\(p\)-adic Valuations on Number Fields and Their Subrings and Completions¶
EXAMPLES:
sage: ZZ.valuation(2)
2-adic valuation
sage: QQ.valuation(3)
3-adic valuation
sage: CyclotomicField(5).valuation(5) # needs sage.rings.number_field
5-adic valuation
sage: GaussianIntegers().valuation(7) # needs sage.rings.number_field
7-adic valuation
sage: Zp(11).valuation()
11-adic valuation
>>> from sage.all import *
>>> ZZ.valuation(Integer(2))
2-adic valuation
>>> QQ.valuation(Integer(3))
3-adic valuation
>>> CyclotomicField(Integer(5)).valuation(Integer(5)) # needs sage.rings.number_field
5-adic valuation
>>> GaussianIntegers().valuation(Integer(7)) # needs sage.rings.number_field
7-adic valuation
>>> Zp(Integer(11)).valuation()
11-adic valuation
ZZ.valuation(2) QQ.valuation(3) CyclotomicField(5).valuation(5) # needs sage.rings.number_field GaussianIntegers().valuation(7) # needs sage.rings.number_field Zp(11).valuation()
These valuations can then, e.g., be used to compute approximate factorizations in the completion of a ring:
sage: v = ZZ.valuation(2)
sage: R.<x> = ZZ[]
sage: f = x^5 + x^4 + x^3 + x^2 + x - 1
sage: v.montes_factorization(f, required_precision=20) # needs sage.geometry.polyhedron
(x + 676027) * (x^4 + 372550*x^3 + 464863*x^2 + 385052*x + 297869)
>>> from sage.all import *
>>> v = ZZ.valuation(Integer(2))
>>> R = ZZ['x']; (x,) = R._first_ngens(1)
>>> f = x**Integer(5) + x**Integer(4) + x**Integer(3) + x**Integer(2) + x - Integer(1)
>>> v.montes_factorization(f, required_precision=Integer(20)) # needs sage.geometry.polyhedron
(x + 676027) * (x^4 + 372550*x^3 + 464863*x^2 + 385052*x + 297869)
v = ZZ.valuation(2) R.<x> = ZZ[] f = x^5 + x^4 + x^3 + x^2 + x - 1 v.montes_factorization(f, required_precision=20) # needs sage.geometry.polyhedron
AUTHORS:
Julian Rüth (2013-03-16): initial version
REFERENCES:
The theory used here was originally developed in [Mac1936I] and [Mac1936II]. An overview can also be found in Chapter 4 of [Rüt2014].
- class sage.rings.padics.padic_valuation.PadicValuationFactory[source]¶
Bases:
UniqueFactory
Create a
prime
-adic valuation onR
.INPUT:
R
– a subring of a number field or a subring of a local field in characteristic zeroprime
– a prime that does not split, a discrete (pseudo-)valuation, a fractional ideal, orNone
(default:None
)
EXAMPLES:
For integers and rational numbers,
prime
is just a prime of the integers:sage: valuations.pAdicValuation(ZZ, 3) 3-adic valuation sage: valuations.pAdicValuation(QQ, 3) 3-adic valuation
>>> from sage.all import * >>> valuations.pAdicValuation(ZZ, Integer(3)) 3-adic valuation >>> valuations.pAdicValuation(QQ, Integer(3)) 3-adic valuation
valuations.pAdicValuation(ZZ, 3) valuations.pAdicValuation(QQ, 3)
prime
may beNone
for local rings:sage: valuations.pAdicValuation(Qp(2)) 2-adic valuation sage: valuations.pAdicValuation(Zp(2)) 2-adic valuation
>>> from sage.all import * >>> valuations.pAdicValuation(Qp(Integer(2))) 2-adic valuation >>> valuations.pAdicValuation(Zp(Integer(2))) 2-adic valuation
valuations.pAdicValuation(Qp(2)) valuations.pAdicValuation(Zp(2))
But it must be specified in all other cases:
sage: valuations.pAdicValuation(ZZ) Traceback (most recent call last): ... ValueError: prime must be specified for this ring
>>> from sage.all import * >>> valuations.pAdicValuation(ZZ) Traceback (most recent call last): ... ValueError: prime must be specified for this ring
valuations.pAdicValuation(ZZ)
It can sometimes be beneficial to define a number field extension as a quotient of a polynomial ring (since number field extensions always compute an absolute polynomial defining the extension which can be very costly):
sage: # needs sage.rings.number_field sage: R.<x> = QQ[] sage: K.<a> = NumberField(x^2 + 1) sage: R.<x> = K[] sage: L.<b> = R.quo(x^2 + a) sage: valuations.pAdicValuation(L, 2) 2-adic valuation
>>> from sage.all import * >>> # needs sage.rings.number_field >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> K = NumberField(x**Integer(2) + Integer(1), names=('a',)); (a,) = K._first_ngens(1) >>> R = K['x']; (x,) = R._first_ngens(1) >>> L = R.quo(x**Integer(2) + a, names=('b',)); (b,) = L._first_ngens(1) >>> valuations.pAdicValuation(L, Integer(2)) 2-adic valuation
# needs sage.rings.number_field R.<x> = QQ[] K.<a> = NumberField(x^2 + 1) R.<x> = K[] L.<b> = R.quo(x^2 + a) valuations.pAdicValuation(L, 2)
See also
NumberField_generic.valuation()
,Order.valuation()
,pAdicGeneric.valuation()
,RationalField.valuation()
,IntegerRing_class.valuation()
.- create_key_and_extra_args(R, prime=None, approximants=None)[source]¶
Create a unique key identifying the valuation of
R
with respect toprime
.EXAMPLES:
sage: QQ.valuation(2) # indirect doctest 2-adic valuation
>>> from sage.all import * >>> QQ.valuation(Integer(2)) # indirect doctest 2-adic valuation
QQ.valuation(2) # indirect doctest
- create_key_and_extra_args_for_number_field(R, prime, approximants)[source]¶
Create a unique key identifying the valuation of
R
with respect toprime
.EXAMPLES:
sage: GaussianIntegers().valuation(2) # indirect doctest # needs sage.rings.number_field 2-adic valuation
>>> from sage.all import * >>> GaussianIntegers().valuation(Integer(2)) # indirect doctest # needs sage.rings.number_field 2-adic valuation
GaussianIntegers().valuation(2) # indirect doctest # needs sage.rings.number_field
- create_key_and_extra_args_for_number_field_from_ideal(R, I, prime)[source]¶
Create a unique key identifying the valuation of
R
with respect toI
.Note
prime
, the original parameter that was passed tocreate_key_and_extra_args()
, is only used to provide more meaningful error messagesEXAMPLES:
sage: # needs sage.rings.number_field sage: GaussianIntegers().valuation(GaussianIntegers().number_field().fractional_ideal(2)) # indirect doctest 2-adic valuation
>>> from sage.all import * >>> # needs sage.rings.number_field >>> GaussianIntegers().valuation(GaussianIntegers().number_field().fractional_ideal(Integer(2))) # indirect doctest 2-adic valuation
# needs sage.rings.number_field GaussianIntegers().valuation(GaussianIntegers().number_field().fractional_ideal(2)) # indirect doctest
- create_key_and_extra_args_for_number_field_from_valuation(R, v, prime, approximants)[source]¶
Create a unique key identifying the valuation of
R
with respect tov
.Note
prime
, the original parameter that was passed tocreate_key_and_extra_args()
, is only used to provide more meaningful error messagesEXAMPLES:
sage: GaussianIntegers().valuation(ZZ.valuation(2)) # indirect doctest # needs sage.rings.number_field 2-adic valuation
>>> from sage.all import * >>> GaussianIntegers().valuation(ZZ.valuation(Integer(2))) # indirect doctest # needs sage.rings.number_field 2-adic valuation
GaussianIntegers().valuation(ZZ.valuation(2)) # indirect doctest # needs sage.rings.number_field
- create_key_for_integers(R, prime)[source]¶
Create a unique key identifying the valuation of
R
with respect toprime
.EXAMPLES:
sage: QQ.valuation(2) # indirect doctest 2-adic valuation
>>> from sage.all import * >>> QQ.valuation(Integer(2)) # indirect doctest 2-adic valuation
QQ.valuation(2) # indirect doctest
- create_key_for_local_ring(R, prime)[source]¶
Create a unique key identifying the valuation of
R
with respect toprime
.EXAMPLES:
sage: Qp(2).valuation() # indirect doctest 2-adic valuation
>>> from sage.all import * >>> Qp(Integer(2)).valuation() # indirect doctest 2-adic valuation
Qp(2).valuation() # indirect doctest
- class sage.rings.padics.padic_valuation.pAdicFromLimitValuation(parent, approximant, G, approximants)[source]¶
Bases:
FiniteExtensionFromLimitValuation
,pAdicValuation_base
A \(p\)-adic valuation on a number field or a subring thereof, i.e., a valuation that extends the \(p\)-adic valuation on the integers.
EXAMPLES:
sage: v = GaussianIntegers().valuation(3); v # needs sage.rings.number_field 3-adic valuation
>>> from sage.all import * >>> v = GaussianIntegers().valuation(Integer(3)); v # needs sage.rings.number_field 3-adic valuation
v = GaussianIntegers().valuation(3); v # needs sage.rings.number_field
- extensions(ring)[source]¶
Return the extensions of this valuation to
ring
.EXAMPLES:
sage: v = GaussianIntegers().valuation(3) # needs sage.rings.number_field sage: v.extensions(v.domain().fraction_field()) # needs sage.rings.number_field [3-adic valuation]
>>> from sage.all import * >>> v = GaussianIntegers().valuation(Integer(3)) # needs sage.rings.number_field >>> v.extensions(v.domain().fraction_field()) # needs sage.rings.number_field [3-adic valuation]
v = GaussianIntegers().valuation(3) # needs sage.rings.number_field v.extensions(v.domain().fraction_field()) # needs sage.rings.number_field
- class sage.rings.padics.padic_valuation.pAdicValuation_base(parent, p)[source]¶
Bases:
DiscreteValuation
Abstract base class for \(p\)-adic valuations.
INPUT:
ring
– an integral domainp
– a rational prime over which this valuation lies, not necessarily a uniformizer for the valuation
EXAMPLES:
sage: ZZ.valuation(3) 3-adic valuation sage: QQ.valuation(5) 5-adic valuation For `p`-adic rings, ``p`` has to match the `p` of the ring. :: sage: v = valuations.pAdicValuation(Zp(3), 2); v Traceback (most recent call last): ... ValueError: prime must be an element of positive valuation
- change_domain(ring)[source]¶
Change the domain of this valuation to
ring
if possible.EXAMPLES:
sage: v = ZZ.valuation(2) sage: v.change_domain(QQ).domain() Rational Field
>>> from sage.all import * >>> v = ZZ.valuation(Integer(2)) >>> v.change_domain(QQ).domain() Rational Field
v = ZZ.valuation(2) v.change_domain(QQ).domain()
- extensions(ring)[source]¶
Return the extensions of this valuation to
ring
.EXAMPLES:
sage: v = ZZ.valuation(2) sage: v.extensions(GaussianIntegers()) # needs sage.rings.number_field [2-adic valuation]
>>> from sage.all import * >>> v = ZZ.valuation(Integer(2)) >>> v.extensions(GaussianIntegers()) # needs sage.rings.number_field [2-adic valuation]
v = ZZ.valuation(2) v.extensions(GaussianIntegers()) # needs sage.rings.number_field
- is_totally_ramified(G, include_steps=False, assume_squarefree=False)[source]¶
Return whether
G
defines a single totally ramified extension of the completion of the domain of this valuation.INPUT:
G
– a monic squarefree polynomial over the domain of this valuationinclude_steps
– boolean (default:False
); where to include the valuations produced during the process of checking whetherG
is totally ramified in the return valueassume_squarefree
– boolean (default:False
); whether to assume thatG
is square-free over the completion of the domain of this valuation. Setting this toTrue
can significantly improve the performance.
ALGORITHM:
This is a simplified version of
sage.rings.valuation.valuation.DiscreteValuation.mac_lane_approximants()
.EXAMPLES:
sage: # needs sage.libs.ntl sage: k = Qp(5,4) sage: v = k.valuation() sage: R.<x> = k[] sage: G = x^2 + 1 sage: v.is_totally_ramified(G) # needs sage.geometry.polyhedron False sage: G = x + 1 sage: v.is_totally_ramified(G) True sage: G = x^2 + 2 sage: v.is_totally_ramified(G) False sage: G = x^2 + 5 sage: v.is_totally_ramified(G) # needs sage.geometry.polyhedron True sage: v.is_totally_ramified(G, include_steps=True) # needs sage.geometry.polyhedron (True, [Gauss valuation induced by 5-adic valuation, [ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x) = 1/2 ]])
>>> from sage.all import * >>> # needs sage.libs.ntl >>> k = Qp(Integer(5),Integer(4)) >>> v = k.valuation() >>> R = k['x']; (x,) = R._first_ngens(1) >>> G = x**Integer(2) + Integer(1) >>> v.is_totally_ramified(G) # needs sage.geometry.polyhedron False >>> G = x + Integer(1) >>> v.is_totally_ramified(G) True >>> G = x**Integer(2) + Integer(2) >>> v.is_totally_ramified(G) False >>> G = x**Integer(2) + Integer(5) >>> v.is_totally_ramified(G) # needs sage.geometry.polyhedron True >>> v.is_totally_ramified(G, include_steps=True) # needs sage.geometry.polyhedron (True, [Gauss valuation induced by 5-adic valuation, [ Gauss valuation induced by 5-adic valuation, v((1 + O(5^4))*x) = 1/2 ]])
# needs sage.libs.ntl k = Qp(5,4) v = k.valuation() R.<x> = k[] G = x^2 + 1 v.is_totally_ramified(G) # needs sage.geometry.polyhedron G = x + 1 v.is_totally_ramified(G) G = x^2 + 2 v.is_totally_ramified(G) G = x^2 + 5 v.is_totally_ramified(G) # needs sage.geometry.polyhedron v.is_totally_ramified(G, include_steps=True) # needs sage.geometry.polyhedron
We consider an extension as totally ramified if its ramification index matches the degree. Hence, a trivial extension is totally ramified:
sage: R.<x> = QQ[] sage: v = QQ.valuation(2) sage: v.is_totally_ramified(x) True
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> v = QQ.valuation(Integer(2)) >>> v.is_totally_ramified(x) True
R.<x> = QQ[] v = QQ.valuation(2) v.is_totally_ramified(x)
- is_unramified(G, include_steps=False, assume_squarefree=False)[source]¶
Return whether
G
defines a single unramified extension of the completion of the domain of this valuation.INPUT:
G
– a monic squarefree polynomial over the domain of this valuationinclude_steps
– boolean (default:False
); whether to include the approximate valuations that were used to determine the result in the return valueassume_squarefree
– boolean (default:False
); whether to assume thatG
is square-free over the completion of the domain of this valuation. Setting this toTrue
can significantly improve the performance.
EXAMPLES:
We consider an extension as unramified if its ramification index is 1. Hence, a trivial extension is unramified:
sage: R.<x> = QQ[] sage: v = QQ.valuation(2) sage: v.is_unramified(x) True
>>> from sage.all import * >>> R = QQ['x']; (x,) = R._first_ngens(1) >>> v = QQ.valuation(Integer(2)) >>> v.is_unramified(x) True
R.<x> = QQ[] v = QQ.valuation(2) v.is_unramified(x)
If
G
remains irreducible in reduction, then it defines an unramified extension:sage: v.is_unramified(x^2 + x + 1) True
>>> from sage.all import * >>> v.is_unramified(x**Integer(2) + x + Integer(1)) True
v.is_unramified(x^2 + x + 1)
However, even if
G
factors, it might define an unramified extension:sage: v.is_unramified(x^2 + 2*x + 4) # needs sage.geometry.polyhedron True
>>> from sage.all import * >>> v.is_unramified(x**Integer(2) + Integer(2)*x + Integer(4)) # needs sage.geometry.polyhedron True
v.is_unramified(x^2 + 2*x + 4) # needs sage.geometry.polyhedron
- lift(x)[source]¶
Lift
x
from the residue field to the domain of this valuation.INPUT:
x
– an element of theresidue_field()
EXAMPLES:
sage: v = ZZ.valuation(3) sage: xbar = v.reduce(4) sage: v.lift(xbar) 1
>>> from sage.all import * >>> v = ZZ.valuation(Integer(3)) >>> xbar = v.reduce(Integer(4)) >>> v.lift(xbar) 1
v = ZZ.valuation(3) xbar = v.reduce(4) v.lift(xbar)
- p()[source]¶
Return the \(p\) of this \(p\)-adic valuation.
EXAMPLES:
sage: GaussianIntegers().valuation(2).p() # needs sage.rings.number_field 2
>>> from sage.all import * >>> GaussianIntegers().valuation(Integer(2)).p() # needs sage.rings.number_field 2
GaussianIntegers().valuation(2).p() # needs sage.rings.number_field
- reduce(x)[source]¶
Reduce
x
modulo the ideal of elements of positive valuation.INPUT:
x
– an element in the domain of this valuation
OUTPUT: an element of the
residue_field()
EXAMPLES:
sage: v = ZZ.valuation(3) sage: v.reduce(4) 1
>>> from sage.all import * >>> v = ZZ.valuation(Integer(3)) >>> v.reduce(Integer(4)) 1
v = ZZ.valuation(3) v.reduce(4)
- restriction(ring)[source]¶
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: v = GaussianIntegers().valuation(2) # needs sage.rings.number_field sage: v.restriction(ZZ) # needs sage.rings.number_field 2-adic valuation
>>> from sage.all import * >>> v = GaussianIntegers().valuation(Integer(2)) # needs sage.rings.number_field >>> v.restriction(ZZ) # needs sage.rings.number_field 2-adic valuation
v = GaussianIntegers().valuation(2) # needs sage.rings.number_field v.restriction(ZZ) # needs sage.rings.number_field
- value_semigroup()[source]¶
Return the value semigroup of this valuation.
EXAMPLES:
sage: v = GaussianIntegers().valuation(2) # needs sage.rings.number_field sage: v.value_semigroup() # needs sage.rings.number_field Additive Abelian Semigroup generated by 1/2
>>> from sage.all import * >>> v = GaussianIntegers().valuation(Integer(2)) # needs sage.rings.number_field >>> v.value_semigroup() # needs sage.rings.number_field Additive Abelian Semigroup generated by 1/2
v = GaussianIntegers().valuation(2) # needs sage.rings.number_field v.value_semigroup() # needs sage.rings.number_field
- class sage.rings.padics.padic_valuation.pAdicValuation_int(parent, p)[source]¶
Bases:
pAdicValuation_base
A \(p\)-adic valuation on the integers or the rationals.
EXAMPLES:
sage: v = ZZ.valuation(3); v 3-adic valuation
>>> from sage.all import * >>> v = ZZ.valuation(Integer(3)); v 3-adic valuation
v = ZZ.valuation(3); v
- inverse(x, precision)[source]¶
Return an approximate inverse of
x
.The element returned is such that the product differs from 1 by an element of valuation at least
precision
.INPUT:
x
– an element in the domain of this valuationprecision
– a rational or infinity
EXAMPLES:
sage: v = ZZ.valuation(2) sage: x = 3 sage: y = v.inverse(3, 2); y 3 sage: x*y - 1 8
>>> from sage.all import * >>> v = ZZ.valuation(Integer(2)) >>> x = Integer(3) >>> y = v.inverse(Integer(3), Integer(2)); y 3 >>> x*y - Integer(1) 8
v = ZZ.valuation(2) x = 3 y = v.inverse(3, 2); y x*y - 1
This might not be possible for elements of positive valuation:
sage: v.inverse(2, 2) Traceback (most recent call last): ... ValueError: element has no approximate inverse in this ring
>>> from sage.all import * >>> v.inverse(Integer(2), Integer(2)) Traceback (most recent call last): ... ValueError: element has no approximate inverse in this ring
v.inverse(2, 2)
Unless the precision is very small:
sage: v.inverse(2, 0) 1
>>> from sage.all import * >>> v.inverse(Integer(2), Integer(0)) 1
v.inverse(2, 0)
- residue_ring()[source]¶
Return the residue field of this valuation.
EXAMPLES:
sage: v = ZZ.valuation(3) sage: v.residue_ring() Finite Field of size 3
>>> from sage.all import * >>> v = ZZ.valuation(Integer(3)) >>> v.residue_ring() Finite Field of size 3
v = ZZ.valuation(3) v.residue_ring()
- simplify(x, error=None, force=False, size_heuristic_bound=32)[source]¶
Return a simplified version of
x
.Produce an element which differs from
x
by an element of valuation strictly greater than the valuation ofx
(or strictly greater thanerror
if set.)INPUT:
x
– an element in the domain of this valuationerror
– a rational, infinity, orNone
(default:None
), the error allowed to introduce through the simplificationforce
– ignoredsize_heuristic_bound
– whenforce
is not set, the expected factor by which thex
need to shrink to perform an actual simplification (default: 32)
EXAMPLES:
sage: v = ZZ.valuation(2) sage: v.simplify(6, force=True) 2 sage: v.simplify(6, error=0, force=True) 0
>>> from sage.all import * >>> v = ZZ.valuation(Integer(2)) >>> v.simplify(Integer(6), force=True) 2 >>> v.simplify(Integer(6), error=Integer(0), force=True) 0
v = ZZ.valuation(2) v.simplify(6, force=True) v.simplify(6, error=0, force=True)
In this example, the usual rational reconstruction misses a good answer for some moduli (because the absolute value of the numerator is not bounded by the square root of the modulus):
sage: v = QQ.valuation(2) sage: v.simplify(110406, error=16, force=True) 562/19 sage: Qp(2, 16)(110406).rational_reconstruction() Traceback (most recent call last): ... ArithmeticError: rational reconstruction of 55203 (mod 65536) does not exist
>>> from sage.all import * >>> v = QQ.valuation(Integer(2)) >>> v.simplify(Integer(110406), error=Integer(16), force=True) 562/19 >>> Qp(Integer(2), Integer(16))(Integer(110406)).rational_reconstruction() Traceback (most recent call last): ... ArithmeticError: rational reconstruction of 55203 (mod 65536) does not exist
v = QQ.valuation(2) v.simplify(110406, error=16, force=True) Qp(2, 16)(110406).rational_reconstruction()
- class sage.rings.padics.padic_valuation.pAdicValuation_padic(parent)[source]¶
Bases:
pAdicValuation_base
The \(p\)-adic valuation of a complete \(p\)-adic ring.
INPUT:
R
– a \(p\)-adic ring
EXAMPLES:
sage: v = Qp(2).valuation(); v # indirect doctest 2-adic valuation
>>> from sage.all import * >>> v = Qp(Integer(2)).valuation(); v # indirect doctest 2-adic valuation
v = Qp(2).valuation(); v # indirect doctest
- element_with_valuation(v)[source]¶
Return an element of valuation
v
.INPUT:
v
– an element of thepAdicValuation_base.value_semigroup()
of this valuation
EXAMPLES:
sage: R = Zp(3) sage: v = R.valuation() sage: v.element_with_valuation(3) 3^3 + O(3^23) sage: # needs sage.libs.ntl sage: K = Qp(3) sage: R.<y> = K[] sage: L.<y> = K.extension(y^2 + 3*y + 3) sage: L.valuation().element_with_valuation(3/2) y^3 + O(y^43)
>>> from sage.all import * >>> R = Zp(Integer(3)) >>> v = R.valuation() >>> v.element_with_valuation(Integer(3)) 3^3 + O(3^23) >>> # needs sage.libs.ntl >>> K = Qp(Integer(3)) >>> R = K['y']; (y,) = R._first_ngens(1) >>> L = K.extension(y**Integer(2) + Integer(3)*y + Integer(3), names=('y',)); (y,) = L._first_ngens(1) >>> L.valuation().element_with_valuation(Integer(3)/Integer(2)) y^3 + O(y^43)
R = Zp(3) v = R.valuation() v.element_with_valuation(3) # needs sage.libs.ntl K = Qp(3) R.<y> = K[] L.<y> = K.extension(y^2 + 3*y + 3) L.valuation().element_with_valuation(3/2)
- lift(x)[source]¶
Lift
x
from theresidue_field()
to the domain of this valuation.INPUT:
x
– an element of the residue field of this valuation
EXAMPLES:
sage: R = Zp(3) sage: v = R.valuation() sage: xbar = v.reduce(R(4)) sage: v.lift(xbar) 1 + O(3^20)
>>> from sage.all import * >>> R = Zp(Integer(3)) >>> v = R.valuation() >>> xbar = v.reduce(R(Integer(4))) >>> v.lift(xbar) 1 + O(3^20)
R = Zp(3) v = R.valuation() xbar = v.reduce(R(4)) v.lift(xbar)
- reduce(x)[source]¶
Reduce
x
modulo the ideal of elements of positive valuation.INPUT:
x
– an element of the domain of this valuation
OUTPUT: an element of the
residue_field()
EXAMPLES:
sage: R = Zp(3) sage: Zp(3).valuation().reduce(R(4)) 1
>>> from sage.all import * >>> R = Zp(Integer(3)) >>> Zp(Integer(3)).valuation().reduce(R(Integer(4))) 1
R = Zp(3) Zp(3).valuation().reduce(R(4))
- residue_ring()[source]¶
Return the residue field of this valuation.
EXAMPLES:
sage: Qq(9, names='a').valuation().residue_ring() # needs sage.libs.ntl Finite Field in a0 of size 3^2
>>> from sage.all import * >>> Qq(Integer(9), names='a').valuation().residue_ring() # needs sage.libs.ntl Finite Field in a0 of size 3^2
Qq(9, names='a').valuation().residue_ring() # needs sage.libs.ntl
- shift(x, s)[source]¶
Shift
x
in its expansion with respect touniformizer()
bys
“digits”.For nonnegative
s
, this just returnsx
multiplied by a power of the uniformizer \(\pi\).For negative
s
, it does the same but when not over a field, it drops coefficients in the \(\pi\)-adic expansion which have negative valuation.EXAMPLES:
sage: R = ZpCA(2) sage: v = R.valuation() sage: v.shift(R.one(), 1) 2 + O(2^20) sage: v.shift(R.one(), -1) O(2^19) sage: # needs sage.libs.ntl sage.rings.padics sage: S.<y> = R[] sage: S.<y> = R.extension(y^3 - 2) sage: v = S.valuation() sage: v.shift(1, 5) y^5 + O(y^60)
>>> from sage.all import * >>> R = ZpCA(Integer(2)) >>> v = R.valuation() >>> v.shift(R.one(), Integer(1)) 2 + O(2^20) >>> v.shift(R.one(), -Integer(1)) O(2^19) >>> # needs sage.libs.ntl sage.rings.padics >>> S = R['y']; (y,) = S._first_ngens(1) >>> S = R.extension(y**Integer(3) - Integer(2), names=('y',)); (y,) = S._first_ngens(1) >>> v = S.valuation() >>> v.shift(Integer(1), Integer(5)) y^5 + O(y^60)
R = ZpCA(2) v = R.valuation() v.shift(R.one(), 1) v.shift(R.one(), -1) # needs sage.libs.ntl sage.rings.padics S.<y> = R[] S.<y> = R.extension(y^3 - 2) v = S.valuation() v.shift(1, 5)
- simplify(x, error=None, force=False)[source]¶
Return a simplified version of
x
.Produce an element which differs from
x
by an element of valuation strictly greater than the valuation ofx
(or strictly greater thanerror
if set.)INPUT:
x
– an element in the domain of this valuationerror
– a rational, infinity, orNone
(default:None
), the error allowed to introduce through the simplificationforce
– ignored
EXAMPLES:
sage: R = Zp(2) sage: v = R.valuation() sage: v.simplify(6) 2 + O(2^21) sage: v.simplify(6, error=0) 0
>>> from sage.all import * >>> R = Zp(Integer(2)) >>> v = R.valuation() >>> v.simplify(Integer(6)) 2 + O(2^21) >>> v.simplify(Integer(6), error=Integer(0)) 0
R = Zp(2) v = R.valuation() v.simplify(6) v.simplify(6, error=0)