Elements of Quotients of Univariate Polynomial Rings

EXAMPLES: We create a quotient of a univariate polynomial ring over Z.

sage: R.<x> = ZZ[]
sage: S.<a> = R.quotient(x^3 + 3*x - 1)
sage: 2 * a^3
-6*a + 2
>>> from sage.all import *
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(3)*x - Integer(1), names=('a',)); (a,) = S._first_ngens(1)
>>> Integer(2) * a**Integer(3)
-6*a + 2
R.<x> = ZZ[]
S.<a> = R.quotient(x^3 + 3*x - 1)
2 * a^3

Next we make a univariate polynomial ring over Z[x]/(x3+3x1).

sage: S1.<y> = S[]
>>> from sage.all import *
>>> S1 = S['y']; (y,) = S1._first_ngens(1)
S1.<y> = S[]

And, we quotient out that by y2+a.

sage: T.<z> = S1.quotient(y^2 + a)
>>> from sage.all import *
>>> T = S1.quotient(y**Integer(2) + a, names=('z',)); (z,) = T._first_ngens(1)
T.<z> = S1.quotient(y^2 + a)

In the quotient z2 is a.

sage: z^2
-a
>>> from sage.all import *
>>> z**Integer(2)
-a
z^2

And since a3=3x+1, we have:

sage: z^6
3*a - 1
>>> from sage.all import *
>>> z**Integer(6)
3*a - 1
z^6

sage: R.<x> = PolynomialRing(Integers(9))
sage: S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)
sage: a^100
7*a^3 + 8*a + 7
>>> from sage.all import *
>>> R = PolynomialRing(Integers(Integer(9)), names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(4) + Integer(2)*x**Integer(3) + x + Integer(2), names=('a',)); (a,) = S._first_ngens(1)
>>> a**Integer(100)
7*a^3 + 8*a + 7
R.<x> = PolynomialRing(Integers(9))
S.<a> = R.quotient(x^4 + 2*x^3 + x + 2)
a^100

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 2)
sage: a
a
sage: a^3
2
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(2), names=('a',)); (a,) = S._first_ngens(1)
>>> a
a
>>> a**Integer(3)
2
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 - 2)
a
a^3

For the purposes of comparison in Sage the quotient element a3 is equal to x3. This is because when the comparison is performed, the right element is coerced into the parent of the left element, and x3 coerces to a3.

sage: a == x
True
sage: a^3 == x^3
True
sage: x^3
x^3
sage: S(x^3)
2
>>> from sage.all import *
>>> a == x
True
>>> a**Integer(3) == x**Integer(3)
True
>>> x**Integer(3)
x^3
>>> S(x**Integer(3))
2
a == x
a^3 == x^3
x^3
S(x^3)

AUTHORS:

  • William Stein

class sage.rings.polynomial.polynomial_quotient_ring_element.PolynomialQuotientRingElement(parent, polynomial, check=True)[source]

Bases: Polynomial_singular_repr, CommutativeRingElement

Element of a quotient of a polynomial ring.

EXAMPLES:

sage: P.<x> = QQ[]
sage: Q.<xi> = P.quo([(x^2 + 1)])
sage: xi^2
-1
sage: singular(xi)                                                              # needs sage.libs.singular
xi
sage: (singular(xi)*singular(xi)).NF('std(0)')                                  # needs sage.libs.singular
-1
>>> from sage.all import *
>>> P = QQ['x']; (x,) = P._first_ngens(1)
>>> Q = P.quo([(x**Integer(2) + Integer(1))], names=('xi',)); (xi,) = Q._first_ngens(1)
>>> xi**Integer(2)
-1
>>> singular(xi)                                                              # needs sage.libs.singular
xi
>>> (singular(xi)*singular(xi)).NF('std(0)')                                  # needs sage.libs.singular
-1
P.<x> = QQ[]
Q.<xi> = P.quo([(x^2 + 1)])
xi^2
singular(xi)                                                              # needs sage.libs.singular
(singular(xi)*singular(xi)).NF('std(0)')                                  # needs sage.libs.singular
charpoly(var)[source]

The characteristic polynomial of this element, which is by definition the characteristic polynomial of right multiplication by this element.

INPUT:

  • var – string; the variable name

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
sage: a.charpoly('X')                                                       # needs sage.modules
X^3 - 389*X^2 + 2*X - 5
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quo(x**Integer(3) -Integer(389)*x**Integer(2) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.charpoly('X')                                                       # needs sage.modules
X^3 - 389*X^2 + 2*X - 5
R.<x> = PolynomialRing(QQ)
S.<a> = R.quo(x^3 -389*x^2 + 2*x - 5)
a.charpoly('X')                                                       # needs sage.modules
fcp(var='x')[source]

Return the factorization of the characteristic polynomial of this element.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
sage: a.fcp('x')                                                            # needs sage.modules
x^3 - 389*x^2 + 2*x - 5
sage: S(1).fcp('y')                                                         # needs sage.modules
(y - 1)^3
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) -Integer(389)*x**Integer(2) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.fcp('x')                                                            # needs sage.modules
x^3 - 389*x^2 + 2*x - 5
>>> S(Integer(1)).fcp('y')                                                         # needs sage.modules
(y - 1)^3
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 -389*x^2 + 2*x - 5)
a.fcp('x')                                                            # needs sage.modules
S(1).fcp('y')                                                         # needs sage.modules
field_extension(names)[source]

Given a polynomial with base ring a quotient ring, return a 3-tuple: a number field defined by the same polynomial, a homomorphism from its parent to the number field sending the generators to one another, and the inverse isomorphism.

INPUT:

  • names – name of generator of output field

OUTPUT:

  • field

  • homomorphism from self to field

  • homomorphism from field to self

EXAMPLES:

sage: # needs sage.rings.number_field
sage: R.<x> = PolynomialRing(QQ)
sage: S.<alpha> = R.quotient(x^3 - 2)
sage: F.<a>, f, g = alpha.field_extension()
sage: F
Number Field in a with defining polynomial x^3 - 2
sage: a = F.gen()
sage: f(alpha)
a
sage: g(a)
alpha
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(2), names=('alpha',)); (alpha,) = S._first_ngens(1)
>>> F, f, g  = alpha.field_extension(names=('a',)); (a,) = F._first_ngens(1)
>>> F
Number Field in a with defining polynomial x^3 - 2
>>> a = F.gen()
>>> f(alpha)
a
>>> g(a)
alpha
# needs sage.rings.number_field
R.<x> = PolynomialRing(QQ)
S.<alpha> = R.quotient(x^3 - 2)
F.<a>, f, g = alpha.field_extension()
F
a = F.gen()
f(alpha)
g(a)

Over a finite field, the corresponding field extension is not a number field:

sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(25,'b')['x']
sage: S.<a> = R.quo(x^3 + 2*x + 1)
sage: F.<b>, g, h = a.field_extension()
sage: h(b^2 + 3)
a^2 + 3
sage: g(x^2 + 2)
b^2 + 2
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(25),'b')['x']; (x,) = R._first_ngens(1)
>>> S = R.quo(x**Integer(3) + Integer(2)*x + Integer(1), names=('a',)); (a,) = S._first_ngens(1)
>>> F, g, h  = a.field_extension(names=('b',)); (b,) = F._first_ngens(1)
>>> h(b**Integer(2) + Integer(3))
a^2 + 3
>>> g(x**Integer(2) + Integer(2))
b^2 + 2
# needs sage.rings.finite_rings
R.<x> = GF(25,'b')['x']
S.<a> = R.quo(x^3 + 2*x + 1)
F.<b>, g, h = a.field_extension()
h(b^2 + 3)
g(x^2 + 2)

We do an example involving a relative number field:

sage: # needs sage.rings.number_field
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: Q.<b> = S.quo(X^3 + 2*X + 1)
sage: F, g, h = b.field_extension('c')
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1)
>>> S = K['X']; (X,) = S._first_ngens(1)
>>> Q = S.quo(X**Integer(3) + Integer(2)*X + Integer(1), names=('b',)); (b,) = Q._first_ngens(1)
>>> F, g, h = b.field_extension('c')
# needs sage.rings.number_field
R.<x> = QQ['x']
K.<a> = NumberField(x^3 - 2)
S.<X> = K['X']
Q.<b> = S.quo(X^3 + 2*X + 1)
F, g, h = b.field_extension('c')

Another more awkward example:

sage: # needs sage.rings.number_field
sage: R.<x> = QQ['x']
sage: K.<a> = NumberField(x^3 - 2)
sage: S.<X> = K['X']
sage: f = (X+a)^3 + 2*(X+a) + 1
sage: f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
sage: Q.<z> = S.quo(f)
sage: F.<w>, g, h = z.field_extension()
sage: c = g(z)
sage: f(c)
0
sage: h(g(z))
z
sage: g(h(w))
w
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> K = NumberField(x**Integer(3) - Integer(2), names=('a',)); (a,) = K._first_ngens(1)
>>> S = K['X']; (X,) = S._first_ngens(1)
>>> f = (X+a)**Integer(3) + Integer(2)*(X+a) + Integer(1)
>>> f
X^3 + 3*a*X^2 + (3*a^2 + 2)*X + 2*a + 3
>>> Q = S.quo(f, names=('z',)); (z,) = Q._first_ngens(1)
>>> F, g, h  = z.field_extension(names=('w',)); (w,) = F._first_ngens(1)
>>> c = g(z)
>>> f(c)
0
>>> h(g(z))
z
>>> g(h(w))
w
# needs sage.rings.number_field
R.<x> = QQ['x']
K.<a> = NumberField(x^3 - 2)
S.<X> = K['X']
f = (X+a)^3 + 2*(X+a) + 1
f
Q.<z> = S.quo(f)
F.<w>, g, h = z.field_extension()
c = g(z)
f(c)
h(g(z))
g(h(w))

AUTHORS:

  • Craig Citro (2006-08-06)

  • William Stein (2006-08-06)

is_unit()[source]

Return True if self is invertible.

Warning

Only implemented when the base ring is a field.

EXAMPLES:

sage: R.<x> = QQ[]
sage: S.<y> = R.quotient(x^2 + 2*x + 1)
sage: (2*y).is_unit()
True
sage: (y + 1).is_unit()
False
>>> from sage.all import *
>>> R = QQ['x']; (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(2) + Integer(2)*x + Integer(1), names=('y',)); (y,) = S._first_ngens(1)
>>> (Integer(2)*y).is_unit()
True
>>> (y + Integer(1)).is_unit()
False
R.<x> = QQ[]
S.<y> = R.quotient(x^2 + 2*x + 1)
(2*y).is_unit()
(y + 1).is_unit()
lift()[source]

Return lift of this polynomial quotient ring element to the unique equivalent polynomial of degree less than the modulus.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 2)
sage: b = a^2 - 3
sage: b
a^2 - 3
sage: b.lift()
x^2 - 3
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(2), names=('a',)); (a,) = S._first_ngens(1)
>>> b = a**Integer(2) - Integer(3)
>>> b
a^2 - 3
>>> b.lift()
x^2 - 3
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 - 2)
b = a^2 - 3
b
b.lift()
list(copy=True)[source]

Return list of the elements of self, of length the same as the degree of the quotient polynomial ring.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a^10
-134*a^2 - 35*a + 300
sage: (a^10).list()
[300, -35, -134]
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a**Integer(10)
-134*a^2 - 35*a + 300
>>> (a**Integer(10)).list()
[300, -35, -134]
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 + 2*x - 5)
a^10
(a^10).list()
matrix()[source]

The matrix of right multiplication by this element on the power basis for the quotient ring.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: a.matrix()                                                            # needs sage.modules
[ 0  1  0]
[ 0  0  1]
[ 5 -2  0]
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.matrix()                                                            # needs sage.modules
[ 0  1  0]
[ 0  0  1]
[ 5 -2  0]
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 + 2*x - 5)
a.matrix()                                                            # needs sage.modules
minpoly()[source]

The minimal polynomial of this element, which is by definition the minimal polynomial of the matrix() of this element.

ALGORITHM: Use minpoly_mod() if possible, otherwise compute the minimal polynomial of the matrix().

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 + 2*x - 5)
sage: (a + 123).minpoly()                                                   # needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
sage: (a + 123).matrix().minpoly()                                          # needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> (a + Integer(123)).minpoly()                                                   # needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
>>> (a + Integer(123)).matrix().minpoly()                                          # needs sage.modules
x^3 - 369*x^2 + 45389*x - 1861118
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 + 2*x - 5)
(a + 123).minpoly()                                                   # needs sage.modules
(a + 123).matrix().minpoly()                                          # needs sage.modules

One useful application of this function is to compute a minimal polynomial of a finite-field element over an intermediate extension, rather than the absolute minimal polynomial over the prime field:

sage: # needs sage.rings.finite_rings
sage: F2.<i> = GF((431,2), modulus=[1,0,1])
sage: F6.<u> = F2.extension(3)
sage: (u + 1).minpoly()                                                     # needs sage.modules
x^6 + 425*x^5 + 19*x^4 + 125*x^3 + 189*x^2 + 239*x + 302
sage: ext = F6.over(F2)                                                     # needs sage.modules
sage: ext(u + 1).minpoly()  # indirect doctest                              # needs sage.modules # random
x^3 + (396*i + 428)*x^2 + (80*i + 39)*x + 9*i + 178
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> F2 = GF((Integer(431),Integer(2)), modulus=[Integer(1),Integer(0),Integer(1)], names=('i',)); (i,) = F2._first_ngens(1)
>>> F6 = F2.extension(Integer(3), names=('u',)); (u,) = F6._first_ngens(1)
>>> (u + Integer(1)).minpoly()                                                     # needs sage.modules
x^6 + 425*x^5 + 19*x^4 + 125*x^3 + 189*x^2 + 239*x + 302
>>> ext = F6.over(F2)                                                     # needs sage.modules
>>> ext(u + Integer(1)).minpoly()  # indirect doctest                              # needs sage.modules # random
x^3 + (396*i + 428)*x^2 + (80*i + 39)*x + 9*i + 178
# needs sage.rings.finite_rings
F2.<i> = GF((431,2), modulus=[1,0,1])
F6.<u> = F2.extension(3)
(u + 1).minpoly()                                                     # needs sage.modules
ext = F6.over(F2)                                                     # needs sage.modules
ext(u + 1).minpoly()  # indirect doctest                              # needs sage.modules # random
norm()[source]

The norm of this element, which is the determinant of the matrix of right multiplication by this element.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.norm()                                                              # needs sage.modules
5
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(389)*x**Integer(2) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.norm()                                                              # needs sage.modules
5
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
a.norm()                                                              # needs sage.modules
rational_reconstruction(*args, **kwargs)[source]

Compute a rational reconstruction of this polynomial quotient ring element to its cover ring.

This method is a thin convenience wrapper around Polynomial.rational_reconstruction().

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: R.<x> = GF(65537)[]
sage: m = (x^11 + 25345*x^10 + 10956*x^9 + 13873*x^8 + 23962*x^7
....:      + 17496*x^6 + 30348*x^5 + 7440*x^4 + 65438*x^3 + 7676*x^2
....:      + 54266*x + 47805)
sage: f = (20437*x^10 + 62630*x^9 + 63241*x^8 + 12820*x^7 + 42171*x^6
....:      + 63091*x^5 + 15288*x^4 + 32516*x^3 + 2181*x^2 + 45236*x + 2447)
sage: f_mod_m = R.quotient(m)(f)
sage: f_mod_m.rational_reconstruction()
(51388*x^5 + 29141*x^4 + 59341*x^3 + 7034*x^2 + 14152*x + 23746,
 x^5 + 15208*x^4 + 19504*x^3 + 20457*x^2 + 11180*x + 28352)
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> R = GF(Integer(65537))['x']; (x,) = R._first_ngens(1)
>>> m = (x**Integer(11) + Integer(25345)*x**Integer(10) + Integer(10956)*x**Integer(9) + Integer(13873)*x**Integer(8) + Integer(23962)*x**Integer(7)
...      + Integer(17496)*x**Integer(6) + Integer(30348)*x**Integer(5) + Integer(7440)*x**Integer(4) + Integer(65438)*x**Integer(3) + Integer(7676)*x**Integer(2)
...      + Integer(54266)*x + Integer(47805))
>>> f = (Integer(20437)*x**Integer(10) + Integer(62630)*x**Integer(9) + Integer(63241)*x**Integer(8) + Integer(12820)*x**Integer(7) + Integer(42171)*x**Integer(6)
...      + Integer(63091)*x**Integer(5) + Integer(15288)*x**Integer(4) + Integer(32516)*x**Integer(3) + Integer(2181)*x**Integer(2) + Integer(45236)*x + Integer(2447))
>>> f_mod_m = R.quotient(m)(f)
>>> f_mod_m.rational_reconstruction()
(51388*x^5 + 29141*x^4 + 59341*x^3 + 7034*x^2 + 14152*x + 23746,
 x^5 + 15208*x^4 + 19504*x^3 + 20457*x^2 + 11180*x + 28352)
# needs sage.rings.finite_rings
R.<x> = GF(65537)[]
m = (x^11 + 25345*x^10 + 10956*x^9 + 13873*x^8 + 23962*x^7
     + 17496*x^6 + 30348*x^5 + 7440*x^4 + 65438*x^3 + 7676*x^2
     + 54266*x + 47805)
f = (20437*x^10 + 62630*x^9 + 63241*x^8 + 12820*x^7 + 42171*x^6
     + 63091*x^5 + 15288*x^4 + 32516*x^3 + 2181*x^2 + 45236*x + 2447)
f_mod_m = R.quotient(m)(f)
f_mod_m.rational_reconstruction()
trace()[source]

The trace of this element, which is the trace of the matrix of right multiplication by this element.

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
sage: a.trace()                                                             # needs sage.modules
389
>>> from sage.all import *
>>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1)
>>> S = R.quotient(x**Integer(3) - Integer(389)*x**Integer(2) + Integer(2)*x - Integer(5), names=('a',)); (a,) = S._first_ngens(1)
>>> a.trace()                                                             # needs sage.modules
389
R.<x> = PolynomialRing(QQ)
S.<a> = R.quotient(x^3 - 389*x^2 + 2*x - 5)
a.trace()                                                             # needs sage.modules