Points for products of projective spaces¶
This class builds on the projective space class and its point and morphism classes.
EXAMPLES:
We construct products projective spaces of various dimensions over the same ring.:
sage: P1xP1.<x,y, u,v> = ProductProjectiveSpaces(QQ, [1, 1])
sage: P1xP1([2, 1, 3, 1])
(2 : 1 , 3 : 1)
>>> from sage.all import *
>>> P1xP1 = ProductProjectiveSpaces(QQ, [Integer(1), Integer(1)], names=('x', 'y', 'u', 'v',)); (x, y, u, v,) = P1xP1._first_ngens(4)
>>> P1xP1([Integer(2), Integer(1), Integer(3), Integer(1)])
(2 : 1 , 3 : 1)
P1xP1.<x,y, u,v> = ProductProjectiveSpaces(QQ, [1, 1]) P1xP1([2, 1, 3, 1])
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_field(parent, polys, check=True)[source]¶
Bases:
ProductProjectiveSpaces_point_ring
- intersection_multiplicity(X)[source]¶
Return the intersection multiplicity of the codomain of this point and subscheme
X
at this point.This uses the subscheme implementation of intersection_multiplicity. This point must be a point on a subscheme of a product of projective spaces.
INPUT:
X
– a subscheme in the same ambient space as the codomain of this point
OUTPUT: integer
EXAMPLES:
sage: PP.<x,y,z,u,v> = ProductProjectiveSpaces(QQ, [2, 1]) sage: X = PP.subscheme([y^2*z^3*u - x^5*v]) sage: Y = PP.subscheme([u^3 - v^3, x - y]) sage: Q = X([0,0,1,1,1]) sage: Q.intersection_multiplicity(Y) # needs sage.libs.singular 2
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(2), Integer(1)], names=('x', 'y', 'z', 'u', 'v',)); (x, y, z, u, v,) = PP._first_ngens(5) >>> X = PP.subscheme([y**Integer(2)*z**Integer(3)*u - x**Integer(5)*v]) >>> Y = PP.subscheme([u**Integer(3) - v**Integer(3), x - y]) >>> Q = X([Integer(0),Integer(0),Integer(1),Integer(1),Integer(1)]) >>> Q.intersection_multiplicity(Y) # needs sage.libs.singular 2
PP.<x,y,z,u,v> = ProductProjectiveSpaces(QQ, [2, 1]) X = PP.subscheme([y^2*z^3*u - x^5*v]) Y = PP.subscheme([u^3 - v^3, x - y]) Q = X([0,0,1,1,1]) Q.intersection_multiplicity(Y) # needs sage.libs.singular
- multiplicity()[source]¶
Return the multiplicity of this point on its codomain.
This uses the subscheme implementation of multiplicity. This point must be a point on a subscheme of a product of projective spaces.
OUTPUT: integer
EXAMPLES:
sage: PP.<x,y,z,w,u,v,t> = ProductProjectiveSpaces(QQ, [3, 2]) sage: X = PP.subscheme([x^8*t - y^8*t + z^5*w^3*v]) sage: Q1 = X([1,1,0,0,-1,-1,1]) sage: Q1.multiplicity() # needs sage.libs.singular 1 sage: Q2 = X([0,0,0,1,0,1,1]) sage: Q2.multiplicity() # needs sage.libs.singular 5 sage: Q3 = X([0,0,0,1,1,0,0]) sage: Q3.multiplicity() # needs sage.libs.singular 6
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(3), Integer(2)], names=('x', 'y', 'z', 'w', 'u', 'v', 't',)); (x, y, z, w, u, v, t,) = PP._first_ngens(7) >>> X = PP.subscheme([x**Integer(8)*t - y**Integer(8)*t + z**Integer(5)*w**Integer(3)*v]) >>> Q1 = X([Integer(1),Integer(1),Integer(0),Integer(0),-Integer(1),-Integer(1),Integer(1)]) >>> Q1.multiplicity() # needs sage.libs.singular 1 >>> Q2 = X([Integer(0),Integer(0),Integer(0),Integer(1),Integer(0),Integer(1),Integer(1)]) >>> Q2.multiplicity() # needs sage.libs.singular 5 >>> Q3 = X([Integer(0),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0)]) >>> Q3.multiplicity() # needs sage.libs.singular 6
PP.<x,y,z,w,u,v,t> = ProductProjectiveSpaces(QQ, [3, 2]) X = PP.subscheme([x^8*t - y^8*t + z^5*w^3*v]) Q1 = X([1,1,0,0,-1,-1,1]) Q1.multiplicity() # needs sage.libs.singular Q2 = X([0,0,0,1,0,1,1]) Q2.multiplicity() # needs sage.libs.singular Q3 = X([0,0,0,1,1,0,0]) Q3.multiplicity() # needs sage.libs.singular
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_finite_field(parent, polys, check=True)[source]¶
- class sage.schemes.product_projective.point.ProductProjectiveSpaces_point_ring(parent, polys, check=True)[source]¶
Bases:
SchemeMorphism_point
The class of points on products of projective spaces.
The components are projective space points.
EXAMPLES:
sage: T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ) sage: T.point([1, 2, 3, 4, 5]) (1/3 : 2/3 : 1 , 4/5 : 1)
>>> from sage.all import * >>> T = ProductProjectiveSpaces([Integer(2), Integer(1)], QQ, names=('x', 'y', 'z', 'w', 'u',)); (x, y, z, w, u,) = T._first_ngens(5) >>> T.point([Integer(1), Integer(2), Integer(3), Integer(4), Integer(5)]) (1/3 : 2/3 : 1 , 4/5 : 1)
T.<x,y,z,w,u> = ProductProjectiveSpaces([2, 1], QQ) T.point([1, 2, 3, 4, 5])
- change_ring(R, **kwds)[source]¶
Return a new
ProductProjectiveSpaces_point
which is this point coerced toR
.If the keyword
check
isTrue
, then the initialization checks are performed. The user may specify the embedding intoR
with a keyword.INPUT:
R
– ring
kwds:
check
– booleanembedding
– field embedding from the base ring of this point toR
OUTPUT:
ProductProjectiveSpaces_point
EXAMPLES:
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([1, 1, 1], ZZ) sage: P = T.point([5, 3, 15, 4, 2, 6]) sage: P.change_ring(GF(3)) (1 : 0 , 0 : 1 , 1 : 0)
>>> from sage.all import * >>> T = ProductProjectiveSpaces([Integer(1), Integer(1), Integer(1)], ZZ, names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = T._first_ngens(6) >>> P = T.point([Integer(5), Integer(3), Integer(15), Integer(4), Integer(2), Integer(6)]) >>> P.change_ring(GF(Integer(3))) (1 : 0 , 0 : 1 , 1 : 0)
T.<x,y,z,u,v,w> = ProductProjectiveSpaces([1, 1, 1], ZZ) P = T.point([5, 3, 15, 4, 2, 6]) P.change_ring(GF(3))
- dehomogenize(L)[source]¶
Dehomogenize \(k\)-th point at \(L[k]\)-th coordinate.
This function computes the appropriate affine patch using
L
and then returns the dehomogenized point on of this affine space.INPUT:
L
– list of nonnegative integers
OUTPUT:
SchemeMorphism_point_affine
EXAMPLES:
sage: PP = ProductProjectiveSpaces([2, 2, 2], QQ, 'x') sage: A = PP([2, 4, 6, 23, 46, 23, 9, 3, 1]) sage: A.dehomogenize([0, 1, 2]) (2, 3, 1/2, 1/2, 9, 3)
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(2), Integer(2), Integer(2)], QQ, 'x') >>> A = PP([Integer(2), Integer(4), Integer(6), Integer(23), Integer(46), Integer(23), Integer(9), Integer(3), Integer(1)]) >>> A.dehomogenize([Integer(0), Integer(1), Integer(2)]) (2, 3, 1/2, 1/2, 9, 3)
PP = ProductProjectiveSpaces([2, 2, 2], QQ, 'x') A = PP([2, 4, 6, 23, 46, 23, 9, 3, 1]) A.dehomogenize([0, 1, 2])
sage: # needs sage.rings.real_mpfr sage.symbolic sage: PP.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], CC) sage: X = PP.subscheme([a^2 + b^2]) sage: P = X([2, 2*i, -3, 6*i, 3 - 6*i]) sage: P.dehomogenize([1,0]) (-1.00000000000000*I, -2.00000000000000*I, -1.00000000000000 + 2.00000000000000*I)
>>> from sage.all import * >>> # needs sage.rings.real_mpfr sage.symbolic >>> PP = ProductProjectiveSpaces([Integer(1), Integer(2)], CC, names=('a', 'b', 'x', 'y', 'z',)); (a, b, x, y, z,) = PP._first_ngens(5) >>> X = PP.subscheme([a**Integer(2) + b**Integer(2)]) >>> P = X([Integer(2), Integer(2)*i, -Integer(3), Integer(6)*i, Integer(3) - Integer(6)*i]) >>> P.dehomogenize([Integer(1),Integer(0)]) (-1.00000000000000*I, -2.00000000000000*I, -1.00000000000000 + 2.00000000000000*I)
# needs sage.rings.real_mpfr sage.symbolic PP.<a,b,x,y,z> = ProductProjectiveSpaces([1, 2], CC) X = PP.subscheme([a^2 + b^2]) P = X([2, 2*i, -3, 6*i, 3 - 6*i]) P.dehomogenize([1,0])
sage: PP = ProductProjectiveSpaces([1, 1], ZZ) sage: A = PP([0,1,2,4]) sage: A.dehomogenize([0,0]) Traceback (most recent call last): ... ValueError: can...t dehomogenize at 0 coordinate
>>> from sage.all import * >>> PP = ProductProjectiveSpaces([Integer(1), Integer(1)], ZZ) >>> A = PP([Integer(0),Integer(1),Integer(2),Integer(4)]) >>> A.dehomogenize([Integer(0),Integer(0)]) Traceback (most recent call last): ... ValueError: can...t dehomogenize at 0 coordinate
PP = ProductProjectiveSpaces([1, 1], ZZ) A = PP([0,1,2,4]) A.dehomogenize([0,0])
- global_height(prec=None)[source]¶
Return the absolute logarithmic height of the point.
This function computes the maximum of global height of each component point in the product. Global height of component point is computed using function for projective point.
INPUT:
prec
– desired floating point precision (default: default RealField precision)
OUTPUT: a real number
EXAMPLES:
sage: PP = ProductProjectiveSpaces(QQ, [2, 2], 'x') sage: Q = PP([1, 7, 5, 18, 2, 3]) sage: Q.global_height() # needs sage.symbolic 2.89037175789616
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(2), Integer(2)], 'x') >>> Q = PP([Integer(1), Integer(7), Integer(5), Integer(18), Integer(2), Integer(3)]) >>> Q.global_height() # needs sage.symbolic 2.89037175789616
PP = ProductProjectiveSpaces(QQ, [2, 2], 'x') Q = PP([1, 7, 5, 18, 2, 3]) Q.global_height() # needs sage.symbolic
sage: PP = ProductProjectiveSpaces(ZZ, [1, 1], 'x') sage: A = PP([-30, 2, 1, 6]) sage: A.global_height() # needs sage.symbolic 2.70805020110221
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(ZZ, [Integer(1), Integer(1)], 'x') >>> A = PP([-Integer(30), Integer(2), Integer(1), Integer(6)]) >>> A.global_height() # needs sage.symbolic 2.70805020110221
PP = ProductProjectiveSpaces(ZZ, [1, 1], 'x') A = PP([-30, 2, 1, 6]) A.global_height() # needs sage.symbolic
sage: # needs sage.rings.number_field sage: R.<x> = PolynomialRing(QQ) sage: k.<w> = NumberField(x^2 + 5) sage: PP = ProductProjectiveSpaces(k, [1, 2], 'y') sage: Q = PP([3, 5*w + 1, 1, 7*w, 10]) sage: Q.global_height() 2.75062910527236
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = PolynomialRing(QQ, names=('x',)); (x,) = R._first_ngens(1) >>> k = NumberField(x**Integer(2) + Integer(5), names=('w',)); (w,) = k._first_ngens(1) >>> PP = ProductProjectiveSpaces(k, [Integer(1), Integer(2)], 'y') >>> Q = PP([Integer(3), Integer(5)*w + Integer(1), Integer(1), Integer(7)*w, Integer(10)]) >>> Q.global_height() 2.75062910527236
# needs sage.rings.number_field R.<x> = PolynomialRing(QQ) k.<w> = NumberField(x^2 + 5) PP = ProductProjectiveSpaces(k, [1, 2], 'y') Q = PP([3, 5*w + 1, 1, 7*w, 10]) Q.global_height()
sage: PP = ProductProjectiveSpaces(QQbar, [1, 1], 'x') # needs sage.rings.number_field sage: Q = PP([1, QQbar(sqrt(2)), QQbar(5^(1/3)), QQbar(3^(1/3))]) # needs sage.rings.number_field sage.symbolic sage: Q.global_height() # needs sage.rings.number_field sage.symbolic 0.536479304144700
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQbar, [Integer(1), Integer(1)], 'x') # needs sage.rings.number_field >>> Q = PP([Integer(1), QQbar(sqrt(Integer(2))), QQbar(Integer(5)**(Integer(1)/Integer(3))), QQbar(Integer(3)**(Integer(1)/Integer(3)))]) # needs sage.rings.number_field sage.symbolic >>> Q.global_height() # needs sage.rings.number_field sage.symbolic 0.536479304144700
PP = ProductProjectiveSpaces(QQbar, [1, 1], 'x') # needs sage.rings.number_field Q = PP([1, QQbar(sqrt(2)), QQbar(5^(1/3)), QQbar(3^(1/3))]) # needs sage.rings.number_field sage.symbolic Q.global_height() # needs sage.rings.number_field sage.symbolic
- local_height(v, prec=None)[source]¶
Return the maximum of the local height of the coordinates of this point.
This function computes the maximum of local height of each component point in the product. Local height of component point is computed using function for projective point.
INPUT:
v
– a prime or prime ideal of the base ringprec
– desired floating point precision (default: default RealField precision)
OUTPUT: a real number
EXAMPLES:
sage: PP = ProductProjectiveSpaces(QQ, [1, 1], 'x') sage: A = PP([11, 5, 10, 2]) sage: A.local_height(5) # needs sage.rings.real_mpfr 1.60943791243410
>>> from sage.all import * >>> PP = ProductProjectiveSpaces(QQ, [Integer(1), Integer(1)], 'x') >>> A = PP([Integer(11), Integer(5), Integer(10), Integer(2)]) >>> A.local_height(Integer(5)) # needs sage.rings.real_mpfr 1.60943791243410
PP = ProductProjectiveSpaces(QQ, [1, 1], 'x') A = PP([11, 5, 10, 2]) A.local_height(5) # needs sage.rings.real_mpfr
sage: P = ProductProjectiveSpaces(QQ, [1, 2], 'x') sage: Q = P([1, 4, 1/2, 2, 32]) sage: Q.local_height(2) # needs sage.rings.real_mpfr 4.15888308335967
>>> from sage.all import * >>> P = ProductProjectiveSpaces(QQ, [Integer(1), Integer(2)], 'x') >>> Q = P([Integer(1), Integer(4), Integer(1)/Integer(2), Integer(2), Integer(32)]) >>> Q.local_height(Integer(2)) # needs sage.rings.real_mpfr 4.15888308335967
P = ProductProjectiveSpaces(QQ, [1, 2], 'x') Q = P([1, 4, 1/2, 2, 32]) Q.local_height(2) # needs sage.rings.real_mpfr
- normalize_coordinates()[source]¶
Remove common factors (componentwise) from the coordinates of this point (including \(-1\)).
OUTPUT: none
EXAMPLES:
sage: T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], ZZ) sage: P = T.point([5, 10, 15, 4, 2, 6]); sage: P.normalize_coordinates() sage: P (1 : 2 : 3 , 2 : 1 : 3)
>>> from sage.all import * >>> T = ProductProjectiveSpaces([Integer(2), Integer(2)], ZZ, names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = T._first_ngens(6) >>> P = T.point([Integer(5), Integer(10), Integer(15), Integer(4), Integer(2), Integer(6)]); >>> P.normalize_coordinates() >>> P (1 : 2 : 3 , 2 : 1 : 3)
T.<x,y,z,u,v,w> = ProductProjectiveSpaces([2, 2], ZZ) P = T.point([5, 10, 15, 4, 2, 6]); P.normalize_coordinates() P
- scale_by(t)[source]¶
Scale the coordinates of the point by
t
, done componentwise.A
TypeError
occurs if the point is not in the base ring of the codomain after scaling.INPUT:
t
– a ring element
EXAMPLES:
sage: T.<x, y, z, u, v, w> = ProductProjectiveSpaces([1, 1, 1], ZZ) sage: P = T.point([5, 10, 15, 4, 2, 6]); sage: P.scale_by([2, 1, 1]) sage: P (10 : 20 , 15 : 4 , 2 : 6)
>>> from sage.all import * >>> T = ProductProjectiveSpaces([Integer(1), Integer(1), Integer(1)], ZZ, names=('x', 'y', 'z', 'u', 'v', 'w',)); (x, y, z, u, v, w,) = T._first_ngens(6) >>> P = T.point([Integer(5), Integer(10), Integer(15), Integer(4), Integer(2), Integer(6)]); >>> P.scale_by([Integer(2), Integer(1), Integer(1)]) >>> P (10 : 20 , 15 : 4 , 2 : 6)
T.<x, y, z, u, v, w> = ProductProjectiveSpaces([1, 1, 1], ZZ) P = T.point([5, 10, 15, 4, 2, 6]); P.scale_by([2, 1, 1]) P