Z.cn(n))) # tol 1.0e-13
- elliptic_curve()[source]¶
Return the elliptic curve associated with
self
.EXAMPLES:
sage: E = EllipticCurve([23,100]) sage: Z = LFunctionZeroSum(E) sage: Z.elliptic_curve() Elliptic Curve defined by y^2 = x^3 + 23*x + 100 over Rational Field
>>> from sage.all import * >>> E = EllipticCurve([Integer(23),Integer(100)]) >>> Z = LFunctionZeroSum(E) >>> Z.elliptic_curve() Elliptic Curve defined by y^2 = x^3 + 23*x + 100 over Rational Field
E = EllipticCurve([23,100]) Z = LFunctionZeroSum(E) Z.elliptic_curve()
- lseries()[source]¶
Return the \(L\)-series associated with
self
.EXAMPLES:
sage: E = EllipticCurve([23,100]) sage: Z = LFunctionZeroSum(E) sage: Z.lseries() Complex L-series of the Elliptic Curve defined by y^2 = x^3 + 23*x + 100 over Rational Field
>>> from sage.all import * >>> E = EllipticCurve([Integer(23),Integer(100)]) >>> Z = LFunctionZeroSum(E) >>> Z.lseries() Complex L-series of the Elliptic Curve defined by y^2 = x^3 + 23*x + 100 over Rational Field
E = EllipticCurve([23,100]) Z = LFunctionZeroSum(E) Z.lseries()
- class sage.lfunctions.zero_sums.LFunctionZeroSum_abstract[source]¶
Bases:
SageObject
Abstract class for computing certain sums over zeros of a motivic \(L\)-function without having to determine the zeros themselves.
- C0(include_euler_gamma=True)[source]¶
Return the constant term of the logarithmic derivative of the completed \(L\)-function attached to
self
.This is equal to \(-\eta + \log(N)/2 - \log(2\pi)\), where \(\eta\) is the Euler-Mascheroni constant \(= 0.5772...\) and \(N\) is the level of the form attached to
self
.INPUT:
include_euler_gamma
– boolean (default:True
); if set toFalse
, return the constant \(\log(N)/2 - \log(2\pi)\), i.e., do not subtract the Euler-Mascheroni constant
EXAMPLES:
sage: E = EllipticCurve("389a") sage: Z = LFunctionZeroSum(E) sage: Z.C0() # tol 1.0e-13 0.5666969404983447 sage: Z.C0(include_euler_gamma=False) # tol 1.0e-13 1.1439126053998776
>>> from sage.all import * >>> E = EllipticCurve("389a") >>> Z = LFunctionZeroSum(E) >>> Z.C0() # tol 1.0e-13 0.5666969404983447 >>> Z.C0(include_euler_gamma=False) # tol 1.0e-13 1.1439126053998776
E = EllipticCurve("389a") Z = LFunctionZeroSum(E) Z.C0() # tol 1.0e-13 Z.C0(include_euler_gamma=False) # tol 1.0e-13
- cnlist(n, python_floats=False)[source]¶
Return a list of Dirichlet coefficient of the logarithmic derivative of the \(L\)-function attached to
self
, shifted so that the critical line lies on the imaginary axis, up to and including \(n\).The \(i\)-th element of the returned list is
a[i]
.INPUT:
n
– nonnegative integerpython_floats
– boolean (default:False
); ifTrue
return a list of Python floats instead of Sage Real Double Field elements
OUTPUT: list of real numbers
See also
Todo
Speed this up; make more efficient
EXAMPLES:
sage: E = EllipticCurve("11a") sage: Z = LFunctionZeroSum(E) sage: cnlist = Z.cnlist(11) sage: for n in range(12): print((n, cnlist[n])) # tol 1.0e-13 (0, 0.0) (1, 0.0) (2, 0.6931471805599453) (3, 0.3662040962227033) (4, 0.0) (5, -0.32188758248682003) (6, 0.0) (7, 0.555974328301518) (8, -0.34657359027997264) (9, 0.6103401603711721) (10, 0.0) (11, -0.21799047934530644)
>>> from sage.all import * >>> E = EllipticCurve("11a") >>> Z = LFunctionZeroSum(E) >>> cnlist = Z.cnlist(Integer(11)) >>> for n in range(Integer(12)): print((n, cnlist[n])) # tol 1.0e-13 (0, 0.0) (1, 0.0) (2, 0.6931471805599453) (3, 0.3662040962227033) (4, 0.0) (5, -0.32188758248682003) (6, 0.0) (7, 0.555974328301518) (8, -0.34657359027997264) (9, 0.6103401603711721) (10, 0.0) (11, -0.21799047934530644)
E = EllipticCurve("11a") Z = LFunctionZeroSum(E) cnlist = Z.cnlist(11) for n in range(12): print((n, cnlist[n])) # tol 1.0e-13
- completed_logarithmic_derivative(s, num_terms=10000)[source]¶
Compute the value of the completed logarithmic derivative \(\frac{\Lambda^{\prime}}{\Lambda}\) at the point s to low precision, where \(\Lambda = N^{s/2}(2\pi)^s \Gamma(s) L(s)\) and \(L\) is the \(L\)-function attached to
self
.Warning
This is computed naively by evaluating the Dirichlet series for \(\frac{L^{\prime}}{L}\); the convergence thereof is controlled by the distance of s from the critical strip \(0.5<=\Re(s)<=1.5\). You may use this method to attempt to compute values inside the critical strip; however, results are then not guaranteed to be correct to any number of digits.
INPUT:
s
– real or complex valuenum_terms
– integer (default: 10000); the maximum number of terms summed in the Dirichlet series
OUTPUT:
A tuple (z,err), where z is the computed value, and err is an upper bound on the truncation error in this value introduced by truncating the Dirichlet sum.
Note
For the default term cap of 10000, a value accurate to all 53 bits of a double precision floating point number is only guaranteed when \(|\Re(s-1)|>4.58\), although in practice inputs closer to the critical strip will still yield computed values close to the true value.
See also
logarithmic_derivative()
EXAMPLES:
sage: E = EllipticCurve([23,100]) sage: Z = LFunctionZeroSum(E) sage: Z.completed_logarithmic_derivative(3) # tol 1.0e-13 (6.64372066048195, 6.584671359095225e-06)
>>> from sage.all import * >>> E = EllipticCurve([Integer(23),Integer(100)]) >>> Z = LFunctionZeroSum(E) >>> Z.completed_logarithmic_derivative(Integer(3)) # tol 1.0e-13 (6.64372066048195, 6.584671359095225e-06)
E = EllipticCurve([23,100]) Z = LFunctionZeroSum(E) Z.completed_logarithmic_derivative(3) # tol 1.0e-13
Complex values are handled. The function is odd about s=1, so the value at 2-s should be minus the value at s.
sage: Z.completed_logarithmic_derivative(complex(-2.2,1)) # tol 1.0e-13 (-6.898080633125154 + 0.22557015394248361*I, 5.623853049808912e-11) sage: Z.completed_logarithmic_derivative(complex(4.2,-1)) # tol 1.0e-13 (6.898080633125154 - 0.22557015394248361*I, 5.623853049808912e-11)
>>> from sage.all import * >>> Z.completed_logarithmic_derivative(complex(-RealNumber('2.2'),Integer(1))) # tol 1.0e-13 (-6.898080633125154 + 0.22557015394248361*I, 5.623853049808912e-11) >>> Z.completed_logarithmic_derivative(complex(RealNumber('4.2'),-Integer(1))) # tol 1.0e-13 (6.898080633125154 - 0.22557015394248361*I, 5.623853049808912e-11)
Z.completed_logarithmic_derivative(complex(-2.2,1)) # tol 1.0e-13 Z.completed_logarithmic_derivative(complex(4.2,-1)) # tol 1.0e-13
- digamma(s, include_constant_term=True)[source]¶
Return the digamma function \(\digamma(s)\) on the complex input s.
This is given by \(\digamma(s) = -\eta + \sum_{k=1}^{\infty} \frac{s-1}{k(k+s-1)}\), where \(\eta\) is the Euler-Mascheroni constant \(=0.5772156649\ldots\).
This function is needed in the computing the logarithmic derivative of the \(L\)-function attached to
self
.INPUT:
s
– complex numberinclude_constant_term
– boolean (default:True
); if set toFalse
, only the value of the sum over \(k\) is returned without subtracting the Euler-Mascheroni constant, i.e., the returned value is equal to \(\sum_{k=1}^{\infty} \frac{s-1}{k(k+s-1)}\)
OUTPUT:
A real double precision number if the input is real and not a negative integer; Infinity if the input is a negative integer, and a complex number otherwise.
EXAMPLES:
sage: Z = LFunctionZeroSum(EllipticCurve("37a")) sage: Z.digamma(3.2) # tol 1.0e-13 0.9988388912865993 sage: Z.digamma(3.2,include_constant_term=False) # tol 1.0e-13 1.576054556188132 sage: Z.digamma(1+I) # tol 1.0e-13 0.09465032062247625 + 1.076674047468581*I sage: Z.digamma(-2) +Infinity
>>> from sage.all import * >>> Z = LFunctionZeroSum(EllipticCurve("37a")) >>> Z.digamma(RealNumber('3.2')) # tol 1.0e-13 0.9988388912865993 >>> Z.digamma(RealNumber('3.2'),include_constant_term=False) # tol 1.0e-13 1.576054556188132 >>> Z.digamma(Integer(1)+I) # tol 1.0e-13 0.09465032062247625 + 1.076674047468581*I >>> Z.digamma(-Integer(2)) +Infinity
Z = LFunctionZeroSum(EllipticCurve("37a")) Z.digamma(3.2) # tol 1.0e-13 Z.digamma(3.2,include_constant_term=False) # tol 1.0e-13 Z.digamma(1+I) # tol 1.0e-13 Z.digamma(-2)
Evaluating the sum without the constant term at the positive integers n returns the (n-1)th harmonic number.
sage: Z.digamma(3,include_constant_term=False) 1.5 sage: Z.digamma(6,include_constant_term=False) 2.283333333333333
>>> from sage.all import * >>> Z.digamma(Integer(3),include_constant_term=False) 1.5 >>> Z.digamma(Integer(6),include_constant_term=False) 2.283333333333333
Z.digamma(3,include_constant_term=False) Z.digamma(6,include_constant_term=False)
- level()[source]¶
Return the level of the form attached to
self
.If
self
was constructed from an elliptic curve, then this is equal to the conductor of \(E\).EXAMPLES:
sage: E = EllipticCurve("389a") sage: Z = LFunctionZeroSum(E) sage: Z.level() 389
>>> from sage.all import * >>> E = EllipticCurve("389a") >>> Z = LFunctionZeroSum(E) >>> Z.level() 389
E = EllipticCurve("389a") Z = LFunctionZeroSum(E) Z.level()
- logarithmic_derivative(s, num_terms=10000, as_interval=False)[source]¶
Compute the value of the logarithmic derivative \(\frac{L^{\prime}}{L}\) at the point s to low precision, where \(L\) is the \(L\)-function attached to
self
.Warning
The value is computed naively by evaluating the Dirichlet series for \(\frac{L^{\prime}}{L}\); convergence is controlled by the distance of s from the critical strip \(0.5<=\Re(s)<=1.5\). You may use this method to attempt to compute values inside the critical strip; however, results are then not guaranteed to be correct to any number of digits.
INPUT:
s
– real or complex valuenum_terms
– integer (default: 10000); the maximum number of terms summed in the Dirichlet series
OUTPUT:
A tuple (z,err), where z is the computed value, and err is an upper bound on the truncation error in this value introduced by truncating the Dirichlet sum.
Note
For the default term cap of 10000, a value accurate to all 53 bits of a double precision floating point number is only guaranteed when \(|\Re(s-1)|>4.58\), although in practice inputs closer to the critical strip will still yield computed values close to the true value.
EXAMPLES:
sage: E = EllipticCurve([23,100]) sage: Z = LFunctionZeroSum(E) sage: Z.logarithmic_derivative(10) # tol 1.0e-13 (5.648066742632698e-05, 1.0974102859764345e-34) sage: Z.logarithmic_derivative(2.2) # tol 1.0e-13 (0.5751257063594758, 0.024087912696974387)
>>> from sage.all import * >>> E = EllipticCurve([Integer(23),Integer(100)]) >>> Z = LFunctionZeroSum(E) >>> Z.logarithmic_derivative(Integer(10)) # tol 1.0e-13 (5.648066742632698e-05, 1.0974102859764345e-34) >>> Z.logarithmic_derivative(RealNumber('2.2')) # tol 1.0e-13 (0.5751257063594758, 0.024087912696974387)
E = EllipticCurve([23,100]) Z = LFunctionZeroSum(E) Z.logarithmic_derivative(10) # tol 1.0e-13 Z.logarithmic_derivative(2.2) # tol 1.0e-13
Increasing the number of terms should see the truncation error decrease.
sage: Z.logarithmic_derivative(2.2,num_terms=50000) # long time # rel tol 1.0e-14 (0.5751579645060139, 0.008988775519160675)
>>> from sage.all import * >>> Z.logarithmic_derivative(RealNumber('2.2'),num_terms=Integer(50000)) # long time # rel tol 1.0e-14 (0.5751579645060139, 0.008988775519160675)
Z.logarithmic_derivative(2.2,num_terms=50000) # long time # rel tol 1.0e-14
Attempting to compute values inside the critical strip gives infinite error.
sage: Z.logarithmic_derivative(1.3) # tol 1.0e-13 (5.442994413920786, +Infinity)
>>> from sage.all import * >>> Z.logarithmic_derivative(RealNumber('1.3')) # tol 1.0e-13 (5.442994413920786, +Infinity)
Z.logarithmic_derivative(1.3) # tol 1.0e-13
Complex inputs and inputs to the left of the critical strip are allowed.
sage: Z.logarithmic_derivative(complex(3,-1)) # tol 1.0e-13 (0.04764548578052381 + 0.16513832809989326*I, 6.584671359095225e-06) sage: Z.logarithmic_derivative(complex(-3,-1.1)) # tol 1.0e-13 (-13.908452173241546 + 2.591443099074753*I, 2.7131584736258447e-14)
>>> from sage.all import * >>> Z.logarithmic_derivative(complex(Integer(3),-Integer(1))) # tol 1.0e-13 (0.04764548578052381 + 0.16513832809989326*I, 6.584671359095225e-06) >>> Z.logarithmic_derivative(complex(-Integer(3),-RealNumber('1.1'))) # tol 1.0e-13 (-13.908452173241546 + 2.591443099074753*I, 2.7131584736258447e-14)
Z.logarithmic_derivative(complex(3,-1)) # tol 1.0e-13 Z.logarithmic_derivative(complex(-3,-1.1)) # tol 1.0e-13
The logarithmic derivative has poles at the negative integers.
sage: Z.logarithmic_derivative(-3) # tol 1.0e-13 (-Infinity, 2.7131584736258447e-14)
>>> from sage.all import * >>> Z.logarithmic_derivative(-Integer(3)) # tol 1.0e-13 (-Infinity, 2.7131584736258447e-14)
Z.logarithmic_derivative(-3) # tol 1.0e-13
- ncpus(n=None)[source]¶
Set or return the number of CPUs to be used in parallel computations.
If called with no input, the number of CPUs currently set is returned; else this value is set to \(n\). If \(n\) is 0 then the number of CPUs is set to the max available.
INPUT:
n
– (default:None
) if notNone
, a nonnegative integer
OUTPUT: if \(n\) is not
None
, returns a positive integerEXAMPLES:
sage: Z = LFunctionZeroSum(EllipticCurve("389a")) sage: Z.ncpus() 1 sage: Z.ncpus(2) sage: Z.ncpus() 2
>>> from sage.all import * >>> Z = LFunctionZeroSum(EllipticCurve("389a")) >>> Z.ncpus() 1 >>> Z.ncpus(Integer(2)) >>> Z.ncpus() 2
Z = LFunctionZeroSum(EllipticCurve("389a")) Z.ncpus() Z.ncpus(2) Z.ncpus()
The following output will depend on the system that Sage is running on.
sage: Z.ncpus(0) sage: Z.ncpus() # random 4
>>> from sage.all import * >>> Z.ncpus(Integer(0)) >>> Z.ncpus() # random 4
Z.ncpus(0) Z.ncpus() # random
- weight()[source]¶
Return the weight of the form attached to
self
.If
self
was constructed from an elliptic curve, then this is 2.EXAMPLES:
sage: E = EllipticCurve("389a") sage: Z = LFunctionZeroSum(E) sage: Z.weight() 2
>>> from sage.all import * >>> E = EllipticCurve("389a") >>> Z = LFunctionZeroSum(E) >>> Z.weight() 2
E = EllipticCurve("389a") Z = LFunctionZeroSum(E) Z.weight()
- zerosum(Delta=1, tau=0, function='sincsquared_fast', ncpus=None)[source]¶
Bound from above the analytic rank of the form attached to
self
.This bound is obtained by computing \(\sum_{\gamma} f(\Delta(\gamma-\tau))\), where \(\gamma\) ranges over the imaginary parts of the zeros of \(L_E(s)\) along the critical strip, and \(f(x)\) is an appropriate even continuous \(L_2\) function such that \(f(0)=1\).
If \(\tau=0\), then as \(\Delta\) increases this sum converges from above to the analytic rank of the \(L\)-function, as \(f(0) = 1\) is counted with multiplicity \(r\), and the other terms all go to 0 uniformly.
INPUT:
Delta
– positive real number (default: 1) parameter denoting the tightness of the zero sumtau
– real parameter (default: 0) denoting the offset of the sum to be computed. When \(\tau=0\) the sum will converge to the analytic rank of the \(L\)-function as \(\Delta\) is increased. If \(\tau\) is the value of the imaginary part of a noncentral zero, the limit will be 1 (assuming the zero is simple); otherwise, the limit will be 0. Currently only implemented for the sincsquared and cauchy functions; otherwise ignored.function
– string (default:'sincsquared_fast'
); the function \(f(x)\) as described above. Currently implemented options for \(f\) aresincsquared
– \(f(x) = \left(\frac{\sin(\pi x)}{\pi x}\right)^2\)gaussian
– \(f(x) = e^{-x^2}\)sincsquared_fast
– same as “sincsquared”, but implementation optimized for elliptic curve \(L\)-functions, and tau must be 0. self must be attached to an elliptic curve over \(\QQ\) given by its global minimal model, otherwise the returned result will be incorrect.sincsquared_parallel
– same as “sincsquared_fast”, but optimized for parallel computation with large (>2.0) \(\Delta\) values.self
must be attached to an elliptic curve over \(\QQ\) given by its global minimal model, otherwise the returned result will be incorrect.cauchy
– \(f(x) = \frac{1}{1+x^2}\); this is only computable to low precision, and only when \(\Delta < 2\)
ncpus
– (default:None
) if notNone
, a positive integer defining the number of CPUs to be used for the computation. If left asNone
, the maximum available number of CPUs will be used. Only implemented for algorithm=”sincsquared_parallel”; ignored otherwise.
Warning
Computation time is exponential in \(\Delta\), roughly doubling for every increase of 0.1 thereof. Using \(\Delta=1\) will yield a computation time of a few milliseconds; \(\Delta=2\) takes a few seconds, and \(\Delta=3\) takes upwards of an hour. Increase at your own risk beyond this!
OUTPUT:
A positive real number that bounds from above the number of zeros with imaginary part equal to \(\tau\). When \(\tau=0\) this is an upper bound for the \(L\)-function’s analytic rank.
See also
analytic_rank_bound()
for more documentation and examples on calling this method on elliptic curve \(L\)-functions.EXAMPLES:
sage: E = EllipticCurve("389a"); E.rank() 2 sage: Z = LFunctionZeroSum(E) sage: E.lseries().zeros(3) [0.000000000, 0.000000000, 2.87609907] sage: Z.zerosum(Delta=1,function='sincsquared_fast') # tol 1.0e-13 2.037500084595065 sage: Z.zerosum(Delta=1,function='sincsquared_parallel') # tol 1.0e-11 2.037500084595065 sage: Z.zerosum(Delta=1,function='sincsquared') # tol 1.0e-13 2.0375000845950644 sage: Z.zerosum(Delta=1,tau=2.876,function='sincsquared') # tol 1.0e-13 1.075551295651154 sage: Z.zerosum(Delta=1,tau=1.2,function='sincsquared') # tol 1.0e-13 0.10831555377490683 sage: Z.zerosum(Delta=1,function='gaussian') # tol 1.0e-13 2.056890425029435
>>> from sage.all import * >>> E = EllipticCurve("389a"); E.rank() 2 >>> Z = LFunctionZeroSum(E) >>> E.lseries().zeros(Integer(3)) [0.000000000, 0.000000000, 2.87609907] >>> Z.zerosum(Delta=Integer(1),function='sincsquared_fast') # tol 1.0e-13 2.037500084595065 >>> Z.zerosum(Delta=Integer(1),function='sincsquared_parallel') # tol 1.0e-11 2.037500084595065 >>> Z.zerosum(Delta=Integer(1),function='sincsquared') # tol 1.0e-13 2.0375000845950644 >>> Z.zerosum(Delta=Integer(1),tau=RealNumber('2.876'),function='sincsquared') # tol 1.0e-13 1.075551295651154 >>> Z.zerosum(Delta=Integer(1),tau=RealNumber('1.2'),function='sincsquared') # tol 1.0e-13 0.10831555377490683 >>> Z.zerosum(Delta=Integer(1),function='gaussian') # tol 1.0e-13 2.056890425029435
E = EllipticCurve("389a"); E.rank() Z = LFunctionZeroSum(E) E.lseries().zeros(3) Z.zerosum(Delta=1,function='sincsquared_fast') # tol 1.0e-13 Z.zerosum(Delta=1,function='sincsquared_parallel') # tol 1.0e-11 Z.zerosum(Delta=1,function='sincsquared') # tol 1.0e-13 Z.zerosum(Delta=1,tau=2.876,function='sincsquared') # tol 1.0e-13 Z.zerosum(Delta=1,tau=1.2,function='sincsquared') # tol 1.0e-13 Z.zerosum(Delta=1,function='gaussian') # tol 1.0e-13