-series of modular abelian varieties¶
AUTHOR:
William Stein (2007-03)
- class sage.modular.abvar.lseries.Lseries(abvar)[source]¶
Bases:
SageObject
Base class for
-series attached to modular abelian varieties.This is a common base class for complex and
-adic -series of modular abelian varieties.
- class sage.modular.abvar.lseries.Lseries_complex(abvar)[source]¶
Bases:
Lseries
A complex
-series attached to a modular abelian variety.EXAMPLES:
sage: A = J0(37) sage: A.lseries() Complex L-series attached to Abelian variety J0(37) of dimension 2
- lratio()[source]¶
alias of
rational_part()
.
- rational_part()[source]¶
Return the rational part of this
-function at the central critical value 1.OUTPUT: a rational number
EXAMPLES:
sage: A, B = J0(43).decomposition() sage: A.lseries().rational_part() 0 sage: B.lseries().rational_part() 2/7
- vanishes_at_1()[source]¶
Return
True
if and returnFalse
otherwise.OUTPUT: boolean
EXAMPLES:
Numerically, the
-series for appears to vanish at 1. This is confirmed by this algebraic computation:sage: L = J0(389)[0].lseries(); L Complex L-series attached to Simple abelian subvariety 389a(1,389) of dimension 1 of J0(389) sage: L(1) # long time (2s) abstol 1e-10 -1.33139759782370e-19 sage: L.vanishes_at_1() True
Numerically, one might guess that the
-series for and vanish at 1. This algebraic computation shows otherwise:sage: L = J1(23).lseries(); L Complex L-series attached to Abelian variety J1(23) of dimension 12 sage: L(1) # long time (about 3 s) 0.0001295198... sage: L.vanishes_at_1() False sage: abs(L(1, prec=100)- 0.00012951986142702571478817757148) < 1e-32 # long time (about 3 s) True sage: L = J1(31).lseries(); L Complex L-series attached to Abelian variety J1(31) of dimension 26 sage: abs(L(1) - 3.45014267547611e-7) < 1e-15 # long time (about 8 s) True sage: L.vanishes_at_1() # long time (about 6 s) False
- class sage.modular.abvar.lseries.Lseries_padic(abvar, p)[source]¶
Bases:
Lseries
A
-adic -series attached to a modular abelian variety.- power_series(n=2, prec=5)[source]¶
Return the
-th approximation to this -adic -series as a power series in .Each coefficient is a
-adic number whose precision is provably correct.NOTE: This is not yet implemented.
EXAMPLES:
sage: L = J0(37)[0].padic_lseries(5) sage: L.power_series() Traceback (most recent call last): ... NotImplementedError sage: L.power_series(3,7) Traceback (most recent call last): ... NotImplementedError