Benchmarks¶
- sage.misc.benchmark.bench0()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench0()[0]) Benchmark 0: Factor the following polynomial over the rational numbers: (x^97+19*x+1)*(x^103-19*x^97+14)*(x^100-1)
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench0()[Integer(0)]) Benchmark 0: Factor the following polynomial over the rational numbers: (x^97+19*x+1)*(x^103-19*x^97+14)*(x^100-1)
from sage.misc.benchmark import * print(bench0()[0])
- sage.misc.benchmark.bench1()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench1()[0]) Find the Mordell-Weil group of the elliptic curve 5077A using mwrank
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench1()[Integer(0)]) Find the Mordell-Weil group of the elliptic curve 5077A using mwrank
from sage.misc.benchmark import * print(bench1()[0])
- sage.misc.benchmark.bench2()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench2()[0]) Some basic arithmetic with very large Integer numbers: '3^1000001 * 19^100001
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench2()[Integer(0)]) Some basic arithmetic with very large Integer numbers: '3^1000001 * 19^100001
from sage.misc.benchmark import * print(bench2()[0])
- sage.misc.benchmark.bench3()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench3()[0]) Some basic arithmetic with very large Rational numbers: '(2/3)^100001 * (17/19)^100001
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench3()[Integer(0)]) Some basic arithmetic with very large Rational numbers: '(2/3)^100001 * (17/19)^100001
from sage.misc.benchmark import * print(bench3()[0])
- sage.misc.benchmark.bench4()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench4()[0]) Rational polynomial arithmetic using Sage. Compute (x^29+17*x-5)^200.
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench4()[Integer(0)]) Rational polynomial arithmetic using Sage. Compute (x^29+17*x-5)^200.
from sage.misc.benchmark import * print(bench4()[0])
- sage.misc.benchmark.bench5()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench5()[0]) Rational polynomial arithmetic using Sage. Compute (x^19 - 18*x + 1)^50 one hundred times.
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench5()[Integer(0)]) Rational polynomial arithmetic using Sage. Compute (x^19 - 18*x + 1)^50 one hundred times.
from sage.misc.benchmark import * print(bench5()[0])
- sage.misc.benchmark.bench6()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench6()[0]) Compute the p-division polynomials of y^2 = x^3 + 37*x - 997 for primes p < 40.
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench6()[Integer(0)]) Compute the p-division polynomials of y^2 = x^3 + 37*x - 997 for primes p < 40.
from sage.misc.benchmark import * print(bench6()[0])
- sage.misc.benchmark.bench7()[source]¶
Run a benchmark.
BENCHMARK:
sage: from sage.misc.benchmark import * sage: print(bench7()[0]) Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997.
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> print(bench7()[Integer(0)]) Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997.
from sage.misc.benchmark import * print(bench7()[0])
- sage.misc.benchmark.benchmark(n=-1)[source]¶
Run a well-chosen range of Sage commands and record the time it takes for each to run.
INPUT:
n
– integer (default: -1); the benchmark number; the default of -1 runs all the benchmarks
OUTPUT:
list – summary of timings for each benchmark. int – if n == -1, also return the total time
EXAMPLES:
sage: from sage.misc.benchmark import * sage: _ = benchmark() Running benchmark 0 Benchmark 0: Factor the following polynomial over the rational numbers: (x^97+19*x+1)*(x^103-19*x^97+14)*(x^100-1) Time: ... seconds Running benchmark 1 Find the Mordell-Weil group of the elliptic curve 5077A using mwrank Time: ... seconds Running benchmark 2 Some basic arithmetic with very large Integer numbers: '3^1000001 * 19^100001 Time: ... seconds Running benchmark 3 Some basic arithmetic with very large Rational numbers: '(2/3)^100001 * (17/19)^100001 Time: ... seconds Running benchmark 4 Rational polynomial arithmetic using Sage. Compute (x^29+17*x-5)^200. Time: ... seconds Running benchmark 5 Rational polynomial arithmetic using Sage. Compute (x^19 - 18*x + 1)^50 one hundred times. Time: ... seconds Running benchmark 6 Compute the p-division polynomials of y^2 = x^3 + 37*x - 997 for primes p < 40. Time: ... seconds Running benchmark 7 Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997. Time: ... seconds Running benchmark 8
>>> from sage.all import * >>> from sage.misc.benchmark import * >>> _ = benchmark() Running benchmark 0 Benchmark 0: Factor the following polynomial over the rational numbers: (x^97+19*x+1)*(x^103-19*x^97+14)*(x^100-1) Time: ... seconds Running benchmark 1 Find the Mordell-Weil group of the elliptic curve 5077A using mwrank Time: ... seconds Running benchmark 2 Some basic arithmetic with very large Integer numbers: '3^1000001 * 19^100001 Time: ... seconds Running benchmark 3 Some basic arithmetic with very large Rational numbers: '(2/3)^100001 * (17/19)^100001 Time: ... seconds Running benchmark 4 Rational polynomial arithmetic using Sage. Compute (x^29+17*x-5)^200. Time: ... seconds Running benchmark 5 Rational polynomial arithmetic using Sage. Compute (x^19 - 18*x + 1)^50 one hundred times. Time: ... seconds Running benchmark 6 Compute the p-division polynomials of y^2 = x^3 + 37*x - 997 for primes p < 40. Time: ... seconds Running benchmark 7 Compute the Mordell-Weil group of y^2 = x^3 + 37*x - 997. Time: ... seconds Running benchmark 8
from sage.misc.benchmark import * _ = benchmark()