Common parametrized surfaces in 3D.¶
AUTHORS:
- Joris Vankerschaver (2012-06-16)
- class sage.geometry.riemannian_manifolds.surface3d_generators.SurfaceGenerators[source]¶
Bases:
object
A class consisting of generators for several common parametrized surfaces in 3D.
- static Catenoid(c=1, name='Catenoid')[source]¶
Return a catenoid surface, with parametric representation.
\[\begin{split}\begin{aligned} x(u, v) & = c \cosh(v/c) \cos(u); \\ y(u, v) & = c \cosh(v/c) \sin(u); \\ z(u, v) & = v. \end{aligned}\end{split}\]INPUT:
c
– surface parametername
– string; name of the surface
For more information, see Wikipedia article Catenoid.
EXAMPLES:
sage: cat = surfaces.Catenoid(); cat Parametrized surface ('Catenoid') with equation (cos(u)*cosh(v), cosh(v)*sin(u), v) sage: cat.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> cat = surfaces.Catenoid(); cat Parametrized surface ('Catenoid') with equation (cos(u)*cosh(v), cosh(v)*sin(u), v) >>> cat.plot() # needs sage.plot Graphics3d Object
cat = surfaces.Catenoid(); cat cat.plot() # needs sage.plot
- static Crosscap(r=1, name='Crosscap')[source]¶
Return a crosscap surface, with parametrization.
\[\begin{split}\begin{aligned} x(u, v) & = r(1 + \cos(v)) \cos(u); \\ y(u, v) & = r(1 + \cos(v)) \sin(u); \\ z(u, v) & = - r\tanh(u - \pi) \sin(v). \end{aligned}\end{split}\]INPUT:
r
– surface parametername
– string; name of the surface
For more information, see Wikipedia article Cross-cap.
EXAMPLES:
sage: crosscap = surfaces.Crosscap(); crosscap Parametrized surface ('Crosscap') with equation ((cos(v) + 1)*cos(u), (cos(v) + 1)*sin(u), -sin(v)*tanh(-pi + u)) sage: crosscap.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> crosscap = surfaces.Crosscap(); crosscap Parametrized surface ('Crosscap') with equation ((cos(v) + 1)*cos(u), (cos(v) + 1)*sin(u), -sin(v)*tanh(-pi + u)) >>> crosscap.plot() # needs sage.plot Graphics3d Object
crosscap = surfaces.Crosscap(); crosscap crosscap.plot() # needs sage.plot
- static Dini(a=1, b=1, name="Dini's surface")[source]¶
Return Dini’s surface, with parametrization.
\[\begin{split}\begin{aligned} x(u, v) & = a \cos(u)\sin(v); \\ y(u, v) & = a \sin(u)\sin(v); \\ z(u, v) & = u + \log(\tan(v/2)) + \cos(v). \end{aligned}\end{split}\]INPUT:
a
,b
– surface parametersname
– string; name of the surface
For more information, see Wikipedia article Dini%27s_surface.
EXAMPLES:
sage: dini = surfaces.Dini(a=3, b=4); dini Parametrized surface ('Dini's surface') with equation (3*cos(u)*sin(v), 3*sin(u)*sin(v), 4*u + 3*cos(v) + 3*log(tan(1/2*v))) sage: dini.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> dini = surfaces.Dini(a=Integer(3), b=Integer(4)); dini Parametrized surface ('Dini's surface') with equation (3*cos(u)*sin(v), 3*sin(u)*sin(v), 4*u + 3*cos(v) + 3*log(tan(1/2*v))) >>> dini.plot() # needs sage.plot Graphics3d Object
dini = surfaces.Dini(a=3, b=4); dini dini.plot() # needs sage.plot
- static Ellipsoid(center=(0, 0, 0), axes=(1, 1, 1), name='Ellipsoid')[source]¶
Return an ellipsoid centered at
center
whose semi-principal axes have lengths given by the components ofaxes
. The parametrization of the ellipsoid is given by\[\begin{split}\begin{aligned} x(u, v) & = x_0 + a \cos(u) \cos(v); \\ y(u, v) & = y_0 + b \sin(u) \cos(v); \\ z(u, v) & = z_0 + c \sin(v). \end{aligned}\end{split}\]INPUT:
center
– 3-tuple; coordinates of the center of the ellipsoidaxes
– 3-tuple; lengths of the semi-principal axesname
– string; name of the ellipsoid
For more information, see Wikipedia article Ellipsoid.
EXAMPLES:
sage: ell = surfaces.Ellipsoid(axes=(1, 2, 3)); ell Parametrized surface ('Ellipsoid') with equation (cos(u)*cos(v), 2*cos(v)*sin(u), 3*sin(v)) sage: ell.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> ell = surfaces.Ellipsoid(axes=(Integer(1), Integer(2), Integer(3))); ell Parametrized surface ('Ellipsoid') with equation (cos(u)*cos(v), 2*cos(v)*sin(u), 3*sin(v)) >>> ell.plot() # needs sage.plot Graphics3d Object
ell = surfaces.Ellipsoid(axes=(1, 2, 3)); ell ell.plot() # needs sage.plot
- static Enneper(name="Enneper's surface")[source]¶
Return Enneper’s surface, with parametrization.
\[\begin{split}\begin{aligned} x(u, v) & = u(1 - u^2/3 + v^2)/3; \\ y(u, v) & = -v(1 - v^2/3 + u^2)/3; \\ z(u, v) & = (u^2 - v^2)/3. \end{aligned}\end{split}\]INPUT:
name
– string; name of the surface
For more information, see Wikipedia article Enneper_surface.
EXAMPLES:
sage: enn = surfaces.Enneper(); enn Parametrized surface ('Enneper's surface') with equation (-1/9*(u^2 - 3*v^2 - 3)*u, -1/9*(3*u^2 - v^2 + 3)*v, 1/3*u^2 - 1/3*v^2) sage: enn.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> enn = surfaces.Enneper(); enn Parametrized surface ('Enneper's surface') with equation (-1/9*(u^2 - 3*v^2 - 3)*u, -1/9*(3*u^2 - v^2 + 3)*v, 1/3*u^2 - 1/3*v^2) >>> enn.plot() # needs sage.plot Graphics3d Object
enn = surfaces.Enneper(); enn enn.plot() # needs sage.plot
- static Helicoid(h=1, name='Helicoid')[source]¶
Return a helicoid surface, with parametrization.
\[\begin{split}\begin{aligned} x(\rho, \theta) & = \rho \cos(\theta); \\ y(\rho, \theta) & = \rho \sin(\theta); \\ z(\rho, \theta) & = h\theta/(2\pi). \end{aligned}\end{split}\]INPUT:
h
– distance along the z-axis between two successive turns of the helicoidname
– string; name of the surface
For more information, see Wikipedia article Helicoid.
EXAMPLES:
sage: helicoid = surfaces.Helicoid(h=2); helicoid Parametrized surface ('Helicoid') with equation (rho*cos(theta), rho*sin(theta), theta/pi) sage: helicoid.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> helicoid = surfaces.Helicoid(h=Integer(2)); helicoid Parametrized surface ('Helicoid') with equation (rho*cos(theta), rho*sin(theta), theta/pi) >>> helicoid.plot() # needs sage.plot Graphics3d Object
helicoid = surfaces.Helicoid(h=2); helicoid helicoid.plot() # needs sage.plot
- static Klein(r=1, name='Klein bottle')[source]¶
Return the Klein bottle, in the figure-8 parametrization given by
\[\begin{split}\begin{aligned} x(u, v) & = (r + \cos(u/2)\cos(v) - \sin(u/2)\sin(2v)) \cos(u); \\ y(u, v) & = (r + \cos(u/2)\cos(v) - \sin(u/2)\sin(2v)) \sin(u); \\ z(u, v) & = \sin(u/2)\cos(v) + \cos(u/2)\sin(2v). \end{aligned}\end{split}\]INPUT:
r
– radius of the “figure-8” circlename
– string; name of the surface
For more information, see Wikipedia article Klein_bottle.
EXAMPLES:
sage: klein = surfaces.Klein(); klein Parametrized surface ('Klein bottle') with equation (-(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*cos(u), -(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*sin(u), cos(1/2*u)*sin(2*v) + sin(1/2*u)*sin(v)) sage: klein.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> klein = surfaces.Klein(); klein Parametrized surface ('Klein bottle') with equation (-(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*cos(u), -(sin(1/2*u)*sin(2*v) - cos(1/2*u)*sin(v) - 1)*sin(u), cos(1/2*u)*sin(2*v) + sin(1/2*u)*sin(v)) >>> klein.plot() # needs sage.plot Graphics3d Object
klein = surfaces.Klein(); klein klein.plot() # needs sage.plot
- static MonkeySaddle(name='Monkey saddle')[source]¶
Return a monkey saddle surface, with equation
\[z = x^3 - 3xy^2.\]INPUT:
name
– string; name of the surface
For more information, see Wikipedia article Monkey_saddle.
EXAMPLES:
sage: saddle = surfaces.MonkeySaddle(); saddle Parametrized surface ('Monkey saddle') with equation (u, v, u^3 - 3*u*v^2) sage: saddle.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> saddle = surfaces.MonkeySaddle(); saddle Parametrized surface ('Monkey saddle') with equation (u, v, u^3 - 3*u*v^2) >>> saddle.plot() # needs sage.plot Graphics3d Object
saddle = surfaces.MonkeySaddle(); saddle saddle.plot() # needs sage.plot
- static Paraboloid(a=1, b=1, c=1, elliptic=True, name=None)[source]¶
Return a paraboloid with equation.
\[\frac{z}{c} = \pm \frac{x^2}{a^2} + \frac{y^2}{b^2}\]When the plus sign is selected, the paraboloid is elliptic. Otherwise the surface is a hyperbolic paraboloid.
INPUT:
a
,b
,c
– surface parameterselliptic
– boolean (default:True
); whether to create an elliptic or hyperbolic paraboloidname
– string; name of the surface
For more information, see Wikipedia article Paraboloid.
EXAMPLES:
sage: epar = surfaces.Paraboloid(1, 3, 2); epar Parametrized surface ('Elliptic paraboloid') with equation (u, v, 2*u^2 + 2/9*v^2) sage: epar.plot() # needs sage.plot Graphics3d Object sage: hpar = surfaces.Paraboloid(2, 3, 1, elliptic=False); hpar Parametrized surface ('Hyperbolic paraboloid') with equation (u, v, -1/4*u^2 + 1/9*v^2) sage: hpar.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> epar = surfaces.Paraboloid(Integer(1), Integer(3), Integer(2)); epar Parametrized surface ('Elliptic paraboloid') with equation (u, v, 2*u^2 + 2/9*v^2) >>> epar.plot() # needs sage.plot Graphics3d Object >>> hpar = surfaces.Paraboloid(Integer(2), Integer(3), Integer(1), elliptic=False); hpar Parametrized surface ('Hyperbolic paraboloid') with equation (u, v, -1/4*u^2 + 1/9*v^2) >>> hpar.plot() # needs sage.plot Graphics3d Object
epar = surfaces.Paraboloid(1, 3, 2); epar epar.plot() # needs sage.plot hpar = surfaces.Paraboloid(2, 3, 1, elliptic=False); hpar hpar.plot() # needs sage.plot
- static Sphere(center=(0, 0, 0), R=1, name='Sphere')[source]¶
Return a sphere of radius
R
centered atcenter
.INPUT:
center
– 3-tuple; center of the sphereR
– radius of the spherename
– string; name of the surface
For more information, see Wikipedia article Sphere.
EXAMPLES:
sage: sphere = surfaces.Sphere(center=(0, 1, -1), R=2); sphere Parametrized surface ('Sphere') with equation (2*cos(u)*cos(v), 2*cos(v)*sin(u) + 1, 2*sin(v) - 1) sage: sphere.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> sphere = surfaces.Sphere(center=(Integer(0), Integer(1), -Integer(1)), R=Integer(2)); sphere Parametrized surface ('Sphere') with equation (2*cos(u)*cos(v), 2*cos(v)*sin(u) + 1, 2*sin(v) - 1) >>> sphere.plot() # needs sage.plot Graphics3d Object
sphere = surfaces.Sphere(center=(0, 1, -1), R=2); sphere sphere.plot() # needs sage.plot
Note that the radius of the sphere can be negative. The surface thus obtained is equal to the sphere (or part thereof) with positive radius, whose coordinate functions have been multiplied by -1. Compare for instant the first octant of the unit sphere with positive radius:
sage: octant1 = surfaces.Sphere(R=1); octant1 Parametrized surface ('Sphere') with equation (cos(u)*cos(v), cos(v)*sin(u), sin(v)) sage: octant1.plot((0, pi/2), (0, pi/2)) # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> octant1 = surfaces.Sphere(R=Integer(1)); octant1 Parametrized surface ('Sphere') with equation (cos(u)*cos(v), cos(v)*sin(u), sin(v)) >>> octant1.plot((Integer(0), pi/Integer(2)), (Integer(0), pi/Integer(2))) # needs sage.plot Graphics3d Object
octant1 = surfaces.Sphere(R=1); octant1 octant1.plot((0, pi/2), (0, pi/2)) # needs sage.plot
with the first octant of the unit sphere with negative radius:
sage: octant2 = surfaces.Sphere(R=-1); octant2 Parametrized surface ('Sphere') with equation (-cos(u)*cos(v), -cos(v)*sin(u), -sin(v)) sage: octant2.plot((0, pi/2), (0, pi/2)) # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> octant2 = surfaces.Sphere(R=-Integer(1)); octant2 Parametrized surface ('Sphere') with equation (-cos(u)*cos(v), -cos(v)*sin(u), -sin(v)) >>> octant2.plot((Integer(0), pi/Integer(2)), (Integer(0), pi/Integer(2))) # needs sage.plot Graphics3d Object
octant2 = surfaces.Sphere(R=-1); octant2 octant2.plot((0, pi/2), (0, pi/2)) # needs sage.plot
- static Torus(r=2, R=3, name='Torus')[source]¶
Return a torus obtained by revolving a circle of radius
r
around a coplanar axisR
units away from the center of the circle. The parametrization used is\[\begin{split}\begin{aligned} x(u, v) & = (R + r \cos(v)) \cos(u); \\ y(u, v) & = (R + r \cos(v)) \sin(u); \\ z(u, v) & = r \sin(v). \end{aligned}\end{split}\]INPUT:
r
,R
– minor and major radius of the torusname
– string; name of the surface
For more information, see Wikipedia article Torus.
EXAMPLES:
sage: torus = surfaces.Torus(); torus Parametrized surface ('Torus') with equation ((2*cos(v) + 3)*cos(u), (2*cos(v) + 3)*sin(u), 2*sin(v)) sage: torus.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> torus = surfaces.Torus(); torus Parametrized surface ('Torus') with equation ((2*cos(v) + 3)*cos(u), (2*cos(v) + 3)*sin(u), 2*sin(v)) >>> torus.plot() # needs sage.plot Graphics3d Object
torus = surfaces.Torus(); torus torus.plot() # needs sage.plot
- static WhitneyUmbrella(name="Whitney's umbrella")[source]¶
Return Whitney’s umbrella, with parametric representation
\[x(u, v) = uv, \quad y(u, v) = u, \quad z(u, v) = v^2.\]INPUT:
name
– string; name of the surface
For more information, see Wikipedia article Whitney_umbrella.
EXAMPLES:
sage: whitney = surfaces.WhitneyUmbrella(); whitney Parametrized surface ('Whitney's umbrella') with equation (u*v, u, v^2) sage: whitney.plot() # needs sage.plot Graphics3d Object
>>> from sage.all import * >>> whitney = surfaces.WhitneyUmbrella(); whitney Parametrized surface ('Whitney's umbrella') with equation (u*v, u, v^2) >>> whitney.plot() # needs sage.plot Graphics3d Object
whitney = surfaces.WhitneyUmbrella(); whitney whitney.plot() # needs sage.plot