Graded free resolutions¶
Let \(R\) be a commutative ring. A graded free resolution of a graded
\(R\)-module \(M\) is a free resolution
such that all maps are homogeneous module homomorphisms.
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ)
sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2])
sage: r = I.graded_free_resolution(algorithm='minimal')
sage: r
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
sage: I.graded_free_resolution(algorithm='shreyer')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
sage: I.graded_free_resolution(algorithm='standard')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
sage: I.graded_free_resolution(algorithm='heuristic')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
>>> from sage.all import *
>>> S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4)
>>> I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)])
>>> r = I.graded_free_resolution(algorithm='minimal')
>>> r
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
>>> I.graded_free_resolution(algorithm='shreyer')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
>>> I.graded_free_resolution(algorithm='standard')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
>>> I.graded_free_resolution(algorithm='heuristic')
S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
S.<x,y,z,w> = PolynomialRing(QQ) I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) r = I.graded_free_resolution(algorithm='minimal') r I.graded_free_resolution(algorithm='shreyer') I.graded_free_resolution(algorithm='standard') I.graded_free_resolution(algorithm='heuristic')
sage: d = r.differential(2)
sage: d
Free module morphism defined as left-multiplication by the matrix
[ y x]
[-z -y]
[ w z]
Domain: Ambient free module of rank 2 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
Codomain: Ambient free module of rank 3 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
sage: d.image()
Submodule of Ambient free module of rank 3 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
Generated by the rows of the matrix:
[ y -z w]
[ x -y z]
sage: m = d.image()
sage: m.graded_free_resolution(shifts=(2,2,2))
S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
>>> from sage.all import *
>>> d = r.differential(Integer(2))
>>> d
Free module morphism defined as left-multiplication by the matrix
[ y x]
[-z -y]
[ w z]
Domain: Ambient free module of rank 2 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
Codomain: Ambient free module of rank 3 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
>>> d.image()
Submodule of Ambient free module of rank 3 over the integral domain
Multivariate Polynomial Ring in x, y, z, w over Rational Field
Generated by the rows of the matrix:
[ y -z w]
[ x -y z]
>>> m = d.image()
>>> m.graded_free_resolution(shifts=(Integer(2),Integer(2),Integer(2)))
S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0
d = r.differential(2) d d.image() m = d.image() m.graded_free_resolution(shifts=(2,2,2))
An example of multigraded resolution from Example 9.1 of [MilStu2005]:
sage: R.<s,t> = QQ[]
sage: S.<a,b,c,d> = QQ[]
sage: phi = S.hom([s, s*t, s*t^2, s*t^3])
sage: I = phi.kernel(); I # needs sage.rings.function_field
Ideal (c^2 - b*d, b*c - a*d, b^2 - a*c) of
Multivariate Polynomial Ring in a, b, c, d over Rational Field
sage: P3 = ProjectiveSpace(S)
sage: C = P3.subscheme(I) # twisted cubic curve
sage: r = I.graded_free_resolution(degrees=[(1,0), (1,1), (1,2), (1,3)])
sage: r
S((0, 0)) <-- S((-2, -4))⊕S((-2, -3))⊕S((-2, -2)) <-- S((-3, -5))⊕S((-3, -4)) <-- 0
sage: r.K_polynomial(names='s,t')
s^3*t^5 + s^3*t^4 - s^2*t^4 - s^2*t^3 - s^2*t^2 + 1
>>> from sage.all import *
>>> R = QQ['s, t']; (s, t,) = R._first_ngens(2)
>>> S = QQ['a, b, c, d']; (a, b, c, d,) = S._first_ngens(4)
>>> phi = S.hom([s, s*t, s*t**Integer(2), s*t**Integer(3)])
>>> I = phi.kernel(); I # needs sage.rings.function_field
Ideal (c^2 - b*d, b*c - a*d, b^2 - a*c) of
Multivariate Polynomial Ring in a, b, c, d over Rational Field
>>> P3 = ProjectiveSpace(S)
>>> C = P3.subscheme(I) # twisted cubic curve
>>> r = I.graded_free_resolution(degrees=[(Integer(1),Integer(0)), (Integer(1),Integer(1)), (Integer(1),Integer(2)), (Integer(1),Integer(3))])
>>> r
S((0, 0)) <-- S((-2, -4))⊕S((-2, -3))⊕S((-2, -2)) <-- S((-3, -5))⊕S((-3, -4)) <-- 0
>>> r.K_polynomial(names='s,t')
s^3*t^5 + s^3*t^4 - s^2*t^4 - s^2*t^3 - s^2*t^2 + 1
R.<s,t> = QQ[] S.<a,b,c,d> = QQ[] phi = S.hom([s, s*t, s*t^2, s*t^3]) I = phi.kernel(); I # needs sage.rings.function_field P3 = ProjectiveSpace(S) C = P3.subscheme(I) # twisted cubic curve r = I.graded_free_resolution(degrees=[(1,0), (1,1), (1,2), (1,3)]) r r.K_polynomial(names='s,t')
AUTHORS:
Kwankyu Lee (2022-05): initial version
Travis Scrimshaw (2022-08-23): refactored for free module inputs
- class sage.homology.graded_resolution.GradedFiniteFreeResolution(module, degrees=None, shifts=None, name='S', **kwds)[source]¶
Bases:
FiniteFreeResolution
Graded finite free resolutions.
INPUT:
module
– a homogeneous submodule of a free module \(M\) of rank \(n\) over \(S\) or a homogeneous ideal of a multivariate polynomial ring \(S\)degrees
– (default: a list with all entries \(1\)) a list of integers or integer vectors giving degrees of variables of \(S\)shifts
– list of integers or integer vectors giving shifts of degrees of \(n\) summands of the free module \(M\); this is a list of zero degrees of length \(n\) by defaultname
– string; name of the base ring
- K_polynomial(names=None)[source]¶
Return the K-polynomial of this resolution.
INPUT:
names
– (optional) a string of names of the variables of the K-polynomial
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r.K_polynomial() 2*t^3 - 3*t^2 + 1
>>> from sage.all import * >>> S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4) >>> I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)]) >>> r = I.graded_free_resolution() >>> r.K_polynomial() 2*t^3 - 3*t^2 + 1
S.<x,y,z,w> = PolynomialRing(QQ) I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) r = I.graded_free_resolution() r.K_polynomial()
- betti(i, a=None)[source]¶
Return the \(i\)-th Betti number in degree \(a\).
INPUT:
i
– nonnegative integera
– a degree; ifNone
, return Betti numbers in all degrees
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r.betti(0) {0: 1} sage: r.betti(1) {2: 3} sage: r.betti(2) {3: 2} sage: r.betti(1, 0) 0 sage: r.betti(1, 1) 0 sage: r.betti(1, 2) 3
>>> from sage.all import * >>> S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4) >>> I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)]) >>> r = I.graded_free_resolution() >>> r.betti(Integer(0)) {0: 1} >>> r.betti(Integer(1)) {2: 3} >>> r.betti(Integer(2)) {3: 2} >>> r.betti(Integer(1), Integer(0)) 0 >>> r.betti(Integer(1), Integer(1)) 0 >>> r.betti(Integer(1), Integer(2)) 3
S.<x,y,z,w> = PolynomialRing(QQ) I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) r = I.graded_free_resolution() r.betti(0) r.betti(1) r.betti(2) r.betti(1, 0) r.betti(1, 1) r.betti(1, 2)
- shifts(i)[source]¶
Return the shifts of
self
.EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution() sage: r.shifts(0) [0] sage: r.shifts(1) [2, 2, 2] sage: r.shifts(2) [3, 3] sage: r.shifts(3) []
>>> from sage.all import * >>> S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4) >>> I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)]) >>> r = I.graded_free_resolution() >>> r.shifts(Integer(0)) [0] >>> r.shifts(Integer(1)) [2, 2, 2] >>> r.shifts(Integer(2)) [3, 3] >>> r.shifts(Integer(3)) []
S.<x,y,z,w> = PolynomialRing(QQ) I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) r = I.graded_free_resolution() r.shifts(0) r.shifts(1) r.shifts(2) r.shifts(3)
- class sage.homology.graded_resolution.GradedFiniteFreeResolution_free_module(module, degrees=None, *args, **kwds)[source]¶
Bases:
GradedFiniteFreeResolution
,FiniteFreeResolution_free_module
Graded free resolution of free modules.
EXAMPLES:
sage: from sage.homology.free_resolution import FreeResolution sage: R.<x> = QQ[] sage: M = matrix([[x^3, 3*x^3, 5*x^3], ....: [0, x, 2*x]]) sage: res = FreeResolution(M, graded=True); res S(0)⊕S(0)⊕S(0) <-- S(-3)⊕S(-1) <-- 0
>>> from sage.all import * >>> from sage.homology.free_resolution import FreeResolution >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> M = matrix([[x**Integer(3), Integer(3)*x**Integer(3), Integer(5)*x**Integer(3)], ... [Integer(0), x, Integer(2)*x]]) >>> res = FreeResolution(M, graded=True); res S(0)⊕S(0)⊕S(0) <-- S(-3)⊕S(-1) <-- 0
from sage.homology.free_resolution import FreeResolution R.<x> = QQ[] M = matrix([[x^3, 3*x^3, 5*x^3], [0, x, 2*x]]) res = FreeResolution(M, graded=True); res
- class sage.homology.graded_resolution.GradedFiniteFreeResolution_singular(module, degrees=None, shifts=None, name='S', algorithm='heuristic', **kwds)[source]¶
Bases:
GradedFiniteFreeResolution
,FiniteFreeResolution_singular
Graded free resolutions of submodules and ideals of multivariate polynomial rings implemented using Singular.
INPUT:
module
– a homogeneous submodule of a free module \(M\) of rank \(n\) over \(S\) or a homogeneous ideal of a multivariate polynomial ring \(S\)degrees
– (default: a list with all entries \(1\)) a list of integers or integer vectors giving degrees of variables of \(S\)shifts
– list of integers or integer vectors giving shifts of degrees of \(n\) summands of the free module \(M\); this is a list of zero degrees of length \(n\) by defaultname
– string; name of the base ringalgorithm
– Singular algorithm to compute a resolution ofideal
OUTPUT: a graded minimal free resolution of
ideal
If
module
is an ideal of \(S\), it is considered as a submodule of a free module of rank \(1\) over \(S\).The degrees given to the variables of \(S\) are integers or integer vectors of the same length. In the latter case, \(S\) is said to be multigraded, and the resolution is a multigraded free resolution. The standard grading where all variables have degree \(1\) is used if the degrees are not specified.
A summand of the graded free module \(M\) is a shifted (or twisted) module of rank one over \(S\), denoted \(S(-d)\) with shift \(d\).
The computation of the resolution is done by using
libSingular
. Different Singular algorithms can be chosen for best performance. The available algorithms and the corresponding Singular commands are shown below:algorithm
Singular commands
minimal
mres(ideal)
shreyer
minres(sres(std(ideal)))
standard
minres(nres(std(ideal)))
heuristic
minres(res(std(ideal)))
EXAMPLES:
sage: S.<x,y,z,w> = PolynomialRing(QQ) sage: I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) sage: r = I.graded_free_resolution(); r S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0 sage: len(r) 2 sage: I = S.ideal([z^2 - y*w, y*z - x*w, y - x]) sage: I.is_homogeneous() True sage: r = I.graded_free_resolution(); r S(0) <-- S(-1)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3)⊕S(-4) <-- S(-5) <-- 0
>>> from sage.all import * >>> S = PolynomialRing(QQ, names=('x', 'y', 'z', 'w',)); (x, y, z, w,) = S._first_ngens(4) >>> I = S.ideal([y*w - z**Integer(2), -x*w + y*z, x*z - y**Integer(2)]) >>> r = I.graded_free_resolution(); r S(0) <-- S(-2)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3) <-- 0 >>> len(r) 2 >>> I = S.ideal([z**Integer(2) - y*w, y*z - x*w, y - x]) >>> I.is_homogeneous() True >>> r = I.graded_free_resolution(); r S(0) <-- S(-1)⊕S(-2)⊕S(-2) <-- S(-3)⊕S(-3)⊕S(-4) <-- S(-5) <-- 0
S.<x,y,z,w> = PolynomialRing(QQ) I = S.ideal([y*w - z^2, -x*w + y*z, x*z - y^2]) r = I.graded_free_resolution(); r len(r) I = S.ideal([z^2 - y*w, y*z - x*w, y - x]) I.is_homogeneous() r = I.graded_free_resolution(); r