Boolean Formulas¶
Formulas consist of the operators &
, |
, ~
, ^
, ->
, <->
,
corresponding to and
, or
, not
, xor
, if...then
, if and
only if
. Operators can be applied to variables that consist of a leading
letter and trailing underscores and alphanumerics. Parentheses may be used
to explicitly show order of operation.
EXAMPLES:
Create boolean formulas and combine them with
ifthen()
method:
sage: import sage.logic.propcalc as propcalc
sage: f = propcalc.formula("a&((b|c)^a->c)<->b")
sage: g = propcalc.formula("boolean<->algebra")
sage: (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
>>> from sage.all import *
>>> import sage.logic.propcalc as propcalc
>>> f = propcalc.formula("a&((b|c)^a->c)<->b")
>>> g = propcalc.formula("boolean<->algebra")
>>> (f&~g).ifthen(f)
((a&((b|c)^a->c)<->b)&(~(boolean<->algebra)))->(a&((b|c)^a->c)<->b)
import sage.logic.propcalc as propcalc f = propcalc.formula("a&((b|c)^a->c)<->b") g = propcalc.formula("boolean<->algebra") (f&~g).ifthen(f)
We can create a truth table from a formula:
sage: f.truthtable()
a b c value
False False False True
False False True True
False True False False
False True True False
True False False True
True False True False
True True False True
True True True True
sage: f.truthtable(end=3)
a b c value
False False False True
False False True True
False True False False
sage: f.truthtable(start=4)
a b c value
True False False True
True False True False
True True False True
True True True True
sage: propcalc.formula("a").truthtable()
a value
False False
True True
>>> from sage.all import *
>>> f.truthtable()
a b c value
False False False True
False False True True
False True False False
False True True False
True False False True
True False True False
True True False True
True True True True
>>> f.truthtable(end=Integer(3))
a b c value
False False False True
False False True True
False True False False
>>> f.truthtable(start=Integer(4))
a b c value
True False False True
True False True False
True True False True
True True True True
>>> propcalc.formula("a").truthtable()
a value
False False
True True
f.truthtable() f.truthtable(end=3) f.truthtable(start=4) propcalc.formula("a").truthtable()
Now we can evaluate the formula for a given set of inputs:
sage: f.evaluate({'a':True, 'b':False, 'c':True})
False
sage: f.evaluate({'a':False, 'b':False, 'c':True})
True
>>> from sage.all import *
>>> f.evaluate({'a':True, 'b':False, 'c':True})
False
>>> f.evaluate({'a':False, 'b':False, 'c':True})
True
f.evaluate({'a':True, 'b':False, 'c':True}) f.evaluate({'a':False, 'b':False, 'c':True})
And we can convert a boolean formula to conjunctive normal form:
sage: f.convert_cnf_table()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
sage: f.convert_cnf_recur()
sage: f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
>>> from sage.all import *
>>> f.convert_cnf_table()
>>> f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
>>> f.convert_cnf_recur()
>>> f
(a|~b|c)&(a|~b|~c)&(~a|b|~c)
f.convert_cnf_table() f f.convert_cnf_recur() f
Or determine if an expression is satisfiable, a contradiction, or a tautology:
sage: f = propcalc.formula("a|b")
sage: f.is_satisfiable()
True
sage: f = f & ~f
sage: f.is_satisfiable()
False
sage: f.is_contradiction()
True
sage: f = f | ~f
sage: f.is_tautology()
True
>>> from sage.all import *
>>> f = propcalc.formula("a|b")
>>> f.is_satisfiable()
True
>>> f = f & ~f
>>> f.is_satisfiable()
False
>>> f.is_contradiction()
True
>>> f = f | ~f
>>> f.is_tautology()
True
f = propcalc.formula("a|b") f.is_satisfiable() f = f & ~f f.is_satisfiable() f.is_contradiction() f = f | ~f f.is_tautology()
The equality operator compares semantic equivalence:
sage: f = propcalc.formula("(a|b)&c")
sage: g = propcalc.formula("c&(b|a)")
sage: f == g
True
sage: g = propcalc.formula("a|b&c")
sage: f == g
False
>>> from sage.all import *
>>> f = propcalc.formula("(a|b)&c")
>>> g = propcalc.formula("c&(b|a)")
>>> f == g
True
>>> g = propcalc.formula("a|b&c")
>>> f == g
False
f = propcalc.formula("(a|b)&c") g = propcalc.formula("c&(b|a)") f == g g = propcalc.formula("a|b&c") f == g
It is an error to create a formula with bad syntax:
sage: propcalc.formula("")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b~(c|(d)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
sage: propcalc.formula("a&b a")
Traceback (most recent call last):
...
SyntaxError: malformed statement
>>> from sage.all import *
>>> propcalc.formula("")
Traceback (most recent call last):
...
SyntaxError: malformed statement
>>> propcalc.formula("a&b~(c|(d)")
Traceback (most recent call last):
...
SyntaxError: malformed statement
>>> propcalc.formula("a&&b")
Traceback (most recent call last):
...
SyntaxError: malformed statement
>>> propcalc.formula("a&b a")
Traceback (most recent call last):
...
SyntaxError: malformed statement
propcalc.formula("") propcalc.formula("a&b~(c|(d)") propcalc.formula("a&&b") propcalc.formula("a&b a")
It is also an error to not abide by the naming conventions:
sage: propcalc.formula("~a&9b")
Traceback (most recent call last):
...
NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores
>>> from sage.all import *
>>> propcalc.formula("~a&9b")
Traceback (most recent call last):
...
NameError: invalid variable name 9b: identifiers must begin with a letter and contain only alphanumerics and underscores
propcalc.formula("~a&9b")
AUTHORS:
Chris Gorecki (2006): initial version
Paul Scurek (2013-08-03): added polish_notation, full_tree, updated docstring formatting
Paul Scurek (2013-08-08): added
implies()
- class sage.logic.boolformula.BooleanFormula(exp, tree, vo)[source]¶
Bases:
object
Boolean formulas.
INPUT:
self
– calling objectexp
– string; this contains the boolean expression to be manipulatedtree
– list; this contains the parse tree of the expressionvo
– list; this contains the variables in the expression, in the order that they appear; each variable only occurs once in the list
- add_statement(other, op)[source]¶
Combine two formulas with the given operator.
INPUT:
other
– instance ofBooleanFormula
; this is the formula on the right of the operatorop
– string; this is the operator used to combine the two formulas
OUTPUT: the result as an instance of
BooleanFormula
EXAMPLES:
This example shows how to create a new formula from two others:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.add_statement(f, '|') (a&b)|(c^d) sage: s.add_statement(f, '->') (a&b)->(c^d)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a&b") >>> f = propcalc.formula("c^d") >>> s.add_statement(f, '|') (a&b)|(c^d) >>> s.add_statement(f, '->') (a&b)->(c^d)
import sage.logic.propcalc as propcalc s = propcalc.formula("a&b") f = propcalc.formula("c^d") s.add_statement(f, '|') s.add_statement(f, '->')
- convert_cnf()[source]¶
Convert boolean formula to conjunctive normal form.
OUTPUT: an instance of
BooleanFormula
in conjunctive normal formEXAMPLES:
This example illustrates how to convert a formula to cnf:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a ^ b <-> c") sage: s.convert_cnf() sage: s (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a ^ b <-> c") >>> s.convert_cnf() >>> s (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c)
import sage.logic.propcalc as propcalc s = propcalc.formula("a ^ b <-> c") s.convert_cnf() s
We now show that
convert_cnf()
andconvert_cnf_table()
are aliases:sage: t = propcalc.formula("a ^ b <-> c") sage: t.convert_cnf_table(); t (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) sage: t == s True
>>> from sage.all import * >>> t = propcalc.formula("a ^ b <-> c") >>> t.convert_cnf_table(); t (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) >>> t == s True
t = propcalc.formula("a ^ b <-> c") t.convert_cnf_table(); t t == s
Note
This method creates the cnf parse tree by examining the logic table of the formula. Creating the table requires \(O(2^n)\) time where \(n\) is the number of variables in the formula.
- convert_cnf_recur()[source]¶
Convert boolean formula to conjunctive normal form.
OUTPUT: an instance of
BooleanFormula
in conjunctive normal formEXAMPLES:
This example hows how to convert a formula to conjunctive normal form:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a^b<->c") sage: s.convert_cnf_recur() sage: s (~a|a|c)&(~b|a|c)&(~a|b|c)&(~b|b|c)&(~c|a|b)&(~c|~a|~b)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a^b<->c") >>> s.convert_cnf_recur() >>> s (~a|a|c)&(~b|a|c)&(~a|b|c)&(~b|b|c)&(~c|a|b)&(~c|~a|~b)
import sage.logic.propcalc as propcalc s = propcalc.formula("a^b<->c") s.convert_cnf_recur() s
Note
This function works by applying a set of rules that are guaranteed to convert the formula. Worst case the converted expression has an \(O(2^n)\) increase in size (and time as well), but if the formula is already in CNF (or close to) it is only \(O(n)\).
This function can require an exponential blow up in space from the original expression. This in turn can require large amounts of time. Unless a formula is already in (or close to) being in cnf
convert_cnf()
is typically preferred, but results can vary.
- convert_cnf_table()[source]¶
Convert boolean formula to conjunctive normal form.
OUTPUT: an instance of
BooleanFormula
in conjunctive normal formEXAMPLES:
This example illustrates how to convert a formula to cnf:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a ^ b <-> c") sage: s.convert_cnf() sage: s (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a ^ b <-> c") >>> s.convert_cnf() >>> s (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c)
import sage.logic.propcalc as propcalc s = propcalc.formula("a ^ b <-> c") s.convert_cnf() s
We now show that
convert_cnf()
andconvert_cnf_table()
are aliases:sage: t = propcalc.formula("a ^ b <-> c") sage: t.convert_cnf_table(); t (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) sage: t == s True
>>> from sage.all import * >>> t = propcalc.formula("a ^ b <-> c") >>> t.convert_cnf_table(); t (a|b|~c)&(a|~b|c)&(~a|b|c)&(~a|~b|~c) >>> t == s True
t = propcalc.formula("a ^ b <-> c") t.convert_cnf_table(); t t == s
Note
This method creates the cnf parse tree by examining the logic table of the formula. Creating the table requires \(O(2^n)\) time where \(n\) is the number of variables in the formula.
- convert_expression()[source]¶
Convert the string representation of a formula to conjunctive normal form.
EXAMPLES:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a^b<->c") sage: s.convert_expression(); s a^b<->c
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a^b<->c") >>> s.convert_expression(); s a^b<->c
import sage.logic.propcalc as propcalc s = propcalc.formula("a^b<->c") s.convert_expression(); s
- convert_opt(tree)[source]¶
Convert a parse tree to the tuple form used by
bool_opt()
.INPUT:
tree
– list; this is a branch of a parse tree and can only contain the ‘&’, ‘|’ and ‘~’ operators along with variables
OUTPUT: a 3-tuple
EXAMPLES:
This example illustrates the conversion of a formula into its corresponding tuple:
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("a&(b|~c)") sage: tree = ['&', 'a', ['|', 'b', ['~', 'c', None]]] sage: logicparser.apply_func(tree, s.convert_opt) ('and', ('prop', 'a'), ('or', ('prop', 'b'), ('not', ('prop', 'c'))))
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser >>> s = propcalc.formula("a&(b|~c)") >>> tree = ['&', 'a', ['|', 'b', ['~', 'c', None]]] >>> logicparser.apply_func(tree, s.convert_opt) ('and', ('prop', 'a'), ('or', ('prop', 'b'), ('not', ('prop', 'c'))))
import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser s = propcalc.formula("a&(b|~c)") tree = ['&', 'a', ['|', 'b', ['~', 'c', None]]] logicparser.apply_func(tree, s.convert_opt)
Note
This function only works on one branch of the parse tree. To apply the function to every branch of a parse tree, pass the function as an argument in
apply_func()
inlogicparser
.
- dist_not(tree)[source]¶
Distribute ‘~’ operators over ‘&’ and ‘|’ operators.
INPUT:
tree
a list; this represents a branch of a parse tree
OUTPUT: a new list
EXAMPLES:
This example illustrates the distribution of ‘~’ over ‘&’:
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("~(a&b)") sage: tree = ['~', ['&', 'a', 'b'], None] sage: logicparser.apply_func(tree, s.dist_not) #long time ['|', ['~', 'a', None], ['~', 'b', None]]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser >>> s = propcalc.formula("~(a&b)") >>> tree = ['~', ['&', 'a', 'b'], None] >>> logicparser.apply_func(tree, s.dist_not) #long time ['|', ['~', 'a', None], ['~', 'b', None]]
import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser s = propcalc.formula("~(a&b)") tree = ['~', ['&', 'a', 'b'], None] logicparser.apply_func(tree, s.dist_not) #long time
Note
This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to
apply_func()
inlogicparser
.
- dist_ors(tree)[source]¶
Distribute ‘|’ over ‘&’.
INPUT:
tree
– list; this represents a branch of a parse tree
OUTPUT: a new list
EXAMPLES:
This example illustrates the distribution of ‘|’ over ‘&’:
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("(a&b)|(a&c)") sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] sage: logicparser.apply_func(tree, s.dist_ors) #long time ['&', ['&', ['|', 'a', 'a'], ['|', 'b', 'a']], ['&', ['|', 'a', 'c'], ['|', 'b', 'c']]]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser >>> s = propcalc.formula("(a&b)|(a&c)") >>> tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] >>> logicparser.apply_func(tree, s.dist_ors) #long time ['&', ['&', ['|', 'a', 'a'], ['|', 'b', 'a']], ['&', ['|', 'a', 'c'], ['|', 'b', 'c']]]
import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser s = propcalc.formula("(a&b)|(a&c)") tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] logicparser.apply_func(tree, s.dist_ors) #long time
Note
This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to
apply_func()
inlogicparser
.
- equivalent(other)[source]¶
Determine if two formulas are semantically equivalent.
INPUT:
self
– calling objectother
– instance of BooleanFormula class
OUTPUT: a boolean value to be determined as follows:
True
– if the two formulas are logically equivalentFalse
– if the two formulas are not logically equivalentEXAMPLES:
This example shows how to check for logical equivalence:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("(a|b)&c") sage: g = propcalc.formula("c&(a|b)") sage: f.equivalent(g) True sage: g = propcalc.formula("a|b&c") sage: f.equivalent(g) False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("(a|b)&c") >>> g = propcalc.formula("c&(a|b)") >>> f.equivalent(g) True >>> g = propcalc.formula("a|b&c") >>> f.equivalent(g) False
import sage.logic.propcalc as propcalc f = propcalc.formula("(a|b)&c") g = propcalc.formula("c&(a|b)") f.equivalent(g) g = propcalc.formula("a|b&c") f.equivalent(g)
- evaluate(var_values)[source]¶
Evaluate a formula for the given input values.
INPUT:
var_values
– dictionary; this contains the pairs of variables and their boolean values
OUTPUT: the result of the evaluation as a boolean
EXAMPLES:
This example illustrates the evaluation of a boolean formula:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&b|c") sage: f.evaluate({'a':False, 'b':False, 'c':True}) True sage: f.evaluate({'a':True, 'b':False, 'c':False}) False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a&b|c") >>> f.evaluate({'a':False, 'b':False, 'c':True}) True >>> f.evaluate({'a':True, 'b':False, 'c':False}) False
import sage.logic.propcalc as propcalc f = propcalc.formula("a&b|c") f.evaluate({'a':False, 'b':False, 'c':True}) f.evaluate({'a':True, 'b':False, 'c':False})
- full_tree()[source]¶
Return a full syntax parse tree of the calling formula.
OUTPUT: the full syntax parse tree as a nested list
EXAMPLES:
This example shows how to find the full syntax parse tree of a formula:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a->(b&c)") sage: s.full_tree() ['->', 'a', ['&', 'b', 'c']] sage: t = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") sage: t.full_tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b'], 'c'], 'a'], 'c']], ['~', 'b']] sage: f = propcalc.formula("~~(a&~b)") sage: f.full_tree() ['~', ['~', ['&', 'a', ['~', 'b']]]]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a->(b&c)") >>> s.full_tree() ['->', 'a', ['&', 'b', 'c']] >>> t = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") >>> t.full_tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b'], 'c'], 'a'], 'c']], ['~', 'b']] >>> f = propcalc.formula("~~(a&~b)") >>> f.full_tree() ['~', ['~', ['&', 'a', ['~', 'b']]]]
import sage.logic.propcalc as propcalc s = propcalc.formula("a->(b&c)") s.full_tree() t = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") t.full_tree() f = propcalc.formula("~~(a&~b)") f.full_tree()
Note
This function is used by other functions in the logic module that perform syntactic operations on a boolean formula.
AUTHORS:
Paul Scurek (2013-08-03)
- get_bit(x, c)[source]¶
Determine if bit
c
of the numberx
is 1.INPUT:
x
– integer; this is the number from which to take the bitc
– integer; this is the but number to be taken, where 0 is the low order bit
OUTPUT: a boolean to be determined as follows:
True
if bitc
ofx
is 1.False
if bit c of x is not 1.
EXAMPLES:
This example illustrates the use of
get_bit()
:sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: s.get_bit(2, 1) True sage: s.get_bit(8, 0) False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a&b") >>> s.get_bit(Integer(2), Integer(1)) True >>> s.get_bit(Integer(8), Integer(0)) False
import sage.logic.propcalc as propcalc s = propcalc.formula("a&b") s.get_bit(2, 1) s.get_bit(8, 0)
It is not an error to have a bit out of range:
sage: s.get_bit(64, 7) False
>>> from sage.all import * >>> s.get_bit(Integer(64), Integer(7)) False
s.get_bit(64, 7)
Nor is it an error to use a negative number:
sage: s.get_bit(-1, 3) False sage: s.get_bit(64, -1) True sage: s.get_bit(64, -2) False
>>> from sage.all import * >>> s.get_bit(-Integer(1), Integer(3)) False >>> s.get_bit(Integer(64), -Integer(1)) True >>> s.get_bit(Integer(64), -Integer(2)) False
s.get_bit(-1, 3) s.get_bit(64, -1) s.get_bit(64, -2)
Note
The 0 bit is the low order bit. Errors should be handled gracefully by a return of
False
, and negative numbersx
always returnFalse
while a negativec
will index from the high order bit.
- get_next_op(str)[source]¶
Return the next operator in a string.
INPUT:
str
– string; this contains a logical expression
OUTPUT: the next operator as a string
EXAMPLES:
This example illustrates how to find the next operator in a formula:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("f&p") sage: s.get_next_op("abra|cadabra") '|'
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("f&p") >>> s.get_next_op("abra|cadabra") '|'
import sage.logic.propcalc as propcalc s = propcalc.formula("f&p") s.get_next_op("abra|cadabra")
Note
The parameter
str
is not necessarily the string representation of the calling object.
- iff(other)[source]¶
Combine two formulas with the
<->
operator.INPUT:
other
– boolean formula; this is the formula on the right side of the operator
OUTPUT:
A boolean formula of the form
self <-> other
.EXAMPLES:
This example illustrates how to combine two formulas with ‘<->’:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.iff(f) (a&b)<->(c^d)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a&b") >>> f = propcalc.formula("c^d") >>> s.iff(f) (a&b)<->(c^d)
import sage.logic.propcalc as propcalc s = propcalc.formula("a&b") f = propcalc.formula("c^d") s.iff(f)
- ifthen(other)[source]¶
Combine two formulas with the
->
operator.INPUT:
other
– boolean formula; this is the formula on the right side of the operator
OUTPUT:
A boolean formula of the form
self -> other
.EXAMPLES:
This example illustrates how to combine two formulas with ‘->’:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b") sage: f = propcalc.formula("c^d") sage: s.ifthen(f) (a&b)->(c^d)
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a&b") >>> f = propcalc.formula("c^d") >>> s.ifthen(f) (a&b)->(c^d)
import sage.logic.propcalc as propcalc s = propcalc.formula("a&b") f = propcalc.formula("c^d") s.ifthen(f)
- implies(other)[source]¶
Determine if calling formula implies other formula.
INPUT:
self
– calling objectother
– instance ofBooleanFormula
OUTPUT: a boolean value to be determined as follows:
True
– ifself
impliesother
False
– ifself does not imply ``other
EXAMPLES:
This example illustrates determining if one formula implies another:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a<->b") sage: g = propcalc.formula("b->a") sage: f.implies(g) True
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a<->b") >>> g = propcalc.formula("b->a") >>> f.implies(g) True
import sage.logic.propcalc as propcalc f = propcalc.formula("a<->b") g = propcalc.formula("b->a") f.implies(g)
sage: h = propcalc.formula("a->(a|~b)") sage: i = propcalc.formula("a") sage: h.implies(i) False
>>> from sage.all import * >>> h = propcalc.formula("a->(a|~b)") >>> i = propcalc.formula("a") >>> h.implies(i) False
h = propcalc.formula("a->(a|~b)") i = propcalc.formula("a") h.implies(i)
AUTHORS:
Paul Scurek (2013-08-08)
- is_consequence(*hypotheses)[source]¶
Determine if
self
(the desired conclusion) is a logical consequence of the hypotheses. The function callis_consequence(conclusion, *hypotheses)
is a synonym forconclusion.is_consequence(*hypotheses)
.INPUT:
*hypotheses
– instances ofBooleanFormula
OUTPUT: a boolean value to be determined as follows:
True
– ifself
(the desired conclusion) is a logical consequence of the set of hypothesesFalse
– ifself
(the desired conclusion) is not a logical consequence of the set of hypotheses
EXAMPLES:
sage: from sage.logic.propcalc import formula sage: formula("a | b").is_consequence(formula("b")) True sage: formula("a & b").is_consequence(formula("b")) False sage: formula("b").is_consequence(formula("a"), formula("a -> b")) True sage: formula("b -> a").is_consequence(formula("a -> b")) False sage: formula("~b -> ~a").is_consequence(formula("a -> b")) True
>>> from sage.all import * >>> from sage.logic.propcalc import formula >>> formula("a | b").is_consequence(formula("b")) True >>> formula("a & b").is_consequence(formula("b")) False >>> formula("b").is_consequence(formula("a"), formula("a -> b")) True >>> formula("b -> a").is_consequence(formula("a -> b")) False >>> formula("~b -> ~a").is_consequence(formula("a -> b")) True
from sage.logic.propcalc import formula formula("a | b").is_consequence(formula("b")) formula("a & b").is_consequence(formula("b")) formula("b").is_consequence(formula("a"), formula("a -> b")) formula("b -> a").is_consequence(formula("a -> b")) formula("~b -> ~a").is_consequence(formula("a -> b"))
sage: f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") sage: propcalc.formula("a & e").is_consequence(f, g, h) True sage: i = propcalc.formula("a & ~e") sage: i.is_consequence(f, g, h) False sage: from sage.logic.boolformula import is_consequence sage: is_consequence(i, f, g, h) False sage: is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h) True
>>> from sage.all import * >>> f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") >>> propcalc.formula("a & e").is_consequence(f, g, h) True >>> i = propcalc.formula("a & ~e") >>> i.is_consequence(f, g, h) False >>> from sage.logic.boolformula import is_consequence >>> is_consequence(i, f, g, h) False >>> is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h) True
f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") propcalc.formula("a & e").is_consequence(f, g, h) i = propcalc.formula("a & ~e") i.is_consequence(f, g, h) from sage.logic.boolformula import is_consequence is_consequence(i, f, g, h) is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h)
Only a tautology is a logical consequence of an empty set of formulas:
sage: propcalc.formula("a | ~a").is_consequence() True sage: propcalc.formula("a | b").is_consequence() False
>>> from sage.all import * >>> propcalc.formula("a | ~a").is_consequence() True >>> propcalc.formula("a | b").is_consequence() False
propcalc.formula("a | ~a").is_consequence() propcalc.formula("a | b").is_consequence()
AUTHORS:
Paul Scurek (2013-08-12)
- is_contradiction()[source]¶
Determine if the formula is always
False
.OUTPUT: a boolean value to be determined as follows:
True
if the formula is a contradiction.False
if the formula is not a contradiction.
EXAMPLES:
This example illustrates how to check if a formula is a contradiction.
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&~a") sage: f.is_contradiction() True sage: f = propcalc.formula("a|~a") sage: f.is_contradiction() False sage: f = propcalc.formula("a|b") sage: f.is_contradiction() False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a&~a") >>> f.is_contradiction() True >>> f = propcalc.formula("a|~a") >>> f.is_contradiction() False >>> f = propcalc.formula("a|b") >>> f.is_contradiction() False
import sage.logic.propcalc as propcalc f = propcalc.formula("a&~a") f.is_contradiction() f = propcalc.formula("a|~a") f.is_contradiction() f = propcalc.formula("a|b") f.is_contradiction()
- is_satisfiable()[source]¶
Determine if the formula is
True
for some assignment of values.OUTPUT: a boolean value to be determined as follows:
True
if there is an assignment of values that makes the formulaTrue
.False
if the formula cannot be madeTrue
by any assignment of values.
EXAMPLES:
This example illustrates how to check a formula for satisfiability:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a|b") sage: f.is_satisfiable() True sage: g = f & (~f) sage: g.is_satisfiable() False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a|b") >>> f.is_satisfiable() True >>> g = f & (~f) >>> g.is_satisfiable() False
import sage.logic.propcalc as propcalc f = propcalc.formula("a|b") f.is_satisfiable() g = f & (~f) g.is_satisfiable()
- is_tautology()[source]¶
Determine if the formula is always
True
.OUTPUT: a boolean value to be determined as follows:
True
if the formula is a tautology.False
if the formula is not a tautology.
EXAMPLES:
This example illustrates how to check if a formula is a tautology:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a|~a") sage: f.is_tautology() True sage: f = propcalc.formula("a&~a") sage: f.is_tautology() False sage: f = propcalc.formula("a&b") sage: f.is_tautology() False
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a|~a") >>> f.is_tautology() True >>> f = propcalc.formula("a&~a") >>> f.is_tautology() False >>> f = propcalc.formula("a&b") >>> f.is_tautology() False
import sage.logic.propcalc as propcalc f = propcalc.formula("a|~a") f.is_tautology() f = propcalc.formula("a&~a") f.is_tautology() f = propcalc.formula("a&b") f.is_tautology()
- length()[source]¶
Return the length of
self
.OUTPUT:
The length of the Boolean formula. This is the number of operators plus the number of variables (counting multiplicity). Parentheses are ignored.
EXAMPLES:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a") sage: s.length() 1 sage: s = propcalc.formula("(a)") sage: s.length() 1 sage: s = propcalc.formula("~a") sage: s.length() 2 sage: s = propcalc.formula("a -> b") sage: s.length() 3 sage: s = propcalc.formula("alpha -> beta") sage: s.length() 3 sage: s = propcalc.formula("a -> a") sage: s.length() 3 sage: s = propcalc.formula("~(a -> b)") sage: s.length() 4 sage: s = propcalc.formula("((a&b)|(a&c))->~d") sage: s.length() 10
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a") >>> s.length() 1 >>> s = propcalc.formula("(a)") >>> s.length() 1 >>> s = propcalc.formula("~a") >>> s.length() 2 >>> s = propcalc.formula("a -> b") >>> s.length() 3 >>> s = propcalc.formula("alpha -> beta") >>> s.length() 3 >>> s = propcalc.formula("a -> a") >>> s.length() 3 >>> s = propcalc.formula("~(a -> b)") >>> s.length() 4 >>> s = propcalc.formula("((a&b)|(a&c))->~d") >>> s.length() 10
import sage.logic.propcalc as propcalc s = propcalc.formula("a") s.length() s = propcalc.formula("(a)") s.length() s = propcalc.formula("~a") s.length() s = propcalc.formula("a -> b") s.length() s = propcalc.formula("alpha -> beta") s.length() s = propcalc.formula("a -> a") s.length() s = propcalc.formula("~(a -> b)") s.length() s = propcalc.formula("((a&b)|(a&c))->~d") s.length()
- polish_notation()[source]¶
Convert the calling boolean formula into polish notation.
OUTPUT: string representation of the formula in polish notation
EXAMPLES:
This example illustrates converting a formula to polish notation:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("~~a|(c->b)") sage: f.polish_notation() '|~~a->cb' sage: g = propcalc.formula("(a|~b)->c") sage: g.polish_notation() '->|a~bc'
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("~~a|(c->b)") >>> f.polish_notation() '|~~a->cb' >>> g = propcalc.formula("(a|~b)->c") >>> g.polish_notation() '->|a~bc'
import sage.logic.propcalc as propcalc f = propcalc.formula("~~a|(c->b)") f.polish_notation() g = propcalc.formula("(a|~b)->c") g.polish_notation()
AUTHORS:
Paul Scurek (2013-08-03)
- reduce_op(tree)[source]¶
Convert if-and-only-if, if-then, and xor operations to operations only involving and/or operations.
INPUT:
tree
– list; this represents a branch of a parse tree
OUTPUT:
A new list with no ‘^’, ‘->’, or ‘<->’ as first element of list.
EXAMPLES:
This example illustrates the use of
reduce_op()
withapply_func()
:sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("a->b^c") sage: tree = ['->', 'a', ['^', 'b', 'c']] sage: logicparser.apply_func(tree, s.reduce_op) ['|', ['~', 'a', None], ['&', ['|', 'b', 'c'], ['~', ['&', 'b', 'c'], None]]]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser >>> s = propcalc.formula("a->b^c") >>> tree = ['->', 'a', ['^', 'b', 'c']] >>> logicparser.apply_func(tree, s.reduce_op) ['|', ['~', 'a', None], ['&', ['|', 'b', 'c'], ['~', ['&', 'b', 'c'], None]]]
import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser s = propcalc.formula("a->b^c") tree = ['->', 'a', ['^', 'b', 'c']] logicparser.apply_func(tree, s.reduce_op)
Note
This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to
apply_func()
inlogicparser
.
- satformat()[source]¶
Return the satformat representation of a boolean formula.
OUTPUT: the satformat of the formula as a string
EXAMPLES:
This example illustrates how to find the satformat of a formula:
sage: import sage.logic.propcalc as propcalc sage: f = propcalc.formula("a&((b|c)^a->c)<->b") sage: f.convert_cnf() sage: f (a|~b|c)&(a|~b|~c)&(~a|b|~c) sage: f.satformat() 'p cnf 3 0\n1 -2 3 0 1 -2 -3 \n0 -1 2 -3'
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> f = propcalc.formula("a&((b|c)^a->c)<->b") >>> f.convert_cnf() >>> f (a|~b|c)&(a|~b|~c)&(~a|b|~c) >>> f.satformat() 'p cnf 3 0\n1 -2 3 0 1 -2 -3 \n0 -1 2 -3'
import sage.logic.propcalc as propcalc f = propcalc.formula("a&((b|c)^a->c)<->b") f.convert_cnf() f f.satformat()
Note
See www.cs.ubc.ca/~hoos/SATLIB/Benchmarks/SAT/satformat.ps for a description of satformat.
If the instance of boolean formula has not been converted to CNF form by a call to
convert_cnf()
orconvert_cnf_recur()
, thensatformat()
will callconvert_cnf()
. Please see the notes forconvert_cnf()
andconvert_cnf_recur()
for performance issues.
- to_infix(tree)[source]¶
Convert a parse tree from prefix to infix form.
INPUT:
tree
– list; this represents a branch of a parse tree
OUTPUT: a new list
EXAMPLES:
This example shows how to convert a parse tree from prefix to infix form:
sage: import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser sage: s = propcalc.formula("(a&b)|(a&c)") sage: tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] sage: logicparser.apply_func(tree, s.to_infix) [['a', '&', 'b'], '|', ['a', '&', 'c']]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser >>> s = propcalc.formula("(a&b)|(a&c)") >>> tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] >>> logicparser.apply_func(tree, s.to_infix) [['a', '&', 'b'], '|', ['a', '&', 'c']]
import sage.logic.propcalc as propcalc, sage.logic.logicparser as logicparser s = propcalc.formula("(a&b)|(a&c)") tree = ['|', ['&', 'a', 'b'], ['&', 'a', 'c']] logicparser.apply_func(tree, s.to_infix)
Note
This function only operates on a single branch of a parse tree. To apply the function to an entire parse tree, pass the function as an argument to
apply_func()
inlogicparser
.
- tree()[source]¶
Return the parse tree of this boolean expression.
OUTPUT: the parse tree as a nested list
EXAMPLES:
This example illustrates how to find the parse tree of a boolean formula:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("man -> monkey & human") sage: s.tree() ['->', 'man', ['&', 'monkey', 'human']]
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("man -> monkey & human") >>> s.tree() ['->', 'man', ['&', 'monkey', 'human']]
import sage.logic.propcalc as propcalc s = propcalc.formula("man -> monkey & human") s.tree()
sage: f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") sage: f.tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b', None], 'c'], 'a'], 'c']], ['~', 'b', None]]
>>> from sage.all import * >>> f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") >>> f.tree() ['<->', ['&', 'a', ['->', ['^', ['|', ['~', 'b', None], 'c'], 'a'], 'c']], ['~', 'b', None]]
f = propcalc.formula("a & ((~b | c) ^ a -> c) <-> ~b") f.tree()
Note
This function is used by other functions in the logic module that perform semantic operations on a boolean formula.
- truthtable(start=0, end=-1)[source]¶
Return a truth table for the calling formula.
INPUT:
start
– (default: 0) an integer; this is the first row of the truth table to be createdend
– (default: -1) an integer; this is the last row of the truth table to be created
OUTPUT: the truth table as a 2-D array
EXAMPLES:
This example illustrates the creation of a truth table:
sage: import sage.logic.propcalc as propcalc sage: s = propcalc.formula("a&b|~(c|a)") sage: s.truthtable() a b c value False False False True False False True False False True False True False True True False True False False False True False True False True True False True True True True True
>>> from sage.all import * >>> import sage.logic.propcalc as propcalc >>> s = propcalc.formula("a&b|~(c|a)") >>> s.truthtable() a b c value False False False True False False True False False True False True False True True False True False False False True False True False True True False True True True True True
import sage.logic.propcalc as propcalc s = propcalc.formula("a&b|~(c|a)") s.truthtable()
We can now create a truthtable of rows 1 to 4, inclusive:
sage: s.truthtable(1, 5) a b c value False False True False False True False True False True True False True False False False
>>> from sage.all import * >>> s.truthtable(Integer(1), Integer(5)) a b c value False False True False False True False True False True True False True False False False
s.truthtable(1, 5)
Note
Each row of the table corresponds to a binary number, with each variable associated to a column of the number, and taking on a true value if that column has a value of 1. Please see the logictable module for details. The function returns a table that start inclusive and end exclusive so
truthtable(0, 2)
will include row 0, but not row 2.When sent with no start or end parameters, this is an exponential time function requiring \(O(2^n)\) time, where \(n\) is the number of variables in the expression.
- sage.logic.boolformula.is_consequence(self, *hypotheses)[source]¶
Determine if
self
(the desired conclusion) is a logical consequence of the hypotheses. The function callis_consequence(conclusion, *hypotheses)
is a synonym forconclusion.is_consequence(*hypotheses)
.INPUT:
*hypotheses
– instances ofBooleanFormula
OUTPUT: a boolean value to be determined as follows:
True
– ifself
(the desired conclusion) is a logical consequence of the set of hypothesesFalse
– ifself
(the desired conclusion) is not a logical consequence of the set of hypotheses
EXAMPLES:
sage: from sage.logic.propcalc import formula sage: formula("a | b").is_consequence(formula("b")) True sage: formula("a & b").is_consequence(formula("b")) False sage: formula("b").is_consequence(formula("a"), formula("a -> b")) True sage: formula("b -> a").is_consequence(formula("a -> b")) False sage: formula("~b -> ~a").is_consequence(formula("a -> b")) True
>>> from sage.all import * >>> from sage.logic.propcalc import formula >>> formula("a | b").is_consequence(formula("b")) True >>> formula("a & b").is_consequence(formula("b")) False >>> formula("b").is_consequence(formula("a"), formula("a -> b")) True >>> formula("b -> a").is_consequence(formula("a -> b")) False >>> formula("~b -> ~a").is_consequence(formula("a -> b")) True
from sage.logic.propcalc import formula formula("a | b").is_consequence(formula("b")) formula("a & b").is_consequence(formula("b")) formula("b").is_consequence(formula("a"), formula("a -> b")) formula("b -> a").is_consequence(formula("a -> b")) formula("~b -> ~a").is_consequence(formula("a -> b"))
sage: f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") sage: propcalc.formula("a & e").is_consequence(f, g, h) True sage: i = propcalc.formula("a & ~e") sage: i.is_consequence(f, g, h) False sage: from sage.logic.boolformula import is_consequence sage: is_consequence(i, f, g, h) False sage: is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h) True
>>> from sage.all import * >>> f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") >>> propcalc.formula("a & e").is_consequence(f, g, h) True >>> i = propcalc.formula("a & ~e") >>> i.is_consequence(f, g, h) False >>> from sage.logic.boolformula import is_consequence >>> is_consequence(i, f, g, h) False >>> is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h) True
f, g, h = propcalc.get_formulas("a & ~b", "c -> b", "c | e") propcalc.formula("a & e").is_consequence(f, g, h) i = propcalc.formula("a & ~e") i.is_consequence(f, g, h) from sage.logic.boolformula import is_consequence is_consequence(i, f, g, h) is_consequence(propcalc.formula("((p <-> q) & r) -> ~c"), f, g, h)
Only a tautology is a logical consequence of an empty set of formulas:
sage: propcalc.formula("a | ~a").is_consequence() True sage: propcalc.formula("a | b").is_consequence() False
>>> from sage.all import * >>> propcalc.formula("a | ~a").is_consequence() True >>> propcalc.formula("a | b").is_consequence() False
propcalc.formula("a | ~a").is_consequence() propcalc.formula("a | b").is_consequence()
AUTHORS:
Paul Scurek (2013-08-12)