The Sage Preparser¶
EXAMPLES:
Preparsing:
sage: preparse('2/3')
'Integer(2)/Integer(3)'
sage: preparse('2.5')
"RealNumber('2.5')"
sage: preparse('2^3')
'Integer(2)**Integer(3)'
sage: preparse('a^b') # exponent
'a**b'
sage: preparse('a**b')
'a**b'
sage: preparse('G.0') # generator
'G.gen(0)'
sage: preparse('a = 939393R') # raw
'a = 939393'
sage: implicit_multiplication(True)
sage: preparse('a b c in L') # implicit multiplication
'a*b*c in L'
sage: preparse('2e3x + 3exp(y)')
"RealNumber('2e3')*x + Integer(3)*exp(y)"
>>> from sage.all import *
>>> preparse('2/3')
'Integer(2)/Integer(3)'
>>> preparse('2.5')
"RealNumber('2.5')"
>>> preparse('2^3')
'Integer(2)**Integer(3)'
>>> preparse('a^b') # exponent
'a**b'
>>> preparse('a**b')
'a**b'
>>> preparse('G.0') # generator
'G.gen(0)'
>>> preparse('a = 939393R') # raw
'a = 939393'
>>> implicit_multiplication(True)
>>> preparse('a b c in L') # implicit multiplication
'a*b*c in L'
>>> preparse('2e3x + 3exp(y)')
"RealNumber('2e3')*x + Integer(3)*exp(y)"
preparse('2/3') preparse('2.5') preparse('2^3') preparse('a^b') # exponent preparse('a**b') preparse('G.0') # generator preparse('a = 939393R') # raw implicit_multiplication(True) preparse('a b c in L') # implicit multiplication preparse('2e3x + 3exp(y)')
A string with escaped quotes in it (the point here is that the preparser does not get confused by the internal quotes):
sage: ""Yes," he said."
'"Yes," he said.'
sage: s = "\"; s
'\'
>>> from sage.all import *
>>> ""Yes," he said."
'"Yes," he said.'
>>> s = "\"; s
'\'
""Yes," he said." s = "\"; s
A hex literal:
sage: preparse('0x2e3')
'Integer(0x2e3)'
sage: 0xA
10
sage: 0xe
14
>>> from sage.all import *
>>> preparse('0x2e3')
'Integer(0x2e3)'
>>> Integer(0xA)
10
>>> Integer(0xe)
14
preparse('0x2e3') 0xA 0xe
Raw and hex work correctly:
sage: type(0xa1)
<class 'sage.rings.integer.Integer'>
sage: type(0xa1r)
<class 'int'>
sage: type(0Xa1R)
<class 'int'>
>>> from sage.all import *
>>> type(Integer(0xa1))
<class 'sage.rings.integer.Integer'>
>>> type(0xa1)
<class 'int'>
>>> type(0Xa1)
<class 'int'>
type(0xa1) type(0xa1r) type(0Xa1R)
The preparser can handle PEP 515 (see Issue #28490):
sage: 1_000_000 + 3_000
1003000
>>> from sage.all import *
>>> Integer(1_000_000) + Integer(3_000)
1003000
1_000_000 + 3_000
In Sage, methods can also be called on integer and real literals (note that in pure Python this would be a syntax error):
sage: 16.sqrt()
4
sage: 87.factor()
3 * 29
sage: 15.10.sqrt() # needs sage.rings.real_mpfr
3.88587184554509
sage: preparse('87.sqrt()')
'Integer(87).sqrt()'
sage: preparse('15.10.sqrt()')
"RealNumber('15.10').sqrt()"
>>> from sage.all import *
>>> Integer(16).sqrt()
4
>>> Integer(87).factor()
3 * 29
>>> RealNumber('15.10').sqrt() # needs sage.rings.real_mpfr
3.88587184554509
>>> preparse('87.sqrt()')
'Integer(87).sqrt()'
>>> preparse('15.10.sqrt()')
"RealNumber('15.10').sqrt()"
16.sqrt() 87.factor() 15.10.sqrt() # needs sage.rings.real_mpfr preparse('87.sqrt()') preparse('15.10.sqrt()')
Note that calling methods on int literals in pure Python is a syntax error, but Sage allows this for Sage integers and reals, because users frequently request it:
sage: eval('4.__add__(3)')
Traceback (most recent call last):
...
SyntaxError: invalid ...
>>> from sage.all import *
>>> eval('4.__add__(3)')
Traceback (most recent call last):
...
SyntaxError: invalid ...
eval('4.__add__(3)')
Symbolic functional notation:
sage: # needs sage.symbolic
sage: a = 10; f(theta, beta) = theta + beta; b = x^2 + theta
sage: f
(theta, beta) |--> beta + theta
sage: a
10
sage: b
x^2 + theta
sage: f(theta,theta)
2*theta
sage: a = 5; f(x,y) = x*y*sqrt(a) # needs sage.symbolic
sage: f # needs sage.symbolic
(x, y) |--> sqrt(5)*x*y
>>> from sage.all import *
>>> # needs sage.symbolic
>>> a = Integer(10); __tmp__=var("theta,beta"); f = symbolic_expression(theta + beta).function(theta,beta); b = x**Integer(2) + theta
>>> f
(theta, beta) |--> beta + theta
>>> a
10
>>> b
x^2 + theta
>>> f(theta,theta)
2*theta
>>> a = Integer(5); __tmp__=var("x,y"); f = symbolic_expression(x*y*sqrt(a) ).function(x,y)# needs sage.symbolic
>>> f # needs sage.symbolic
(x, y) |--> sqrt(5)*x*y
# needs sage.symbolic a = 10; f(theta, beta) = theta + beta; b = x^2 + theta f a b f(theta,theta) a = 5; f(x,y) = x*y*sqrt(a) # needs sage.symbolic f # needs sage.symbolic
This involves an =-, but should still be turned into a symbolic expression:
sage: preparse('a(x) =- 5')
'__tmp__=var("x"); a = symbolic_expression(- Integer(5)).function(x)'
sage: f(x)=-x # needs sage.symbolic
sage: f(10) # needs sage.symbolic
-10
>>> from sage.all import *
>>> preparse('a(x) =- 5')
'__tmp__=var("x"); a = symbolic_expression(- Integer(5)).function(x)'
>>> __tmp__=var("x"); f = symbolic_expression(-x ).function(x)# needs sage.symbolic
>>> f(Integer(10)) # needs sage.symbolic
-10
preparse('a(x) =- 5') f(x)=-x # needs sage.symbolic f(10) # needs sage.symbolic
This involves -=, which should not be turned into a symbolic expression (of course a(x) is not an identifier, so this will never be valid):
sage: preparse('a(x) -= 5')
'a(x) -= Integer(5)'
>>> from sage.all import *
>>> preparse('a(x) -= 5')
'a(x) -= Integer(5)'
preparse('a(x) -= 5')
Raw literals:
Raw literals are not preparsed, which can be useful from an efficiency point of view. In Sage raw integer and floating literals are followed by an”r” (or “R”) for raw, meaning not preparsed.
We create a raw integer:
sage: a = 393939r
sage: a
393939
sage: type(a)
<class 'int'>
>>> from sage.all import *
>>> a = 393939
>>> a
393939
>>> type(a)
<class 'int'>
a = 393939r a type(a)
We create a raw float:
sage: z = 1.5949r
sage: z
1.5949
sage: type(z)
<class 'float'>
>>> from sage.all import *
>>> z = 1.5949
>>> z
1.5949
>>> type(z)
<class 'float'>
z = 1.5949r z type(z)
You can also use an upper case letter:
sage: z = 3.1415R
sage: z
3.1415
sage: type(z)
<class 'float'>
>>> from sage.all import *
>>> z = 3.1415
>>> z
3.1415
>>> type(z)
<class 'float'>
z = 3.1415R z type(z)
This next example illustrates how raw literals can be very useful in certain cases. We make a list of even integers up to 10000:
sage: v = [ 2*i for i in range(10000)]
>>> from sage.all import *
>>> v = [ Integer(2)*i for i in range(Integer(10000))]
v = [ 2*i for i in range(10000)]
This takes a noticeable fraction of a second (e.g., 0.25 seconds). After preparsing, what Python is really executing is the following:
sage: preparse('v = [ 2*i for i in range(10000)]')
'v = [ Integer(2)*i for i in range(Integer(10000))]'
>>> from sage.all import *
>>> preparse('v = [ 2*i for i in range(10000)]')
'v = [ Integer(2)*i for i in range(Integer(10000))]'
preparse('v = [ 2*i for i in range(10000)]')
If instead we use a raw 2 we get execution that is instant (0.00 seconds):
sage: v = [ 2r * i for i in range(10000r)]
>>> from sage.all import *
>>> v = [ 2 * i for i in range(10000)]
v = [ 2r * i for i in range(10000r)]
Behind the scenes what happens is the following:
sage: preparse('v = [ 2r * i for i in range(10000r)]')
'v = [ 2 * i for i in range(10000)]'
>>> from sage.all import *
>>> preparse('v = [ 2r * i for i in range(10000r)]')
'v = [ 2 * i for i in range(10000)]'
preparse('v = [ 2r * i for i in range(10000r)]')
Warning
The results of the above two expressions are different. The first one computes a list of Sage integers, whereas the second creates a list of Python integers. Python integers are typically much more efficient than Sage integers when they are very small; large Sage integers are much more efficient than Python integers, since they are implemented using the GMP C library.
F-Strings (PEP 498):
Expressions embedded within F-strings are preparsed:
sage: f'{1/3}'
'1/3'
sage: f'{2^3}'
'8'
sage: x = 20
sage: f'{x} in binary is: {x:08b}'
'20 in binary is: 00010100'
sage: f'{list(map(lambda x: x^2, [1, 2, .., 5]))}'
'[1, 4, 9, 16, 25]'
>>> from sage.all import *
>>> f'{Integer(1)/Integer(3)}'
'1/3'
>>> f'{Integer(2)**Integer(3)}'
'8'
>>> x = Integer(20)
>>> f'{x} in binary is: {x:08b}'
'20 in binary is: 00010100'
>>> f'{list(map(lambda x: x**Integer(2), (ellipsis_range(Integer(1), Integer(2),Ellipsis, Integer(5)))))}'
'[1, 4, 9, 16, 25]'
f'{1/3}' f'{2^3}' x = 20 f'{x} in binary is: {x:08b}' f'{list(map(lambda x: x^2, [1, 2, .., 5]))}'
Note that the format specifier is not preparsed. Expressions within it, however, are:
sage: f'{x:10r}'
Traceback (most recent call last):
...
ValueError: Unknown format code 'r' for object of type 'int'
sage: f'{x:{10r}}'
' 20'
>>> from sage.all import *
>>> f'{x:10r}'
Traceback (most recent call last):
...
ValueError: Unknown format code 'r' for object of type 'int'
>>> f'{x:{10}}'
' 20'
f'{x:10r}' f'{x:{10r}}'
Nested F-strings are also supported:
sage: f'{ f"{ 1/3 + 1/6 }" }'
'1/2'
sage: f'''1{ f"2{ f'4{ 2^3 }4' }2" }1'''
'1248421'
>>> from sage.all import *
>>> f'{ f"{ Integer(1)/Integer(3) + Integer(1)/Integer(6) }" }'
'1/2'
>>> f'''1{ f"2{ f'4{ Integer(2)**Integer(3) }4' }2" }1'''
'1248421'
f'{ f"{ 1/3 + 1/6 }" }' f'''1{ f"2{ f'4{ 2^3 }4' }2" }1'''
AUTHORS:
William Stein (2006-02-19): fixed bug when loading .py files
William Stein (2006-03-09): fixed crash in parsing exponentials; precision of real literals now determined by digits of input (like Mathematica)
Joe Wetherell (2006-04-14): added MAGMA-style constructor preparsing
Bobby Moretti (2007-01-25): added preliminary function assignment notation
Robert Bradshaw (2007-09-19): added strip_string_literals, containing_block utility functions. Arrr!; added [1,2,..,n] notation
Robert Bradshaw (2008-01-04): implicit multiplication (off by default)
Robert Bradshaw (2008-09-23): factor out constants
Robert Bradshaw (2009-01): simplify preparser by making it modular and using regular expressions; bug fixes, complex numbers, and binary input
- class sage.repl.preparse.QuoteStack[source]¶
Bases:
object
The preserved state of parsing in
strip_string_literals()
.- peek()[source]¶
Get the frame at the top of the stack or None if empty.
EXAMPLES:
sage: qs = sage.repl.preparse.QuoteStack() sage: qs.peek() sage: qs.push(sage.repl.preparse.QuoteStackFrame('"')) sage: qs.peek() QuoteStackFrame(...delim='"'...)
>>> from sage.all import * >>> qs = sage.repl.preparse.QuoteStack() >>> qs.peek() >>> qs.push(sage.repl.preparse.QuoteStackFrame('"')) >>> qs.peek() QuoteStackFrame(...delim='"'...)
qs = sage.repl.preparse.QuoteStack() qs.peek() qs.push(sage.repl.preparse.QuoteStackFrame('"')) qs.peek()
- pop()[source]¶
Remove and return the frame that was most recently added to the stack.
Raise an
IndexError
if the stack is empty.EXAMPLES:
sage: qs = sage.repl.preparse.QuoteStack() sage: qs.pop() Traceback (most recent call last): ... IndexError: ... sage: qs.push(sage.repl.preparse.QuoteStackFrame('"')) sage: qs.pop() QuoteStackFrame(...delim='"'...)
>>> from sage.all import * >>> qs = sage.repl.preparse.QuoteStack() >>> qs.pop() Traceback (most recent call last): ... IndexError: ... >>> qs.push(sage.repl.preparse.QuoteStackFrame('"')) >>> qs.pop() QuoteStackFrame(...delim='"'...)
qs = sage.repl.preparse.QuoteStack() qs.pop() qs.push(sage.repl.preparse.QuoteStackFrame('"')) qs.pop()
- push(frame)[source]¶
Add a frame to the stack.
If the frame corresponds to an F-string, its delimiter is marked as no longer being a
safe_delimiter()
.EXAMPLES:
sage: qs = sage.repl.preparse.QuoteStack() sage: qs.push(sage.repl.preparse.QuoteStackFrame("'")) sage: len(qs) 1
>>> from sage.all import * >>> qs = sage.repl.preparse.QuoteStack() >>> qs.push(sage.repl.preparse.QuoteStackFrame("'")) >>> len(qs) 1
qs = sage.repl.preparse.QuoteStack() qs.push(sage.repl.preparse.QuoteStackFrame("'")) len(qs)
- safe_delimiter()[source]¶
Return a string delimiter that may be safely inserted into the code output by
strip_string_literals()
, if any.'
is preferred over"
. The triple-quoted versions are never returned since by the time they would be chosen, they would also be invalid.'''
cannot, for example, appear within an F-string delimited by'
.Once marked unsafe, a delimiter is never made safe again, even after the stack frame that used it is popped. It may no longer be applicable to parsing, but it appears somewhere in the processed code, so it is not safe to insert just anywhere. A future enhancement could be to map ranges in the processed code to the delimiter(s) that would be safe to insert there.
EXAMPLES:
sage: from sage.repl.preparse import QuoteStack, QuoteStackFrame sage: s = QuoteStack() sage: s.safe_delimiter() "'" sage: s.push(QuoteStackFrame("'")) sage: s.safe_delimiter() "'" sage: s.pop() QuoteStackFrame(...) sage: s.push(QuoteStackFrame("'", f_string=True)) sage: s.safe_delimiter() '"' sage: s.push(QuoteStackFrame('"', f_string=True)) sage: s.safe_delimiter() is None True
>>> from sage.all import * >>> from sage.repl.preparse import QuoteStack, QuoteStackFrame >>> s = QuoteStack() >>> s.safe_delimiter() "'" >>> s.push(QuoteStackFrame("'")) >>> s.safe_delimiter() "'" >>> s.pop() QuoteStackFrame(...) >>> s.push(QuoteStackFrame("'", f_string=True)) >>> s.safe_delimiter() '"' >>> s.push(QuoteStackFrame('"', f_string=True)) >>> s.safe_delimiter() is None True
from sage.repl.preparse import QuoteStack, QuoteStackFrame s = QuoteStack() s.safe_delimiter() s.push(QuoteStackFrame("'")) s.safe_delimiter() s.pop() s.push(QuoteStackFrame("'", f_string=True)) s.safe_delimiter() s.push(QuoteStackFrame('"', f_string=True)) s.safe_delimiter() is None
- class sage.repl.preparse.QuoteStackFrame(delim, raw=False, f_string=False, braces=0, parens=0, brackets=0, fmt_spec=False, nested_fmt_spec=False)[source]¶
Bases:
SimpleNamespace
The state of a single level of a string literal being parsed.
Only F-strings have more than one level.
- sage.repl.preparse.containing_block(code, idx, delimiters=['()', '[]', '{}'], require_delim=True)[source]¶
Find the code block given by balanced delimiters that contains the position
idx
.INPUT:
code
– stringidx
– integer; a starting positiondelimiters
– list of strings (default: [‘()’, ‘[]’, ‘{}’]); the delimiters to balance. A delimiter must be a single character and no character can at the same time be opening and closing delimiter.require_delim
– boolean (default:True
); whether to raise aSyntaxError
if delimiters are present. If the delimiters are unbalanced, an error will be raised in any case.
OUTPUT:
a 2-tuple
(a,b)
of integers, such thatcode[a:b]
is delimited by balanced delimiters,a<=idx<b
, anda
is maximal andb
is minimal with that property. If that does not exist, aSyntaxError
is raised.If
require_delim
is false anda,b
as above can not be found, then0, len(code)
is returned.
EXAMPLES:
sage: from sage.repl.preparse import containing_block sage: s = "factor(next_prime(L[5]+1))" sage: s[22] '+' sage: start, end = containing_block(s, 22) sage: start, end (17, 25) sage: s[start:end] '(L[5]+1)' sage: s[20] '5' sage: start, end = containing_block(s, 20); s[start:end] '[5]' sage: start, end = containing_block(s, 20, delimiters=['()']); s[start:end] '(L[5]+1)' sage: start, end = containing_block(s, 10); s[start:end] '(next_prime(L[5]+1))'
>>> from sage.all import * >>> from sage.repl.preparse import containing_block >>> s = "factor(next_prime(L[5]+1))" >>> s[Integer(22)] '+' >>> start, end = containing_block(s, Integer(22)) >>> start, end (17, 25) >>> s[start:end] '(L[5]+1)' >>> s[Integer(20)] '5' >>> start, end = containing_block(s, Integer(20)); s[start:end] '[5]' >>> start, end = containing_block(s, Integer(20), delimiters=['()']); s[start:end] '(L[5]+1)' >>> start, end = containing_block(s, Integer(10)); s[start:end] '(next_prime(L[5]+1))'
from sage.repl.preparse import containing_block s = "factor(next_prime(L[5]+1))" s[22] start, end = containing_block(s, 22) start, end s[start:end] s[20] start, end = containing_block(s, 20); s[start:end] start, end = containing_block(s, 20, delimiters=['()']); s[start:end] start, end = containing_block(s, 10); s[start:end]
- sage.repl.preparse.extract_numeric_literals(code)[source]¶
Pulls out numeric literals and assigns them to global variables. This eliminates the need to re-parse and create the literals, e.g., during every iteration of a loop.
INPUT:
code
– string; a block of code
OUTPUT:
a (string, string:string dictionary) 2-tuple; the block with literals replaced by variable names and a mapping from names to the new variables
EXAMPLES:
sage: from sage.repl.preparse import extract_numeric_literals sage: code, nums = extract_numeric_literals("1.2 + 5") sage: print(code) _sage_const_1p2 + _sage_const_5 sage: print(nums) {'_sage_const_1p2': "RealNumber('1.2')", '_sage_const_5': 'Integer(5)'} sage: extract_numeric_literals("[1, 1.1, 1e1, -1e-1, 1.]")[0] '[_sage_const_1 , _sage_const_1p1 , _sage_const_1e1 , -_sage_const_1en1 , _sage_const_1p ]' sage: extract_numeric_literals("[1.sqrt(), 1.2.sqrt(), 1r, 1.2r, R.1, R0.1, (1..5)]")[0] '[_sage_const_1 .sqrt(), _sage_const_1p2 .sqrt(), 1 , 1.2 , R.1, R0.1, (_sage_const_1 .._sage_const_5 )]'
>>> from sage.all import * >>> from sage.repl.preparse import extract_numeric_literals >>> code, nums = extract_numeric_literals("1.2 + 5") >>> print(code) _sage_const_1p2 + _sage_const_5 >>> print(nums) {'_sage_const_1p2': "RealNumber('1.2')", '_sage_const_5': 'Integer(5)'} >>> extract_numeric_literals("[1, 1.1, 1e1, -1e-1, 1.]")[Integer(0)] '[_sage_const_1 , _sage_const_1p1 , _sage_const_1e1 , -_sage_const_1en1 , _sage_const_1p ]' >>> extract_numeric_literals("[1.sqrt(), 1.2.sqrt(), 1r, 1.2r, R.1, R0.1, (1..5)]")[Integer(0)] '[_sage_const_1 .sqrt(), _sage_const_1p2 .sqrt(), 1 , 1.2 , R.1, R0.1, (_sage_const_1 .._sage_const_5 )]'
from sage.repl.preparse import extract_numeric_literals code, nums = extract_numeric_literals("1.2 + 5") print(code) print(nums) extract_numeric_literals("[1, 1.1, 1e1, -1e-1, 1.]")[0] extract_numeric_literals("[1.sqrt(), 1.2.sqrt(), 1r, 1.2r, R.1, R0.1, (1..5)]")[0]
- sage.repl.preparse.handle_encoding_declaration(contents, out)[source]¶
Find a PEP 263-style Python encoding declaration in the first or second line of
contents
. If found, output it toout
and returncontents
without the encoding line; otherwise output a default UTF-8 declaration and returncontents
.EXAMPLES:
sage: from sage.repl.preparse import handle_encoding_declaration sage: import sys sage: c1='# -*- coding: latin-1 -*-\nimport os, sys\n...' sage: c2='# -*- coding: iso-8859-15 -*-\nimport os, sys\n...' sage: c3='# -*- coding: ascii -*-\nimport os, sys\n...' sage: c4='import os, sys\n...' sage: handle_encoding_declaration(c1, sys.stdout) # -*- coding: latin-1 -*- 'import os, sys\n...' sage: handle_encoding_declaration(c2, sys.stdout) # -*- coding: iso-8859-15 -*- 'import os, sys\n...' sage: handle_encoding_declaration(c3, sys.stdout) # -*- coding: ascii -*- 'import os, sys\n...' sage: handle_encoding_declaration(c4, sys.stdout) # -*- coding: utf-8 -*- 'import os, sys\n...'
>>> from sage.all import * >>> from sage.repl.preparse import handle_encoding_declaration >>> import sys >>> c1='# -*- coding: latin-1 -*-\nimport os, sys\n...' >>> c2='# -*- coding: iso-8859-15 -*-\nimport os, sys\n...' >>> c3='# -*- coding: ascii -*-\nimport os, sys\n...' >>> c4='import os, sys\n...' >>> handle_encoding_declaration(c1, sys.stdout) # -*- coding: latin-1 -*- 'import os, sys\n...' >>> handle_encoding_declaration(c2, sys.stdout) # -*- coding: iso-8859-15 -*- 'import os, sys\n...' >>> handle_encoding_declaration(c3, sys.stdout) # -*- coding: ascii -*- 'import os, sys\n...' >>> handle_encoding_declaration(c4, sys.stdout) # -*- coding: utf-8 -*- 'import os, sys\n...'
from sage.repl.preparse import handle_encoding_declaration import sys c1='# -*- coding: latin-1 -*-\nimport os, sys\n...' c2='# -*- coding: iso-8859-15 -*-\nimport os, sys\n...' c3='# -*- coding: ascii -*-\nimport os, sys\n...' c4='import os, sys\n...' handle_encoding_declaration(c1, sys.stdout) handle_encoding_declaration(c2, sys.stdout) handle_encoding_declaration(c3, sys.stdout) handle_encoding_declaration(c4, sys.stdout)
Note
PEP 263 says that Python will interpret a UTF-8 byte order mark as a declaration of UTF-8 encoding, but I do not think we do that; this function only sees a Python string so it cannot account for a BOM.
We default to UTF-8 encoding even though PEP 263 says that Python files should default to ASCII.
AUTHORS:
Lars Fischer
Dan Drake (2010-12-08, rewrite for Issue #10440)
- sage.repl.preparse.implicit_mul(code, level=5)[source]¶
Insert *’s to make implicit multiplication explicit.
INPUT:
code
– string; the code with missing *’slevel
– integer (default: 5); seeimplicit_multiplication()
for a list
OUTPUT: string
EXAMPLES:
sage: from sage.repl.preparse import implicit_mul sage: implicit_mul('(2x^2-4x+3)a0') '(2*x^2-4*x+3)*a0' sage: implicit_mul('a b c in L') 'a*b*c in L' sage: implicit_mul('1r + 1e3 + 5exp(2)') '1r + 1e3 + 5*exp(2)' sage: implicit_mul('f(a)(b)', level=10) 'f(a)*(b)'
>>> from sage.all import * >>> from sage.repl.preparse import implicit_mul >>> implicit_mul('(2x^2-4x+3)a0') '(2*x^2-4*x+3)*a0' >>> implicit_mul('a b c in L') 'a*b*c in L' >>> implicit_mul('1r + 1e3 + 5exp(2)') '1r + 1e3 + 5*exp(2)' >>> implicit_mul('f(a)(b)', level=Integer(10)) 'f(a)*(b)'
from sage.repl.preparse import implicit_mul implicit_mul('(2x^2-4x+3)a0') implicit_mul('a b c in L') implicit_mul('1r + 1e3 + 5exp(2)') implicit_mul('f(a)(b)', level=10)
- sage.repl.preparse.implicit_multiplication(level=None)[source]¶
Turn implicit multiplication on or off, optionally setting a specific
level
.INPUT:
level
– boolean or integer (default: 5); how aggressive to be in placing *’s0 – Do nothing
1 – Numeric followed by alphanumeric
2 – Closing parentheses followed by alphanumeric
3 – Spaces between alphanumeric
10 – Adjacent parentheses (may mangle call statements)
OUTPUT: the current
level
if no argument is givenEXAMPLES:
sage: implicit_multiplication(True) sage: implicit_multiplication() 5 sage: preparse('2x') 'Integer(2)*x' sage: implicit_multiplication(False) sage: preparse('2x') '2x'
>>> from sage.all import * >>> implicit_multiplication(True) >>> implicit_multiplication() 5 >>> preparse('2x') 'Integer(2)*x' >>> implicit_multiplication(False) >>> preparse('2x') '2x'
implicit_multiplication(True) implicit_multiplication() preparse('2x') implicit_multiplication(False) preparse('2x')
Note that the IPython automagic feature cannot be used if
level >= 3
:sage: implicit_multiplication(3) sage: preparse('cd Documents') 'cd*Documents' sage: implicit_multiplication(2) sage: preparse('cd Documents') 'cd Documents' sage: implicit_multiplication(False)
>>> from sage.all import * >>> implicit_multiplication(Integer(3)) >>> preparse('cd Documents') 'cd*Documents' >>> implicit_multiplication(Integer(2)) >>> preparse('cd Documents') 'cd Documents' >>> implicit_multiplication(False)
implicit_multiplication(3) preparse('cd Documents') implicit_multiplication(2) preparse('cd Documents') implicit_multiplication(False)
In this case, one can use the explicit syntax for IPython magics such as
%cd Documents
.
- sage.repl.preparse.isalphadigit_(s)[source]¶
Return
True
ifs
is a non-empty string of alphabetic characters or a non-empty string of digits or just a single_
EXAMPLES:
sage: from sage.repl.preparse import isalphadigit_ sage: isalphadigit_('abc') True sage: isalphadigit_('123') True sage: isalphadigit_('_') True sage: isalphadigit_('a123') False
>>> from sage.all import * >>> from sage.repl.preparse import isalphadigit_ >>> isalphadigit_('abc') True >>> isalphadigit_('123') True >>> isalphadigit_('_') True >>> isalphadigit_('a123') False
from sage.repl.preparse import isalphadigit_ isalphadigit_('abc') isalphadigit_('123') isalphadigit_('_') isalphadigit_('a123')
- sage.repl.preparse.parse_ellipsis(code, preparse_step=True)[source]¶
Preparses [0,2,..,n] notation.
INPUT:
code
– stringpreparse_step
– boolean (default:True
)
OUTPUT: string
EXAMPLES:
sage: from sage.repl.preparse import parse_ellipsis sage: parse_ellipsis("[1,2,..,n]") '(ellipsis_range(1,2,Ellipsis,n))' sage: parse_ellipsis("for i in (f(x) .. L[10]):") 'for i in (ellipsis_iter(f(x) ,Ellipsis, L[10])):' sage: [1.0..2.0] # needs sage.rings.real_mpfr [1.00000000000000, 2.00000000000000]
>>> from sage.all import * >>> from sage.repl.preparse import parse_ellipsis >>> parse_ellipsis("[1,2,..,n]") '(ellipsis_range(1,2,Ellipsis,n))' >>> parse_ellipsis("for i in (f(x) .. L[10]):") 'for i in (ellipsis_iter(f(x) ,Ellipsis, L[10])):' >>> (ellipsis_range(RealNumber('1.0'),Ellipsis,RealNumber('2.0'))) # needs sage.rings.real_mpfr [1.00000000000000, 2.00000000000000]
from sage.repl.preparse import parse_ellipsis parse_ellipsis("[1,2,..,n]") parse_ellipsis("for i in (f(x) .. L[10]):") [1.0..2.0] # needs sage.rings.real_mpfr
- sage.repl.preparse.preparse(line, reset=True, do_time=False, ignore_prompts=False, numeric_literals=True)[source]¶
Preparse a line of input.
INPUT:
line
– stringreset
– boolean (default:True
)do_time
– boolean (default:False
)ignore_prompts
– boolean (default:False
)numeric_literals
– boolean (default:True
)
OUTPUT: string
EXAMPLES:
sage: preparse("ZZ.<x> = ZZ['x']") "ZZ = ZZ['x']; (x,) = ZZ._first_ngens(1)" sage: preparse("ZZ.<x> = ZZ['y']") "ZZ = ZZ['y']; (x,) = ZZ._first_ngens(1)" sage: preparse("ZZ.<x,y> = ZZ[]") "ZZ = ZZ['x, y']; (x, y,) = ZZ._first_ngens(2)" sage: preparse("ZZ.<x,y> = ZZ['u,v']") "ZZ = ZZ['u,v']; (x, y,) = ZZ._first_ngens(2)" sage: preparse("ZZ.<x> = QQ[2^(1/3)]") 'ZZ = QQ[Integer(2)**(Integer(1)/Integer(3))]; (x,) = ZZ._first_ngens(1)' sage: QQ[2^(1/3)] # needs sage.rings.number_field sage.symbolic Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873? sage: preparse("a^b") 'a**b' sage: preparse("a^^b") 'a^b' sage: 8^1 8 sage: 8^^1 9 sage: 9^^1 8 sage: preparse("A \\ B") 'A * BackslashOperator() * B' sage: preparse("A^2 \\ B + C") 'A**Integer(2) * BackslashOperator() * B + C' sage: preparse("a \\ b \\") # There is really only one backslash here, it is just being escaped. 'a * BackslashOperator() * b \\' sage: preparse("time R.<x> = ZZ[]", do_time=True) '__time__ = cputime(); __wall__ = walltime(); R = ZZ[\'x\']; print("Time: CPU {:.2f} s, Wall: {:.2f} s".format(cputime(__time__), walltime(__wall__))); (x,) = R._first_ngens(1)'
>>> from sage.all import * >>> preparse("ZZ.<x> = ZZ['x']") "ZZ = ZZ['x']; (x,) = ZZ._first_ngens(1)" >>> preparse("ZZ.<x> = ZZ['y']") "ZZ = ZZ['y']; (x,) = ZZ._first_ngens(1)" >>> preparse("ZZ.<x,y> = ZZ[]") "ZZ = ZZ['x, y']; (x, y,) = ZZ._first_ngens(2)" >>> preparse("ZZ.<x,y> = ZZ['u,v']") "ZZ = ZZ['u,v']; (x, y,) = ZZ._first_ngens(2)" >>> preparse("ZZ.<x> = QQ[2^(1/3)]") 'ZZ = QQ[Integer(2)**(Integer(1)/Integer(3))]; (x,) = ZZ._first_ngens(1)' >>> QQ[Integer(2)**(Integer(1)/Integer(3))] # needs sage.rings.number_field sage.symbolic Number Field in a with defining polynomial x^3 - 2 with a = 1.259921049894873? >>> preparse("a^b") 'a**b' >>> preparse("a^^b") 'a^b' >>> Integer(8)**Integer(1) 8 >>> Integer(8)^Integer(1) 9 >>> Integer(9)^Integer(1) 8 >>> preparse("A \\ B") 'A * BackslashOperator() * B' >>> preparse("A^2 \\ B + C") 'A**Integer(2) * BackslashOperator() * B + C' >>> preparse("a \\ b \\") # There is really only one backslash here, it is just being escaped. 'a * BackslashOperator() * b \\' >>> preparse("time R.<x> = ZZ[]", do_time=True) '__time__ = cputime(); __wall__ = walltime(); R = ZZ[\'x\']; print("Time: CPU {:.2f} s, Wall: {:.2f} s".format(cputime(__time__), walltime(__wall__))); (x,) = R._first_ngens(1)'
preparse("ZZ.<x> = ZZ['x']") preparse("ZZ.<x> = ZZ['y']") preparse("ZZ.<x,y> = ZZ[]") preparse("ZZ.<x,y> = ZZ['u,v']") preparse("ZZ.<x> = QQ[2^(1/3)]") QQ[2^(1/3)] # needs sage.rings.number_field sage.symbolic preparse("a^b") preparse("a^^b") 8^1 8^^1 9^^1 preparse("A \\ B") preparse("A^2 \\ B + C") preparse("a \\ b \\") # There is really only one backslash here, it is just being escaped. preparse("time R.<x> = ZZ[]", do_time=True)
- sage.repl.preparse.preparse_calculus(code)[source]¶
Supports calculus-like function assignment, e.g., transforms:
f(x,y,z) = sin(x^3 - 4*y) + y^x
into:
__tmp__=var("x,y,z") f = symbolic_expression(sin(x**3 - 4*y) + y**x).function(x,y,z)
AUTHORS:
Bobby Moretti
Initial version - 02/2007
William Stein
Make variables become defined if they are not already defined.
Robert Bradshaw
Rewrite using regular expressions (01/2009)
EXAMPLES:
sage: preparse("f(x) = x^3-x") '__tmp__=var("x"); f = symbolic_expression(x**Integer(3)-x).function(x)' sage: preparse("f(u,v) = u - v") '__tmp__=var("u,v"); f = symbolic_expression(u - v).function(u,v)' sage: preparse("f(x) =-5") '__tmp__=var("x"); f = symbolic_expression(-Integer(5)).function(x)' sage: preparse("f(x) -= 5") 'f(x) -= Integer(5)' sage: preparse("f(x_1, x_2) = x_1^2 - x_2^2") '__tmp__=var("x_1,x_2"); f = symbolic_expression(x_1**Integer(2) - x_2**Integer(2)).function(x_1,x_2)'
>>> from sage.all import * >>> preparse("f(x) = x^3-x") '__tmp__=var("x"); f = symbolic_expression(x**Integer(3)-x).function(x)' >>> preparse("f(u,v) = u - v") '__tmp__=var("u,v"); f = symbolic_expression(u - v).function(u,v)' >>> preparse("f(x) =-5") '__tmp__=var("x"); f = symbolic_expression(-Integer(5)).function(x)' >>> preparse("f(x) -= 5") 'f(x) -= Integer(5)' >>> preparse("f(x_1, x_2) = x_1^2 - x_2^2") '__tmp__=var("x_1,x_2"); f = symbolic_expression(x_1**Integer(2) - x_2**Integer(2)).function(x_1,x_2)'
preparse("f(x) = x^3-x") preparse("f(u,v) = u - v") preparse("f(x) =-5") preparse("f(x) -= 5") preparse("f(x_1, x_2) = x_1^2 - x_2^2")
For simplicity, this function assumes all statements begin and end with a semicolon:
sage: from sage.repl.preparse import preparse_calculus sage: preparse_calculus(";f(t,s)=t^2;") ';__tmp__=var("t,s"); f = symbolic_expression(t^2).function(t,s);' sage: preparse_calculus(";f( t , s ) = t^2;") ';__tmp__=var("t,s"); f = symbolic_expression(t^2).function(t,s);'
>>> from sage.all import * >>> from sage.repl.preparse import preparse_calculus >>> preparse_calculus(";f(t,s)=t^2;") ';__tmp__=var("t,s"); f = symbolic_expression(t^2).function(t,s);' >>> preparse_calculus(";f( t , s ) = t^2;") ';__tmp__=var("t,s"); f = symbolic_expression(t^2).function(t,s);'
from sage.repl.preparse import preparse_calculus preparse_calculus(";f(t,s)=t^2;") preparse_calculus(";f( t , s ) = t^2;")
- sage.repl.preparse.preparse_file(contents, globals=None, numeric_literals=True)[source]¶
Preparse
contents
which is input from a file such as.sage
files.Special attentions are given to numeric literals and load/attach file directives.
Note
Temporarily, if @parallel is in the input, then numeric_literals is always set to False.
INPUT:
contents
– stringglobals
– dictionary orNone
(default:None
); if given, then arguments to load/attach are evaluated in the namespace of this dictionarynumeric_literals
– boolean (default:True
); whether to factor out wrapping of integers and floats, so they do not get created repeatedly inside loops
OUTPUT: string
- sage.repl.preparse.preparse_file_named(name)[source]¶
Preparse file named
name
(presumably a.sage
file), outputting to a temporary file.This returns the temporary file as a
Path
object.EXAMPLES:
sage: from sage.repl.preparse import preparse_file_named sage: tmpf = tmp_filename(ext='.sage') sage: with open(tmpf, 'w') as f: ....: out = f.write("a = 2") sage: preparse_file_named(tmpf) PosixPath('...sage.py')
>>> from sage.all import * >>> from sage.repl.preparse import preparse_file_named >>> tmpf = tmp_filename(ext='.sage') >>> with open(tmpf, 'w') as f: ... out = f.write("a = 2") >>> preparse_file_named(tmpf) PosixPath('...sage.py')
from sage.repl.preparse import preparse_file_named tmpf = tmp_filename(ext='.sage') with open(tmpf, 'w') as f: out = f.write("a = 2") preparse_file_named(tmpf)
- sage.repl.preparse.preparse_file_named_to_stream(name, out)[source]¶
Preparse file named code{name} (presumably a .sage file), outputting to stream code{out}.
- sage.repl.preparse.preparse_generators(code)[source]¶
Parse generator syntax, converting:
obj.<gen0,gen1,...,genN> = objConstructor(...)
into:
obj = objConstructor(..., names=("gen0", "gen1", ..., "genN")) (gen0, gen1, ..., genN,) = obj.gens()
and:
obj.<gen0,gen1,...,genN> = R[interior]
into:
obj = R[interior]; (gen0, gen1, ..., genN,) = obj.gens()
INPUT:
code
– string
OUTPUT: string
LIMITATIONS:
The entire constructor must be on one line.
AUTHORS:
2006-04-14: Joe Wetherell (jlwether@alum.mit.edu)
Initial version.
2006-04-17: William Stein
Improvements to allow multiple statements.
2006-05-01: William
Fix bug that Joe found.
2006-10-31: William
Fix so obj does not have to be mutated.
2009-01-27: Robert Bradshaw
Rewrite using regular expressions
- sage.repl.preparse.preparse_numeric_literals(code, extract=False, quotes="'")[source]¶
Preparse numerical literals into their Sage counterparts, e.g. Integer, RealNumber, and ComplexNumber.
INPUT:
code
– string; a code block to preparseextract
– boolean (default:False
); whether to create names for the literals and return a dictionary of name-construction pairsquotes
– string (default:"'"
); used to surround string arguments to RealNumber and ComplexNumber. IfNone
, will rebuild the string using a list of its Unicode code-points.
OUTPUT:
a string or (string, string:string dictionary) 2-tuple; the preparsed block and, if
extract
is True, the name-construction mapping
EXAMPLES:
sage: from sage.repl.preparse import preparse_numeric_literals sage: preparse_numeric_literals("5") 'Integer(5)' sage: preparse_numeric_literals("5j") "ComplexNumber(0, '5')" sage: preparse_numeric_literals("5jr") '5J' sage: preparse_numeric_literals("5l") '5' sage: preparse_numeric_literals("5L") '5' sage: preparse_numeric_literals("1.5") "RealNumber('1.5')" sage: preparse_numeric_literals("1.5j") "ComplexNumber(0, '1.5')" sage: preparse_numeric_literals(".5j") "ComplexNumber(0, '.5')" sage: preparse_numeric_literals("5e9j") "ComplexNumber(0, '5e9')" sage: preparse_numeric_literals("5.") "RealNumber('5.')" sage: preparse_numeric_literals("5.j") "ComplexNumber(0, '5.')" sage: preparse_numeric_literals("5.foo()") 'Integer(5).foo()' sage: preparse_numeric_literals("5.5.foo()") "RealNumber('5.5').foo()" sage: preparse_numeric_literals("5.5j.foo()") "ComplexNumber(0, '5.5').foo()" sage: preparse_numeric_literals("5j.foo()") "ComplexNumber(0, '5').foo()" sage: preparse_numeric_literals("1.exp()") 'Integer(1).exp()' sage: preparse_numeric_literals("1e+10") "RealNumber('1e+10')" sage: preparse_numeric_literals("0x0af") 'Integer(0x0af)' sage: preparse_numeric_literals("0x10.sqrt()") 'Integer(0x10).sqrt()' sage: preparse_numeric_literals('0o100') 'Integer(0o100)' sage: preparse_numeric_literals('0b111001') 'Integer(0b111001)' sage: preparse_numeric_literals('0xe') 'Integer(0xe)' sage: preparse_numeric_literals('0xEAR') '0xEA' sage: preparse_numeric_literals('0x1012Fae') 'Integer(0x1012Fae)' sage: preparse_numeric_literals('042') 'Integer(42)' sage: preparse_numeric_literals('000042') 'Integer(42)'
>>> from sage.all import * >>> from sage.repl.preparse import preparse_numeric_literals >>> preparse_numeric_literals("5") 'Integer(5)' >>> preparse_numeric_literals("5j") "ComplexNumber(0, '5')" >>> preparse_numeric_literals("5jr") '5J' >>> preparse_numeric_literals("5l") '5' >>> preparse_numeric_literals("5L") '5' >>> preparse_numeric_literals("1.5") "RealNumber('1.5')" >>> preparse_numeric_literals("1.5j") "ComplexNumber(0, '1.5')" >>> preparse_numeric_literals(".5j") "ComplexNumber(0, '.5')" >>> preparse_numeric_literals("5e9j") "ComplexNumber(0, '5e9')" >>> preparse_numeric_literals("5.") "RealNumber('5.')" >>> preparse_numeric_literals("5.j") "ComplexNumber(0, '5.')" >>> preparse_numeric_literals("5.foo()") 'Integer(5).foo()' >>> preparse_numeric_literals("5.5.foo()") "RealNumber('5.5').foo()" >>> preparse_numeric_literals("5.5j.foo()") "ComplexNumber(0, '5.5').foo()" >>> preparse_numeric_literals("5j.foo()") "ComplexNumber(0, '5').foo()" >>> preparse_numeric_literals("1.exp()") 'Integer(1).exp()' >>> preparse_numeric_literals("1e+10") "RealNumber('1e+10')" >>> preparse_numeric_literals("0x0af") 'Integer(0x0af)' >>> preparse_numeric_literals("0x10.sqrt()") 'Integer(0x10).sqrt()' >>> preparse_numeric_literals('0o100') 'Integer(0o100)' >>> preparse_numeric_literals('0b111001') 'Integer(0b111001)' >>> preparse_numeric_literals('0xe') 'Integer(0xe)' >>> preparse_numeric_literals('0xEAR') '0xEA' >>> preparse_numeric_literals('0x1012Fae') 'Integer(0x1012Fae)' >>> preparse_numeric_literals('042') 'Integer(42)' >>> preparse_numeric_literals('000042') 'Integer(42)'
from sage.repl.preparse import preparse_numeric_literals preparse_numeric_literals("5") preparse_numeric_literals("5j") preparse_numeric_literals("5jr") preparse_numeric_literals("5l") preparse_numeric_literals("5L") preparse_numeric_literals("1.5") preparse_numeric_literals("1.5j") preparse_numeric_literals(".5j") preparse_numeric_literals("5e9j") preparse_numeric_literals("5.") preparse_numeric_literals("5.j") preparse_numeric_literals("5.foo()") preparse_numeric_literals("5.5.foo()") preparse_numeric_literals("5.5j.foo()") preparse_numeric_literals("5j.foo()") preparse_numeric_literals("1.exp()") preparse_numeric_literals("1e+10") preparse_numeric_literals("0x0af") preparse_numeric_literals("0x10.sqrt()") preparse_numeric_literals('0o100') preparse_numeric_literals('0b111001') preparse_numeric_literals('0xe') preparse_numeric_literals('0xEAR') preparse_numeric_literals('0x1012Fae') preparse_numeric_literals('042') preparse_numeric_literals('000042')
Test underscores as digit separators (PEP 515, https://www.python.org/dev/peps/pep-0515/):
sage: preparse_numeric_literals('123_456') 'Integer(123_456)' sage: preparse_numeric_literals('123_456.78_9_0') "RealNumber('123_456.78_9_0')" sage: preparse_numeric_literals('0b11_011') 'Integer(0b11_011)' sage: preparse_numeric_literals('0o76_321') 'Integer(0o76_321)' sage: preparse_numeric_literals('0xaa_aaa') 'Integer(0xaa_aaa)' sage: preparse_numeric_literals('1_3.2_5e-2_2') "RealNumber('1_3.2_5e-2_2')" sage: for f in ["1_1.", "11_2.", "1.1_1", "1_1.1_1", ".1_1", ".1_1e1_1", ".1e1_1", ....: "1e12_3", "1_1e1_1", "1.1_3e1_2", "1_1e1_1", "1e1", "1.e1_1", ....: "1.0", "1_1.0"]: ....: preparse_numeric_literals(f) ....: assert preparse(f) == preparse_numeric_literals(f), f "RealNumber('1_1.')" "RealNumber('11_2.')" "RealNumber('1.1_1')" "RealNumber('1_1.1_1')" "RealNumber('.1_1')" "RealNumber('.1_1e1_1')" "RealNumber('.1e1_1')" "RealNumber('1e12_3')" "RealNumber('1_1e1_1')" "RealNumber('1.1_3e1_2')" "RealNumber('1_1e1_1')" "RealNumber('1e1')" "RealNumber('1.e1_1')" "RealNumber('1.0')" "RealNumber('1_1.0')"
>>> from sage.all import * >>> preparse_numeric_literals('123_456') 'Integer(123_456)' >>> preparse_numeric_literals('123_456.78_9_0') "RealNumber('123_456.78_9_0')" >>> preparse_numeric_literals('0b11_011') 'Integer(0b11_011)' >>> preparse_numeric_literals('0o76_321') 'Integer(0o76_321)' >>> preparse_numeric_literals('0xaa_aaa') 'Integer(0xaa_aaa)' >>> preparse_numeric_literals('1_3.2_5e-2_2') "RealNumber('1_3.2_5e-2_2')" >>> for f in ["1_1.", "11_2.", "1.1_1", "1_1.1_1", ".1_1", ".1_1e1_1", ".1e1_1", ... "1e12_3", "1_1e1_1", "1.1_3e1_2", "1_1e1_1", "1e1", "1.e1_1", ... "1.0", "1_1.0"]: ... preparse_numeric_literals(f) ... assert preparse(f) == preparse_numeric_literals(f), f "RealNumber('1_1.')" "RealNumber('11_2.')" "RealNumber('1.1_1')" "RealNumber('1_1.1_1')" "RealNumber('.1_1')" "RealNumber('.1_1e1_1')" "RealNumber('.1e1_1')" "RealNumber('1e12_3')" "RealNumber('1_1e1_1')" "RealNumber('1.1_3e1_2')" "RealNumber('1_1e1_1')" "RealNumber('1e1')" "RealNumber('1.e1_1')" "RealNumber('1.0')" "RealNumber('1_1.0')"
preparse_numeric_literals('123_456') preparse_numeric_literals('123_456.78_9_0') preparse_numeric_literals('0b11_011') preparse_numeric_literals('0o76_321') preparse_numeric_literals('0xaa_aaa') preparse_numeric_literals('1_3.2_5e-2_2') for f in ["1_1.", "11_2.", "1.1_1", "1_1.1_1", ".1_1", ".1_1e1_1", ".1e1_1", "1e12_3", "1_1e1_1", "1.1_3e1_2", "1_1e1_1", "1e1", "1.e1_1", "1.0", "1_1.0"]: preparse_numeric_literals(f) assert preparse(f) == preparse_numeric_literals(f), f
Having consecutive underscores is not valid Python syntax, so it is not preparsed, and similarly with a trailing underscore:
sage: preparse_numeric_literals('123__45') '123__45' sage: 123__45 Traceback (most recent call last): ... SyntaxError: invalid ... sage: preparse_numeric_literals('3040_1_') '3040_1_' sage: 3040_1_ Traceback (most recent call last): ... SyntaxError: invalid ...
>>> from sage.all import * >>> preparse_numeric_literals('123__45') '123__45' >>> 123__45 Traceback (most recent call last): ... SyntaxError: invalid ... >>> preparse_numeric_literals('3040_1_') '3040_1_' >>> 3040_1_ Traceback (most recent call last): ... SyntaxError: invalid ...
preparse_numeric_literals('123__45') 123__45 preparse_numeric_literals('3040_1_') 3040_1_
Using the
quotes
parameter:sage: preparse_numeric_literals('5j', quotes='"') 'ComplexNumber(0, "5")' sage: preparse_numeric_literals('3.14', quotes="'''") "RealNumber('''3.14''')" sage: preparse_numeric_literals('3.14', quotes=None) 'RealNumber(str().join(map(chr, [51, 46, 49, 52])))' sage: preparse_numeric_literals('5j', quotes=None) 'ComplexNumber(0, str().join(map(chr, [53])))'
>>> from sage.all import * >>> preparse_numeric_literals('5j', quotes='"') 'ComplexNumber(0, "5")' >>> preparse_numeric_literals('3.14', quotes="'''") "RealNumber('''3.14''')" >>> preparse_numeric_literals('3.14', quotes=None) 'RealNumber(str().join(map(chr, [51, 46, 49, 52])))' >>> preparse_numeric_literals('5j', quotes=None) 'ComplexNumber(0, str().join(map(chr, [53])))'
preparse_numeric_literals('5j', quotes='"') preparse_numeric_literals('3.14', quotes="'''") preparse_numeric_literals('3.14', quotes=None) preparse_numeric_literals('5j', quotes=None)
- sage.repl.preparse.strip_prompts(line)[source]¶
Remove leading sage: and >>> prompts so that pasting of examples from the documentation works.
INPUT:
line
– string to process
OUTPUT: string stripped of leading prompts
EXAMPLES:
sage: from sage.repl.preparse import strip_prompts sage: strip_prompts("sage: 2 + 2") '2 + 2' sage: strip_prompts(">>> 3 + 2") '3 + 2' sage: strip_prompts(" 2 + 4") ' 2 + 4'
>>> from sage.all import * >>> from sage.repl.preparse import strip_prompts >>> strip_prompts("sage: 2 + 2") '2 + 2' >>> strip_prompts(">>> 3 + 2") '3 + 2' >>> strip_prompts(" 2 + 4") ' 2 + 4'
from sage.repl.preparse import strip_prompts strip_prompts("sage: 2 + 2") strip_prompts(">>> 3 + 2") strip_prompts(" 2 + 4")
- sage.repl.preparse.strip_string_literals(code, state=None)[source]¶
Return a string with all literal quotes replaced with labels and a dictionary of labels for re-substitution.
This makes parsing easier.
INPUT:
code
– string; the inputstate
– aQuoteStack
(default:None
); state with which to continue processing, e.g., across multiple calls to this function
OUTPUT:
a 3-tuple of the processed code, the dictionary of labels, and any accumulated state
EXAMPLES:
sage: from sage.repl.preparse import strip_string_literals sage: s, literals, state = strip_string_literals(r'''['a', "b", 'c', "d\""]''') sage: s '[%(L1)s, %(L2)s, %(L3)s, %(L4)s]' sage: literals {'L1': "'a'", 'L2': '"b"', 'L3': "'c'", 'L4': '"d\\""'} sage: print(s % literals) ['a', "b", 'c', "d\""] sage: print(strip_string_literals(r'-"\\\""-"\\"-')[0]) -%(L1)s-%(L2)s-
>>> from sage.all import * >>> from sage.repl.preparse import strip_string_literals >>> s, literals, state = strip_string_literals(r'''['a', "b", 'c', "d\""]''') >>> s '[%(L1)s, %(L2)s, %(L3)s, %(L4)s]' >>> literals {'L1': "'a'", 'L2': '"b"', 'L3': "'c'", 'L4': '"d\\""'} >>> print(s % literals) ['a', "b", 'c', "d\""] >>> print(strip_string_literals(r'-"\\\""-"\\"-')[Integer(0)]) -%(L1)s-%(L2)s-
from sage.repl.preparse import strip_string_literals s, literals, state = strip_string_literals(r'''['a', "b", 'c', "d\""]''') s literals print(s % literals) print(strip_string_literals(r'-"\\\""-"\\"-')[0])
Triple-quotes are handled as well:
sage: s, literals, state = strip_string_literals("[a, '''b''', c, '']") sage: s '[a, %(L1)s, c, %(L2)s]' sage: print(s % literals) [a, '''b''', c, '']
>>> from sage.all import * >>> s, literals, state = strip_string_literals("[a, '''b''', c, '']") >>> s '[a, %(L1)s, c, %(L2)s]' >>> print(s % literals) [a, '''b''', c, '']
s, literals, state = strip_string_literals("[a, '''b''', c, '']") s print(s % literals)
Comments are substitute too:
sage: s, literals, state = strip_string_literals("code '#' # ccc 't'"); s 'code %(L1)s #%(L2)s' sage: s % literals "code '#' # ccc 't'"
>>> from sage.all import * >>> s, literals, state = strip_string_literals("code '#' # ccc 't'"); s 'code %(L1)s #%(L2)s' >>> s % literals "code '#' # ccc 't'"
s, literals, state = strip_string_literals("code '#' # ccc 't'"); s s % literals
A state is returned so one can break strings across multiple calls to this function:
sage: s, literals, state = strip_string_literals('s = "some'); s 's = %(L1)s' sage: s, literals, state = strip_string_literals('thing" * 5', state); s '%(L1)s * 5'
>>> from sage.all import * >>> s, literals, state = strip_string_literals('s = "some'); s 's = %(L1)s' >>> s, literals, state = strip_string_literals('thing" * 5', state); s '%(L1)s * 5'
s, literals, state = strip_string_literals('s = "some'); s s, literals, state = strip_string_literals('thing" * 5', state); s