Dense Matrices over a general ring¶
- class sage.matrix.matrix_generic_dense.Matrix_generic_dense[source]¶
Bases:
Matrix_dense
The
Matrix_generic_dense
class derives fromMatrix
, and defines functionality for dense matrices over any base ring. Matrices are represented by a list of elements in the base ring, and element access operations are implemented in this class.EXAMPLES:
sage: A = random_matrix(Integers(25)['x'], 2) sage: type(A) <class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'> sage: TestSuite(A).run(skip='_test_minpoly')
>>> from sage.all import * >>> A = random_matrix(Integers(Integer(25))['x'], Integer(2)) >>> type(A) <class 'sage.matrix.matrix_generic_dense.Matrix_generic_dense'> >>> TestSuite(A).run(skip='_test_minpoly')
A = random_matrix(Integers(25)['x'], 2) type(A) TestSuite(A).run(skip='_test_minpoly')
Test comparisons:
sage: A = random_matrix(Integers(25)['x'], 2) sage: A == A True sage: A < A + 1 or A[0, 0].coefficients()[0] == 24 True sage: A+1 < A and A[0, 0].coefficients()[0] != 24 False
>>> from sage.all import * >>> A = random_matrix(Integers(Integer(25))['x'], Integer(2)) >>> A == A True >>> A < A + Integer(1) or A[Integer(0), Integer(0)].coefficients()[Integer(0)] == Integer(24) True >>> A+Integer(1) < A and A[Integer(0), Integer(0)].coefficients()[Integer(0)] != Integer(24) False
A = random_matrix(Integers(25)['x'], 2) A == A A < A + 1 or A[0, 0].coefficients()[0] == 24 A+1 < A and A[0, 0].coefficients()[0] != 24
Test hashing:
sage: A = random_matrix(Integers(25)['x'], 2) sage: hash(A) Traceback (most recent call last): ... TypeError: mutable matrices are unhashable sage: A.set_immutable() sage: H = hash(A)
>>> from sage.all import * >>> A = random_matrix(Integers(Integer(25))['x'], Integer(2)) >>> hash(A) Traceback (most recent call last): ... TypeError: mutable matrices are unhashable >>> A.set_immutable() >>> H = hash(A)
A = random_matrix(Integers(25)['x'], 2) hash(A) A.set_immutable() H = hash(A)