Class groups of number fields¶
An element of a class group is stored as a pair consisting of both an explicit
ideal in that ideal class, and a list of exponents giving that ideal class in
terms of the generators of the parent class group. These can be accessed with
the ideal()
and exponents()
methods respectively.
EXAMPLES:
sage: x = polygen(ZZ, 'x')
sage: K.<a> = NumberField(x^2 + 23)
sage: I = K.class_group().gen(); I
Fractional ideal class (2, 1/2*a - 1/2)
sage: I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
sage: I.exponents()
(1,)
sage: I.ideal() * I.ideal()
Fractional ideal (4, 1/2*a + 3/2)
sage: (I.ideal() * I.ideal()).reduce_equiv()
Fractional ideal (2, 1/2*a + 1/2)
sage: J = I * I; J # class group multiplication is automatically reduced
Fractional ideal class (2, 1/2*a + 1/2)
sage: J.ideal()
Fractional ideal (2, 1/2*a + 1/2)
sage: J.exponents()
(2,)
sage: I * I.ideal() # ideal classes coerce to their representative ideal
Fractional ideal (4, 1/2*a + 3/2)
sage: K.fractional_ideal([2, 1/2*a + 1/2])
Fractional ideal (2, 1/2*a + 1/2)
sage: K.fractional_ideal([2, 1/2*a + 1/2]).is_principal()
False
sage: K.fractional_ideal([2, 1/2*a + 1/2])^3
Fractional ideal (1/2*a - 3/2)
>>> from sage.all import *
>>> x = polygen(ZZ, 'x')
>>> K = NumberField(x**Integer(2) + Integer(23), names=('a',)); (a,) = K._first_ngens(1)
>>> I = K.class_group().gen(); I
Fractional ideal class (2, 1/2*a - 1/2)
>>> I.ideal()
Fractional ideal (2, 1/2*a - 1/2)
>>> I.exponents()
(1,)
>>> I.ideal() * I.ideal()
Fractional ideal (4, 1/2*a + 3/2)
>>> (I.ideal() * I.ideal()).reduce_equiv()
Fractional ideal (2, 1/2*a + 1/2)
>>> J = I * I; J # class group multiplication is automatically reduced
Fractional ideal class (2, 1/2*a + 1/2)
>>> J.ideal()
Fractional ideal (2, 1/2*a + 1/2)
>>> J.exponents()
(2,)
>>> I * I.ideal() # ideal classes coerce to their representative ideal
Fractional ideal (4, 1/2*a + 3/2)
>>> K.fractional_ideal([Integer(2), Integer(1)/Integer(2)*a + Integer(1)/Integer(2)])
Fractional ideal (2, 1/2*a + 1/2)
>>> K.fractional_ideal([Integer(2), Integer(1)/Integer(2)*a + Integer(1)/Integer(2)]).is_principal()
False
>>> K.fractional_ideal([Integer(2), Integer(1)/Integer(2)*a + Integer(1)/Integer(2)])**Integer(3)
Fractional ideal (1/2*a - 3/2)
x = polygen(ZZ, 'x') K.<a> = NumberField(x^2 + 23) I = K.class_group().gen(); I I.ideal() I.exponents() I.ideal() * I.ideal() (I.ideal() * I.ideal()).reduce_equiv() J = I * I; J # class group multiplication is automatically reduced J.ideal() J.exponents() I * I.ideal() # ideal classes coerce to their representative ideal K.fractional_ideal([2, 1/2*a + 1/2]) K.fractional_ideal([2, 1/2*a + 1/2]).is_principal() K.fractional_ideal([2, 1/2*a + 1/2])^3
- class sage.rings.number_field.class_group.ClassGroup(gens_orders, names, number_field, gens, proof=True)[source]¶
Bases:
AbelianGroupWithValues_class
The class group of a number field.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^2 + 23) sage: G = K.class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 sage: G.category() Category of finite enumerated commutative groups
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(2) + Integer(23), names=('a',)); (a,) = K._first_ngens(1) >>> G = K.class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 >>> G.category() Category of finite enumerated commutative groups
x = polygen(ZZ, 'x') K.<a> = NumberField(x^2 + 23) G = K.class_group(); G G.category()
Note the distinction between abstract generators, their ideal, and exponents:
sage: C = NumberField(x^2 + 120071, 'a').class_group(); C Class group of order 500 with structure C250 x C2 of Number Field in a with defining polynomial x^2 + 120071 sage: c = C.gen(0) sage: c # random Fractional ideal class (5, 1/2*a + 3/2) sage: c.ideal() # random Fractional ideal (5, 1/2*a + 3/2) sage: c.ideal() is c.value() # alias True sage: c.exponents() (1, 0)
>>> from sage.all import * >>> C = NumberField(x**Integer(2) + Integer(120071), 'a').class_group(); C Class group of order 500 with structure C250 x C2 of Number Field in a with defining polynomial x^2 + 120071 >>> c = C.gen(Integer(0)) >>> c # random Fractional ideal class (5, 1/2*a + 3/2) >>> c.ideal() # random Fractional ideal (5, 1/2*a + 3/2) >>> c.ideal() is c.value() # alias True >>> c.exponents() (1, 0)
C = NumberField(x^2 + 120071, 'a').class_group(); C c = C.gen(0) c # random c.ideal() # random c.ideal() is c.value() # alias c.exponents()
- Element[source]¶
alias of
FractionalIdealClass
- gens_ideals()[source]¶
Return generating ideals for the (\(S\)-)class group.
This is an alias for
gens_values()
.OUTPUT: a tuple of ideals, one for each abstract Abelian group generator
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^4 + 23) sage: K.class_group().gens_ideals() # random gens (platform dependent) (Fractional ideal (2, 1/4*a^3 - 1/4*a^2 + 1/4*a - 1/4),) sage: C = NumberField(x^2 + x + 23899, 'a').class_group(); C Class group of order 68 with structure C34 x C2 of Number Field in a with defining polynomial x^2 + x + 23899 sage: C.gens() (Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3)) sage: C.gens_ideals() (Fractional ideal (7, a + 5), Fractional ideal (5, a + 3))
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(4) + Integer(23), names=('a',)); (a,) = K._first_ngens(1) >>> K.class_group().gens_ideals() # random gens (platform dependent) (Fractional ideal (2, 1/4*a^3 - 1/4*a^2 + 1/4*a - 1/4),) >>> C = NumberField(x**Integer(2) + x + Integer(23899), 'a').class_group(); C Class group of order 68 with structure C34 x C2 of Number Field in a with defining polynomial x^2 + x + 23899 >>> C.gens() (Fractional ideal class (7, a + 5), Fractional ideal class (5, a + 3)) >>> C.gens_ideals() (Fractional ideal (7, a + 5), Fractional ideal (5, a + 3))
x = polygen(ZZ, 'x') K.<a> = NumberField(x^4 + 23) K.class_group().gens_ideals() # random gens (platform dependent) C = NumberField(x^2 + x + 23899, 'a').class_group(); C C.gens() C.gens_ideals()
- number_field()[source]¶
Return the number field that this (\(S\)-)class group is attached to.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: C = NumberField(x^2 + 23, 'w').class_group(); C Class group of order 3 with structure C3 of Number Field in w with defining polynomial x^2 + 23 sage: C.number_field() Number Field in w with defining polynomial x^2 + 23 sage: K.<a> = QuadraticField(-14) sage: CS = K.S_class_group(K.primes_above(2)) sage: CS.number_field() Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> C = NumberField(x**Integer(2) + Integer(23), 'w').class_group(); C Class group of order 3 with structure C3 of Number Field in w with defining polynomial x^2 + 23 >>> C.number_field() Number Field in w with defining polynomial x^2 + 23 >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> CS = K.S_class_group(K.primes_above(Integer(2))) >>> CS.number_field() Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I
x = polygen(ZZ, 'x') C = NumberField(x^2 + 23, 'w').class_group(); C C.number_field() K.<a> = QuadraticField(-14) CS = K.S_class_group(K.primes_above(2)) CS.number_field()
- class sage.rings.number_field.class_group.FractionalIdealClass(parent, element, ideal=None)[source]¶
Bases:
AbelianGroupWithValuesElement
A fractional ideal class in a number field.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: G = NumberField(x^2 + 23,'a').class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 sage: I = G.0; I Fractional ideal class (2, 1/2*a - 1/2) sage: I.ideal() Fractional ideal (2, 1/2*a - 1/2) sage: K.<w> = QuadraticField(-23) sage: OK = K.ring_of_integers() sage: C = OK.class_group() sage: P2a, P2b = [P for P, e in (2*K).factor()] sage: c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.gens() (2, 1/2*w - 1/2)
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> G = NumberField(x**Integer(2) + Integer(23),'a').class_group(); G Class group of order 3 with structure C3 of Number Field in a with defining polynomial x^2 + 23 >>> I = G.gen(0); I Fractional ideal class (2, 1/2*a - 1/2) >>> I.ideal() Fractional ideal (2, 1/2*a - 1/2) >>> K = QuadraticField(-Integer(23), names=('w',)); (w,) = K._first_ngens(1) >>> OK = K.ring_of_integers() >>> C = OK.class_group() >>> P2a, P2b = [P for P, e in (Integer(2)*K).factor()] >>> c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) >>> c.gens() (2, 1/2*w - 1/2)
x = polygen(ZZ, 'x') G = NumberField(x^2 + 23,'a').class_group(); G I = G.0; I I.ideal() K.<w> = QuadraticField(-23) OK = K.ring_of_integers() C = OK.class_group() P2a, P2b = [P for P, e in (2*K).factor()] c = C(P2a); c c.gens()
- gens()[source]¶
Return generators for a representative ideal in this (\(S\)-)ideal class.
EXAMPLES:
sage: K.<w> = QuadraticField(-23) sage: OK = K.ring_of_integers() sage: C = OK.class_group() sage: P2a, P2b = [P for P, e in (2*K).factor()] sage: c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.gens() (2, 1/2*w - 1/2)
>>> from sage.all import * >>> K = QuadraticField(-Integer(23), names=('w',)); (w,) = K._first_ngens(1) >>> OK = K.ring_of_integers() >>> C = OK.class_group() >>> P2a, P2b = [P for P, e in (Integer(2)*K).factor()] >>> c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) >>> c.gens() (2, 1/2*w - 1/2)
K.<w> = QuadraticField(-23) OK = K.ring_of_integers() C = OK.class_group() P2a, P2b = [P for P, e in (2*K).factor()] c = C(P2a); c c.gens()
- ideal()[source]¶
Return a representative ideal in this ideal class.
EXAMPLES:
sage: K.<w> = QuadraticField(-23) sage: OK = K.ring_of_integers() sage: C = OK.class_group() sage: P2a, P2b = [P for P, e in (2*K).factor()] sage: c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) sage: c.ideal() Fractional ideal (2, 1/2*w - 1/2)
>>> from sage.all import * >>> K = QuadraticField(-Integer(23), names=('w',)); (w,) = K._first_ngens(1) >>> OK = K.ring_of_integers() >>> C = OK.class_group() >>> P2a, P2b = [P for P, e in (Integer(2)*K).factor()] >>> c = C(P2a); c Fractional ideal class (2, 1/2*w - 1/2) >>> c.ideal() Fractional ideal (2, 1/2*w - 1/2)
K.<w> = QuadraticField(-23) OK = K.ring_of_integers() C = OK.class_group() P2a, P2b = [P for P, e in (2*K).factor()] c = C(P2a); c c.ideal()
- inverse()[source]¶
Return the multiplicative inverse of this ideal class.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 - 3*x + 8); G = K.class_group() sage: G(2, a).inverse() Fractional ideal class (2, a^2 + 2*a - 1) sage: ~G(2, a) Fractional ideal class (2, a^2 + 2*a - 1)
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(3) - Integer(3)*x + Integer(8), names=('a',)); (a,) = K._first_ngens(1); G = K.class_group() >>> G(Integer(2), a).inverse() Fractional ideal class (2, a^2 + 2*a - 1) >>> ~G(Integer(2), a) Fractional ideal class (2, a^2 + 2*a - 1)
x = polygen(ZZ, 'x') K.<a> = NumberField(x^3 - 3*x + 8); G = K.class_group() G(2, a).inverse() ~G(2, a)
- is_principal()[source]¶
Return
True
iff this ideal class is the trivial (principal) class.EXAMPLES:
sage: K.<w> = QuadraticField(-23) sage: OK = K.ring_of_integers() sage: C = OK.class_group() sage: P2a, P2b = [P for P, e in (2*K).factor()] sage: c = C(P2a) sage: c.is_principal() False sage: (c^2).is_principal() False sage: (c^3).is_principal() True
>>> from sage.all import * >>> K = QuadraticField(-Integer(23), names=('w',)); (w,) = K._first_ngens(1) >>> OK = K.ring_of_integers() >>> C = OK.class_group() >>> P2a, P2b = [P for P, e in (Integer(2)*K).factor()] >>> c = C(P2a) >>> c.is_principal() False >>> (c**Integer(2)).is_principal() False >>> (c**Integer(3)).is_principal() True
K.<w> = QuadraticField(-23) OK = K.ring_of_integers() C = OK.class_group() P2a, P2b = [P for P, e in (2*K).factor()] c = C(P2a) c.is_principal() (c^2).is_principal() (c^3).is_principal()
- reduce()[source]¶
Return representative for this ideal class that has been reduced using PARI’s pari:idealred.
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: k.<a> = NumberField(x^2 + 20072); G = k.class_group(); G Class group of order 76 with structure C38 x C2 of Number Field in a with defining polynomial x^2 + 20072 sage: I = (G.0)^11; I Fractional ideal class (33, 1/2*a + 8) sage: J = G(I.ideal()^5); J Fractional ideal class (39135393, 1/2*a + 13654253) sage: J.reduce() Fractional ideal class (73, 1/2*a + 47) sage: J == I^5 True
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> k = NumberField(x**Integer(2) + Integer(20072), names=('a',)); (a,) = k._first_ngens(1); G = k.class_group(); G Class group of order 76 with structure C38 x C2 of Number Field in a with defining polynomial x^2 + 20072 >>> I = (G.gen(0))**Integer(11); I Fractional ideal class (33, 1/2*a + 8) >>> J = G(I.ideal()**Integer(5)); J Fractional ideal class (39135393, 1/2*a + 13654253) >>> J.reduce() Fractional ideal class (73, 1/2*a + 47) >>> J == I**Integer(5) True
x = polygen(ZZ, 'x') k.<a> = NumberField(x^2 + 20072); G = k.class_group(); G I = (G.0)^11; I J = G(I.ideal()^5); J J.reduce() J == I^5
- representative_prime(norm_bound=1000)[source]¶
Return a prime ideal in this ideal class.
INPUT:
norm_bound
– (positive integer) upper bound on the norm of primes tested
EXAMPLES:
sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^2 + 31) sage: K.class_number() 3 sage: Cl = K.class_group() sage: [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (2, 1/2*a - 1/2)] sage: K.<a> = NumberField(x^2 + 223) sage: K.class_number() 7 sage: Cl = K.class_group() sage: [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 7/2), Fractional ideal (7, 1/2*a - 1/2), Fractional ideal (7, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 27/2), Fractional ideal (2, 1/2*a - 1/2)]
>>> from sage.all import * >>> x = polygen(ZZ, 'x') >>> K = NumberField(x**Integer(2) + Integer(31), names=('a',)); (a,) = K._first_ngens(1) >>> K.class_number() 3 >>> Cl = K.class_group() >>> [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (2, 1/2*a - 1/2)] >>> K = NumberField(x**Integer(2) + Integer(223), names=('a',)); (a,) = K._first_ngens(1) >>> K.class_number() 7 >>> Cl = K.class_group() >>> [c.representative_prime() for c in Cl] [Fractional ideal (3), Fractional ideal (2, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 7/2), Fractional ideal (7, 1/2*a - 1/2), Fractional ideal (7, 1/2*a + 1/2), Fractional ideal (17, 1/2*a + 27/2), Fractional ideal (2, 1/2*a - 1/2)]
x = polygen(ZZ, 'x') K.<a> = NumberField(x^2 + 31) K.class_number() Cl = K.class_group() [c.representative_prime() for c in Cl] K.<a> = NumberField(x^2 + 223) K.class_number() Cl = K.class_group() [c.representative_prime() for c in Cl]
- class sage.rings.number_field.class_group.SClassGroup(gens_orders, names, number_field, gens, S, proof=True)[source]¶
Bases:
ClassGroup
The \(S\)-class group of a number field.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: S = K.primes_above(2) sage: K.S_class_group(S).gens() # random gens (platform dependent) (Fractional S-ideal class (3, a + 2),) sage: K.<a> = QuadraticField(-974) sage: CS = K.S_class_group(K.primes_above(2)); CS S-class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^2 + 974 with a = 31.20897306865447?*I sage: CS.gen(0) # random Fractional S-ideal class (3, a + 2) sage: CS.gen(1) # random Fractional S-ideal class (31, a + 24)
>>> from sage.all import * >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> S = K.primes_above(Integer(2)) >>> K.S_class_group(S).gens() # random gens (platform dependent) (Fractional S-ideal class (3, a + 2),) >>> K = QuadraticField(-Integer(974), names=('a',)); (a,) = K._first_ngens(1) >>> CS = K.S_class_group(K.primes_above(Integer(2))); CS S-class group of order 18 with structure C6 x C3 of Number Field in a with defining polynomial x^2 + 974 with a = 31.20897306865447?*I >>> CS.gen(Integer(0)) # random Fractional S-ideal class (3, a + 2) >>> CS.gen(Integer(1)) # random Fractional S-ideal class (31, a + 24)
K.<a> = QuadraticField(-14) S = K.primes_above(2) K.S_class_group(S).gens() # random gens (platform dependent) K.<a> = QuadraticField(-974) CS = K.S_class_group(K.primes_above(2)); CS CS.gen(0) # random CS.gen(1) # random
- Element[source]¶
alias of
SFractionalIdealClass
- S()[source]¶
Return the set (or rather tuple) of primes used to define this class group.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2, a) sage: S = (I,) sage: CS = K.S_class_group(S);CS S-class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I sage: T = tuple() sage: CT = K.S_class_group(T);CT S-class group of order 4 with structure C4 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I sage: CS.S() (Fractional ideal (2, a),) sage: CT.S() ()
>>> from sage.all import * >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> I = K.ideal(Integer(2), a) >>> S = (I,) >>> CS = K.S_class_group(S);CS S-class group of order 2 with structure C2 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I >>> T = tuple() >>> CT = K.S_class_group(T);CT S-class group of order 4 with structure C4 of Number Field in a with defining polynomial x^2 + 14 with a = 3.741657386773942?*I >>> CS.S() (Fractional ideal (2, a),) >>> CT.S() ()
K.<a> = QuadraticField(-14) I = K.ideal(2, a) S = (I,) CS = K.S_class_group(S);CS T = tuple() CT = K.S_class_group(T);CT CS.S() CT.S()
- class sage.rings.number_field.class_group.SFractionalIdealClass(parent, element, ideal=None)[source]¶
Bases:
FractionalIdealClass
An \(S\)-fractional ideal class in a number field for a tuple \(S\) of primes.
EXAMPLES:
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2, a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: J = K.ideal(7, a) sage: G = K.ideal(3, a + 1) sage: CS(I) Trivial S-ideal class sage: CS(J) Trivial S-ideal class sage: CS(G) Fractional S-ideal class (3, a + 1)
>>> from sage.all import * >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> I = K.ideal(Integer(2), a) >>> S = (I,) >>> CS = K.S_class_group(S) >>> J = K.ideal(Integer(7), a) >>> G = K.ideal(Integer(3), a + Integer(1)) >>> CS(I) Trivial S-ideal class >>> CS(J) Trivial S-ideal class >>> CS(G) Fractional S-ideal class (3, a + 1)
K.<a> = QuadraticField(-14) I = K.ideal(2, a) S = (I,) CS = K.S_class_group(S) J = K.ideal(7, a) G = K.ideal(3, a + 1) CS(I) CS(J) CS(G)
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2, a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: J = K.ideal(7, a) sage: G = K.ideal(3, a + 1) sage: CS(I).ideal() Fractional ideal (2, a) sage: CS(J).ideal() Fractional ideal (7, a) sage: CS(G).ideal() Fractional ideal (3, a + 1)
>>> from sage.all import * >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> I = K.ideal(Integer(2), a) >>> S = (I,) >>> CS = K.S_class_group(S) >>> J = K.ideal(Integer(7), a) >>> G = K.ideal(Integer(3), a + Integer(1)) >>> CS(I).ideal() Fractional ideal (2, a) >>> CS(J).ideal() Fractional ideal (7, a) >>> CS(G).ideal() Fractional ideal (3, a + 1)
K.<a> = QuadraticField(-14) I = K.ideal(2, a) S = (I,) CS = K.S_class_group(S) J = K.ideal(7, a) G = K.ideal(3, a + 1) CS(I).ideal() CS(J).ideal() CS(G).ideal()
sage: K.<a> = QuadraticField(-14) sage: I = K.ideal(2, a) sage: S = (I,) sage: CS = K.S_class_group(S) sage: G = K.ideal(3, a + 1) sage: CS(G).inverse() Fractional S-ideal class (3, a + 2)
>>> from sage.all import * >>> K = QuadraticField(-Integer(14), names=('a',)); (a,) = K._first_ngens(1) >>> I = K.ideal(Integer(2), a) >>> S = (I,) >>> CS = K.S_class_group(S) >>> G = K.ideal(Integer(3), a + Integer(1)) >>> CS(G).inverse() Fractional S-ideal class (3, a + 2)
K.<a> = QuadraticField(-14) I = K.ideal(2, a) S = (I,) CS = K.S_class_group(S) G = K.ideal(3, a + 1) CS(G).inverse()