Elements of Quaternion Algebras¶
Sage allows for computation with elements of quaternion algebras over a nearly arbitrary base field of characteristic not 2. Sage also has very highly optimized implementation of arithmetic in rational quaternion algebras and quaternion algebras over number fields.
- class sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_abstract[source]¶
Bases:
AlgebraElement
- coefficient_tuple()[source]¶
Return 4-tuple of coefficients of this quaternion.
EXAMPLES:
sage: K.<x> = QQ['x'] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) sage: a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k sage: type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> sage: a.coefficient_tuple() (1/2*x^2, 2/3*x, -3/4, 5/7)
>>> from sage.all import * >>> K = QQ['x']; (x,) = K._first_ngens(1) >>> Q = QuaternionAlgebra(Frac(K),-Integer(5),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> a = Integer(1)/Integer(2)*x**Integer(2) + Integer(2)/Integer(3)*x*i - Integer(3)/Integer(4)*j + Integer(5)/Integer(7)*k >>> type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> >>> a.coefficient_tuple() (1/2*x^2, 2/3*x, -3/4, 5/7)
K.<x> = QQ['x'] Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k type(a) a.coefficient_tuple()
- conjugate()[source]¶
Return the conjugate of the quaternion: if \(\theta = x + yi + zj + wk\), return \(x - yi - zj - wk\); that is, return theta.reduced_trace() - theta.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: a = 3*i - j + 2 sage: type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: a.conjugate() 2 - 3*i + j
>>> from sage.all import * >>> A = QuaternionAlgebra(QQ,-Integer(5),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> a = Integer(3)*i - j + Integer(2) >>> type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> >>> a.conjugate() 2 - 3*i + j
A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) a = 3*i - j + 2 type(a) a.conjugate()
The “universal” test:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.conjugate() x + (-y)*i + (-z)*j + (-w)*k
>>> from sage.all import * >>> K = QQ['x, y, z, w, a, b']; (x, y, z, w, a, b,) = K._first_ngens(6) >>> Q = QuaternionAlgebra(a,b, names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> theta = x+y*i+z*j+w*k >>> theta.conjugate() x + (-y)*i + (-z)*j + (-w)*k
K.<x,y,z,w,a,b> = QQ[] Q.<i,j,k> = QuaternionAlgebra(a,b) theta = x+y*i+z*j+w*k theta.conjugate()
- is_constant()[source]¶
Return
True
if this quaternion is constant, i.e., has no \(i\), \(j\), or \(k\) term.OUTPUT: boolean
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2) sage: A(1).is_constant() True sage: A(1+i).is_constant() False sage: A(i).is_constant() False
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> A(Integer(1)).is_constant() True >>> A(Integer(1)+i).is_constant() False >>> A(i).is_constant() False
A.<i,j,k> = QuaternionAlgebra(-1,-2) A(1).is_constant() A(1+i).is_constant() A(i).is_constant()
- matrix(action='right')[source]¶
Return the matrix of right or left multiplication of
self
on the basis for the ambient quaternion algebra.In particular, if action is
'right'
(the default), returns the matrix of the mapping sendingx
tox*self
.INPUT:
action
– (default:'right'
)'right'
or'left'
OUTPUT: a matrix
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-3,-19) sage: a = 2/3 -1/2*i + 3/5*j - 4/3*k sage: a.matrix() [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 4 3/5] [-57/5 -76/3 2/3 1/2] [ 76 -57/5 -3/2 2/3] sage: a.matrix() == a.matrix(action='right') True sage: a.matrix(action='left') [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 -4 -3/5] [-57/5 76/3 2/3 -1/2] [ 76 57/5 3/2 2/3] sage: (i*a,j*a,k*a) (3/2 + 2/3*i + 4*j + 3/5*k, -57/5 - 76/3*i + 2/3*j + 1/2*k, 76 - 57/5*i - 3/2*j + 2/3*k) sage: a.matrix(action='foo') Traceback (most recent call last): ... ValueError: action must be either 'left' or 'right'
>>> from sage.all import * >>> Q = QuaternionAlgebra(-Integer(3),-Integer(19), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> a = Integer(2)/Integer(3) -Integer(1)/Integer(2)*i + Integer(3)/Integer(5)*j - Integer(4)/Integer(3)*k >>> a.matrix() [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 4 3/5] [-57/5 -76/3 2/3 1/2] [ 76 -57/5 -3/2 2/3] >>> a.matrix() == a.matrix(action='right') True >>> a.matrix(action='left') [ 2/3 -1/2 3/5 -4/3] [ 3/2 2/3 -4 -3/5] [-57/5 76/3 2/3 -1/2] [ 76 57/5 3/2 2/3] >>> (i*a,j*a,k*a) (3/2 + 2/3*i + 4*j + 3/5*k, -57/5 - 76/3*i + 2/3*j + 1/2*k, 76 - 57/5*i - 3/2*j + 2/3*k) >>> a.matrix(action='foo') Traceback (most recent call last): ... ValueError: action must be either 'left' or 'right'
Q.<i,j,k> = QuaternionAlgebra(-3,-19) a = 2/3 -1/2*i + 3/5*j - 4/3*k a.matrix() a.matrix() == a.matrix(action='right') a.matrix(action='left') (i*a,j*a,k*a) a.matrix(action='foo')
We test over a more generic base field:
sage: K.<x> = QQ['x'] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) sage: a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k sage: type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> sage: a.matrix() [1/2*x^2 2/3*x -3/4 5/7] [-10/3*x 1/2*x^2 -25/7 -3/4] [ 3/2 10/7 1/2*x^2 -2/3*x] [ -50/7 3/2 10/3*x 1/2*x^2]
>>> from sage.all import * >>> K = QQ['x']; (x,) = K._first_ngens(1) >>> Q = QuaternionAlgebra(Frac(K),-Integer(5),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> a = Integer(1)/Integer(2)*x**Integer(2) + Integer(2)/Integer(3)*x*i - Integer(3)/Integer(4)*j + Integer(5)/Integer(7)*k >>> type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_generic'> >>> a.matrix() [1/2*x^2 2/3*x -3/4 5/7] [-10/3*x 1/2*x^2 -25/7 -3/4] [ 3/2 10/7 1/2*x^2 -2/3*x] [ -50/7 3/2 10/3*x 1/2*x^2]
K.<x> = QQ['x'] Q.<i,j,k> = QuaternionAlgebra(Frac(K),-5,-2) a = 1/2*x^2 + 2/3*x*i - 3/4*j + 5/7*k type(a) a.matrix()
- pair(right)[source]¶
Return the result of pairing
self
andright
, which should both be elements of a quaternion algebra. The pairing is(x,y) = (x.conjugate()*y).reduced_trace()
.INPUT:
right
– quaternion
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (1+i+j-2*k).pair(2/3+5*i-3*j+k) -26/3 sage: x = 1+i+j-2*k; y = 2/3+5*i-3*j+k sage: x.pair(y) -26/3 sage: y.pair(x) -26/3 sage: (x.conjugate()*y).reduced_trace() -26/3
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> (Integer(1)+i+j-Integer(2)*k).pair(Integer(2)/Integer(3)+Integer(5)*i-Integer(3)*j+k) -26/3 >>> x = Integer(1)+i+j-Integer(2)*k; y = Integer(2)/Integer(3)+Integer(5)*i-Integer(3)*j+k >>> x.pair(y) -26/3 >>> y.pair(x) -26/3 >>> (x.conjugate()*y).reduced_trace() -26/3
A.<i,j,k>=QuaternionAlgebra(-1,-2) (1+i+j-2*k).pair(2/3+5*i-3*j+k) x = 1+i+j-2*k; y = 2/3+5*i-3*j+k x.pair(y) y.pair(x) (x.conjugate()*y).reduced_trace()
- reduced_characteristic_polynomial(var='x')[source]¶
Return the reduced characteristic polynomial of this quaternion algebra element, which is \(X^2 - tX + n\), where \(t\) is the reduced trace and \(n\) is the reduced norm.
INPUT:
var
– string (default:'x'
); indeterminate of characteristic polynomial
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: i.reduced_characteristic_polynomial() x^2 + 1 sage: j.reduced_characteristic_polynomial() x^2 + 2 sage: (i+j).reduced_characteristic_polynomial() x^2 + 3 sage: (2+j+k).reduced_trace() 4 sage: (2+j+k).reduced_characteristic_polynomial('T') T^2 - 4*T + 8
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> i.reduced_characteristic_polynomial() x^2 + 1 >>> j.reduced_characteristic_polynomial() x^2 + 2 >>> (i+j).reduced_characteristic_polynomial() x^2 + 3 >>> (Integer(2)+j+k).reduced_trace() 4 >>> (Integer(2)+j+k).reduced_characteristic_polynomial('T') T^2 - 4*T + 8
A.<i,j,k>=QuaternionAlgebra(-1,-2) i.reduced_characteristic_polynomial() j.reduced_characteristic_polynomial() (i+j).reduced_characteristic_polynomial() (2+j+k).reduced_trace() (2+j+k).reduced_characteristic_polynomial('T')
- reduced_norm()[source]¶
Return the reduced norm of self: if \(\theta = x + yi + zj + wk\), then \(\theta\) has reduced norm \(x^2 - ay^2 - bz^2 + abw^2\).
EXAMPLES:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.reduced_norm() w^2*a*b - y^2*a - z^2*b + x^2
>>> from sage.all import * >>> K = QQ['x, y, z, w, a, b']; (x, y, z, w, a, b,) = K._first_ngens(6) >>> Q = QuaternionAlgebra(a,b, names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> theta = x+y*i+z*j+w*k >>> theta.reduced_norm() w^2*a*b - y^2*a - z^2*b + x^2
K.<x,y,z,w,a,b> = QQ[] Q.<i,j,k> = QuaternionAlgebra(a,b) theta = x+y*i+z*j+w*k theta.reduced_norm()
- reduced_trace()[source]¶
Return the reduced trace of self: if \(\theta = x + yi + zj + wk\), then \(\theta\) has reduced trace \(2x\).
EXAMPLES:
sage: K.<x,y,z,w,a,b> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(a,b) sage: theta = x+y*i+z*j+w*k sage: theta.reduced_trace() 2*x
>>> from sage.all import * >>> K = QQ['x, y, z, w, a, b']; (x, y, z, w, a, b,) = K._first_ngens(6) >>> Q = QuaternionAlgebra(a,b, names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3) >>> theta = x+y*i+z*j+w*k >>> theta.reduced_trace() 2*x
K.<x,y,z,w,a,b> = QQ[] Q.<i,j,k> = QuaternionAlgebra(a,b) theta = x+y*i+z*j+w*k theta.reduced_trace()
- class sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_number_field[source]¶
Bases:
QuaternionAlgebraElement_abstract
EXAMPLES:
sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K,-a,a+1) # needs sage.symbolic sage: Q([a,-2/3,a^2-1/2,a*2]) # implicit doctest # needs sage.symbolic a + (-2/3)*i + (a^2 - 1/2)*j + 2*a*k
>>> from sage.all import * >>> K = QQ[Integer(2)**(Integer(1)/Integer(3))]; (a,) = K._first_ngens(1); Q = QuaternionAlgebra(K,-a,a+Integer(1), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3)# needs sage.symbolic >>> Q([a,-Integer(2)/Integer(3),a**Integer(2)-Integer(1)/Integer(2),a*Integer(2)]) # implicit doctest # needs sage.symbolic a + (-2/3)*i + (a^2 - 1/2)*j + 2*a*k
K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K,-a,a+1) # needs sage.symbolic Q([a,-2/3,a^2-1/2,a*2]) # implicit doctest # needs sage.symbolic
- class sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field[source]¶
Bases:
QuaternionAlgebraElement_abstract
- coefficient_tuple()[source]¶
Return 4-tuple of rational numbers which are the coefficients of this quaternion.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(-1,-2) sage: (2/3 + 3/5*i + 4/3*j - 5/7*k).coefficient_tuple() (2/3, 3/5, 4/3, -5/7)
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> (Integer(2)/Integer(3) + Integer(3)/Integer(5)*i + Integer(4)/Integer(3)*j - Integer(5)/Integer(7)*k).coefficient_tuple() (2/3, 3/5, 4/3, -5/7)
A.<i,j,k> = QuaternionAlgebra(-1,-2) (2/3 + 3/5*i + 4/3*j - 5/7*k).coefficient_tuple()
- conjugate()[source]¶
Return the conjugate of this quaternion.
EXAMPLES:
sage: A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) sage: a = 3*i - j + 2 sage: type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> sage: a.conjugate() 2 - 3*i + j sage: b = 1 + 1/3*i + 1/5*j - 1/7*k sage: b.conjugate() 1 - 1/3*i - 1/5*j + 1/7*k
>>> from sage.all import * >>> A = QuaternionAlgebra(QQ,-Integer(5),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> a = Integer(3)*i - j + Integer(2) >>> type(a) <class 'sage.algebras.quatalg.quaternion_algebra_element.QuaternionAlgebraElement_rational_field'> >>> a.conjugate() 2 - 3*i + j >>> b = Integer(1) + Integer(1)/Integer(3)*i + Integer(1)/Integer(5)*j - Integer(1)/Integer(7)*k >>> b.conjugate() 1 - 1/3*i - 1/5*j + 1/7*k
A.<i,j,k> = QuaternionAlgebra(QQ,-5,-2) a = 3*i - j + 2 type(a) a.conjugate() b = 1 + 1/3*i + 1/5*j - 1/7*k b.conjugate()
- denominator()[source]¶
Return the lowest common multiple of the denominators of the coefficients of i, j and k for this quaternion.
EXAMPLES:
sage: A = QuaternionAlgebra(QQ, -1, -1) sage: A.<i,j,k> = QuaternionAlgebra(QQ, -1, -1) sage: a = (1/2) + (1/5)*i + (5/12)*j + (1/13)*k sage: a 1/2 + 1/5*i + 5/12*j + 1/13*k sage: a.denominator() 780 sage: lcm([2, 5, 12, 13]) 780 sage: (a * a).denominator() 608400 sage: (a + a).denominator() 390
>>> from sage.all import * >>> A = QuaternionAlgebra(QQ, -Integer(1), -Integer(1)) >>> A = QuaternionAlgebra(QQ, -Integer(1), -Integer(1), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> a = (Integer(1)/Integer(2)) + (Integer(1)/Integer(5))*i + (Integer(5)/Integer(12))*j + (Integer(1)/Integer(13))*k >>> a 1/2 + 1/5*i + 5/12*j + 1/13*k >>> a.denominator() 780 >>> lcm([Integer(2), Integer(5), Integer(12), Integer(13)]) 780 >>> (a * a).denominator() 608400 >>> (a + a).denominator() 390
A = QuaternionAlgebra(QQ, -1, -1) A.<i,j,k> = QuaternionAlgebra(QQ, -1, -1) a = (1/2) + (1/5)*i + (5/12)*j + (1/13)*k a a.denominator() lcm([2, 5, 12, 13]) (a * a).denominator() (a + a).denominator()
- denominator_and_integer_coefficient_tuple()[source]¶
Return 5-tuple d, x, y, z, w, where this rational quaternion is equal to \((x + yi + zj + wk)/d\) and x, y, z, w do not share a common factor with d.
OUTPUT: 5-tuple of Integers
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (2 + 3*i + 4/3*j - 5*k).denominator_and_integer_coefficient_tuple() (3, 6, 9, 4, -15)
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> (Integer(2) + Integer(3)*i + Integer(4)/Integer(3)*j - Integer(5)*k).denominator_and_integer_coefficient_tuple() (3, 6, 9, 4, -15)
A.<i,j,k>=QuaternionAlgebra(-1,-2) (2 + 3*i + 4/3*j - 5*k).denominator_and_integer_coefficient_tuple()
- integer_coefficient_tuple()[source]¶
Return the integer part of this quaternion, ignoring the common denominator.
OUTPUT: 4-tuple of Integers
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: (2 + 3*i + 4/3*j - 5*k).integer_coefficient_tuple() (6, 9, 4, -15)
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> (Integer(2) + Integer(3)*i + Integer(4)/Integer(3)*j - Integer(5)*k).integer_coefficient_tuple() (6, 9, 4, -15)
A.<i,j,k>=QuaternionAlgebra(-1,-2) (2 + 3*i + 4/3*j - 5*k).integer_coefficient_tuple()
- is_constant()[source]¶
Return
True
if this quaternion is constant, i.e., has no \(i\), \(j\), or \(k\) term.OUTPUT: boolean
EXAMPLES:
sage: A.<i,j,k>=QuaternionAlgebra(-1,-2) sage: A(1/3).is_constant() True sage: A(-1).is_constant() True sage: (1+i).is_constant() False sage: j.is_constant() False
>>> from sage.all import * >>> A = QuaternionAlgebra(-Integer(1),-Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = A._first_ngens(3) >>> A(Integer(1)/Integer(3)).is_constant() True >>> A(-Integer(1)).is_constant() True >>> (Integer(1)+i).is_constant() False >>> j.is_constant() False
A.<i,j,k>=QuaternionAlgebra(-1,-2) A(1/3).is_constant() A(-1).is_constant() (1+i).is_constant() j.is_constant()
- reduced_norm()[source]¶
Return the reduced norm of
self
.Given a quaternion \(x+yi+zj+wk\), this is \(x^2 - ay^2 - bz^2 + abw^2\).
EXAMPLES:
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) sage: i.reduced_norm() 5 sage: j.reduced_norm() 2 sage: a = 1/3 + 1/5*i + 1/7*j + k sage: a.reduced_norm() 22826/2205
>>> from sage.all import * >>> K = QuaternionAlgebra(QQ, -Integer(5), -Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = K._first_ngens(3) >>> i.reduced_norm() 5 >>> j.reduced_norm() 2 >>> a = Integer(1)/Integer(3) + Integer(1)/Integer(5)*i + Integer(1)/Integer(7)*j + k >>> a.reduced_norm() 22826/2205
K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) i.reduced_norm() j.reduced_norm() a = 1/3 + 1/5*i + 1/7*j + k a.reduced_norm()
- reduced_trace()[source]¶
Return the reduced trace of
self
.This is \(2x\) if
self
is \(x+iy+zj+wk\).EXAMPLES:
sage: K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) sage: i.reduced_trace() 0 sage: j.reduced_trace() 0 sage: a = 1/3 + 1/5*i + 1/7*j + k sage: a.reduced_trace() 2/3
>>> from sage.all import * >>> K = QuaternionAlgebra(QQ, -Integer(5), -Integer(2), names=('i', 'j', 'k',)); (i, j, k,) = K._first_ngens(3) >>> i.reduced_trace() 0 >>> j.reduced_trace() 0 >>> a = Integer(1)/Integer(3) + Integer(1)/Integer(5)*i + Integer(1)/Integer(7)*j + k >>> a.reduced_trace() 2/3
K.<i,j,k> = QuaternionAlgebra(QQ, -5, -2) i.reduced_trace() j.reduced_trace() a = 1/3 + 1/5*i + 1/7*j + k a.reduced_trace()
- sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*args)[source]¶
EXAMPLES:
sage: K.<X> = QQ[] sage: Q.<i,j,k> = QuaternionAlgebra(Frac(K), -5,-19); z = 2/3 + i*X - X^2*j + X^3*k sage: f, t = z.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) 2/3 + X*i + (-X^2)*j + X^3*k sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) == z True
>>> from sage.all import * >>> K = QQ['X']; (X,) = K._first_ngens(1) >>> Q = QuaternionAlgebra(Frac(K), -Integer(5),-Integer(19), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3); z = Integer(2)/Integer(3) + i*X - X**Integer(2)*j + X**Integer(3)*k >>> f, t = z.__reduce__() >>> sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) 2/3 + X*i + (-X^2)*j + X^3*k >>> sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) == z True
K.<X> = QQ[] Q.<i,j,k> = QuaternionAlgebra(Frac(K), -5,-19); z = 2/3 + i*X - X^2*j + X^3*k f, t = z.__reduce__() sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_generic_v0(*t) == z
- sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*args)[source]¶
EXAMPLES:
sage: # needs sage.symbolic sage: K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K, -3, a); z = i + j sage: f, t = z.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) i + j sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) == z True
>>> from sage.all import * >>> # needs sage.symbolic >>> K = QQ[Integer(2)**(Integer(1)/Integer(3))]; (a,) = K._first_ngens(1); Q = QuaternionAlgebra(K, -Integer(3), a, names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3); z = i + j >>> f, t = z.__reduce__() >>> sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) i + j >>> sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) == z True
# needs sage.symbolic K.<a> = QQ[2^(1/3)]; Q.<i,j,k> = QuaternionAlgebra(K, -3, a); z = i + j f, t = z.__reduce__() sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_number_field_v0(*t) == z
- sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*args)[source]¶
EXAMPLES:
sage: Q.<i,j,k> = QuaternionAlgebra(-5,-19); a = 2/3 + i*5/7 - j*2/5 +19/2 sage: f, t = a.__reduce__() sage: sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*t) 61/6 + 5/7*i - 2/5*j
>>> from sage.all import * >>> Q = QuaternionAlgebra(-Integer(5),-Integer(19), names=('i', 'j', 'k',)); (i, j, k,) = Q._first_ngens(3); a = Integer(2)/Integer(3) + i*Integer(5)/Integer(7) - j*Integer(2)/Integer(5) +Integer(19)/Integer(2) >>> f, t = a.__reduce__() >>> sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*t) 61/6 + 5/7*i - 2/5*j
Q.<i,j,k> = QuaternionAlgebra(-5,-19); a = 2/3 + i*5/7 - j*2/5 +19/2 f, t = a.__reduce__() sage.algebras.quatalg.quaternion_algebra_element.unpickle_QuaternionAlgebraElement_rational_field_v0(*t)