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Sage provides native support for working with matrices over any commutative or noncommutative ring. The parent object
for a matrix is a matrix space MatrixSpace(R, n, m) of all 𝑛×𝑚 matrices over a ring 𝑅.

To create a matrix, either use the matrix(...) function or create a matrix space using the MatrixSpace command
and coerce an object into it.

Matrices also act on row vectors, which you create using the vector(...) command or by making a VectorSpace
and coercing lists into it. The natural action of matrices on row vectors is from the right. Sage currently does not have a
column vector class (on which matrices would act from the left), but this is planned.

In addition to native Sage matrices, Sage also includes the following additional ways to compute with matrices:

• Several math software systems included with Sage have their own native matrix support, which can be used from
Sage. E.g., PARI, GAP, Maxima, and Singular all have a notion of matrices.

• The GSL C-library is included with Sage, and can be used via Cython.

• The scipy module provides support for sparse numerical linear algebra, among many other things.

• The numpymodule, which you load by typing import numpy is included standard with Sage. It contains a very
sophisticated and well developed array class, plus optimized support for numerical linear algebra. Sage’s matrices
over RDF and CDF (native floating-point real and complex numbers) use numpy.

Finally, this module contains some data-structures for matrix-like objects like operation tables (e.g. the multiplication
table of a group).
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CHAPTER

ONE

MATRIX SPACES

You can create any space Mat𝑛×𝑚(𝑅) of either dense or sparse matrices with given number of rows and columns over
any commutative or noncommutative ring.

EXAMPLES:

sage: MS = MatrixSpace(QQ, 6,6, sparse=True); MS
Full MatrixSpace of 6 by 6 sparse matrices over Rational Field
sage: MS.base_ring()
Rational Field
sage: MS = MatrixSpace(ZZ, 3,5, sparse=False); MS
Full MatrixSpace of 3 by 5 dense matrices over Integer Ring

class sage.matrix.matrix_space.MatrixSpace(base_ring, nrows, ncols, sparse, implementation)
Bases: UniqueRepresentation, Parent

The space of matrices of given size and base ring.

INPUT:

• base_ring – a ring

• nrows or row_keys – nonnegative integer; the number of rows, or a finite family of arbitrary objects that
index the rows of the matrix

• ncols orcolumn_keys – nonnegative integer (default: nrows); the number of columns, or a finite family
of arbitrary objects that index the columns of the matrix

• sparse – boolean (default: False); whether or not matrices are given a sparse representation

• implementation – (optional) string or matrix class; a possible implementation. Depending on the base
ring, the string can be

– �generic� – on any base rings

– �flint� – for integers and rationals

– �meataxe� – finite fields using the optional package meataxe: Library for computing with modular
representations

– �m4ri� – for characteristic 2 using the m4ri: fast arithmetic with dense matrices over GF(2) library

– �linbox-float� – for integer mod rings up to 28 = 256

– �linbox-double� – for integer mod rings up to 𝑓𝑙𝑜𝑜𝑟(226 * 𝑠𝑞𝑟𝑡(2) + 1/2) = 94906266

– �numpy� – for real and complex floating point numbers

OUTPUT: a matrix space or, more generally, a homspace between free modules
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This factory function creates instances of various specialized classes depending on the input. Not all combinations
of options are implemented.

• If the parameters row_keys or column_keys are provided, they must be finite families of objects. In this
case, instances of CombinatorialFreeModule are created via the factory function FreeModule().
Then the homspace between these modules is returned.

EXAMPLES:

sage: MatrixSpace(QQ, 2)
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MatrixSpace(ZZ, 3, 2)
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring
sage: MatrixSpace(ZZ, 3, sparse=False)
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

sage: MatrixSpace(ZZ, 10, 5)
Full MatrixSpace of 10 by 5 dense matrices over Integer Ring
sage: MatrixSpace(ZZ, 10, 5).category()
Category of infinite enumerated finite dimensional modules with basis over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

sage: MatrixSpace(ZZ, 10, 10).category()
Category of infinite enumerated finite dimensional algebras with basis over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

sage: MatrixSpace(QQ, 10).category()
Category of infinite finite dimensional algebras with basis over
(number fields and quotient fields and metric spaces)

Some examples of square 2 by 2 rational matrices:

sage: MS = MatrixSpace(QQ, 2)
sage: MS.dimension()
4
sage: MS.dims()
(2, 2)
sage: B = MS.basis()
sage: list(B)
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]
sage: B[0,0]
[1 0]
[0 0]
sage: B[0,1]
[0 1]
[0 0]
sage: B[1,0]
[0 0]
[1 0]
sage: B[1,1]
[0 0]
[0 1]
sage: A = MS.matrix([1,2,3,4]); A

(continues on next page)
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(continued from previous page)

[1 2]
[3 4]

The above matrix A can be multiplied by a 2 by 3 integer matrix:

sage: MS2 = MatrixSpace(ZZ, 2, 3)
sage: B = MS2.matrix([1,2,3,4,5,6])
sage: A * B
[ 9 12 15]
[19 26 33]

Using row_keys and column_keys:

sage: MS = MatrixSpace(ZZ, [�u�, �v�], [�a�, �b�, �c�]); MS
Set of Morphisms
from Free module generated by {�a�, �b�, �c�} over Integer Ring
to Free module generated by {�u�, �v�} over Integer Ring
in Category of finite dimensional modules with basis over Integer Ring

Check categories:

sage: MatrixSpace(ZZ, 10, 5)
Full MatrixSpace of 10 by 5 dense matrices over Integer Ring
sage: MatrixSpace(ZZ, 10, 5).category()
Category of infinite enumerated finite dimensional modules with basis over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

sage: MatrixSpace(ZZ, 10, 10).category()
Category of infinite enumerated finite dimensional algebras with basis over
(Dedekind domains and euclidean domains
and noetherian rings
and infinite enumerated sets and metric spaces)

sage: MatrixSpace(QQ, 10).category()
Category of infinite finite dimensional algebras with basis over
(number fields and quotient fields and metric spaces)

base_extend(R)
Return base extension of this matrix space to R.

INPUT:

• R – ring

OUTPUT: a matrix space

EXAMPLES:

sage: Mat(ZZ, 3, 5).base_extend(QQ)
Full MatrixSpace of 3 by 5 dense matrices over Rational Field
sage: Mat(QQ, 3, 5).base_extend(GF(7))
Traceback (most recent call last):
...
TypeError: no base extension defined

basis()

Return a basis for this matrix space.
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Warning

This will of course compute every generator of this matrix space. So for large dimensions, this could take
a long time, waste a massive amount of memory (for dense matrices), and is likely not very useful. Don’t
use this on large matrix spaces.

EXAMPLES:

sage: list(Mat(ZZ,2,2).basis())
[
[1 0] [0 1] [0 0] [0 0]
[0 0], [0 0], [1 0], [0 1]
]

cached_method(f , name=None, key=None, do_pickle=None)
A decorator for cached methods.

EXAMPLES:

In the following examples, one can see how a cached method works in application. Below, we demonstrate
what is done behind the scenes:

sage: class C:
....: @cached_method
....: def __hash__(self):
....: print("compute hash")
....: return int(5)
....: @cached_method
....: def f(self, x):
....: print("computing cached method")
....: return x*2
sage: c = C()
sage: type(C.__hash__)
<class �sage.misc.cachefunc.CachedMethodCallerNoArgs�>
sage: hash(c)
compute hash
5

When calling a cached method for the second time with the same arguments, the value is gotten from the
cache, so that a new computation is not needed:

sage: hash(c)
5
sage: c.f(4)
computing cached method
8
sage: c.f(4) is c.f(4)
True

Different instances have distinct caches:

sage: d = C()
sage: d.f(4) is c.f(4)
computing cached method
False
sage: d.f.clear_cache()

(continues on next page)
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(continued from previous page)

sage: c.f(4)
8
sage: d.f(4)
computing cached method
8

Using cached methods for the hash and other special methods was implemented in Issue #12601, by means
of CachedSpecialMethod. We show that it is used behind the scenes:

sage: cached_method(c.__hash__)
<sage.misc.cachefunc.CachedSpecialMethod object at ...>
sage: cached_method(c.f)
<sage.misc.cachefunc.CachedMethod object at ...>

The parameter do_pickle can be used if the contents of the cache should be stored in a pickle of the
cached method. This can be dangerous with special methods such as __hash__:

sage: class C:
....: @cached_method(do_pickle=True)
....: def __hash__(self):
....: return id(self)

sage: import __main__
sage: __main__.C = C
sage: c = C()
sage: hash(c) # random output
sage: d = loads(dumps(c))
sage: hash(d) == hash(c)
True

However, the contents of a method’s cache are not pickled unless do_pickle is set:

sage: class C:
....: @cached_method
....: def __hash__(self):
....: return id(self)

sage: __main__.C = C
sage: c = C()
sage: hash(c) # random output
sage: d = loads(dumps(c))
sage: hash(d) == hash(c)
False

cardinality()

Return the number of elements in self.

EXAMPLES:

sage: MatrixSpace(GF(3), 2, 3).cardinality()
729
sage: MatrixSpace(ZZ, 2).cardinality()
+Infinity
sage: MatrixSpace(ZZ, 0, 3).cardinality()
1

7
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change_ring(R)
Return matrix space over R with otherwise same parameters as self.

INPUT:

• R – ring

OUTPUT: a matrix space

EXAMPLES:

sage: Mat(QQ, 3, 5).change_ring(GF(7))
Full MatrixSpace of 3 by 5 dense matrices
over Finite Field of size 7

characteristic()

Return the characteristic.

EXAMPLES:

sage: MatrixSpace(ZZ, 2).characteristic()
0
sage: MatrixSpace(GF(9), 0).characteristic() #␣
→˓needs sage.rings.finite_rings
3

column_space()

Return the module spanned by all columns of matrices in this matrix space. This is a free module of rank the
number of columns. It will be sparse or dense as this matrix space is sparse or dense.

EXAMPLES:

sage: M = Mat(GF(9,�a�), 20, 5, sparse=True); M.column_space() #␣
→˓needs sage.rings.finite_rings
Sparse vector space of dimension 20 over Finite Field in a of size 3^2

construction()

EXAMPLES:

sage: A = matrix(ZZ, 2, [1..4], sparse=True)
sage: A.parent().construction()
(MatrixFunctor, Integer Ring)
sage: A.parent().construction()[0](QQ[�x�])
Full MatrixSpace of 2 by 2 sparse matrices over
Univariate Polynomial Ring in x over Rational Field

sage: parent(A/2)
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field

diagonal_matrix(entries)

Create a diagonal matrix in self using the specified elements.

INPUT:

• entries – the elements to use as the diagonal entries

self must be a space of square matrices. The length of entries must be less than or equal to the matrix
dimensions. If the length of entries is less than the matrix dimensions, entries is padded with zeroes
at the end.

EXAMPLES:
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sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,3,4)
sage: I = MS1.diagonal_matrix([1, 2, 3, 4])
sage: I
[1 0 0 0]
[0 2 0 0]
[0 0 3 0]
[0 0 0 4]
sage: MS2.diagonal_matrix([1, 2])
Traceback (most recent call last):
...
TypeError: diagonal matrix must be square
sage: MS1.diagonal_matrix([1, 2, 3, 4, 5])
Traceback (most recent call last):
...
ValueError: number of diagonal matrix entries (5) exceeds the matrix size (4)
sage: MS1.diagonal_matrix([1/2, 2, 3, 4])
Traceback (most recent call last):
...
TypeError: no conversion of this rational to integer

Check different implementations:

sage: M1 = MatrixSpace(ZZ, 2, implementation=�flint�) #␣
→˓needs sage.libs.linbox
sage: M2 = MatrixSpace(ZZ, 2, implementation=�generic�)

sage: type(M1.diagonal_matrix([1, 2])) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_integer_dense.Matrix_integer_dense�>
sage: type(M2.diagonal_matrix([1, 2]))
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>

dimension()

Return (m rows) * (n cols) of self as Integer.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,4,6)
sage: u = MS.dimension()
sage: u - 24 == 0
True

dims()

Return (m row, n col) representation of self dimension.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,4,6)
sage: MS.dims()
(4, 6)

from_vector(vector, order=None, coerce=True)
Build an element of self from a vector.

EXAMPLES:

9
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sage: A = matrix([[1,2,3], [4,5,6]])
sage: v = vector(A); v
(1, 2, 3, 4, 5, 6)
sage: MS = A.parent()
sage: MS.from_vector(v)
[1 2 3]
[4 5 6]
sage: order = [(1,2), (1,0), (0,1), (0,2), (0,0), (1,1)]
sage: MS.from_vector(v, order=order)
[5 3 4]
[2 6 1]

gen(n)

Return the 𝑛-th generator of this matrix space.

This does not compute all basis matrices, so it is reasonably intelligent.

EXAMPLES:

sage: M = Mat(GF(7), 10000, 5); M.ngens()
50000
sage: a = M.10
sage: a[:4]
[0 0 0 0 0]
[0 0 0 0 0]
[1 0 0 0 0]
[0 0 0 0 0]

identity_matrix()

Return the identity matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want
a modified copy.

EXAMPLES:

sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,3,4)
sage: I = MS1.identity_matrix()
sage: I
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: Er = MS2.identity_matrix()
Traceback (most recent call last):
...
TypeError: identity matrix must be square

is_dense()

Return whether matrices in self are dense.

EXAMPLES:

sage: Mat(RDF,2,3).is_sparse()
False
sage: Mat(RR,123456,22,sparse=True).is_sparse()
True
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is_finite()

Return whether this matrix space is finite.

EXAMPLES:

sage: MatrixSpace(GF(101), 10000).is_finite()
True
sage: MatrixSpace(QQ, 2).is_finite()
False

is_sparse()

Return whether matrices in self are sparse.

EXAMPLES:

sage: Mat(GF(2011), 10000).is_sparse() #␣
→˓needs sage.rings.finite_rings
False
sage: Mat(GF(2011), 10000, sparse=True).is_sparse() #␣
→˓needs sage.rings.finite_rings
True

matrix(x=None, **kwds)
Create a matrix in self.

INPUT:

• x – data to construct a new matrix from. See matrix()

• coerce – boolean (default: True); if False, assume without checking that the values in x lie in the
base ring

OUTPUT: a matrix in self

EXAMPLES:

sage: M = MatrixSpace(ZZ, 2)
sage: M.matrix([[1,0],[0,-1]])
[ 1 0]
[ 0 -1]
sage: M.matrix([1,0,0,-1])
[ 1 0]
[ 0 -1]
sage: M.matrix([1,2,3,4])
[1 2]
[3 4]

Note that the last “flip” cannot be performed if x is a matrix, no matter what is rows (it used to be possible
but was fixed by Issue #10793):

sage: projection = matrix(ZZ,[[1,0,0],[0,1,0]])
sage: projection
[1 0 0]
[0 1 0]
sage: projection.parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
sage: M = MatrixSpace(ZZ, 3 , 2)
sage: M
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring

(continues on next page)
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(continued from previous page)

sage: M(projection)
Traceback (most recent call last):
...
ValueError: inconsistent number of rows: should be 3 but got 2

If you really want to make from a matrix another matrix of different dimensions, use either transpose method
or explicit conversion to a list:

sage: M(projection.list())
[1 0]
[0 0]
[1 0]

matrix_space(nrows=None, ncols=None, sparse=False)
Return the matrix space with given number of rows, columns and sparsity over the same base ring as self,
and defaults the same as self.

EXAMPLES:

sage: M = Mat(GF(7), 100, 200)
sage: M.matrix_space(5000)
Full MatrixSpace of 5000 by 200 dense matrices over Finite Field of size 7
sage: M.matrix_space(ncols=5000)
Full MatrixSpace of 100 by 5000 dense matrices over Finite Field of size 7
sage: M.matrix_space(sparse=True)
Full MatrixSpace of 100 by 200 sparse matrices over Finite Field of size 7

ncols()

Return the number of columns of matrices in this space.

EXAMPLES:

sage: M = Mat(ZZ[�x�], 200000, 500000, sparse=True)
sage: M.ncols()
500000

ngens()

Return the number of generators of this matrix space.

This is the number of entries in the matrices in this space.

EXAMPLES:

sage: M = Mat(GF(7), 100, 200); M.ngens()
20000

nrows()

Return the number of rows of matrices in this space.

EXAMPLES:

sage: M = Mat(ZZ, 200000, 500000)
sage: M.nrows()
200000
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one()

Return the identity matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want
a modified copy.

EXAMPLES:

sage: MS1 = MatrixSpace(ZZ,4)
sage: MS2 = MatrixSpace(QQ,3,4)
sage: I = MS1.identity_matrix()
sage: I
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: Er = MS2.identity_matrix()
Traceback (most recent call last):
...
TypeError: identity matrix must be square

random_element(density=None, *args, **kwds)
Return a random element from this matrix space.

INPUT:

• density – float or None (default: None); rough measure of the proportion of nonzero entries in
the random matrix; if set to None, all entries of the matrix are randomized, allowing for any element of
the underlying ring, but if set to a float, a proportion of entries is selected and randomized to nonzero
elements of the ring

• *args, **kwds – remaining parameters, which may be passed to the random_element function of
the base ring. (“may be”, since this function calls the randomize function on the zero matrix, which
need not call the random_element function of the base ring at all in general.)

OUTPUT: Matrix

Note

This method will randomize a proportion of roughly density entries in a newly allocated zero matrix.

By default, if the user sets the value of density explicitly, this method will enforce that these entries
are set to nonzero values. However, if the test for equality with zero in the base ring is too expensive, the
user can override this behaviour by passing the argument nonzero=False to this method.

Otherwise, if the user does not set the value of density, the default value is taken to be 1, and the
option nonzero=False is passed to the randomize method.

EXAMPLES:

sage: M = Mat(ZZ, 2, 5).random_element()
sage: TestSuite(M).run()

sage: M = Mat(QQ, 2, 5).random_element(density=0.5)
sage: TestSuite(M).run()

sage: M = Mat(QQ, 3, sparse=True).random_element()
sage: TestSuite(M).run() #␣

(continues on next page)
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(continued from previous page)

→˓needs sage.libs.pari

sage: M = Mat(GF(9,�a�), 3, sparse=True).random_element() #␣
→˓needs sage.rings.finite_rings
sage: TestSuite(M).run() #␣
→˓needs sage.rings.finite_rings

row_space()

Return the module spanned by all rows of matrices in this matrix space. This is a free module of rank the
number of rows. It will be sparse or dense as this matrix space is sparse or dense.

EXAMPLES:

sage: M = Mat(ZZ,20,5,sparse=False); M.row_space()
Ambient free module of rank 5 over the principal ideal domain Integer Ring

some_elements()

Return some elements of this matrix space.

See TestSuite for a typical use case.

OUTPUT: an iterator

EXAMPLES:

sage: M = MatrixSpace(ZZ, 2, 2)
sage: tuple(M.some_elements())
(
[ 0 1] [1 0] [0 1] [0 0] [0 0]
[-1 2], [0 0], [0 0], [1 0], [0 1]
)
sage: M = MatrixSpace(QQ, 2, 3)
sage: tuple(M.some_elements())
(
[ 1/2 -1/2 2] [1 0 0] [0 1 0] [0 0 1] [0 0 0] [0 0 0] [0 0 0]
[ -2 0 1], [0 0 0], [0 0 0], [0 0 0], [1 0 0], [0 1 0], [0 0 1]
)
sage: M = MatrixSpace(SR, 2, 2) #␣
→˓needs sage.symbolic
sage: tuple(M.some_elements()) #␣
→˓needs sage.symbolic
(
[some_variable some_variable] [1 0] [0 1] [0 0] [0 0]
[some_variable some_variable], [0 0], [0 0], [1 0], [0 1]
)

submodule(gens, check=True, already_echelonized=False, unitriangular=False, support_order=None,
category=None, *args, **opts)

The submodule spanned by a finite set of matrices.

INPUT:

• gens – list or family of elements of self

• check – boolean (default: True); whether to verify that the elements of gens are in self

• already_echelonized – boolean (default: False); whether the elements of gens are already in
(not necessarily reduced) echelon form

14 Chapter 1. Matrix Spaces
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• unitriangular – boolean (default: False); whether the lift morphism is unitriangular

• support_order – (optional) either something that can be converted into a tuple or a key function

If already_echelonized is False, then the generators are put in reduced echelon form using ech-
elonize(), and reindexed by 0, 1, . . ..

Warning

At this point, this method only works for finite dimensional submodules and if matrices can be echelonized
over the base ring.

If in addition unitriangular is True, then the generators are made such that the coefficients of the
pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends 𝑦𝑖 to 𝑔𝑒𝑛𝑠[𝑖].

See also

ModulesWithBasis.ParentMethods.submodule()

EXAMPLES:

sage: M = MatrixSpace(QQ, 2)
sage: mat = M.matrix([[1, 2], [3, 4]])
sage: X = M.submodule([mat], already_echelonized=True); X
Free module generated by {0} over Rational Field

sage: mat2 = M.matrix([[1, 0], [-3, 2]])
sage: X = M.submodule([mat, mat2])
sage: [X.lift(b) for b in X.basis()]
[
[ 1 0] [0 1]
[-3 2], [3 1]
]

sage: A = matrix([[1, 1], [0, -1]])
sage: B = matrix([[0, 1], [0, 2]])
sage: X = M.submodule([A, B])
sage: Xp = M.submodule([A, B], support_order=[(0,1), (1,1), (0,0)])
sage: [X.lift(b) for b in X.basis()]
[
[ 1 0] [0 1]
[ 0 -3], [0 2]
]
sage: [Xp.lift(b) for b in Xp.basis()]
[
[2/3 1] [-1/3 0]
[ 0 0], [ 0 1]
]

transposed()

The transposed matrix space, having the same base ring and sparseness, but number of columns and rows is
swapped.

EXAMPLES:
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sage: MS = MatrixSpace(GF(3), 7, 10)
sage: MS.transposed
Full MatrixSpace of 10 by 7 dense matrices over Finite Field of size 3
sage: MS = MatrixSpace(GF(3), 7, 7)
sage: MS.transposed is MS
True

sage: M = MatrixSpace(ZZ, 2, 3)
sage: M.transposed
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring

zero()

Return the zero matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want
a modified copy.

EXAMPLES:

sage: z = MatrixSpace(GF(7), 2, 4).zero_matrix(); z
[0 0 0 0]
[0 0 0 0]
sage: z.is_mutable()
False

zero_matrix()

Return the zero matrix in self.

self must be a space of square matrices. The returned matrix is immutable. Please use copy if you want
a modified copy.

EXAMPLES:

sage: z = MatrixSpace(GF(7), 2, 4).zero_matrix(); z
[0 0 0 0]
[0 0 0 0]
sage: z.is_mutable()
False

sage.matrix.matrix_space.dict_to_list(entries, nrows, ncols)
Given a dictionary of coordinate tuples, return the list given by reading off the nrows*ncols matrix in row order.

EXAMPLES:

sage: from sage.matrix.matrix_space import dict_to_list
sage: d = {}
sage: d[(0,0)] = 1
sage: d[(1,1)] = 2
sage: dict_to_list(d, 2, 2)
[1, 0, 0, 2]
sage: dict_to_list(d, 2, 3)
[1, 0, 0, 0, 2, 0]

sage.matrix.matrix_space.get_matrix_class(R, nrows, ncols, sparse, implementation)
Return a matrix class according to the input.
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Note

This returns the base class without the category.

INPUT:

• R – a base ring

• nrows – number of rows

• ncols – number of columns

• sparse – boolean; whether the matrix class should be sparse

• implementation – None or string or a matrix class; a possible implementation. See the documentation
of the constructor of MatrixSpace.

EXAMPLES:

sage: from sage.matrix.matrix_space import get_matrix_class

sage: get_matrix_class(ZZ, 4, 5, False, None) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_integer_dense.Matrix_integer_dense�>
sage: get_matrix_class(ZZ, 4, 5, True, None) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_integer_sparse.Matrix_integer_sparse�>

sage: get_matrix_class(ZZ, 3, 3, False, �flint�) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_integer_dense.Matrix_integer_dense�>
sage: get_matrix_class(ZZ, 3, 3, False, �gap�) #␣
→˓needs sage.libs.gap
<class �sage.matrix.matrix_gap.Matrix_gap�>
sage: get_matrix_class(ZZ, 3, 3, False, �generic�)
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>

sage: get_matrix_class(GF(2^15), 3, 3, False, None) #␣
→˓needs sage.rings.finite_rings
<class �sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense�>
sage: get_matrix_class(GF(2^17), 3, 3, False, None) #␣
→˓needs sage.rings.finite_rings
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>

sage: get_matrix_class(GF(2), 2, 2, False, �m4ri�) #␣
→˓needs sage.libs.m4ri
<class �sage.matrix.matrix_mod2_dense.Matrix_mod2_dense�>
sage: get_matrix_class(GF(4), 2, 2, False, �m4ri�) #␣
→˓needs sage.libs.m4ri sage.rings.finite_rings
<class �sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense�>
sage: get_matrix_class(GF(7), 2, 2, False, �linbox-float�) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: get_matrix_class(GF(7), 2, 2, False, �linbox-double�) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double�>

sage: get_matrix_class(RDF, 2, 2, False, �numpy�) #␣
→˓needs numpy

(continues on next page)
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(continued from previous page)

<class �sage.matrix.matrix_real_double_dense.Matrix_real_double_dense�>
sage: get_matrix_class(CDF, 2, 3, False, �numpy�) #␣
→˓needs numpy sage.rings.complex_double
<class �sage.matrix.matrix_complex_double_dense.Matrix_complex_double_dense�>

sage: get_matrix_class(GF(25,�x�), 4, 4, False, �meataxe�) # optional -␣
→˓meataxe, needs sage.rings.finite_rings
<class �sage.matrix.matrix_gfpn_dense.Matrix_gfpn_dense�>
sage: get_matrix_class(IntegerModRing(3), 4, 4, False, �meataxe�) # optional -␣
→˓meataxe
<class �sage.matrix.matrix_gfpn_dense.Matrix_gfpn_dense�>
sage: get_matrix_class(IntegerModRing(4), 4, 4, False, �meataxe�)
Traceback (most recent call last):
...
ValueError: �meataxe� matrix can only deal with finite fields of order < 256
sage: get_matrix_class(GF(next_prime(255)), 4, 4, False, �meataxe�) #␣
→˓needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: �meataxe� matrix can only deal with finite fields of order < 256

sage: get_matrix_class(ZZ, 3, 5, False, �crazy_matrix�)
Traceback (most recent call last):
...
ValueError: unknown matrix implementation �crazy_matrix� over Integer Ring
sage: get_matrix_class(GF(3), 2, 2, False, �m4ri�)
Traceback (most recent call last):
...
ValueError: �m4ri� matrices are only available for fields of characteristic 2
and order <= 65536
sage: get_matrix_class(Zmod(2**30), 2, 2, False, �linbox-float�) #␣
→˓needs sage.libs.linbox
Traceback (most recent call last):
...
ValueError: �linbox-float� matrices can only deal with order < 256
sage: get_matrix_class(Zmod(2**30), 2, 2, False, �linbox-double�) #␣
→˓needs sage.libs.linbox
Traceback (most recent call last):
...
ValueError: �linbox-double� matrices can only deal with order < 94906266

sage: type(matrix(SR, 2, 2, 0)) #␣
→˓needs sage.symbolic
<class �sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense�>
sage: type(matrix(SR, 2, 2, 0, sparse=True)) #␣
→˓needs sage.symbolic
<class �sage.matrix.matrix_symbolic_sparse.Matrix_symbolic_sparse�>
sage: type(matrix(GF(7), 2, range(4))) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: type(matrix(GF(16007), 2, range(4))) #␣
→˓needs sage.libs.linbox
<class �sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double�>
sage: type(matrix(CBF, 2, range(4))) #␣
→˓needs sage.libs.flint
<class �sage.matrix.matrix_complex_ball_dense.Matrix_complex_ball_dense�>
sage: type(matrix(GF(2), 2, range(4))) #␣

(continues on next page)
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→˓needs sage.libs.m4ri
<class �sage.matrix.matrix_mod2_dense.Matrix_mod2_dense�>
sage: type(matrix(GF(64, �z�), 2, range(4))) #␣
→˓needs sage.libs.m4ri sage.rings.finite_rings
<class �sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense�>
sage: type(matrix(GF(125, �z�), 2, range(4))) # optional -␣
→˓meataxe, needs sage.rings.finite_rings
<class �sage.matrix.matrix_gfpn_dense.Matrix_gfpn_dense�>

sage.matrix.matrix_space.is_MatrixSpace(x)
Return whether self is an instance of MatrixSpace.

EXAMPLES:

sage: from sage.matrix.matrix_space import is_MatrixSpace
sage: MS = MatrixSpace(QQ,2)
sage: A = MS.random_element()
sage: is_MatrixSpace(MS)
doctest:warning...
DeprecationWarning: the function is_MatrixSpace is deprecated;
use �isinstance(..., MatrixSpace)� instead
See https://github.com/sagemath/sage/issues/37924 for details.
True
sage: is_MatrixSpace(A)
False
sage: is_MatrixSpace(5)
False
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CHAPTER

TWO

GENERAL MATRIX CONSTRUCTOR AND DISPLAY OPTIONS

sage.matrix.constructor.Matrix(*args, **kwds)
Create a matrix.

This implements the matrix constructor:

sage: matrix([[1,2],[3,4]])
[1 2]
[3 4]

It also contains methods to create special types of matrices, see matrix.[tab] for more options. For example:

sage: matrix.identity(2)
[1 0]
[0 1]

INPUT:

The matrix() command takes the entries of a matrix, optionally preceded by a ring and the dimensions of the
matrix, and returns a matrix.

The entries of a matrix can be specified as a flat list of elements, a list of lists (i.e., a list of rows), a list of Sage
vectors, a callable object, or a dictionary having positions as keys and matrix entries as values (see the examples).
If you pass in a callable object, then you must specify the number of rows and columns. You can create a matrix of
zeros by passing an empty list or the integer zero for the entries. To construct a multiple of the identity (𝑐𝐼), you
can specify square dimensions and pass in 𝑐. Calling matrix() with a Sage object may return something that
makes sense. Calling matrix() with a NumPy array will convert the array to a matrix.

All arguments (even the positional ones) are optional.

Positional and keyword arguments:

• base_ring – parent of the entries of the matrix (despite the name, this is not a priori required to be a ring).
By default, determine this from the given entries, falling back to ZZ if no entries are given.

• nrows – the number of rows in the matrix, or a finite or enumerated family of arbitrary objects that index
the rows of the matrix

• ncols – the number of columns in the matrix, or a finite or enumerated family of arbitrary objects that index
the columns of the matrix

• entries – see examples below

If any of nrows, ncols, row_keys, column_keys is given as keyword argument, then none of these may
be given as positional arguments.

Keyword-only arguments:
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• sparse – boolean; create a sparse matrix. This defaults to True when the entries are given as a dictionary,
otherwise defaults to False.

• row_keys – a finite or enumerated family of arbitrary objects that index the rows of the matrix

• column_keys – a finite or enumerated family of arbitrary objects that index the columns of the matrix

• space – matrix space which will be the parent of the output matrix. This determines base_ring, nrows,
row_keys, ncols, column_keys, and sparse.

• immutable – boolean; make the matrix immutable. By default, the output matrix is mutable.

OUTPUT: a matrix or, more generally, a homomorphism between free modules

EXAMPLES:

sage: m = matrix(2); m; m.parent()
[0 0]
[0 0]
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

sage: m = matrix(2, 3); m; m.parent()
[0 0 0]
[0 0 0]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: m = matrix(QQ, [[1,2,3], [4,5,6]]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix(QQ, 3, 3, lambda i, j: i + j); m
[0 1 2]
[1 2 3]
[2 3 4]
sage: m = matrix(3, lambda i, j: i - j); m
[ 0 -1 -2]
[ 1 0 -1]
[ 2 1 0]

sage: matrix(QQ, 2, 3, lambda x, y: x + y)
[0 1 2]
[1 2 3]
sage: matrix(QQ, 5, 5, lambda x, y: (x+1) / (y+1))
[ 1 1/2 1/3 1/4 1/5]
[ 2 1 2/3 1/2 2/5]
[ 3 3/2 1 3/4 3/5]
[ 4 2 4/3 1 4/5]
[ 5 5/2 5/3 5/4 1]

sage: v1 = vector((1,2,3))
sage: v2 = vector((4,5,6))
sage: m = matrix([v1,v2]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
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sage: m = matrix(QQ, 2, [1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix(QQ, 2, 3, [1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix({(0,1): 2, (1,1): 2/5}); m; m.parent()
[ 0 2]
[ 0 2/5]
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field

sage: m = matrix(QQ, 2, 3, {(1,1): 2}); m; m.parent()
[0 0 0]
[0 2 0]
Full MatrixSpace of 2 by 3 sparse matrices over Rational Field

sage: import numpy #␣
→˓needs numpy
sage: n = numpy.array([[1,2], [3,4]], float) #␣
→˓needs numpy
sage: m = matrix(n); m; m.parent() #␣
→˓needs numpy
[1.0 2.0]
[3.0 4.0]
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field

sage: v = vector(ZZ, [1, 10, 100])
sage: m = matrix(v); m; m.parent()
[ 1 10 100]
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m = matrix(GF(7), v); m; m.parent()
[1 3 2]
Full MatrixSpace of 1 by 3 dense matrices over Finite Field of size 7
sage: m = matrix(GF(7), 3, 1, v); m; m.parent()
[1]
[3]
[2]
Full MatrixSpace of 3 by 1 dense matrices over Finite Field of size 7

sage: matrix(pari.mathilbert(3)) #␣
→˓needs sage.libs.pari
[ 1 1/2 1/3]
[1/2 1/3 1/4]
[1/3 1/4 1/5]

sage: g = graphs.PetersenGraph() #␣
→˓needs sage.graphs
sage: m = matrix(g); m; m.parent() #␣
→˓needs sage.graphs
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 0 0 1 0 0 0]

(continues on next page)
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[0 1 0 1 0 0 0 1 0 0]
[0 0 1 0 1 0 0 0 1 0]
[1 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 0 0 0 1 1]
[0 0 1 0 0 1 0 0 0 1]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 0 1 0 1 1 0 0]
Full MatrixSpace of 10 by 10 dense matrices over Integer Ring

sage: matrix(ZZ, 10, 10, range(100), sparse=True).parent()
Full MatrixSpace of 10 by 10 sparse matrices over Integer Ring

sage: R = PolynomialRing(QQ, 9, �x�)
sage: A = matrix(R, 3, 3, R.gens()); A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: det(A)
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8

sage: M = Matrix([[1,2,3], [4,5,6], [7,8,9]], immutable=True)
sage: M[0] = [9,9,9]
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).

Using row_keys and column_keys:

sage: M = matrix([[1,2,3], [4,5,6]],
....: column_keys=[�a�,�b�,�c�], row_keys=[�u�,�v�]); M
Generic morphism:
From: Free module generated by {�a�, �b�, �c�} over Integer Ring
To: Free module generated by {�u�, �v�} over Integer Ring

sage: print(M._unicode_art_matrix())
a b c

u⎛1 2 3⎞
v⎝4 5 6⎠

It is allowed to specify dimensions redundantly:

sage: M = matrix(2, 3, [[1,2,3], [4,5,6]],
....: column_keys=[�a�,�b�,�c�], row_keys=[�u�,�v�]); M
Generic morphism:
From: Free module generated by {�a�, �b�, �c�} over Integer Ring
To: Free module generated by {�u�, �v�} over Integer Ring

AUTHORS:

• William Stein: Initial implementation

• Jason Grout (2008-03): almost a complete rewrite, with bits and pieces from the original implementation

• Jeroen Demeyer (2016-02-05): major clean up, see Issue #20015 and Issue #20016

• Jeroen Demeyer (2018-02-20): completely rewritten using MatrixArgs, see Issue #24742
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sage.matrix.constructor.matrix(*args, **kwds)
Create a matrix.

This implements the matrix constructor:

sage: matrix([[1,2],[3,4]])
[1 2]
[3 4]

It also contains methods to create special types of matrices, see matrix.[tab] for more options. For example:

sage: matrix.identity(2)
[1 0]
[0 1]

INPUT:

The matrix() command takes the entries of a matrix, optionally preceded by a ring and the dimensions of the
matrix, and returns a matrix.

The entries of a matrix can be specified as a flat list of elements, a list of lists (i.e., a list of rows), a list of Sage
vectors, a callable object, or a dictionary having positions as keys and matrix entries as values (see the examples).
If you pass in a callable object, then you must specify the number of rows and columns. You can create a matrix of
zeros by passing an empty list or the integer zero for the entries. To construct a multiple of the identity (𝑐𝐼), you
can specify square dimensions and pass in 𝑐. Calling matrix() with a Sage object may return something that
makes sense. Calling matrix() with a NumPy array will convert the array to a matrix.

All arguments (even the positional ones) are optional.

Positional and keyword arguments:

• base_ring – parent of the entries of the matrix (despite the name, this is not a priori required to be a ring).
By default, determine this from the given entries, falling back to ZZ if no entries are given.

• nrows – the number of rows in the matrix, or a finite or enumerated family of arbitrary objects that index
the rows of the matrix

• ncols – the number of columns in the matrix, or a finite or enumerated family of arbitrary objects that index
the columns of the matrix

• entries – see examples below

If any of nrows, ncols, row_keys, column_keys is given as keyword argument, then none of these may
be given as positional arguments.

Keyword-only arguments:

• sparse – boolean; create a sparse matrix. This defaults to True when the entries are given as a dictionary,
otherwise defaults to False.

• row_keys – a finite or enumerated family of arbitrary objects that index the rows of the matrix

• column_keys – a finite or enumerated family of arbitrary objects that index the columns of the matrix

• space – matrix space which will be the parent of the output matrix. This determines base_ring, nrows,
row_keys, ncols, column_keys, and sparse.

• immutable – boolean; make the matrix immutable. By default, the output matrix is mutable.

OUTPUT: a matrix or, more generally, a homomorphism between free modules

EXAMPLES:
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sage: m = matrix(2); m; m.parent()
[0 0]
[0 0]
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

sage: m = matrix(2, 3); m; m.parent()
[0 0 0]
[0 0 0]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: m = matrix(QQ, [[1,2,3], [4,5,6]]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix(QQ, 3, 3, lambda i, j: i + j); m
[0 1 2]
[1 2 3]
[2 3 4]
sage: m = matrix(3, lambda i, j: i - j); m
[ 0 -1 -2]
[ 1 0 -1]
[ 2 1 0]

sage: matrix(QQ, 2, 3, lambda x, y: x + y)
[0 1 2]
[1 2 3]
sage: matrix(QQ, 5, 5, lambda x, y: (x+1) / (y+1))
[ 1 1/2 1/3 1/4 1/5]
[ 2 1 2/3 1/2 2/5]
[ 3 3/2 1 3/4 3/5]
[ 4 2 4/3 1 4/5]
[ 5 5/2 5/3 5/4 1]

sage: v1 = vector((1,2,3))
sage: v2 = vector((4,5,6))
sage: m = matrix([v1,v2]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: m = matrix(QQ, 2, [1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix(QQ, 2, 3, [1,2,3,4,5,6]); m; m.parent()
[1 2 3]
[4 5 6]
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage: m = matrix({(0,1): 2, (1,1): 2/5}); m; m.parent()
[ 0 2]
[ 0 2/5]
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
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sage: m = matrix(QQ, 2, 3, {(1,1): 2}); m; m.parent()
[0 0 0]
[0 2 0]
Full MatrixSpace of 2 by 3 sparse matrices over Rational Field

sage: import numpy #␣
→˓needs numpy
sage: n = numpy.array([[1,2], [3,4]], float) #␣
→˓needs numpy
sage: m = matrix(n); m; m.parent() #␣
→˓needs numpy
[1.0 2.0]
[3.0 4.0]
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field

sage: v = vector(ZZ, [1, 10, 100])
sage: m = matrix(v); m; m.parent()
[ 1 10 100]
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m = matrix(GF(7), v); m; m.parent()
[1 3 2]
Full MatrixSpace of 1 by 3 dense matrices over Finite Field of size 7
sage: m = matrix(GF(7), 3, 1, v); m; m.parent()
[1]
[3]
[2]
Full MatrixSpace of 3 by 1 dense matrices over Finite Field of size 7

sage: matrix(pari.mathilbert(3)) #␣
→˓needs sage.libs.pari
[ 1 1/2 1/3]
[1/2 1/3 1/4]
[1/3 1/4 1/5]

sage: g = graphs.PetersenGraph() #␣
→˓needs sage.graphs
sage: m = matrix(g); m; m.parent() #␣
→˓needs sage.graphs
[0 1 0 0 1 1 0 0 0 0]
[1 0 1 0 0 0 1 0 0 0]
[0 1 0 1 0 0 0 1 0 0]
[0 0 1 0 1 0 0 0 1 0]
[1 0 0 1 0 0 0 0 0 1]
[1 0 0 0 0 0 0 1 1 0]
[0 1 0 0 0 0 0 0 1 1]
[0 0 1 0 0 1 0 0 0 1]
[0 0 0 1 0 1 1 0 0 0]
[0 0 0 0 1 0 1 1 0 0]
Full MatrixSpace of 10 by 10 dense matrices over Integer Ring

sage: matrix(ZZ, 10, 10, range(100), sparse=True).parent()
Full MatrixSpace of 10 by 10 sparse matrices over Integer Ring

sage: R = PolynomialRing(QQ, 9, �x�)
sage: A = matrix(R, 3, 3, R.gens()); A

(continues on next page)
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[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: det(A)
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8

sage: M = Matrix([[1,2,3], [4,5,6], [7,8,9]], immutable=True)
sage: M[0] = [9,9,9]
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).

Using row_keys and column_keys:

sage: M = matrix([[1,2,3], [4,5,6]],
....: column_keys=[�a�,�b�,�c�], row_keys=[�u�,�v�]); M
Generic morphism:
From: Free module generated by {�a�, �b�, �c�} over Integer Ring
To: Free module generated by {�u�, �v�} over Integer Ring

sage: print(M._unicode_art_matrix())
a b c

u⎛1 2 3⎞
v⎝4 5 6⎠

It is allowed to specify dimensions redundantly:

sage: M = matrix(2, 3, [[1,2,3], [4,5,6]],
....: column_keys=[�a�,�b�,�c�], row_keys=[�u�,�v�]); M
Generic morphism:
From: Free module generated by {�a�, �b�, �c�} over Integer Ring
To: Free module generated by {�u�, �v�} over Integer Ring

AUTHORS:

• William Stein: Initial implementation

• Jason Grout (2008-03): almost a complete rewrite, with bits and pieces from the original implementation

• Jeroen Demeyer (2016-02-05): major clean up, see Issue #20015 and Issue #20016

• Jeroen Demeyer (2018-02-20): completely rewritten using MatrixArgs, see Issue #24742

sage.matrix.constructor.options(*get_value, **set_value)

Global options for matrices.

OPTIONS:

• format_numeric – (default: {:.{prec}}) string used for formatting floating point numbers of an
(optional) precision prec; only supported for entry types implementing __format__

• max_cols – (default: 49) maximum number of columns to display

• max_rows – (default: 19) maximum number of rows to display

• precision – (default: None) number of digits to display for floating point entries; if None, the exact
representation is used instead. This option is also set by the IPython magic %precision.

EXAMPLES:

28 Chapter 2. General matrix Constructor and display options

https://github.com/sagemath/sage/issues/20015
https://github.com/sagemath/sage/issues/20016
https://github.com/sagemath/sage/issues/24742
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-precision


Matrices and Spaces of Matrices, Release 10.5.rc0

sage: matrix.options.max_cols = 6
sage: matrix.options.max_rows = 3
sage: matrix(ZZ, 3, 6)
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
sage: matrix(ZZ, 3, 7)
3 x 7 dense matrix over Integer Ring...
sage: matrix(ZZ, 4, 6)
4 x 6 dense matrix over Integer Ring...
sage: matrix.options._reset()

The precision can also be set via the IPython magic:

sage: from sage.repl.interpreter import get_test_shell
sage: shell = get_test_shell()
sage: shell.run_cell(�%precision 5�)
�%.5f�
sage: matrix.options.precision
5
sage: A = matrix(RR, [[200/3]]); A
[66.667]

The number format can be specified as well:

sage: matrix.options.format_numeric = �{:.{prec}e}�
sage: A
[6.66667e+1]
sage: matrix.options.format_numeric = �{:.{prec}f}�
sage: A
[66.66667]
sage: matrix.options.format_numeric = �{:+.{prec}g}�
sage: A
[+66.667]
sage: matrix.options._reset()

See GlobalOptions for more features of these options.
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CHAPTER

THREE

CONSTRUCTORS FOR SPECIAL MATRICES

This module gathers several constructors for special, commonly used or interesting matrices. These can be reached
through matrix.<tab>.

For example, here is a circulant matrix of order five:

sage: matrix.circulant(SR.var(�a b c d e�)) #␣
→˓needs sage.symbolic
[a b c d e]
[e a b c d]
[d e a b c]
[c d e a b]
[b c d e a]

The following constructions are available:

block_diagonal_matrix()
block_matrix()
circulant()
column_matrix()
companion_matrix()
diagonal_matrix()
elementary_matrix()
hankel()
hilbert()
identity_matrix()
ith_to_zero_rotation_matrix()
jordan_block()
lehmer()
ones_matrix()
random_matrix()
random_diagonalizable_matrix()
random_echelonizable_matrix()
random_rref_matrix()
random_subspaces_matrix()
random_unimodular_matrix()
toeplitz()
vandermonde()
vector_on_axis_rotation_matrix()
zero_matrix()

The Combinatorics module provides further matrix constructors, such as Hadamard matrices and Latin squares. See:
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• sage.combinat.matrices.hadamard_matrix

• sage.combinat.matrices.latin

sage.matrix.special.block_diagonal_matrix(*sub_matrices, **kwds)
This function is available as block_diagonal_matrix(…) and matrix.block_diagonal(…).

Create a block matrix whose diagonal block entries are given by sub_matrices, with zero elsewhere.

See also block_matrix().

EXAMPLES:

sage: A = matrix(ZZ, 2, [1,2,3,4])
sage: block_diagonal_matrix(A, A)
[1 2|0 0]
[3 4|0 0]
[---+---]
[0 0|1 2]
[0 0|3 4]

The sub-matrices need not be square:

sage: B = matrix(QQ, 2, 3, range(6))
sage: block_diagonal_matrix(~A, B)
[ -2 1| 0 0 0]
[ 3/2 -1/2| 0 0 0]
[---------+--------------]
[ 0 0| 0 1 2]
[ 0 0| 3 4 5]

sage.matrix.special.block_matrix(*args, **kwds)
This function is available as block_matrix(…) and matrix.block(…).

Return a larger matrix made by concatenating submatrices (rows first, then columns). For example, the matrix

[ A B ]
[ C D ]

is made up of submatrices A, B, C, and D.

INPUT:

The block_matrix command takes a list of submatrices to add as blocks, optionally preceded by a ring and the
number of block rows and block columns, and returns a matrix.

The submatrices can be specified as a list of matrices (using nrows and ncols to determine their layout), or a
list of lists of matrices, where each list forms a row.

• ring – the base ring

• nrows – the number of block rows

• ncols – the number of block cols

• sub_matrices – matrices (see below for syntax)

• subdivide – boolean, whether or not to add subdivision information to the matrix

• sparse – boolean, whether to make the resulting matrix sparse

EXAMPLES:
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sage: A = matrix(QQ, 2, 2, [3,9,6,10])
sage: block_matrix([ [A, -A], [~A, 100*A] ])
[ 3 9| -3 -9]
[ 6 10| -6 -10]
[-----------+-----------]
[-5/12 3/8| 300 900]
[ 1/4 -1/8| 600 1000]

If the number of submatrices in each row is the same, you can specify the submatrices as a single list too:

sage: block_matrix(2, 2, [ A, A, A, A ])
[ 3 9| 3 9]
[ 6 10| 6 10]
[-----+-----]
[ 3 9| 3 9]
[ 6 10| 6 10]

One can use constant entries:

sage: block_matrix([ [1, A], [0, 1] ])
[ 1 0| 3 9]
[ 0 1| 6 10]
[-----+-----]
[ 0 0| 1 0]
[ 0 0| 0 1]

A zero entry may represent any square or non-square zero matrix:

sage: B = matrix(QQ, 1, 1, [ 1 ] )
sage: C = matrix(QQ, 2, 2, [ 2, 3, 4, 5 ] )
sage: block_matrix([ [B, 0], [0, C] ])
[1|0 0]
[-+---]
[0|2 3]
[0|4 5]

One can specify the number of rows or columns as keywords too:

sage: block_matrix([A, -A, ~A, 100*A], ncols=4)
[ 3 9| -3 -9|-5/12 3/8| 300 900]
[ 6 10| -6 -10| 1/4 -1/8| 600 1000]

sage: block_matrix([A, -A, ~A, 100*A], nrows=1)
[ 3 9| -3 -9|-5/12 3/8| 300 900]
[ 6 10| -6 -10| 1/4 -1/8| 600 1000]

It handles base rings nicely too:

sage: R.<x> = ZZ[�x�]
sage: block_matrix(2, 2, [1/2, A, 0, x-1])
[ 1/2 0| 3 9]
[ 0 1/2| 6 10]
[-----------+-----------]
[ 0 0|x - 1 0]
[ 0 0| 0 x - 1]

sage: block_matrix(2, 2, [1/2, A, 0, x-1]).parent()

(continues on next page)
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Full MatrixSpace of 4 by 4 dense matrices over Univariate Polynomial Ring in x␣
→˓over Rational Field

Subdivisions are optional. If they are disabled, the columns need not line up:

sage: B = matrix(QQ, 2, 3, range(6))
sage: block_matrix([ [~A, B], [B, ~A] ], subdivide=False)
[-5/12 3/8 0 1 2]
[ 1/4 -1/8 3 4 5]
[ 0 1 2 -5/12 3/8]
[ 3 4 5 1/4 -1/8]

Without subdivisions it also deduces dimensions for scalars if possible:

sage: C = matrix(ZZ, 1, 2, range(2))
sage: block_matrix([ [ C, 0 ], [ 3, 4 ], [ 5, 6, C ] ], subdivide=False )
[0 1 0 0]
[3 0 4 0]
[0 3 0 4]
[5 6 0 1]

If all submatrices are sparse (unless there are none at all), the result will be a sparse matrix. Otherwise it will be
dense by default. The sparse keyword can be used to override this:

sage: A = Matrix(ZZ, 2, 2, [0, 1, 0, 0], sparse=True)
sage: block_matrix([ [ A ], [ A ] ]).parent()
Full MatrixSpace of 4 by 2 sparse matrices over Integer Ring
sage: block_matrix([ [ A ], [ A ] ], sparse=False).parent()
Full MatrixSpace of 4 by 2 dense matrices over Integer Ring

Consecutive zero submatrices are consolidated.

sage: B = matrix(2, range(4))
sage: C = matrix(2, 8, range(16))
sage: block_matrix(2, [[B,0,0,B],[C]], subdivide=False)
[ 0 1 0 0 0 0 0 1]
[ 2 3 0 0 0 0 2 3]
[ 0 1 2 3 4 5 6 7]
[ 8 9 10 11 12 13 14 15]

Ambiguity is not tolerated.

sage: B = matrix(2, range(4))
sage: C = matrix(2, 8, range(16))
sage: block_matrix(2, [[B,0,B,0],[C]], subdivide=False)
Traceback (most recent call last):
...
ValueError: insufficient information to determine submatrix widths

Giving only a flat list of submatrices does not work:

sage: A = matrix(2, 3, range(6))
sage: B = matrix(3, 3, range(9))
sage: block_matrix([A, A, B, B])
Traceback (most recent call last):
...
ValueError: must specify either nrows or ncols
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sage.matrix.special.circulant(v, sparse=None)
This function is available as circulant(…) and matrix.circulant(…).

Return the circulant matrix specified by its 1st row 𝑣.

A circulant 𝑛 × 𝑛 matrix specified by the 1st row 𝑣 = (𝑣0...𝑣𝑛−1) is the matrix (𝑐𝑖𝑗)0≤𝑖,𝑗≤𝑛−1, where 𝑐𝑖𝑗 =
𝑣𝑗−𝑖 mod 𝑏.

INPUT:

• v – list or a vector of values

• sparse – None by default; if sparse is set to True, the output will be sparse. Respectively, setting it to
False produces dense output. If sparse is not set, and if v is a vector, the output sparsity is determined
by the sparsity of v; else, the output will be dense.

EXAMPLES:

sage: v = [1,2,3,4,8]
sage: matrix.circulant(v)
[1 2 3 4 8]
[8 1 2 3 4]
[4 8 1 2 3]
[3 4 8 1 2]
[2 3 4 8 1]
sage: m = matrix.circulant(vector(GF(3),[0,1,-1],sparse=True)); m
[0 1 2]
[2 0 1]
[1 2 0]
sage: m.is_sparse()
True

sage.matrix.special.column_matrix(*args, **kwds)
This function is available as column_matrix(…) and matrix.column(…).

Construct a matrix, and then swap rows for columns and columns for rows.

Note

Linear algebra in Sage favors rows over columns. So, generally, when creating a matrix, input vectors and lists
are treated as rows. This function is a convenience that turns around this convention when creating a matrix. If
you are not familiar with the usual matrix() constructor, you might want to consider it first.

INPUT:

Inputs are almost exactly the same as for the matrix() constructor, which are documented there. But see exam-
ples below for how dimensions are handled.

OUTPUT:

Output is exactly the transpose of what the matrix() constructor would return. In other words, the matrix
constructor builds a matrix and then this function exchanges rows for columns, and columns for rows.

EXAMPLES:

The most compelling use of this function is when you have a collection of lists or vectors that you would like to
become the columns of a matrix. In almost any other situation, the matrix() constructor can probably do the
job just as easily, or easier.
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sage: col_1 = [1,2,3]
sage: col_2 = [4,5,6]
sage: column_matrix([col_1, col_2])
[1 4]
[2 5]
[3 6]

sage: v1 = vector(QQ, [10, 20])
sage: v2 = vector(QQ, [30, 40])
sage: column_matrix(QQ, [v1, v2])
[10 30]
[20 40]

If you only specify one dimension along with a flat list of entries, then it will be the number of columns in the result
(which is different from the behavior of the matrix constructor).

sage: column_matrix(ZZ, 8, range(24))
[ 0 3 6 9 12 15 18 21]
[ 1 4 7 10 13 16 19 22]
[ 2 5 8 11 14 17 20 23]

And when you specify two dimensions, then they should be number of columns first, then the number of rows,
which is the reverse of how they would be specified for the matrix constructor.

sage: column_matrix(QQ, 5, 3, range(15))
[ 0 3 6 9 12]
[ 1 4 7 10 13]
[ 2 5 8 11 14]

And a few unproductive, but illustrative, examples.

sage: A = matrix(ZZ, 3, 4, range(12))
sage: B = column_matrix(ZZ, 3, 4, range(12))
sage: A == B.transpose()
True

sage: A = matrix(QQ, 7, 12, range(84))
sage: A == column_matrix(A.columns())
True

sage: A = column_matrix(QQ, matrix(ZZ, 3, 2, range(6)) )
sage: A
[0 2 4]
[1 3 5]
sage: A.parent()
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

sage.matrix.special.companion_matrix(poly, format='right')
This function is available as companion_matrix(…) and matrix.companion(…).

Create a companion matrix from a monic polynomial.

INPUT:

• poly – a univariate polynomial, or an iterable containing the coefficients of a polynomial, with low-degree
coefficients first. The polynomial (or the polynomial implied by the coefficients) must be monic. In other
words, the leading coefficient must be one. A symbolic expression that might also be a polynomial is not
proper input, see examples below.
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• format – (default: �right�) specifies one of four variations of a companion matrix. Allowable values
are �right�, �left�, �top� and �bottom�, which indicates which border of the matrix contains the
negatives of the coefficients.

OUTPUT:

A square matrix with a size equal to the degree of the polynomial. The returned matrix has ones above, or below
the diagonal, and the negatives of the coefficients along the indicated border of the matrix (excepting the leading
one coefficient). See the first examples below for precise illustrations.

EXAMPLES:

Each of the four possibilities. Notice that the coefficients are specified and their negatives become the entries of
the matrix. The leading one must be given, but is not used. The permutation matrix P is the identity matrix, with
the columns reversed. The last three statements test the general relationships between the four variants.

sage: poly = [-2, -3, -4, -5, -6, 1]
sage: R = companion_matrix(poly, format=�right�); R
[0 0 0 0 2]
[1 0 0 0 3]
[0 1 0 0 4]
[0 0 1 0 5]
[0 0 0 1 6]
sage: L = companion_matrix(poly, format=�left�); L
[6 1 0 0 0]
[5 0 1 0 0]
[4 0 0 1 0]
[3 0 0 0 1]
[2 0 0 0 0]
sage: B = companion_matrix(poly, format=�bottom�); B
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
[2 3 4 5 6]
sage: T = companion_matrix(poly, format=�top�); T
[6 5 4 3 2]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]

sage: perm = Permutation([5, 4, 3, 2, 1])
sage: P = perm.to_matrix()
sage: L == P*R*P
True
sage: B == R.transpose()
True
sage: T == P*R.transpose()*P
True

A polynomial may be used as input, however a symbolic expression, even if it looks like a polynomial, is not
regarded as such when used as input to this routine. Obtaining the list of coefficients from a symbolic polynomial
is one route to the companion matrix.

sage: x = polygen(QQ, �x�)
sage: p = x^3 - 4*x^2 + 8*x - 12
sage: companion_matrix(p)
[ 0 0 12]

(continues on next page)
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[ 1 0 -8]
[ 0 1 4]

sage: # needs sage.symbolic
sage: y = var(�y�)
sage: q = y^3 - 2*y + 1
sage: companion_matrix(q)
Traceback (most recent call last):
...
TypeError: input must be a polynomial (not a symbolic expression, see docstring),
or other iterable, not y^3 - 2*y + 1
sage: coeff_list = [q(y=0)] + [q.coefficient(y^k)
....: for k in range(1, q.degree(y) + 1)]
sage: coeff_list
[1, -2, 0, 1]
sage: companion_matrix(coeff_list)
[ 0 0 -1]
[ 1 0 2]
[ 0 1 0]

The minimal polynomial of a companion matrix is equal to the polynomial used to create it. Used in a block
diagonal construction, they can be used to create matrices with any desired minimal polynomial, or characteristic
polynomial.

sage: t = polygen(QQ, �t�)
sage: p = t^12 - 7*t^4 + 28*t^2 - 456
sage: C = companion_matrix(p, format=�top�)
sage: q = C.minpoly(var=�t�); q #␣
→˓needs sage.libs.pari
t^12 - 7*t^4 + 28*t^2 - 456
sage: p == q #␣
→˓needs sage.libs.pari
True

sage: p = t^3 + 3*t - 8
sage: q = t^5 + t - 17
sage: A = block_diagonal_matrix( companion_matrix(p),
....: companion_matrix(p^2),
....: companion_matrix(q),
....: companion_matrix(q) )
sage: A.charpoly(var=�t�).factor() #␣
→˓needs sage.libs.pari
(t^3 + 3*t - 8)^3 * (t^5 + t - 17)^2
sage: A.minpoly(var=�t�).factor() #␣
→˓needs sage.libs.pari
(t^3 + 3*t - 8)^2 * (t^5 + t - 17)

AUTHOR:

• Rob Beezer (2011-05-19)

sage.matrix.special.diagonal_matrix(arg0=None, arg1=None, arg2=None, sparse=True)
This function is available as diagonal_matrix(…) and matrix.diagonal(…).

Return a square matrix with specified diagonal entries, and zeros elsewhere.

FORMATS:

1. diagonal_matrix(entries)
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2. diagonal_matrix(nrows, entries)

3. diagonal_matrix(ring, entries)

4. diagonal_matrix(ring, nrows, entries)

INPUT:

• entries – the values to place along the diagonal of the returned matrix. This may be a flat list, a flat tuple,
a vector or free module element, or a one-dimensional NumPy array.

• nrows – the size of the returned matrix, which will have an equal number of columns

• ring – the ring containing the entries of the diagonal entries. This may not be specified in combination with
a NumPy array.

• sparse – boolean (default: True); whether or not the result has a sparse implementation

OUTPUT:

A square matrix over the given ring with a size given by nrows. If the ring is not given it is inferred from the
given entries. The values on the diagonal of the returned matrix come from entries. If the number of entries is
not enough to fill the whole diagonal, it is padded with zeros.

EXAMPLES:

We first demonstrate each of the input formats with various different ways to specify the entries.

Format 1: a flat list of entries.

sage: A = diagonal_matrix([2, 1.3, 5]); A
[ 2.00000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 1.30000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 5.00000000000000]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Real Field with 53 bits of␣
→˓precision

Format 2: size specified, a tuple with initial entries. Note that a short list of entries is effectively padded with zeros.

sage: A = diagonal_matrix(3, (4, 5)); A
[4 0 0]
[0 5 0]
[0 0 0]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

Format 3: ring specified, a vector of entries.

sage: A = diagonal_matrix(QQ, vector(ZZ, [1,2,3])); A
[1 0 0]
[0 2 0]
[0 0 3]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Rational Field

Format 4: ring, size and list of entries.

sage: A = diagonal_matrix(FiniteField(3), 3, [2, 16]); A
[2 0 0]
[0 1 0]
[0 0 0]

(continues on next page)
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sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Finite Field of size 3

NumPy arrays may be used as input.

sage: # needs numpy
sage: import numpy
sage: entries = numpy.array([1.2, 5.6]); entries
array([1.2, 5.6])
sage: A = diagonal_matrix(3, entries); A
[1.2 0.0 0.0]
[0.0 5.6 0.0]
[0.0 0.0 0.0]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Real Double Field

sage: # needs numpy
sage: j = complex(0,1)
sage: entries = numpy.array([2.0+j, 8.1, 3.4+2.6*j]); entries
array([2. +1.j , 8.1+0.j , 3.4+2.6j])
sage: A = diagonal_matrix(entries); A
[2.0 + 1.0*I 0.0 0.0]
[ 0.0 8.1 0.0]
[ 0.0 0.0 3.4 + 2.6*I]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Complex Double Field

sage: # needs numpy
sage: entries = numpy.array([4, 5, 6])
sage: A = diagonal_matrix(entries); A
[4 0 0]
[0 5 0]
[0 0 6]
sage: A.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

sage: entries = numpy.array([4.1, 5.2, 6.3]) #␣
→˓needs numpy
sage: A = diagonal_matrix(ZZ, entries); A #␣
→˓needs numpy
Traceback (most recent call last):
...
TypeError: unable to convert 4.1 to an element of Integer Ring

By default returned matrices have a sparse implementation. This can be changed when using any of the formats.

sage: A = diagonal_matrix([1,2,3], sparse=False)
sage: A.parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

An empty list and no ring specified defaults to the integers.

sage: A = diagonal_matrix([])
sage: A.parent()
Full MatrixSpace of 0 by 0 sparse matrices over Integer Ring

Giving the entries improperly may first complain about not being iterable:
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sage: diagonal_matrix(QQ, 5, 10)
Traceback (most recent call last):
...
TypeError: �sage.rings.integer.Integer� object is not iterable

Giving too many entries will raise an error.

sage: diagonal_matrix(QQ, 3, [1,2,3,4])
Traceback (most recent call last):
...
ValueError: number of diagonal matrix entries (4) exceeds the requested matrix␣
→˓size (3)

A negative size sometimes causes the error that there are too many elements.

sage: diagonal_matrix(-2, [2])
Traceback (most recent call last):
...
ValueError: number of diagonal matrix entries (1) exceeds the requested matrix␣
→˓size (-2)

Types for the entries need to be iterable (tuple, list, vector, NumPy array, etc):

sage: diagonal_matrix(x^2) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: �sage.symbolic.expression.Expression� object is not iterable

AUTHOR:

• Rob Beezer (2011-01-11): total rewrite

sage.matrix.special.elementary_matrix(arg0, arg1=None, **kwds)
This function is available as elementary_matrix(…) and matrix.elementary(…).

Create a square matrix that corresponds to a row operation or a column operation.

FORMATS:

In each case, R is the base ring, and is optional. n is the size of the square matrix created. Any call may in-
clude the sparse keyword to determine the representation used. The default is False which leads to a dense
representation. We describe the matrices by their associated row operation, see the output description for more.

• elementary_matrix(R, n, row1=i, row2=j)

The matrix which swaps rows i and j.

• elementary_matrix(R, n, row1=i, scale=s)

The matrix which multiplies row i by s.

• elementary_matrix(R, n, row1=i, row2=j, scale=s)

The matrix which multiplies row j by s and adds it to row i.

Elementary matrices representing column operations are created in an entirely analogous way, replacing row1 by
col1 and replacing row2 by col2.

Specifying the ring for entries of the matrix is optional. If it is not given, and a scale parameter is provided, then a
ring containing the value of scale will be used. Otherwise, the ring defaults to the integers.
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OUTPUT:

An elementary matrix is a square matrix that is very close to being an identity matrix. If E is an elementary matrix
and A is any matrix with the same number of rows, then E*A is the result of applying a row operation to A. This is
how the three types created by this function are described. Similarly, an elementary matrix can be associated with
a column operation, so if E has the same number of columns as A then A*E is the result of performing a column
operation on A.

An elementary matrix representing a row operation is created if row1 is specified, while an elementary matrix
representing a column operation is created if col1 is specified.

EXAMPLES:

Over the integers, creating row operations. Recall that row and column numbering begins at zero.

sage: A = matrix(ZZ, 4, 10, range(40)); A
[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]

sage: E = elementary_matrix(4, row1=1, row2=3); E
[1 0 0 0]
[0 0 0 1]
[0 0 1 0]
[0 1 0 0]
sage: E*A
[ 0 1 2 3 4 5 6 7 8 9]
[30 31 32 33 34 35 36 37 38 39]
[20 21 22 23 24 25 26 27 28 29]
[10 11 12 13 14 15 16 17 18 19]

sage: E = elementary_matrix(4, row1=2, scale=10); E
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 0 10 0]
[ 0 0 0 1]
sage: E*A
[ 0 1 2 3 4 5 6 7 8 9]
[ 10 11 12 13 14 15 16 17 18 19]
[200 210 220 230 240 250 260 270 280 290]
[ 30 31 32 33 34 35 36 37 38 39]

sage: E = elementary_matrix(4, row1=2, row2=1, scale=10); E
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 10 1 0]
[ 0 0 0 1]
sage: E*A
[ 0 1 2 3 4 5 6 7 8 9]
[ 10 11 12 13 14 15 16 17 18 19]
[120 131 142 153 164 175 186 197 208 219]
[ 30 31 32 33 34 35 36 37 38 39]

Over the rationals, now as column operations. Recall that row and column numbering begins at zero. Checks now
have the elementary matrix on the right.

sage: A = matrix(QQ, 5, 4, range(20)); A
[ 0 1 2 3]

(continues on next page)
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[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]

sage: E = elementary_matrix(QQ, 4, col1=1, col2=3); E
[1 0 0 0]
[0 0 0 1]
[0 0 1 0]
[0 1 0 0]
sage: A*E
[ 0 3 2 1]
[ 4 7 6 5]
[ 8 11 10 9]
[12 15 14 13]
[16 19 18 17]

sage: E = elementary_matrix(QQ, 4, col1=2, scale=1/2); E
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1/2 0]
[ 0 0 0 1]
sage: A*E
[ 0 1 1 3]
[ 4 5 3 7]
[ 8 9 5 11]
[12 13 7 15]
[16 17 9 19]

sage: E = elementary_matrix(QQ, 4, col1=2, col2=1, scale=10); E
[ 1 0 0 0]
[ 0 1 10 0]
[ 0 0 1 0]
[ 0 0 0 1]
sage: A*E
[ 0 1 12 3]
[ 4 5 56 7]
[ 8 9 100 11]
[ 12 13 144 15]
[ 16 17 188 19]

An elementary matrix is always nonsingular. Then repeated row operations can be represented by products of
elementary matrices, and this product is again nonsingular. If row operations are to preserve fundamental properties
of a matrix (like rank), we do not allow scaling a row by zero. Similarly, the corresponding elementary matrix is
not constructed. Also, we do not allow adding a multiple of a row to itself, since this could also lead to a new zero
row.

sage: A = matrix(QQ, 4, 10, range(40)); A
[ 0 1 2 3 4 5 6 7 8 9]
[10 11 12 13 14 15 16 17 18 19]
[20 21 22 23 24 25 26 27 28 29]
[30 31 32 33 34 35 36 37 38 39]

sage: E1 = elementary_matrix(QQ, 4, row1=0, row2=1)
sage: E2 = elementary_matrix(QQ, 4, row1=3, row2=0, scale=100)
sage: E = E2*E1

(continues on next page)
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sage: E.is_singular()
False
sage: E*A
[ 10 11 12 13 14 15 16 17 18 19]
[ 0 1 2 3 4 5 6 7 8 9]
[ 20 21 22 23 24 25 26 27 28 29]
[1030 1131 1232 1333 1434 1535 1636 1737 1838 1939]

sage: E3 = elementary_matrix(QQ, 4, row1=3, scale=0)
Traceback (most recent call last):
...
ValueError: scale parameter of row of elementary matrix must be nonzero

sage: E4 = elementary_matrix(QQ, 4, row1=3, row2=3, scale=12)
Traceback (most recent call last):
...
ValueError: cannot add a multiple of a row to itself

If the ring is not specified, and a scale parameter is given, the base ring for the matrix is chosen to contain the scale
parameter. Otherwise, if no ring is given, the default is the integers.

sage: E = elementary_matrix(4, row1=1, row2=3)
sage: E.parent()
Full MatrixSpace of 4 by 4 dense matrices over Integer Ring

sage: E = elementary_matrix(4, row1=1, scale=4/3)
sage: E.parent()
Full MatrixSpace of 4 by 4 dense matrices over Rational Field

sage: # needs sage.symbolic
sage: E = elementary_matrix(4, row1=1, scale=I)
sage: E.parent()
Full MatrixSpace of 4 by 4 dense matrices over
Number Field in I with defining polynomial x^2 + 1 with I = 1*I

sage: # needs sage.rings.complex_double sage.symbolic
sage: E = elementary_matrix(4, row1=1, scale=CDF(I))
sage: E.parent()
Full MatrixSpace of 4 by 4 dense matrices over Complex Double Field

sage: # needs sage.rings.number_field sage.symbolic
sage: E = elementary_matrix(4, row1=1, scale=QQbar(I))
sage: E.parent()
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Field

Returned matrices have a dense implementation by default, but a sparse implementation may be requested.

sage: E = elementary_matrix(4, row1=0, row2=1)
sage: E.is_dense()
True

sage: E = elementary_matrix(4, row1=0, row2=1, sparse=True)
sage: E.is_sparse()
True

And the ridiculously small cases. The zero-row matrix cannot be built since then there are no rows to manipulate.
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sage: elementary_matrix(QQ, 1, row1=0, row2=0)
[1]
sage: elementary_matrix(QQ, 0, row1=0, row2=0)
Traceback (most recent call last):
...
ValueError: size of elementary matrix must be 1 or greater, not 0

AUTHOR:

• Rob Beezer (2011-03-04)

sage.matrix.special.hankel(c, r=None, ring=None)
This function is available as hankel(…) and matrix.hankel(…).

Return a Hankel matrix of given first column and whose elements are zero below the first anti-diagonal.

The Hankel matrix is symmetric and constant across the anti-diagonals, with elements

𝐻𝑖𝑗 = 𝑣𝑖+𝑗−1, 𝑖 = 1, . . . ,𝑚, 𝑗 = 1, . . . , 𝑛,

where the vector 𝑣𝑖 = 𝑐𝑖 for 𝑖 = 1, . . . ,𝑚 and 𝑣𝑚+𝑖 = 𝑟𝑖 for 𝑖 = 1, . . . , 𝑛− 1 completely determines the Hankel
matrix. If the last row, 𝑟, is not given, the Hankel matrix is square by default and 𝑟 = 0. For more information see
the Wikipedia article Hankel_matrix.

INPUT:

• c – vector, first column of the Hankel matrix

• r – vector (default: None); last row of the Hankel matrix, from the second to the last column

• ring – base ring (default: None) of the resulting matrix

EXAMPLES:

A Hankel matrix with symbolic entries:

sage: matrix.hankel(SR.var(�a, b, c, d, e�)) #␣
→˓needs sage.symbolic
[a b c d e]
[b c d e 0]
[c d e 0 0]
[d e 0 0 0]
[e 0 0 0 0]

We can also pass the elements of the last row, starting at the second column:

sage: matrix.hankel(SR.var(�a, b, c, d, e�), SR.var(�f, g, h, i�)) #␣
→˓needs sage.symbolic
[a b c d e]
[b c d e f]
[c d e f g]
[d e f g h]
[e f g h i]

A third order Hankel matrix in the integers:

sage: matrix.hankel([1, 2, 3])
[1 2 3]
[2 3 0]
[3 0 0]
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The second argument allows to customize the last row:

sage: matrix.hankel([1..3], [7..10])
[ 1 2 3 7 8]
[ 2 3 7 8 9]
[ 3 7 8 9 10]

sage.matrix.special.hilbert(dim, ring=Rational Field)
This function is available as hilbert(…) and matrix.hilbert(…).

Return a Hilbert matrix of the given dimension.

The 𝑛 dimensional Hilbert matrix is a square matrix with entries being unit fractions,

𝐻𝑖𝑗 =
1

𝑖+ 𝑗 − 1
, 𝑖, 𝑗 = 1, . . . , 𝑛.

For more information see the Wikipedia article Hilbert_matrix.

INPUT:

• dim – integer; the dimension of the Hilbert matrix

• ring – base ring (default: 2) of the resulting matrix

EXAMPLES:

sage: matrix.hilbert(5)
[ 1 1/2 1/3 1/4 1/5]
[1/2 1/3 1/4 1/5 1/6]
[1/3 1/4 1/5 1/6 1/7]
[1/4 1/5 1/6 1/7 1/8]
[1/5 1/6 1/7 1/8 1/9]

sage.matrix.special.identity_matrix(ring, n=0, sparse=False)
This function is available as identity_matrix(…) and matrix.identity(…).

Return the 𝑛× 𝑛 identity matrix over the given ring.

The default ring is the integers.

EXAMPLES:

sage: M = identity_matrix(QQ, 2); M
[1 0]
[0 1]
sage: M.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: M = identity_matrix(2); M
[1 0]
[0 1]
sage: M.parent()
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: M.is_mutable()
True
sage: M = identity_matrix(3, sparse=True); M
[1 0 0]
[0 1 0]
[0 0 1]
sage: M.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

(continues on next page)
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sage: M.is_mutable()
True

sage.matrix.special.ith_to_zero_rotation_matrix(v, i, ring=None)
This function is available as ith_to_zero_rotation_matrix(…) and matrix.ith_to_zero_rotation(…).

Return a rotation matrix that sends the 𝑖-th coordinates of the vector v to zero by doing a rotation with the (𝑖−1)-th
coordinate.

INPUT:

• v – vector

• i – integer

• ring – ring (default: None) of the resulting matrix

OUTPUT: a matrix

EXAMPLES:

sage: from sage.matrix.constructor import ith_to_zero_rotation_matrix
sage: v = vector((1,2,3))
sage: ith_to_zero_rotation_matrix(v, 2) #␣
→˓needs sage.symbolic
[ 1 0 0]
[ 0 2/13*sqrt(13) 3/13*sqrt(13)]
[ 0 -3/13*sqrt(13) 2/13*sqrt(13)]
sage: ith_to_zero_rotation_matrix(v, 2) * v #␣
→˓needs sage.symbolic
(1, sqrt(13), 0)

sage: ith_to_zero_rotation_matrix(v, 0) #␣
→˓needs sage.symbolic
[ 3/10*sqrt(10) 0 -1/10*sqrt(10)]
[ 0 1 0]
[ 1/10*sqrt(10) 0 3/10*sqrt(10)]
sage: ith_to_zero_rotation_matrix(v, 1) #␣
→˓needs sage.symbolic
[ 1/5*sqrt(5) 2/5*sqrt(5) 0]
[-2/5*sqrt(5) 1/5*sqrt(5) 0]
[ 0 0 1]
sage: ith_to_zero_rotation_matrix(v, 2) #␣
→˓needs sage.symbolic
[ 1 0 0]
[ 0 2/13*sqrt(13) 3/13*sqrt(13)]
[ 0 -3/13*sqrt(13) 2/13*sqrt(13)]

sage: ith_to_zero_rotation_matrix(v, 0) * v #␣
→˓needs sage.symbolic
(0, 2, sqrt(10))
sage: ith_to_zero_rotation_matrix(v, 1) * v #␣
→˓needs sage.symbolic
(sqrt(5), 0, 3)
sage: ith_to_zero_rotation_matrix(v, 2) * v #␣
→˓needs sage.symbolic
(1, sqrt(13), 0)

Other ring:
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sage: ith_to_zero_rotation_matrix(v, 2, ring=RR)
[ 1.00000000000000 0.000000000000000 0.000000000000000]
[ 0.000000000000000 0.554700196225229 0.832050294337844]
[ 0.000000000000000 -0.832050294337844 0.554700196225229]
sage: ith_to_zero_rotation_matrix(v, 2, ring=RDF)
[ 1.0 0.0 0.0]
[ 0.0 0.5547001962252291 0.8320502943378437]
[ 0.0 -0.8320502943378437 0.5547001962252291]

On the symbolic ring:

sage: # needs sage.symbolic
sage: x,y,z = var(�x,y,z�)
sage: v = vector((x,y,z))
sage: ith_to_zero_rotation_matrix(v, 2)
[ 1 0 0]
[ 0 y/sqrt(y^2 + z^2) z/sqrt(y^2 + z^2)]
[ 0 -z/sqrt(y^2 + z^2) y/sqrt(y^2 + z^2)]
sage: ith_to_zero_rotation_matrix(v, 2) * v
(x, y^2/sqrt(y^2 + z^2) + z^2/sqrt(y^2 + z^2), 0)

AUTHORS:

Sébastien Labbé (April 2010)

sage.matrix.special.jordan_block(eigenvalue, size, sparse=False)
This function is available as jordan_block(…) and matrix.jordan_block(…).

Return the Jordan block for the given eigenvalue with given size.

INPUT:

• eigenvalue – eigenvalue for the diagonal entries of the block

• size – size of the square matrix

• sparse – (default: False) if True, return a sparse matrix

EXAMPLES:

sage: jordan_block(5, 3)
[5 1 0]
[0 5 1]
[0 0 5]

sage.matrix.special.lehmer(ring, n=0)
This function is available as lehmer(…) and matrix.lehmer(…).

Return the 𝑛× 𝑛 Lehmer matrix.

The default ring is the rationals.

Element (𝑖, 𝑗) in the Lehmer matrix is𝑚𝑖𝑛(𝑖, 𝑗)/𝑚𝑎𝑥(𝑖, 𝑗).

See Wikipedia article Lehmer_matrix.

EXAMPLES:

sage: matrix.lehmer(3)
[ 1 1/2 1/3]
[1/2 1 2/3]
[1/3 2/3 1]
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sage.matrix.special.matrix_method(func=None, name=None)
Allow a function to be tab-completed on the global matrix constructor object.

INPUT:

• *function – a single argument; the function that is being decorated

• **kwds – a single optional keyword argument name=<string>. The name of the corresponding method
in the global matrix constructor object. If not given, it is derived from the function name.

EXAMPLES:

sage: from sage.matrix.constructor import matrix_method
sage: def foo_matrix(n): return matrix.diagonal(range(n))
sage: matrix_method(foo_matrix)
<function foo_matrix at ...>
sage: matrix.foo(5)
[0 0 0 0 0]
[0 1 0 0 0]
[0 0 2 0 0]
[0 0 0 3 0]
[0 0 0 0 4]
sage: matrix_method(foo_matrix, name=�bar�)
<function foo_matrix at ...>
sage: matrix.bar(3)
[0 0 0]
[0 1 0]
[0 0 2]

sage.matrix.special.ones_matrix(ring, nrows=None, ncols=None, sparse=False)
This function is available as ones_matrix(…) and matrix.ones(…).

Return a matrix with all entries equal to 1.

CALL FORMATS:

In each case, the optional keyword sparse can be used.

1. ones_matrix(ring, nrows, ncols)

2. ones_matrix(ring, nrows)

3. ones_matrix(nrows, ncols)

4. ones_matrix(nrows)

INPUT:

• ring – (default: ZZ) base ring for the matrix

• nrows – number of rows in the matrix

• ncols – number of columns in the matrix; if omitted, defaults to the number of rows, producing a square
matrix

• sparse – (default: False) if True creates a sparse representation

OUTPUT:

A matrix of size nrows by ncols over the ring with every entry equal to 1. While the result is far from sparse,
you may wish to choose a sparse representation when mixing this matrix with other sparse matrices.

EXAMPLES:

A call specifying the ring and the size.
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sage: M= ones_matrix(QQ, 2, 5); M
[1 1 1 1 1]
[1 1 1 1 1]
sage: M.parent()
Full MatrixSpace of 2 by 5 dense matrices over Rational Field

Without specifying the number of columns, the result is square.

sage: M = ones_matrix(RR, 2); M
[1.00000000000000 1.00000000000000]
[1.00000000000000 1.00000000000000]
sage: M.parent()
Full MatrixSpace of 2 by 2 dense matrices over Real Field with 53 bits of␣
→˓precision

The ring defaults to the integers if not given.

sage: M = ones_matrix(2, 3); M
[1 1 1]
[1 1 1]
sage: M.parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

A lone integer input produces a square matrix over the integers.

sage: M = ones_matrix(3); M
[1 1 1]
[1 1 1]
[1 1 1]
sage: M.parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

The result can have a sparse implementation.

sage: M = ones_matrix(3, 1, sparse=True); M
[1]
[1]
[1]
sage: M.parent()
Full MatrixSpace of 3 by 1 sparse matrices over Integer Ring

Giving just a ring will yield an error.

sage: ones_matrix(CC)
Traceback (most recent call last):
...
ValueError: constructing an all ones matrix requires at least one dimension

sage.matrix.special.random_diagonalizable_matrix(parent, eigenvalues=None,
dimensions=None)

This function is available as random_diagonalizable_matrix(…) and matrix.random_diagonalizable(…).

Create a random matrix that diagonalizes nicely.

To be used as a teaching tool. Return matrices have only real eigenvalues.

INPUT:

If eigenvalues and dimensions are not specified in a list, they will be assigned randomly.
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• parent – the desired size of the square matrix

• eigenvalues – the list of desired eigenvalues (default=None)

• dimensions – the list of dimensions corresponding to each eigenspace (default=None)

OUTPUT:

A square, diagonalizable, matrix with only integer entries. The eigenspaces of this matrix, if computed by hand,
give basis vectors with only integer entries.

Note

It is easiest to use this function via a call to the random_matrix() function with the
algorithm=�diagonalizable� keyword. We provide one example accessing this function di-
rectly, while the remainder will use this more general function.

EXAMPLES:

A diagonalizable matrix, size 5.

sage: from sage.matrix.constructor import random_diagonalizable_matrix
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5)
sage: A = random_diagonalizable_matrix(matrix_space)

sage: # needs sage.rings.number_field
sage: eigenvalues = A.eigenvalues()
sage: S = A.right_eigenmatrix()[1]
sage: eigenvalues2 = (S.inverse()*A*S).diagonal()
sage: sorted(eigenvalues) == sorted(eigenvalues2)
True

A diagonalizable matrix with eigenvalues and dimensions designated, with a check that if eigenvectors were cal-
culated by hand entries would all be integers.

sage: eigenvalues = [ZZ.random_element() for _ in range(3)]
sage: B = random_matrix(QQ, 6, algorithm=�diagonalizable�,
....: eigenvalues=eigenvalues, dimensions=[2,3,1])
sage: all(x in ZZ for x in (B-(-12*identity_matrix(6))).rref().list())
True
sage: all(x in ZZ for x in (B-(4*identity_matrix(6))).rref().list())
True
sage: all(x in ZZ for x in (B-(6*identity_matrix(6))).rref().list())
True

sage: # needs sage.rings.number_field
sage: S = B.right_eigenmatrix()[1]
sage: eigenvalues2 = (S.inverse()*B*S).diagonal()
sage: all(e in eigenvalues for e in eigenvalues2)
True

Todo

Modify the routine to allow for complex eigenvalues.

AUTHOR:
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Billy Wonderly (2010-07)

sage.matrix.special.random_echelonizable_matrix(parent, rank, upper_bound=None,
max_tries=100)

This function is available as random_echelonizable_matrix(…) and matrix.random_echelonizable(…).

Generate a matrix of a desired size and rank, over a desired ring, whose reduced row-echelon form has only integral
values.

INPUT:

• parent – a matrix space specifying the base ring, dimensions and representation (dense/sparse) for the
result. The base ring must be exact.

• rank – rank of result, i.e the number of nonzero rows in the reduced row echelon form

• upper_bound – if designated, size control of the matrix entries is desired Set upper_bound to 1 more
than the maximum value entries can achieve. If None, no size control occurs. But see the warning below.
(default: None)

• max_tries – if designated, number of tries used to generate each new random row;s only matters when
upper_bound!=None. Used to prevent endless looping. (default: 100)

OUTPUT: a matrix not in reduced row-echelon form with the desired dimensions and properties

Warning

When upper_bound is set, it is possible for this constructor to fail with a ValueError. This may happen
when theupper_bound, rank and/ormatrix dimensions are all so small that it becomes infeasible or unlikely
to create the requested matrix. If you must have this routine return successfully, do not set upper_bound.

Note

It is easiest to use this function via a call to the random_matrix() function with the
algorithm=�echelonizable� keyword. We provide one example accessing this function directly,
while the remainder will use this more general function.

EXAMPLES:

Generated matrices have the desired dimensions, rank and entry size. The matrix in reduced row-echelon form has
only integer entries.

sage: from sage.matrix.constructor import random_echelonizable_matrix
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5, 6)
sage: A = random_echelonizable_matrix(matrix_space, rank=4, upper_bound=40)
sage: A.rank()
4
sage: max(map(abs,A.list())) < 40
True
sage: A.rref() == A.rref().change_ring(ZZ)
True

An example with default settings (i.e. no entry size control).

sage: C = random_matrix(QQ, 6, 7, algorithm=�echelonizable�, rank=5)
sage: C.rank()

(continues on next page)
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5
sage: C.rref() == C.rref().change_ring(ZZ)
True

A matrix without size control may have very large entry sizes.

sage: D = random_matrix(ZZ, 7, 8, algorithm=�echelonizable�, rank=6); D # random
[ 1 2 8 -35 -178 -239 -284 778]
[ 4 9 37 -163 -827 -1111 -1324 3624]
[ 5 6 21 -88 -454 -607 -708 1951]
[ -4 -5 -22 97 491 656 779 -2140]
[ 4 4 13 -55 -283 -377 -436 1206]
[ 4 11 43 -194 -982 -1319 -1576 4310]
[ -1 -2 -13 59 294 394 481 -1312]

Matrices can be generated over any exact ring.

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(2^3)
sage: B = random_matrix(F, 4, 5, algorithm=�echelonizable�, rank=4,
....: upper_bound=None)
sage: B.rank()
4
sage: B.base_ring() is F
True

Square matrices over ZZ or QQ with full rank are always unimodular.

sage: E = random_matrix(QQ, 7, 7, algorithm=�echelonizable�, rank=7)
sage: det(E)
1
sage: E = random_matrix(ZZ, 7, 7, algorithm=�echelonizable�, rank=7)
sage: det(E)
1

AUTHOR:

Billy Wonderly (2010-07)

sage.matrix.special.random_matrix(ring, nrows, ncols=None, algorithm='randomize',
implementation=None, *args, **kwds)

This function is available as random_matrix(…) and matrix.random(…).

Return a random matrix with entries in a specified ring, and possibly with additional properties.

INPUT:

• ring – base ring for entries of the matrix

• nrows – integer; number of rows

• ncols – (default: None) number of columns. If None defaults to nrows.

• algorithm – (default: �randomize�) determines what properties the matrix will have. See examples
below for possible additional arguments.

– �randomize� – create amatrix of random elements from the base ring, possibly controlling the density
of nonzero entries

– �echelon_form� – creates a matrix in echelon form
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– �echelonizable� – creates a matrix that has a predictable echelon form

– �subspaces� – creates a matrix whose four subspaces, when explored, have reasonably sized, integral
valued, entries

– �unimodular� – creates a matrix of determinant 1

– �diagonalizable� – creates a diagonalizable matrix whose eigenvectors, if computed by hand, will
have only integer entries

• implementation – (None or string or a matrix class) a possible implementation. See the documentation
of the constructor of MatrixSpace.

• *args, **kwds – arguments and keywords to describe additional properties. See more detailed docu-
mentation below

Warning

Matrices generated are not uniformly distributed. For unimodularmatrices over finite field this function does not
even generate all of them: for example Matrix.random(GF(3), 2, algorithm=�unimodular�)
never generates [[2,0],[0,2]]. This function is made for teaching purposes.

Warning

An upper bound on the absolute value of the entries may be set when the algorithm is echelonizable
or unimodular. In these cases it is possible for this constructor to fail with a ValueError. If you must
have this routine return successfully, do not set upper_bound. This behavior can be partially controlled by
a max_tries keyword.

Note

When constructing matrices with random entries and no additional properties (i.e. when
algorithm=�randomize�), most of the randomness is controlled by the random_element
method for elements of the base ring of the matrix, so the documentation of that method may be relevant or
useful.

EXAMPLES:

Random integer matrices. With no arguments, the majority of the entries are zero, -1, and 1, and rarely “large.”

sage: from collections import defaultdict
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: def add_samples(*args, **kwds):
....: global dic, total_count
....: for _ in range(100):
....: A = random_matrix(*args, **kwds)
....: for a in A.list():
....: dic[a] += 1
....: total_count += 1.0

sage: expected = lambda n : 2 / (5*abs(n)*(abs(n) + 1)) if n != 0 else 1/5
sage: expected(0)
1/5

(continues on next page)
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sage: expected(0) == expected(1) == expected(-1)
True
sage: expected(100)
1/25250
sage: add_samples(ZZ, 5, 5)
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
....: add_samples(ZZ, 5, 5)

The distribution keyword set to uniform will limit values between -2 and 2.

sage: expected = lambda n : 1/5 if n in range(-2, 3) else 0
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: add_samples(ZZ, 5, 5, distribution=�uniform�)
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
....: add_samples(ZZ, 5, 5, distribution=�uniform�)

The x and y keywords can be used to distribute entries uniformly. When both are used x is the minimum and y is
one greater than the maximum.

sage: expected = lambda n : 1/30 if n in range(70, 100) else 0
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: add_samples(ZZ, 4, 8, x=70, y=100)
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
....: add_samples(ZZ, 4, 8, x=70, y=100)

sage: expected = lambda n : 1/10 if n in range(-5, 5) else 0
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: add_samples(ZZ, 3, 7, x=-5, y=5)
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
....: add_samples(ZZ, 3, 7, x=-5, y=5)

If only x is given, then it is used as the upper bound of a range starting at 0.

sage: expected = lambda n : 1/25 if n in range(25) else 0
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: add_samples(ZZ, 5, 5, x=25)
sage: while not all(abs(dic[a]/total_count - expected(a)) < 0.001 for a in dic):
....: add_samples(ZZ, 5, 5, x=25)

To control the number of nonzero entries, use the density keyword at a value strictly below the default of 1.0.
The density keyword is used to compute the number of entries per row that will be nonzero, but the same entry
may be selected more than once. So the value provided will be an upper bound for the density of the created matrix.
Note that for a square matrix it is only necessary to set a single dimension.

sage: def add_sample(*args, **kwds):
....: global density_sum, total_count
....: total_count += 1.0
....: A = random_matrix(*args, **kwds)
....: density_sum += float(A.density())

sage: # needs sage.libs.linbox (otherwise timeout)
sage: density_sum = 0.0

(continues on next page)
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sage: total_count = 0.0
sage: add_sample(ZZ, 5, x=-10, y=10, density=0.75)
sage: expected_density = (1 - (4/5)^3)
sage: float(expected_density)
0.488
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(ZZ, 5, x=-10, y=10, density=0.75)

sage: # needs sage.libs.linbox (otherwise timeout)
sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(ZZ, 5, x=20, y=30, density=0.75)
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(ZZ, 5, x=20, y=30, density=0.75)

sage: # needs sage.libs.linbox (otherwise timeout)
sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(ZZ, 100, x=20, y=30, density=0.75)
sage: expected_density = (1 - (99/100)^75)
sage: float(expected_density)
0.529...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(ZZ, 100, x=20, y=30, density=0.75)

For a matrix with low density it may be advisable to insist on a sparse representation, as this representation is not
selected automatically.

sage: A = random_matrix(ZZ, 5, 5)
sage: A.is_sparse()
False
sage: A = random_matrix(ZZ, 5, 5, sparse=True)
sage: A.is_sparse()
True

For algorithm testing you might want to control the number of bits, say 10,000 entries, each limited to 16 bits.

sage: # needs sage.libs.linbox (otherwise timeout)
sage: A = random_matrix(ZZ, 100, 100, x=2^16); A
100 x 100 dense matrix over Integer Ring (use the �.str()� method to see the␣
→˓entries)

One can prescribe a specific matrix implementation:

sage: K.<a> = FiniteField(2^8) #␣
→˓needs sage.rings.finite_rings
sage: type(random_matrix(K, 2, 5)) #␣
→˓needs sage.libs.m4ri sage.rings.finite_rings
<class �sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense�>
sage: type(random_matrix(K, 2, 5, implementation=�generic�)) #␣
→˓needs sage.rings.finite_rings
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>

Random rational matrices. Now num_bound and den_bound control the generation of random elements, by
specifying limits on the absolute value of numerators and denominators (respectively). Entries will be positive and
negative (map the absolute value function through the entries to get all positive values). If either the numerator or
denominator bound (or both) is not used, then the values default to 2:
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sage: A = random_matrix(QQ, 2, 8, num_bound=20, den_bound=4)
sage: A.dimensions()
(2, 8)
sage: type(A)
<class �sage.matrix.matrix_rational_dense.Matrix_rational_dense�>
sage: all(a.numerator() in range(-20, 21) and
....: a.denominator() in range(1, 5)
....: for a in A.list())
True

sage: A = random_matrix(QQ, 4, density=0.5, sparse=True)
sage: type(A)
<class �sage.matrix.matrix_rational_sparse.Matrix_rational_sparse�>
sage: A.density() <= 0.5
True

sage: A = random_matrix(QQ, 3, 10, num_bound = 99, den_bound = 99)
sage: positives = list(map(abs, A.list()))
sage: A1 = matrix(QQ, 3, 10, positives)
sage: all(abs(A.list()[i]) == A1.list()[i] for i in range(30))
True
sage: all(a.numerator() in range(100) and
....: a.denominator() in range(1, 100)
....: for a in A1.list())
True

sage: A = random_matrix(QQ, 4, 10, den_bound = 10)
sage: all(a.numerator() in range(-2, 3) and
....: a.denominator() in range(1, 11)
....: for a in A.list())
True

sage: A = random_matrix(QQ, 4, 10)
sage: all(a.numerator() in range(-2, 3) and
....: a.denominator() in range(1, 3)
....: for a in A.list())
True

Random matrices over other rings. Several classes of matrices have specialized randomize() methods. You
can locate these with the Sage command:

search_def(�randomize�)

The default implementation of randomize() relies on the random_element() method for the base ring.
The density and sparse keywords behave as described above. Since we have a different randomisation when
using the optional meataxe package, we have to make sure that we use the default implementation in this test:

sage: K.<a> = FiniteField(3^2) #␣
→˓needs sage.rings.finite_rings
sage: A = random_matrix(K, 2, 5, implementation=�generic�) #␣
→˓needs sage.rings.finite_rings
sage: type(A)
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>
sage: A.base_ring() is K #␣
→˓needs sage.rings.finite_rings
True
sage: TestSuite(A).run()

(continues on next page)
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sage: A = random_matrix(RR, 3, 4, density=0.66)
sage: type(A)
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>
sage: A.base_ring() is RR
True
sage: TestSuite(A).run()

sage: A = random_matrix(ComplexField(32), 3, density=0.8, sparse=True)
sage: A.is_sparse()
True
sage: type(A)
<class �sage.matrix.matrix_generic_sparse.Matrix_generic_sparse�>
sage: A.base_ring() is ComplexField(32)
True
sage: TestSuite(A).run()

Random matrices in echelon form. The algorithm=�echelon_form� keyword, along with a requested
number of nonzero rows (num_pivots) will return a random matrix in echelon form. When the base ring is QQ
the result has integer entries. Other exact rings may be also specified.

sage: A = random_matrix(QQ, 4, 8, algorithm=�echelon_form�, num_pivots=3)
sage: A.base_ring()
Rational Field
sage: (A.nrows(), A.ncols())
(4, 8)
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
True
sage: A.rank()
3
sage: A == A.rref()
True

For more, see the documentation of the random_rref_matrix() function. In the notebook or at the Sage
command-line, first execute the following to make this further documentation available:

from sage.matrix.constructor import random_rref_matrix

Random matrices with predictable echelon forms. The algorithm=�echelonizable� keyword, along with
a requested rank (rank) and optional size control (upper_bound) will return a random matrix in echelon form.
When the base ring is ZZ or QQ the result has integer entries, whose magnitudes can be limited by the value
of upper_bound, and the echelon form of the matrix also has integer entries. Other exact rings may be also
specified, but there is no notion of controlling the size. Square matrices of full rank generated by this function
always have determinant one, and can be constructed with the unimodular keyword.

sage: A = random_matrix(QQ, 4, 8, algorithm=�echelonizable�, rank=3, upper_
→˓bound=60)
sage: A.base_ring()
Rational Field
sage: (A.nrows(), A.ncols())
(4, 8)
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
True
sage: A.rank()
3
sage: all(abs(x)<60 for x in A.list())

(continues on next page)
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True
sage: A.rref() in sage.matrix.matrix_space.MatrixSpace(ZZ, 4, 8)
True

For more, see the documentation of the random_echelonizable_matrix() function. In the notebook or
at the Sage command-line, first execute the following to make this further documentation available:

from sage.matrix.constructor import random_echelonizable_matrix

Random diagonalizable matrices. The algorithm=�diagonalizable� keyword, along with a requested
matrix size (size) and optional lists of eigenvalues (eigenvalues) and the corresponding eigenspace di-
mensions (dimensions) will return a random diagonalizable matrix. When the eigenvalues and dimensions
are not specified the result will have randomly generated values for both that fit with the designated size.

sage: A = random_matrix(QQ, 5, algorithm=�diagonalizable�, # random
....: eigenvalues=[2,3,-1], dimensions=[1,2,2]); A
sage: all(x in ZZ for x in (A - (2*identity_matrix(5))).rref().list())
True
sage: all(x in ZZ for x in (A - 3*identity_matrix(5)).rref().list())
True
sage: all(x in ZZ for x in (A - (-1)*identity_matrix(5)).rref().list())
True
sage: A.jordan_form() #␣
→˓needs sage.combinat sage.libs.pari
[ 2| 0| 0| 0| 0]
[--+--+--+--+--]
[ 0| 3| 0| 0| 0]
[--+--+--+--+--]
[ 0| 0| 3| 0| 0]
[--+--+--+--+--]
[ 0| 0| 0|-1| 0]
[--+--+--+--+--]
[ 0| 0| 0| 0|-1]

For more, see the documentation of the random_diagonalizable_matrix() function. In the notebook
or at the Sage command-line, first execute the following to make this further documentation available:

from sage.matrix.constructor import random_diagonalizable_matrix

Randommatrices with predictable subspaces. Thealgorithm=�subspaces� keyword, alongwith an optional
rank (rank) will return a matrix whose natural basis vectors for its four fundamental subspaces, if computed as
described in the documentation of the random_subspaces_matrix() contain only integer entries. If rank,
is not set, the rank of the matrix will be generated randomly.

sage: B = random_matrix(QQ, 5, 6, algorithm=�subspaces�, rank=3); B # random
sage: B_expanded = B.augment(identity_matrix(5)).rref()
sage: (B.nrows(), B.ncols())
(5, 6)
sage: all(x in ZZ for x in B_expanded.list())
True
sage: C = B_expanded.submatrix(0, 0, B.nrows() - B.nullity(), B.ncols())
sage: L = B_expanded.submatrix(B.nrows() - B.nullity(), B.ncols())
sage: B.right_kernel() == C.right_kernel()
True
sage: B.row_space() == C.row_space()
True

(continues on next page)
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sage: B.column_space() == L.right_kernel()
True
sage: B.left_kernel() == L.row_space()
True

For more, see the documentation of the random_subspaces_matrix() function. In the notebook or at the
Sage command-line, first execute the following to make this further documentation available:

from sage.matrix.constructor import random_subspaces_matrix

Random unimodular matrices. The algorithm=�unimodular� keyword, along with an optional entry size
control (upper_bound) will return a matrix of determinant 1. When the base ring is ZZ or QQ the result has
integer entries, whose magnitudes can be limited by the value of upper_bound.

sage: C = random_matrix(QQ, 5, algorithm=�unimodular�, upper_bound=70); C #␣
→˓random
sage: det(C)
1
sage: C.base_ring()
Rational Field
sage: (C.nrows(), C.ncols())
(5, 5)
sage: all(abs(x)<70 for x in C.list())
True

For more, see the documentation of the random_unimodular_matrix() function. In the notebook or at
the Sage command-line, first execute the following to make this further documentation available:

from sage.matrix.constructor import random_unimodular_matrix

AUTHOR:

• William Stein (2007-02-06)

• Rob Beezer (2010-08-25) Documentation, code to allow additional types of output

sage.matrix.special.random_rref_matrix(parent, num_pivots)
This function is available as random_rref_matrix(…) and matrix.random_rref(…).

Generate a matrix in reduced row-echelon form with a specified number of nonzero rows.

INPUT:

• parent – a matrix space specifying the base ring, dimensions and representation (dense/sparse) for the
result. The base ring must be exact.

• num_pivots – the number of nonzero rows in the result, i.e. the rank

OUTPUT:

A matrix in reduced row echelon form with num_pivots nonzero rows. If the base ring is 𝑍𝑍 or 𝑄𝑄 then the
entries are all integers.

Note

It is easiest to use this function via a call to the random_matrix() function with the
algorithm=�echelon_form� keyword. We provide one example accessing this function directly, while
the remainder will use this more general function.
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EXAMPLES:

Matrices generated are in reduced row-echelon form with specified rank. If the base ring is𝑄𝑄 the result has only
integer entries.

sage: from sage.matrix.constructor import random_rref_matrix
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5, 6)
sage: A = random_rref_matrix(matrix_space, num_pivots=4); A # random
[ 1 0 0 -6 0 -3]
[ 0 1 0 2 0 3]
[ 0 0 1 -4 0 -2]
[ 0 0 0 0 1 3]
[ 0 0 0 0 0 0]
sage: A.base_ring()
Rational Field
sage: (A.nrows(), A.ncols())
(5, 6)
sage: A in sage.matrix.matrix_space.MatrixSpace(ZZ, 5, 6)
True
sage: A.rank()
4
sage: A == A.rref()
True

Matrices can be generated over other exact rings.

sage: B = random_matrix(FiniteField(7), 4, 4, # random
....: algorithm=�echelon_form�, num_pivots=3); B
[1 0 0 0]
[0 1 0 6]
[0 0 1 1]
[0 0 0 0]
sage: B.rank() == 3
True
sage: B.base_ring()
Finite Field of size 7
sage: B == B.rref()
True

AUTHOR:

Billy Wonderly (2010-07)

sage.matrix.special.random_subspaces_matrix(parent, rank=None)
This function is available as random_subspaces_matrix(…) and matrix.random_subspaces(…).

Create a matrix of the designated size and rank whose right and left null spaces, column space, and row space have
desirable properties that simplify the subspaces.

INPUT:

• parent – a matrix space specifying the base ring, dimensions, and representation (dense/sparse) for the
result. The base ring must be exact.

• rank – the desired rank of the return matrix (default: None)

OUTPUT:

A matrix whose natural basis vectors for its four subspaces, when computed, have reasonably sized, integral valued,
entries.
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Note

It is easiest to use this function via a call to the random_matrix() function with the
algorithm=�subspaces� keyword. We provide one example accessing this function directly,
while the remainder will use this more general function.

EXAMPLES:

A 6x8 matrix with designated rank of 3. The four subspaces are determined using one simple routine in which
we augment the original matrix with the equal row dimension identity matrix. The resulting matrix is then put in
reduced row-echelon form and the subspaces can then be determined by analyzing subdivisions of this matrix. See
the four subspaces routine in [Bee] for more.

sage: from sage.matrix.constructor import random_subspaces_matrix
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 6, 8)
sage: B = random_subspaces_matrix(matrix_space, rank=3)
sage: B.rank()
3
sage: B.nullity()
3
sage: (B.nrows(), B.ncols())
(6, 8)
sage: all(x in ZZ for x in B.list())
True
sage: B_expanded = B.augment(identity_matrix(6)).rref()
sage: all(x in ZZ for x in B_expanded.list())
True

Check that we fixed Issue #10543 (echelon forms should be immutable):

sage: B_expanded.is_immutable()
True

We want to modify B_expanded, so replace it with a copy:

sage: B_expanded = copy(B_expanded)
sage: B_expanded.subdivide(B.nrows()-B.nullity(), B.ncols())
sage: C = B_expanded.subdivision(0, 0)
sage: L = B_expanded.subdivision(1, 1)
sage: B.right_kernel() == C.right_kernel()
True
sage: B.row_space() == C.row_space()
True
sage: B.column_space() == L.right_kernel()
True
sage: B.left_kernel() == L.row_space()
True

A matrix to show that the null space of the L matrix is the column space of the starting matrix.

sage: A = random_matrix(QQ, 5, 7, algorithm=�subspaces�, rank=None)
sage: (A.nrows(), A.ncols())
(5, 7)
sage: all(x in ZZ for x in A.list())
True
sage: A_expanded = A.augment(identity_matrix(5)).rref()

(continues on next page)
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sage: all(x in ZZ for x in A_expanded.list())
True
sage: C = A_expanded.submatrix(0, 0, A.nrows() - A.nullity(), A.ncols())
sage: L = A_expanded.submatrix(A.nrows() - A.nullity(), A.ncols())
sage: A.right_kernel() == C.right_kernel()
True
sage: A.row_space() == C.row_space()
True
sage: A.column_space() == L.right_kernel()
True
sage: A.left_kernel() == L.row_space()
True

AUTHOR:

Billy Wonderly (2010-07)

sage.matrix.special.random_unimodular_matrix(parent, upper_bound=None, max_tries=100)
This function is available as random_unimodular_matrix(…) and matrix.random_unimodular(…).

Generate a random unimodular (determinant 1) matrix of a desired size over a desired ring.

INPUT:

• parent – a matrix space specifying the base ring, dimensions and representation (dense/sparse) for the
result. The base ring must be exact.

• upper_bound – for large matrices over QQ or ZZ, upper_bound is the largest value matrix entries can
achieve. But see the warning below.

• max_tries – if designated, number of tries used to generate each new random row; only matters when
upper_bound!=None. Used to prevent endless looping. (default: 100)

A matrix not in reduced row-echelon form with the desired dimensions and properties.

OUTPUT: an invertible matrix with the desired properties and determinant 1

Warning

When upper_bound is set, it is possible for this constructor to fail with a ValueError. This may happen
when theupper_bound, rank and/ormatrix dimensions are all so small that it becomes infeasible or unlikely
to create the requested matrix. If you must have this routine return successfully, do not set upper_bound.

Note

It is easiest to use this function via a call to the random_matrix() function with the
algorithm=�unimodular� keyword. We provide one example accessing this function directly,
while the remainder will use this more general function.

EXAMPLES:

A matrix size 5 over QQ.

sage: from sage.matrix.constructor import random_unimodular_matrix
sage: matrix_space = sage.matrix.matrix_space.MatrixSpace(QQ, 5)
sage: A = random_unimodular_matrix(matrix_space)

(continues on next page)
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sage: det(A)
1

A matrix size 6 with entries no larger than 50.

sage: B = random_matrix(ZZ, 7, algorithm=�unimodular�, upper_bound=50)
sage: det(B)
1
sage: all(abs(b) < 50 for b in B.list())
True

A matrix over the number Field in 𝑦 with defining polynomial 𝑦2 − 2𝑦 − 2.

sage: # needs sage.rings.number_field
sage: y = polygen(ZZ, �y�)
sage: K = NumberField(y^2 - 2*y - 2, �y�)
sage: C = random_matrix(K, 3, algorithm=�unimodular�)
sage: det(C)
1
sage: C.base_ring() is K
True

AUTHOR:

Billy Wonderly (2010-07)

sage.matrix.special.toeplitz(c, r, ring=None)
This function is available as toeplitz(…) and matrix.toeplitz(…).

Return a Toeplitz matrix of given first column and first row.

In a Toeplitz matrix, each descending diagonal from left to right is constant, such that:

𝑇𝑖,𝑗 = 𝑇𝑖+1,𝑗+1.

For more information see the Wikipedia article Toeplitz_matrix.

INPUT:

• c – vector, first column of the Toeplitz matrix

• r – vector, first row of the Toeplitz matrix, counting from the second column

• ring – base ring (default: None) of the resulting matrix

EXAMPLES:

A rectangular Toeplitz matrix:

sage: matrix.toeplitz([1..4], [5..6])
[1 5 6]
[2 1 5]
[3 2 1]
[4 3 2]

The following 𝑁 ×𝑁 Toeplitz matrix arises in the discretization of boundary value problems:

sage: N = 4
sage: matrix.toeplitz([-2, 1] + [0]*(N-2), [1] + [0]*(N-2))
[-2 1 0 0]

(continues on next page)
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[ 1 -2 1 0]
[ 0 1 -2 1]
[ 0 0 1 -2]

sage.matrix.special.vandermonde(v, ring=None)
This function is available as vandermonde(…) and matrix.vandermonde(…).

Return a Vandermonde matrix of the given vector.

The 𝑛 dimensional Vandermonde matrix is a square matrix with columns being the powers of a given vector 𝑣,

𝑉𝑖𝑗 = 𝑣𝑗−1
𝑖 , 𝑖, 𝑗 = 1, . . . , 𝑛.

For more information see the Wikipedia article Vandermonde_matrix.

INPUT:

• v – vector, the second column of the Vandermonde matrix

• ring – base ring (default: None) of the resulting matrix

EXAMPLES:

A Vandermonde matrix of order three over the symbolic ring:

sage: matrix.vandermonde(SR.var([�x0�, �x1�, �x2�])) #␣
→˓needs sage.symbolic
[ 1 x0 x0^2]
[ 1 x1 x1^2]
[ 1 x2 x2^2]

sage.matrix.special.vector_on_axis_rotation_matrix(v, i, ring=None)
This function is available as vector_on_axis_rotation_matrix(…) and matrix.vector_on_axis_rotation(…).

Return a rotation matrix𝑀 such that 𝑑𝑒𝑡(𝑀) = 1 sending the vector 𝑣 on the 𝑖-th axis so that all other coordinates
of𝑀𝑣 are zero.

Note

Such a matrix is not uniquely determined. This function returns one such matrix.

INPUT:

• v – vector

• i – integer

• ring – ring (default: None) of the resulting matrix

OUTPUT: a matrix

EXAMPLES:

sage: from sage.matrix.constructor import vector_on_axis_rotation_matrix
sage: v = vector((1,2,3))
sage: vector_on_axis_rotation_matrix(v, 2) * v #␣
→˓needs sage.symbolic
(0, 0, sqrt(14))
sage: vector_on_axis_rotation_matrix(v, 1) * v #␣

(continues on next page)
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→˓needs sage.symbolic
(0, sqrt(14), 0)
sage: vector_on_axis_rotation_matrix(v, 0) * v #␣
→˓needs sage.symbolic
(sqrt(14), 0, 0)

sage: # needs sage.symbolic
sage: x,y = var(�x,y�)
sage: v = vector((x,y))
sage: vector_on_axis_rotation_matrix(v, 1)
[ y/sqrt(x^2 + y^2) -x/sqrt(x^2 + y^2)]
[ x/sqrt(x^2 + y^2) y/sqrt(x^2 + y^2)]
sage: vector_on_axis_rotation_matrix(v, 0)
[ x/sqrt(x^2 + y^2) y/sqrt(x^2 + y^2)]
[-y/sqrt(x^2 + y^2) x/sqrt(x^2 + y^2)]
sage: vector_on_axis_rotation_matrix(v, 0) * v
(x^2/sqrt(x^2 + y^2) + y^2/sqrt(x^2 + y^2), 0)
sage: vector_on_axis_rotation_matrix(v, 1) * v
(0, x^2/sqrt(x^2 + y^2) + y^2/sqrt(x^2 + y^2))

sage: v = vector((1,2,3,4))
sage: vector_on_axis_rotation_matrix(v, 0) * v #␣
→˓needs sage.symbolic
(sqrt(30), 0, 0, 0)
sage: vector_on_axis_rotation_matrix(v, 0, ring=RealField(10))
[ 0.18 0.37 0.55 0.73]
[-0.98 0.068 0.10 0.14]
[ 0.00 -0.93 0.22 0.30]
[ 0.00 0.00 -0.80 0.60]
sage: vector_on_axis_rotation_matrix(v, 0, ring=RealField(10)) * v
(5.5, 0.00..., 0.00..., 0.00...)

AUTHORS:

Sébastien Labbé (April 2010)

sage.matrix.special.zero_matrix(ring, nrows=None, ncols=None, sparse=False)
This function is available as zero_matrix(…) and matrix.zero(…).

Return the 𝑛𝑟𝑜𝑤𝑠× 𝑛𝑐𝑜𝑙𝑠 zero matrix over the given ring.

The default ring is the integers.

EXAMPLES:

sage: M = zero_matrix(QQ, 2); M
[0 0]
[0 0]
sage: M.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: M = zero_matrix(2, 3); M
[0 0 0]
[0 0 0]
sage: M.parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
sage: M.is_mutable()
True

(continues on next page)
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sage: M = zero_matrix(3, 1, sparse=True); M
[0]
[0]
[0]
sage: M.parent()
Full MatrixSpace of 3 by 1 sparse matrices over Integer Ring
sage: M.is_mutable()
True
sage: matrix.zero(5)
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
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CHAPTER

FOUR

HELPERS FOR CREATING MATRICES

class sage.matrix.args.MatrixArgs

Bases: object

Collect arguments for constructing a matrix.

This class is meant to pass around arguments, for example from the global matrix() constructor to the matrix
space or to the element class constructor.

A typical use case is first creating a MatrixArgs instance, possibly adjusting the attributes. This instance can
then be passed around and a matrix can be constructed from it using the matrix() method. Also, a flat list can
be constructed using list() or a sparse dict using dict(). It is safe to construct multiple objects (of the same
or a different kind) from the same MatrixArgs instance.

MatrixArgs also supports iteration using the iter() method. This is a more low-level interface.

When MatrixArgs produces output, it is first finalized. This means that all missing attributes are derived or
guessed. After finalization, you should no longer change the attributes or it will end up in an inconsistent state. You
can also finalize explicitly by calling the finalized() method.

A MatrixArgs can contain invalid input. This is not checked when constructing the MatrixArgs instance,
but it is checked either when finalizing or when constructing an object from it.

Warning

Instances of this class should only be temporary, they are not meant to be stored long-term.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: ma = MatrixArgs(2, 2, (x for x in range(4))); ma
<MatrixArgs for None; typ=UNKNOWN; entries=<generator ...>>
sage: ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_FLAT; entries=[0, 1, 2, 3]>

Many types of input are possible:

sage: ma = MatrixArgs(2, 2, entries=None); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=ZERO; entries=None>
sage: ma.matrix()
[0 0]
[0 0]

(continues on next page)

69



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

sage: ma = MatrixArgs(2, 2, entries={}); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 sparse matrices
over Integer Ring; typ=SEQ_SPARSE; entries=[]>
sage: ma.matrix()
[0 0]
[0 0]
sage: ma = MatrixArgs(2, 2, entries=[1,2,3,4]); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_FLAT; entries=[1, 2, 3, 4]>
sage: ma.matrix()
[1 2]
[3 4]
sage: ma = MatrixArgs(2, 2, entries=math.pi); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Real Double Field; typ=SCALAR; entries=3.141592653589793>
sage: ma.matrix()
[3.141592653589793 0.0]
[ 0.0 3.141592653589793]
sage: ma = MatrixArgs(2, 2, entries=pi); ma.finalized() #␣
→˓needs sage.symbolic
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Symbolic Ring; typ=SCALAR; entries=pi>
sage: ma.matrix() #␣
→˓needs sage.symbolic
[pi 0]
[ 0 pi]
sage: ma = MatrixArgs(ZZ, 2, 2, entries={(0,0): 7}); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 sparse matrices
over Integer Ring; typ=SEQ_SPARSE; entries=[SparseEntry(0, 0, 7)]>
sage: ma.matrix()
[7 0]
[0 0]
sage: ma = MatrixArgs(ZZ, 2, 2, entries=((1,2), (3,4))); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_SEQ; entries=((1, 2), (3, 4))>
sage: ma.matrix()
[1 2]
[3 4]
sage: ma = MatrixArgs(ZZ, 2, 2, entries=(1,2,3,4)); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_FLAT; entries=(1, 2, 3, 4)>
sage: ma.matrix()
[1 2]
[3 4]

sage: # needs sage.libs.pari
sage: ma = MatrixArgs(QQ, entries=pari("[1,2;3,4]")); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Rational Field; typ=SEQ_FLAT; entries=[1, 2, 3, 4]>
sage: ma.matrix()
[1 2]
[3 4]
sage: ma = MatrixArgs(QQ, 2, 2, entries=pari("[1,2,3,4]")); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Rational Field; typ=SEQ_FLAT; entries=[1, 2, 3, 4]>
sage: ma.matrix()
[1 2]

(continues on next page)
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[3 4]
sage: ma = MatrixArgs(QQ, 2, 2, entries=pari("3/5")); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Rational Field; typ=SCALAR; entries=3/5>
sage: ma.matrix()
[3/5 0]
[ 0 3/5]

sage: ma = MatrixArgs(entries=matrix(2,2)); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=MATRIX; entries=[0 0]

[0 0]>
sage: ma.matrix()
[0 0]
[0 0]
sage: ma = MatrixArgs(2, 2, entries=lambda i,j: 1+2*i+j); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_FLAT; entries=[1, 2, 3, 4]>
sage: ma.matrix()
[1 2]
[3 4]
sage: ma = MatrixArgs(ZZ, 2, 2, entries=lambda i,j: 1+2*i+j); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=CALLABLE; entries=<function ...>>
sage: ma.matrix()
[1 2]
[3 4]

sage: # needs numpy
sage: from numpy import array
sage: ma = MatrixArgs(array([[1,2],[3,4]])); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Integer Ring; typ=SEQ_SEQ; entries=array([[1, 2], [3, 4]])>
sage: ma.matrix()
[1 2]
[3 4]
sage: ma = MatrixArgs(array([[1.,2.],[3.,4.]])); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices
over Real Double Field; typ=MATRIX; entries=[1.0 2.0]

[3.0 4.0]>
sage: ma.matrix()
[1.0 2.0]
[3.0 4.0]
sage: ma = MatrixArgs(RealField(20), array([[1.,2.],[3.,4.]])); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 dense matrices over Real Field
with 20 bits of precision; typ=MATRIX; entries=[1.0 2.0]

[3.0 4.0]>
sage: ma.matrix()
[1.0000 2.0000]
[3.0000 4.0000]

sage: # needs sage.graphs
sage: ma = MatrixArgs(graphs.CycleGraph(3)); ma.finalized()
<MatrixArgs for Full MatrixSpace of 3 by 3 dense matrices
over Integer Ring; typ=MATRIX; entries=[0 1 1]

[1 0 1]
[1 1 0]>

(continues on next page)
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sage: ma.matrix()
[0 1 1]
[1 0 1]
[1 1 0]

sage: ma = MatrixArgs([vector([0,1], sparse=True),
....: vector([0,0], sparse=True)], sparse=True)
sage: ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 2 sparse matrices over
Integer Ring; typ=SEQ_SPARSE; entries=[SparseEntry(0, 1, 1)]>
sage: ma.matrix()
[0 1]
[0 0]

Test invalid input:

sage: MatrixArgs(ZZ, 2, 2, entries=�abcd�).finalized()
Traceback (most recent call last):
...
TypeError: unable to convert �abcd� to a matrix
sage: MatrixArgs(ZZ, 2, 2, entries=MatrixArgs()).finalized()
Traceback (most recent call last):
...
TypeError: unable to convert <MatrixArgs for None; typ=UNKNOWN; entries=None> to␣
→˓a matrix

base

column_keys

dict(convert=True)
Return the entries of the matrix as a dict.

The keys of this dict are the nonzero positions (i,j). The corresponding value is the entry at that position.
Zero values are skipped.

If convert is True, the entries are converted to the base ring. Otherwise, the entries are returned as given.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: L = list(range(6))
sage: MatrixArgs(2, 3, L).dict()
{(0, 1): 1, (0, 2): 2, (1, 0): 3, (1, 1): 4, (1, 2): 5}

sage: ma = MatrixArgs(GF(2), 2, 3, L)
sage: ma.dict(convert=False)
{(0, 1): 1, (0, 2): 2, (1, 0): 3, (1, 1): 4, (1, 2): 5}
sage: ma.dict()
{(0, 1): 1, (1, 0): 1, (1, 2): 1}

element(immutable=False)
Return the matrix or morphism.

INPUT:

• immutable – boolean; if True, the result will be immutable
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OUTPUT: an element of self.space

Note

This may change self.entries, making it unsafe to access the self.entries attribute after
calling this method.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: M = matrix(2, 3, range(6), sparse=True)
sage: ma = MatrixArgs(M); ma.finalized()
<MatrixArgs for

Full MatrixSpace of 2 by 3 sparse matrices over Integer Ring;
typ=MATRIX; entries=[0 1 2]

[3 4 5]>
sage: M2 = ma.element(immutable=True); M2.parent()
Full MatrixSpace of 2 by 3 sparse matrices over Integer Ring
sage: M2.is_immutable()
True

sage: ma = MatrixArgs(M, row_keys=[�u�,�v�], column_keys=[�a�,�b�,�c�])
sage: ma.finalized()
<MatrixArgs for

Set of Morphisms
from Free module generated by {�a�, �b�, �c�} over Integer Ring
to Free module generated by {�u�, �v�} over Integer Ring
in Category of finite dimensional modules with basis over Integer Ring;

typ=MATRIX; entries=[0 1 2]
[3 4 5]>

sage: phi = ma.element(); phi
Generic morphism:
From: Free module generated by {�a�, �b�, �c�} over Integer Ring
To: Free module generated by {�u�, �v�} over Integer Ring

entries

finalized()

Determine all missing values.

Depending on the input, this might be a non-trivial operation. In some cases, this will do most of the work
of constructing the matrix. That is actually not a problem since we eventually want to construct the matrix
anyway. However, care is taken to avoid double work or needless checking or copying.

OUTPUT: self

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: MatrixArgs(pi).finalized() #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: the dimensions of the matrix must be specified
sage: MatrixArgs(RR, pi).finalized() #␣
→˓needs sage.symbolic
Traceback (most recent call last):

(continues on next page)
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...
TypeError: the dimensions of the matrix must be specified
sage: MatrixArgs(2, 3, 0.0).finalized()
<MatrixArgs for Full MatrixSpace of 2 by 3 dense matrices over Real
Field with 53 bits of precision; typ=ZERO; entries=0.000000000000000>

sage: MatrixArgs(RR, 2, 3, 1.0).finalized()
Traceback (most recent call last):
...
TypeError: nonzero scalar matrix must be square

Check Issue #19134:

sage: matrix(2, 3, [])
Traceback (most recent call last):
...
ValueError: sequence too short (expected length 6, got 0)
sage: matrix(ZZ, 2, 3, [])
Traceback (most recent call last):
...
ValueError: sequence too short (expected length 6, got 0)
sage: matrix(2, 3, [1])
Traceback (most recent call last):
...
ValueError: sequence too short (expected length 6, got 1)

Check github issue #36065:

sage: # needs sage.rings.number_field sage: classMyAlgebraicNumber(sage.rings.qqbar.Algebraic-
Number): ….: def __bool__(self): ….: raise ValueError sage: matrix(1, 1, MyAlgebraicNum-
ber(0)) [0] sage: matrix(1, 1, MyAlgebraicNumber(3)) [3] sage: matrix(1, 2, MyAlgebraicNum-
ber(0)) Traceback (most recent call last): … TypeError: scalar matrix must be square if the value
cannot be determined to be zero sage: matrix(1, 2, MyAlgebraicNumber(3)) Traceback (most re-
cent call last): … TypeError: scalar matrix must be square if the value cannot be determined to be
zero

iter(convert=True, sparse=False)
Iteration over the entries in the matrix.

INPUT:

• convert – if True, the entries are converted to the base right; if False, the entries are returned as
given

• sparse – see OUTPUT below

OUTPUT: iterator

• If sparse is False: yield all entries of the matrix in the following order:

[1 2 3]
[4 5 6]

• If sparse is True: yield instances of SparseEntry. The indices (i, j) are guaranteed to lie
within the matrix. Zero entries in the input are not skipped.

Warning
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If an iterator is given as input to MatrixArgs, it may be exhausted breaking any further usage. Other-
wise, it is safe to iterate multiple times.

EXAMPLES:

sage: from sage.matrix.args import SparseEntry, MatrixArgs
sage: ma = MatrixArgs(ZZ, 2, 3, iter(range(6)))
sage: list(ma.iter())
[0, 1, 2, 3, 4, 5]
sage: ma = MatrixArgs(ZZ, 3, 3, [SparseEntry(0, 0, 0)])
sage: list(ma.iter())
Traceback (most recent call last):
...
TypeError: dense iteration is not supported for sparse input

Sparse examples:

sage: ma = MatrixArgs(3, 3, pi) #␣
→˓needs sage.symbolic
sage: list(ma.iter(sparse=True)) #␣
→˓needs sage.symbolic
[SparseEntry(0, 0, pi), SparseEntry(1, 1, pi), SparseEntry(2, 2, pi)]
sage: ma = MatrixArgs(2, 3)
sage: list(ma.iter(sparse=True))
[]
sage: ma = MatrixArgs(2, 2, lambda i, j: i > j)
sage: list(ma.iter(convert=False, sparse=True))
[SparseEntry(0, 0, False),
SparseEntry(0, 1, False),
SparseEntry(1, 0, True),
SparseEntry(1, 1, False)]

sage: ma = MatrixArgs(2, 2, {(1,0):88, (0,1):89})
sage: sorted(tuple(x) for x in ma.iter(sparse=True))
[(0, 1, 89), (1, 0, 88)]
sage: ma = MatrixArgs(QQ, 2, 1, {(1,0):88, (0,1):89})
sage: ma.finalized()
Traceback (most recent call last):
...
IndexError: invalid column index 1
sage: ma = MatrixArgs(QQ, 1, 2, {(1,0):88, (0,1):89})
sage: ma.finalized()
Traceback (most recent call last):
...
IndexError: invalid row index 1

kwds

list(convert=True)

Return the entries of the matrix as a flat list of scalars.

If possible and convert=False, this returns a direct reference to self.entries without copying.

INPUT:

• convert – if True, the entries are converted to the base ring; otherwise, the entries are returned as
given
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Note

This changes self.entries to the returned list. This means that it is unsafe to access the self.
entries attribute after calling this method.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: L = list(range(6))
sage: MatrixArgs(2, 3, L).list()
[0, 1, 2, 3, 4, 5]

sage: ma = MatrixArgs(RDF, 2, 3, L)
sage: ma.list(convert=False)
[0, 1, 2, 3, 4, 5]
sage: ma.list()
[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

If we remove our reference to the input L and convert=False, no copy is made:

sage: idL = id(L)
sage: ma = MatrixArgs(2, 3, L)
sage: del L
sage: L = ma.list(convert=False)
sage: id(L) == idL
True

matrix(convert=True)
Return the entries of the matrix as a Sage Matrix.

If possible, this returns a direct reference to self.entries without copying.

INPUT:

• convert – if True, the matrix is guaranteed to have the correct parent matrix space. If False, the
input matrix may be returned even if it lies in the wrong space.

Note

This changes self.entries to the returned matrix. This means that it is unsafe to access the self.
entries attribute after calling this method.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: M = matrix(2, 3, range(6), sparse=True)

sage: ma = MatrixArgs(M); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 3 sparse matrices
over Integer Ring; typ=MATRIX; entries=[0 1 2]

[3 4 5]>
sage: ma.matrix()
[0 1 2]
[3 4 5]
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sage: ma = MatrixArgs(M, sparse=False); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 3 dense matrices
over Integer Ring; typ=MATRIX; entries=[0 1 2]

[3 4 5]>
sage: ma.matrix()
[0 1 2]
[3 4 5]

sage: ma = MatrixArgs(RDF, M); ma.finalized()
<MatrixArgs for Full MatrixSpace of 2 by 3 sparse matrices
over Real Double Field; typ=MATRIX; entries=[0 1 2]

[3 4 5]>
sage: ma.matrix(convert=False)
[0 1 2]
[3 4 5]
sage: ma.matrix()
[0.0 1.0 2.0]
[3.0 4.0 5.0]

If we remove our reference to the input M, no copy is made:

sage: idM = id(M)
sage: ma = MatrixArgs(M)
sage: del M
sage: M = ma.matrix()
sage: id(M) == idM
True

Immutable matrices are never copied:

sage: M.set_immutable()
sage: matrix(M) is M
True

ncols

nrows

row_keys

set_column_keys(column_keys)
Set the column keys with consistency checking.

If the value was previously set, it must remain the same.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: ma = MatrixArgs(2, 4)
sage: ma.set_column_keys(�xyz�)
Traceback (most recent call last):
...
ValueError: inconsistent column keys: should be of cardinality 4 but got xyz
sage: ma.set_column_keys(�abcd�)
0
sage: ma.finalized()
<MatrixArgs for

Set of Morphisms

(continues on next page)
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from Free module generated by {�a�, �b�, �c�, �d�} over Integer Ring
to Ambient free module of rank 2 over the principal ideal domain

Integer Ring
in Category of finite dimensional modules with basis over

(Dedekind domains and euclidean domains
and noetherian rings and infinite enumerated sets
and metric spaces);

typ=ZERO; entries=None>

set_row_keys(row_keys)
Set the row keys with consistency checking.

If the value was previously set, it must remain the same.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: ma = MatrixArgs(2, 4)
sage: ma.set_row_keys(�xyz�)
Traceback (most recent call last):
...
ValueError: inconsistent row keys: should be of cardinality 2 but got xyz
sage: ma.set_row_keys([�u�, �v�])
0
sage: ma.finalized()
<MatrixArgs for

Set of Morphisms
from Ambient free module of rank 4 over the principal ideal domain

Integer Ring
to Free module generated by {�u�, �v�} over Integer Ring
in Category of finite dimensional modules with basis over

(Dedekind domains and euclidean domains
and noetherian rings and infinite enumerated sets
and metric spaces);

typ=ZERO; entries=None>

set_space(space)
Set inputs from a given matrix space.

INPUT:

• space – a MatrixSpace or a homset of modules with basis

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs
sage: ma = MatrixArgs()
sage: S = MatrixSpace(QQ, 3, 2, sparse=True)
sage: _ = ma.set_space(S)
sage: ma.finalized()
<MatrixArgs for Full MatrixSpace of 3 by 2 sparse matrices
over Rational Field; typ=ZERO; entries=None>

sage: M = ma.matrix(); M
[0 0]
[0 0]
[0 0]
sage: M.parent() is S
True
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From a homset:

sage: C = CombinatorialFreeModule(ZZ, [�a�, �b�, �c�])
sage: R = CombinatorialFreeModule(ZZ, [�u�, �v�])
sage: S = Hom(C, R); S
Set of Morphisms
from Free module generated by {�a�, �b�, �c�} over Integer Ring

to Free module generated by {�u�, �v�} over Integer Ring
in Category of finite dimensional modules with basis over Integer Ring

sage: ma = MatrixArgs()
sage: _ = ma.set_space(S)
sage: ma.finalized()
<MatrixArgs for Set of Morphisms
from Free module generated by {�a�, �b�, �c�} over Integer Ring

to Free module generated by {�u�, �v�} over Integer Ring
in Category of finite dimensional modules with basis over Integer Ring;

typ=ZERO; entries=None>

space

sparse

sage.matrix.args.MatrixArgs_init(space, entries)
Construct a MatrixArgs object from a matrix space and entries. This is the typical use in a matrix constructor.

If the given entries is already an instance of MatrixArgs, then just set the space and return the same object.

EXAMPLES:

sage: from sage.matrix.args import MatrixArgs_init
sage: S = MatrixSpace(GF(2), 2, 4)
sage: ma = MatrixArgs_init(S, {(1, 3): 7})
sage: M = ma.matrix(); M
[0 0 0 0]
[0 0 0 1]
sage: parent(M) is S
True

class sage.matrix.args.SparseEntry

Bases: object

Specialized class for dealing with sparse input in MatrixArgs. An instance of SparseEntry represents one
position in a matrix to be constructed. To construct a sparse matrix, one would typically make a list of such.

Previous versions of Sage used a dict as data structure for sparse input, but that is not so suitable because the
keys are not guaranteed to be of the correct format. There is also the performance cost of creating tuples of Python
integers.

Users of this class are expected to know what they are doing, so the indices are not checked when constructing a
matrix.

INPUT:

• i, j – row and column index

• entry – value to be put at position (𝑖, 𝑗)

EXAMPLES:

79



Matrices and Spaces of Matrices, Release 10.5.rc0

sage: from sage.matrix.args import SparseEntry
sage: SparseEntry(123, 456, "abc")
SparseEntry(123, 456, �abc�)
sage: SparseEntry(1/3, 2/3, x) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: unable to convert rational 1/3 to an integer

entry

i

j
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FIVE

MATRICES OVER AN ARBITRARY RING

AUTHORS:

• William Stein

• Martin Albrecht: conversion to Pyrex

• Jaap Spies: various functions

• Gary Zablackis: fixed a sign bug in generic determinant.

• William Stein and Robert Bradshaw - complete restructuring.

• Rob Beezer - refactor kernel functions.

Elements of matrix spaces are of class Matrix (or a class derived fromMatrix). They can be either sparse or dense, and
can be defined over any base ring.

EXAMPLES:

We create the 2× 3 matrix (︂
1 2 3
4 5 6

)︂
as an element of a matrix space over 2:

sage: M = MatrixSpace(QQ,2,3)
sage: A = M([1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.parent()
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

Alternatively, we could create A more directly as follows (which would completely avoid having to create the matrix
space):

sage: A = matrix(QQ, 2, [1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]

We next change the top-right entry of 𝐴. Note that matrix indexing is 0-based in Sage, so the top right entry is (0, 2),
which should be thought of as “row number 0, column number 2”.

sage: A[0,2] = 389
sage: A
[ 1 2 389]
[ 4 5 6]
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Also notice how matrices print. All columns have the same width and entries in a given column are right justified. Next
we compute the reduced row echelon form of 𝐴.

sage: A.rref()
[ 1 0 -1933/3]
[ 0 1 1550/3]

5.1 Indexing

Sage has quite flexible ways of extracting elements or submatrices from a matrix:

sage: m=[(1, -2, -1, -1,9), (1, 8, 6, 2,2), (1, 1, -1, 1,4), (-1, 2, -2, -1,4)] ; M =␣
→˓matrix(m)
sage: M
[ 1 -2 -1 -1 9]
[ 1 8 6 2 2]
[ 1 1 -1 1 4]
[-1 2 -2 -1 4]

Get the 2 x 2 submatrix of M, starting at row index and column index 1:

sage: M[1:3,1:3]
[ 8 6]
[ 1 -1]

Get the 2 x 3 submatrix of M starting at row index and column index 1:

sage: M[1:3,[1..3]]
[ 8 6 2]
[ 1 -1 1]

Get the second column of M:

sage: M[:,1]
[-2]
[ 8]
[ 1]
[ 2]

Get the first row of M:

sage: M[0,:]
[ 1 -2 -1 -1 9]

Get the last row of M (negative numbers count from the end):

sage: M[-1,:]
[-1 2 -2 -1 4]

More examples:

sage: M[range(2),:]
[ 1 -2 -1 -1 9]
[ 1 8 6 2 2]
sage: M[range(2),4]

(continues on next page)
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[9]
[2]
sage: M[range(3),range(5)]
[ 1 -2 -1 -1 9]
[ 1 8 6 2 2]
[ 1 1 -1 1 4]

sage: M[3,range(5)]
[-1 2 -2 -1 4]
sage: M[3,:]
[-1 2 -2 -1 4]
sage: M[3,4]
4

sage: M[-1,:]
[-1 2 -2 -1 4]

sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A
[ 3 2 -5 0]
[ 1 -1 1 -4]
[ 1 0 1 -3]

A series of three numbers, separated by colons, like n:m:s, means numbers from n up to (but not including) m, in steps
of s. So 0:5:2 means the sequence [0,2,4]:

sage: A[:,0:4:2]
[ 3 -5]
[ 1 1]
[ 1 1]

sage: A[1:,0:4:2]
[1 1]
[1 1]

sage: A[2::-1,:]
[ 1 0 1 -3]
[ 1 -1 1 -4]
[ 3 2 -5 0]

sage: A[1:,3::-1]
[-4 1 -1 1]
[-3 1 0 1]

sage: A[1:,3::-2]
[-4 -1]
[-3 0]

sage: A[2::-1,3:1:-1]
[-3 1]
[-4 1]
[ 0 -5]

We can also change submatrices using these indexing features:

sage: M=matrix([(1, -2, -1, -1,9), (1, 8, 6, 2,2), (1, 1, -1, 1,4), (-1, 2, -2, -1,
→˓4)]); M
[ 1 -2 -1 -1 9]

(continues on next page)
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[ 1 8 6 2 2]
[ 1 1 -1 1 4]
[-1 2 -2 -1 4]

Set the 2 x 2 submatrix of M, starting at row index and column index 1:

sage: M[1:3,1:3] = [[1,0],[0,1]]; M
[ 1 -2 -1 -1 9]
[ 1 1 0 2 2]
[ 1 0 1 1 4]
[-1 2 -2 -1 4]

Set the 2 x 3 submatrix of M starting at row index and column index 1:

sage: M[1:3,[1..3]] = M[2:4,0:3]; M
[ 1 -2 -1 -1 9]
[ 1 1 0 1 2]
[ 1 -1 2 -2 4]
[-1 2 -2 -1 4]

Set part of the first column of M:

sage: M[1:,0]=[[2],[3],[4]]; M
[ 1 -2 -1 -1 9]
[ 2 1 0 1 2]
[ 3 -1 2 -2 4]
[ 4 2 -2 -1 4]

Or do a similar thing with a vector:

sage: M[1:,0]=vector([-2,-3,-4]); M
[ 1 -2 -1 -1 9]
[-2 1 0 1 2]
[-3 -1 2 -2 4]
[-4 2 -2 -1 4]

Or a constant:

sage: M[1:,0]=30; M
[ 1 -2 -1 -1 9]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]

Set the first row of M:

sage: M[0,:]=[[20,21,22,23,24]]; M
[20 21 22 23 24]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]
sage: M[0,:]=vector([0,1,2,3,4]); M
[ 0 1 2 3 4]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]

(continues on next page)
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sage: M[0,:]=-3; M
[-3 -3 -3 -3 -3]
[30 1 0 1 2]
[30 -1 2 -2 4]
[30 2 -2 -1 4]

sage: A = matrix(ZZ,3,4, [3, 2, -5, 0, 1, -1, 1, -4, 1, 0, 1, -3]); A
[ 3 2 -5 0]
[ 1 -1 1 -4]
[ 1 0 1 -3]

We can use the step feature of slices to set every other column:

sage: A[:,0:3:2] = 5; A
[ 5 2 5 0]
[ 5 -1 5 -4]
[ 5 0 5 -3]

sage: A[1:,0:4:2] = [[100,200],[300,400]]; A
[ 5 2 5 0]
[100 -1 200 -4]
[300 0 400 -3]

We can also count backwards to flip the matrix upside down:

sage: A[::-1,:]=A; A
[300 0 400 -3]
[100 -1 200 -4]
[ 5 2 5 0]

sage: A[1:,3::-1]=[[2,3,0,1],[9,8,7,6]]; A
[300 0 400 -3]
[ 1 0 3 2]
[ 6 7 8 9]

sage: A[1:,::-2] = A[1:,::2]; A
[300 0 400 -3]
[ 1 3 3 1]
[ 6 8 8 6]

sage: A[::-1,3:1:-1] = [[4,3],[1,2],[-1,-2]]; A
[300 0 -2 -1]
[ 1 3 2 1]
[ 6 8 3 4]

We save and load a matrix:

sage: A = matrix(Integers(8),3,range(9))
sage: loads(dumps(A)) == A
True

MUTABILITY: Matrices are either immutable or not. When initially created, matrices are typically mutable, so one can
change their entries. Once a matrix 𝐴 is made immutable using A.set_immutable() the entries of 𝐴 cannot be
changed, and 𝐴 can never be made mutable again. However, properties of 𝐴 such as its rank, characteristic polynomial,
etc., are all cached so computations involving 𝐴 may be more efficient. Once 𝐴 is made immutable it cannot be changed
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back. However, one can obtain a mutable copy of 𝐴 using copy(A).

EXAMPLES:

sage: A = matrix(RR,2,[1,10,3.5,2])
sage: A.set_immutable()
sage: copy(A) is A
False

The echelon form method always returns immutable matrices with known rank.

EXAMPLES:

sage: A = matrix(Integers(8),3,range(9))
sage: A.determinant()
0
sage: A[0,0] = 5
sage: A.determinant()
1
sage: A.set_immutable()
sage: A[0,0] = 5
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use copy(M) to␣
→˓change a copy of M).

5.1.1 Implementation and Design

Class Diagram (an x means that class is currently supported):

x Matrix
x Matrix_sparse
x Matrix_generic_sparse
x Matrix_integer_sparse
x Matrix_rational_sparse

Matrix_cyclo_sparse
x Matrix_modn_sparse

Matrix_RR_sparse
Matrix_CC_sparse
Matrix_RDF_sparse
Matrix_CDF_sparse

x Matrix_dense
x Matrix_generic_dense
x Matrix_integer_dense
x Matrix_rational_dense

Matrix_cyclo_dense -- idea: restrict scalars to QQ, compute charpoly there,␣
→˓then factor
x Matrix_modn_dense

Matrix_RR_dense
Matrix_CC_dense

x Matrix_real_double_dense
x Matrix_complex_double_dense
x Matrix_complex_ball_dense

The corresponding files in the sage/matrix library code directory are named
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[matrix] [base ring] [dense or sparse].

New matrices types can only be implemented in Cython.

*********** LEVEL 1 **********
NON-OPTIONAL
For each base field it is *absolutely* essential to completely
implement the following functionality for that base ring:

* __cinit__ -- should use check_allocarray from cysignals.memory
(only needed if allocate memory)

* __init__ -- this signature: �def __init__(self, parent, entries, copy,␣
→˓coerce)�

* __dealloc__ -- use sig_free (only needed if allocate memory)
* set_unsafe(self, size_t i, size_t j, x) -- doesn�t do bounds or any other checks;

→˓ assumes x is in self._base_ring
* get_unsafe(self, size_t i, size_t j) -- doesn�t do checks
* __richcmp__ -- always the same (I don�t know why its needed -- bug in PYREX)

Note that the __init__ function must construct the all zero matrix if AAentries ==␣
→˓NoneAA.

*********** LEVEL 2 **********

IMPORTANT (and *highly* recommended):

After getting the special class with all level 1 functionality to
work, implement all of the following (they should not change
functionality, except speed (always faster!) in any way):

* def _pickle(self):
return data, version

* def _unpickle(self, data, int version)
reconstruct matrix from given data and version; may assume _parent, _nrows,␣

→˓and _ncols are set.
Use version numbers >= 0 so if you change the pickle strategy then
old objects still unpickle.

* cdef _list -- list of underlying elements (need not be a copy)
* cdef _dict -- sparse dictionary of underlying elements
* cdef _add_ -- add two matrices with identical parents
* _matrix_times_matrix_c_impl -- multiply two matrices with compatible dimensions␣

→˓and
identical base rings (both sparse or both dense)

* cpdef _richcmp_ -- compare two matrices with identical parents
* cdef _lmul_c_impl -- multiply this matrix on the right by a scalar, i.e., self *␣

→˓scalar
* cdef _rmul_c_impl -- multiply this matrix on the left by a scalar, i.e., scalar␣

→˓* self
* __copy__
* __neg__

The list and dict returned by _list and _dict will *not* be changed
by any internal algorithms and are not accessible to the user.

*********** LEVEL 3 **********
OPTIONAL:

(continues on next page)

5.1. Indexing 87



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

* cdef _sub_
* __invert__
* _multiply_classical
* __deepcopy__

Further special support:
* Matrix windows -- to support Strassen multiplication for a given base ring.
* Other functions, e.g., transpose, for which knowing the

specific representation can be helpful.

.. NOTE::

- For caching, use self.fetch and self.cache.

- Any method that can change the matrix should call
AAcheck_mutability()AA first. There are also many fast cdef�d bounds checking␣

→˓methods.

- Kernels of matrices
Implement only a left_kernel() or right_kernel() method, whichever requires
the least overhead (usually meaning little or no transposing). Let the
methods in the matrix2 class handle left, right, generic kernel distinctions.
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SIX

BASE CLASS FOR MATRICES, PART 0

Note

For design documentation see matrix/docs.py.

EXAMPLES:

sage: matrix(2, [1,2,3,4])
[1 2]
[3 4]

class sage.matrix.matrix0.Matrix

Bases: Matrix

A generic matrix.

The Matrix class is the base class for all matrix classes. To create a Matrix, first create a MatrixSpace, then
coerce a list of elements into the MatrixSpace. See the documentation of MatrixSpace for more details.

EXAMPLES:

We illustrate matrices and matrix spaces. Note that no actual matrix that you make should have class Matrix; the
class should always be derived from Matrix.

sage: M = MatrixSpace(CDF,2,3); M
Full MatrixSpace of 2 by 3 dense matrices over Complex Double Field
sage: a = M([1,2,3, 4,5,6]); a
[1.0 2.0 3.0]
[4.0 5.0 6.0]
sage: type(a)
<class �sage.matrix.matrix_complex_double_dense.Matrix_complex_double_dense�>
sage: parent(a)
Full MatrixSpace of 2 by 3 dense matrices over Complex Double Field

sage: matrix(CDF, 2,3, [1,2,3, 4,5,6])
[1.0 2.0 3.0]
[4.0 5.0 6.0]
sage: Mat(CDF,2,3)(range(1,7))
[1.0 2.0 3.0]
[4.0 5.0 6.0]

sage: Q.<i,j,k> = QuaternionAlgebra(QQ, -1,-1)
sage: matrix(Q,2,1,[1,2])

(continues on next page)
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[1]
[2]

act_on_polynomial(f)

Return the polynomial f(self*x).

INPUT:

• self – an nxn matrix

• f – a polynomial in n variables x=(x1,…,xn)

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: x, y = R.gens()
sage: f = x**2 - y**2
sage: M = MatrixSpace(QQ, 2)
sage: A = M([1,2,3,4])
sage: A.act_on_polynomial(f)
-8*x^2 - 20*x*y - 12*y^2

add_multiple_of_column(i, j, s, start_row=0)
Add s times column j to column i.

EXAMPLES: We add -1 times the third column to the second column of an integer matrix, remembering to
start numbering cols at zero:

sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.add_multiple_of_column(1,2,-1)
sage: a
[ 0 -1 2]
[ 3 -1 5]

To add a rational multiple, we first need to change the base ring:

sage: a = a.change_ring(QQ)
sage: a.add_multiple_of_column(1,0,1/3)
sage: a
[ 0 -1 2]
[ 3 0 5]

If not, we get an error message:

sage: a.add_multiple_of_column(1, 0, SR.I()) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: Multiplying column by Symbolic Ring element cannot be done over
Rational Field, use change_ring or with_added_multiple_of_column instead.

add_multiple_of_row(i, j, s, start_col=0)
Add s times row j to row i.

EXAMPLES: We add -3 times the first row to the second row of an integer matrix, remembering to start
numbering rows at zero:
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sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.add_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 3 1 -1]

To add a rational multiple, we first need to change the base ring:

sage: a = a.change_ring(QQ)
sage: a.add_multiple_of_row(1,0,1/3)
sage: a
[ 0 1 2]
[ 3 4/3 -1/3]

If not, we get an error message:

sage: a.add_multiple_of_row(1, 0, SR.I()) #␣
→˓needs sage.symbolic
Traceback (most recent call last):
...
TypeError: Multiplying row by Symbolic Ring element cannot be done over
Rational Field, use change_ring or with_added_multiple_of_row instead.

add_to_entry(i, j, elt)
Add elt to the entry at position (i, j).

EXAMPLES:

sage: m = matrix(QQ[�x,y�], 2, 2)
sage: m.add_to_entry(0, 1, 2)
sage: m
[0 2]
[0 0]

anticommutator(other)
Return the anticommutator self and other.

The anticommutator of two 𝑛× 𝑛 matrices 𝐴 and 𝐵 is defined as {𝐴,𝐵} := 𝐴𝐵 +𝐵𝐴 (sometimes this is
written as [𝐴,𝐵]+).

EXAMPLES:

sage: A = Matrix(ZZ, 2, 2, range(4))
sage: B = Matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: A.anticommutator(B)
[2 3]
[0 2]
sage: A.anticommutator(B) == B.anticommutator(A)
True
sage: A.commutator(B) + B.anticommutator(A) == 2*A*B
True

base_ring()

Return the base ring of the matrix.

EXAMPLES:
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sage: m = matrix(QQ, 2, [1,2,3,4])
sage: m.base_ring()
Rational Field

change_ring(ring)

Return the matrix obtained by coercing the entries of this matrix into the given ring.

Always returns a copy (unless self is immutable, in which case returns self).

EXAMPLES:

sage: A = Matrix(QQ, 2, 2, [1/2, 1/3, 1/3, 1/4])
sage: A.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: A.change_ring(GF(25,�a�)) #␣
→˓needs sage.rings.finite_rings
[3 2]
[2 4]
sage: A.change_ring(GF(25,�a�)).parent() #␣
→˓needs sage.rings.finite_rings
Full MatrixSpace of 2 by 2 dense matrices
over Finite Field in a of size 5^2

sage: A.change_ring(ZZ) #␣
→˓needs sage.rings.finite_rings
Traceback (most recent call last):
...
TypeError: matrix has denominators so can...t change to ZZ

Changing rings preserves subdivisions:

sage: A.subdivide([1], []); A
[1/2 1/3]
[-------]
[1/3 1/4]
sage: A.change_ring(GF(25,�a�)) #␣
→˓needs sage.rings.finite_rings
[3 2]
[---]
[2 4]

commutator(other)

Return the commutator self*other - other*self.

EXAMPLES:

sage: A = Matrix(ZZ, 2, 2, range(4))
sage: B = Matrix(ZZ, 2, 2, [0, 1, 0, 0])
sage: A.commutator(B)
[-2 -3]
[ 0 2]
sage: A.commutator(B) == -B.commutator(A)
True

dense_coefficient_list(order=None)
Return a list of all coefficients of self.

By default, this is the same as list().

INPUT:
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• order – (optional) an ordering of the basis indexing set

EXAMPLES:

sage: A = matrix([[1,2,3], [4,5,6]])
sage: A.dense_coefficient_list()
[1, 2, 3, 4, 5, 6]
sage: A.dense_coefficient_list([(1,2), (1,0), (0,1), (0,2), (0,0), (1,1)])
[6, 4, 2, 3, 1, 5]

dict(copy=True)
Dictionary of the elements of self with keys pairs (i,j) and values the nonzero entries of self.

INPUT:

• copy – boolean (default: True); make a copy of the dict corresponding to self

If copy=True, then is safe to change the returned dictionary. Otherwise, this can cause undesired behavior
by mutating the dict.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: a = matrix(R,2,[x,y,0, 0,0,2*x+y]); a
[ x y 0]
[ 0 0 2*x + y]
sage: d = a.dict(); d
{(0, 0): x, (0, 1): y, (1, 2): 2*x + y}

Notice that changing the returned list does not change a (the list is a copy):

sage: d[0,0] = 25
sage: a
[ x y 0]
[ 0 0 2*x + y]

dimensions()

Return the dimensions of this matrix as the tuple (nrows, ncols).

EXAMPLES:

sage: M = matrix([[1,2,3],[4,5,6]])
sage: N = M.transpose()
sage: M.dimensions()
(2, 3)
sage: N.dimensions()
(3, 2)

AUTHORS:

• Benjamin Lundell (2012-02-09): examples

inverse_of_unit(algorithm=None)
Return the inverse of this matrix in the same matrix space.

The matrix must be invertible on the base ring. Otherwise, an ArithmeticError is raised.

The computation goes through the matrix of cofactors and avoids division. In particular the base ring does
not need to have a fraction field.

INPUT:
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• algorithm – (default: None) either None or �df� (for division free)

EXAMPLES:

sage: R.<a,b,c,d> = ZZ[]
sage: RR = R.quotient(a*d - b*c - 1)
sage: a,b,c,d = RR.gens() #␣
→˓needs sage.libs.singular
sage: m = matrix(2, [a,b, c,d])
sage: n = m.inverse_of_unit() #␣
→˓needs sage.libs.singular
sage: m * n #␣
→˓needs sage.libs.singular
[1 0]
[0 1]

sage: matrix(RR, 2, 1, [a,b]).inverse_of_unit() #␣
→˓needs sage.libs.singular
Traceback (most recent call last):
...
ArithmeticError: self must be a square matrix

sage: matrix(RR, 1, 1, [2]).inverse_of_unit() #␣
→˓needs sage.libs.singular
Traceback (most recent call last):
...
ArithmeticError: non-invertible matrix

sage: R = ZZ.cartesian_product(ZZ)
sage: m = matrix(R, 2, [R((2,1)), R((1,1)), R((1,1)), R((1,2))])
sage: m * m.inverse_of_unit()
[(1, 1) (0, 0)]
[(0, 0) (1, 1)]

Tests for Issue #28570:

sage: P = posets.TamariLattice(7) #␣
→˓needs sage.graphs
sage: M = P._hasse_diagram._leq_matrix #␣
→˓needs sage.graphs
sage: M.inverse_of_unit() # this was very slow, now 1s #␣
→˓needs sage.graphs
429 x 429 sparse matrix over Integer Ring...

sage: m = matrix(Zmod(2**2), 1, 1, [1], sparse=True)
sage: mi = ~m; mi
[1]
sage: mi.parent()
Full MatrixSpace of 1 by 1 sparse matrices over Ring of integers modulo 4

is_alternating()

Return True if self is an alternating matrix.

Here, “alternating matrix” means a square matrix 𝐴 satisfying 𝐴𝑇 = −𝐴 and such that the diagonal entries
of𝐴 are 0. Notice that the condition that the diagonal entries be 0 is not redundant for matrices over arbitrary
ground rings (but it is redundant when 2 is invertible in the ground ring). A square matrix 𝐴 only required
to satisfy 𝐴𝑇 = −𝐴 is said to be “skew-symmetric”, and this property is checked by the is_skew_sym-
metric() method.
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EXAMPLES:

sage: m = matrix(QQ, [[0,2], [-2,0]])
sage: m.is_alternating()
True
sage: m = matrix(QQ, [[1,2], [2,1]])
sage: m.is_alternating()
False

In contrast to the property of being skew-symmetric, the property of being alternating does not tolerate
nonzero entries on the diagonal even if they are their own negatives:

sage: n = matrix(Zmod(4), [[0, 1], [-1, 2]])
sage: n.is_alternating()
False

is_dense()

Return True if this is a dense matrix.

In Sage, being dense is a property of the underlying representation, not the number of nonzero entries.

EXAMPLES:

sage: matrix(QQ, 2, 2, range(4)).is_dense()
True
sage: matrix(QQ, 2, 2, range(4), sparse=True).is_dense()
False

is_hermitian()

Return True if the matrix is equal to its conjugate-transpose.

OUTPUT:

True if the matrix is square and equal to the transpose with every entry conjugated, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the is_sym-
metric() method is equivalent and faster.

This routine is for matrices over exact rings and so may not work properly for matrices over RR or CC.
For matrices with approximate entries, the rings of double-precision floating-point numbers, RDF and CDF,
are a better choice since the sage.matrix.matrix_double_dense.Matrix_double_dense.
is_hermitian() method has a tolerance parameter. This provides control over allowing for minor dis-
crepancies between entries when checking equality.

The result is cached.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: A.is_hermitian()
False
sage: B = A * A.conjugate_transpose()
sage: B.is_hermitian()
True

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.
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sage: # needs sage.rings.number_field
sage: F.<b> = QuadraticField(-7)
sage: C = matrix(F, [[-2*b - 3, 7*b - 6, -b + 3],
....: [-2*b - 3, -3*b + 2, -2*b],
....: [ b + 1, 0, -2]])
sage: C.is_hermitian()
False
sage: C = C*C.conjugate_transpose()
sage: C.is_hermitian()
True

A matrix that is nearly Hermitian, but for a non-real diagonal entry.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ 2, 2-I, 1+4*I],
....: [ 2+I, 3+I, 2-6*I],
....: [1-4*I, 2+6*I, 5]])
sage: A.is_hermitian()
False
sage: A[1, 1] = 132
sage: A.is_hermitian()
True

Rectangular matrices are never Hermitian.

sage: A = matrix(QQbar, 3, 4) #␣
→˓needs sage.rings.number_field
sage: A.is_hermitian() #␣
→˓needs sage.rings.number_field
False

A square, empty matrix is trivially Hermitian.

sage: A = matrix(QQ, 0, 0)
sage: A.is_hermitian()
True

is_immutable()

Return True if this matrix is immutable.

See the documentation for self.set_immutable for more details about mutability.

EXAMPLES:

sage: A = Matrix(QQ[�t�,�s�], 2, 2, range(4))
sage: A.is_immutable()
False
sage: A.set_immutable()
sage: A.is_immutable()
True

is_invertible()

Return True if this matrix is invertible.

EXAMPLES: The following matrix is invertible over 2 but not over Z.

sage: A = MatrixSpace(ZZ, 2)(range(4))
sage: A.is_invertible()

(continues on next page)
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False
sage: A.matrix_over_field().is_invertible()
True

The inverse function is a constructor for matrices over the fraction field, so it can work even if A is not
invertible.

sage: ~A # inverse of A
[-3/2 1/2]
[ 1 0]

The next matrix is invertible over Z.

sage: A = MatrixSpace(IntegerRing(), 2)([1,10,0,-1])
sage: A.is_invertible()
True
sage: ~A # compute the inverse
[ 1 10]
[ 0 -1]

The following nontrivial matrix is invertible over Z[𝑥].

sage: R.<x> = PolynomialRing(IntegerRing())
sage: A = MatrixSpace(R, 2)([1,x,0,-1])
sage: A.is_invertible()
True
sage: ~A
[ 1 x]
[ 0 -1]

is_mutable()

Return True if this matrix is mutable.

See the documentation for self.set_immutable for more details about mutability.

EXAMPLES:

sage: A = Matrix(QQ[�t�,�s�], 2, 2, range(4))
sage: A.is_mutable()
True
sage: A.set_immutable()
sage: A.is_mutable()
False

is_singular()

Return True if self is singular.

OUTPUT:

A square matrix is singular if it has a zero determinant and this method will return True in exactly this case.
When the entries of the matrix come from a field, this is equivalent to having a nontrivial kernel, or lacking
an inverse, or having linearly dependent rows, or having linearly dependent columns.

For square matrices over a field the methods is_invertible() and is_singular() are logical op-
posites. However, it is an error to apply is_singular() to a matrix that is not square, while is_in-
vertible() will always return False for a matrix that is not square.

EXAMPLES:
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A singular matrix over the field QQ.

sage: A = matrix(QQ, 4, [-1,2,-3,6, 0,-1,-1,0, -1,1,-5,7, -1,6,5,2])
sage: A.is_singular()
True
sage: A.right_kernel().dimension()
1

A matrix that is not singular, i.e. nonsingular, over a field.

sage: B = matrix(QQ, 4, [1,-3,-1,-5, 2,-5,-2,-7, -2,5,3,4, -1,4,2,6])
sage: B.is_singular()
False
sage: B.left_kernel().dimension()
0

For rectangular matrices, invertibility is always False, but asking about singularity will give an error.

sage: C = matrix(QQ, 5, range(30))
sage: C.is_invertible()
False
sage: C.is_singular()
Traceback (most recent call last):
...
ValueError: self must be a square matrix

When the base ring is not a field, then a matrix may be both not invertible and not singular.

sage: D = matrix(ZZ, 4, [2,0,-4,8, 2,1,-2,7, 2,5,7,0, 0,1,4,-6])
sage: D.is_invertible()
False
sage: D.is_singular()
False
sage: d = D.determinant(); d
2
sage: d.is_unit()
False

is_skew_hermitian()

Return True if the matrix is equal to the negative of its conjugate transpose.

OUTPUT:

True if the matrix is square and equal to the negative of its conjugate transpose, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the
is_skew_symmetric() method is equivalent and faster.

This routine is for matrices over exact rings and so may not work properly for matrices over RR or CC.
For matrices with approximate entries, the rings of double-precision floating-point numbers, RDF and CDF,
are a better choice since the sage.matrix.matrix_double_dense.Matrix_double_dense.
is_skew_hermitian() method has a tolerance parameter. This provides control over allowing for
minor discrepancies between entries when checking equality.

The result is cached.

EXAMPLES:
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sage: A = matrix(QQbar, [[0, -1], #␣
→˓needs sage.rings.number_field
....: [1, 0]])
sage: A.is_skew_hermitian() #␣
→˓needs sage.rings.number_field
True

A matrix that is nearly skew-Hermitian, but for a non-real diagonal entry.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ -I, -1, 1-I],
....: [ 1, 1, -1],
....: [-1-I, 1, -I]])
sage: A.is_skew_hermitian()
False
sage: A[1, 1] = -I
sage: A.is_skew_hermitian()
True

Rectangular matrices are never skew-Hermitian.

sage: A = matrix(QQbar, 3, 4) #␣
→˓needs sage.rings.number_field
sage: A.is_skew_hermitian() #␣
→˓needs sage.rings.number_field
False

A square, empty matrix is trivially Hermitian.

sage: A = matrix(QQ, 0, 0)
sage: A.is_skew_hermitian()
True

is_skew_symmetric()

Return True if self is a skew-symmetric matrix.

Here, “skew-symmetric matrix” means a square matrix 𝐴 satisfying 𝐴𝑇 = −𝐴. It does not require that the
diagonal entries of 𝐴 are 0 (although this automatically follows from 𝐴𝑇 = −𝐴 when 2 is invertible in the
ground ring over which the matrix is considered). Skew-symmetric matrices 𝐴 whose diagonal entries are 0
are said to be “alternating”, and this property is checked by the is_alternating() method.

EXAMPLES:

sage: m = matrix(QQ, [[0,2], [-2,0]])
sage: m.is_skew_symmetric()
True
sage: m = matrix(QQ, [[1,2], [2,1]])
sage: m.is_skew_symmetric()
False

Skew-symmetric is not the same as alternating when 2 is a zero-divisor in the ground ring:

sage: n = matrix(Zmod(4), [[0, 1], [-1, 2]])
sage: n.is_skew_symmetric()
True

but yet the diagonal cannot be completely arbitrary in this case:
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sage: n = matrix(Zmod(4), [[0, 1], [-1, 3]])
sage: n.is_skew_symmetric()
False

is_skew_symmetrizable(return_diag=False, positive=True)
This function takes a square matrix over an ordered integral domain and checks if it is skew-symmetrizable.
A matrix 𝐵 is skew-symmetrizable iff there exists an invertible diagonal matrix 𝐷 such that 𝐷𝐵 is
skew-symmetric.

Warning

Expects self to be a matrix over an ordered integral domain.

INPUT:

• return_diag – boolean (default: False); if True and self is skew-symmetrizable the diagonal
entries of the matrix 𝐷 are returned

• positive – boolean (default: True); if True, the condition that 𝐷 has positive entries is added

OUTPUT:

• True – if self is skew-symmetrizable and return_diag is False

• the diagonal entries of a matrix 𝐷 such that 𝐷𝐵 is skew-symmetric – iff self is skew-symmetrizable
and return_diag is True

• False – iff self is not skew-symmetrizable

EXAMPLES:

sage: matrix([[0,6],[3,0]]).is_skew_symmetrizable(positive=False)
True
sage: matrix([[0,6],[3,0]]).is_skew_symmetrizable(positive=True)
False

sage: M = matrix(4, [0,1,0,0, -1,0,-1,0, 0,2,0,1, 0,0,-1,0]); M
[ 0 1 0 0]
[-1 0 -1 0]
[ 0 2 0 1]
[ 0 0 -1 0]

sage: M.is_skew_symmetrizable(return_diag=True)
[1, 1, 1/2, 1/2]

sage: M2 = diagonal_matrix([1,1,1/2,1/2]) * M; M2
[ 0 1 0 0]
[ -1 0 -1 0]
[ 0 1 0 1/2]
[ 0 0 -1/2 0]

sage: M2.is_skew_symmetric()
True

REFERENCES:

• [FZ2001]
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is_sparse()

Return True if this is a sparse matrix.

In Sage, being sparse is a property of the underlying representation, not the number of nonzero entries.

EXAMPLES:

sage: matrix(QQ, 2, 2, range(4)).is_sparse()
False
sage: matrix(QQ, 2, 2, range(4), sparse=True).is_sparse()
True

is_square()

Return True precisely if this matrix is square, i.e., has the same number of rows and columns.

EXAMPLES:

sage: matrix(QQ, 2, 2, range(4)).is_square()
True
sage: matrix(QQ, 2, 3, range(6)).is_square()
False

is_symmetric()

Return True if this is a symmetric matrix.

A symmetric matrix is necessarily square.

EXAMPLES:

sage: m = Matrix(QQ, 2, range(0,4))
sage: m.is_symmetric()
False

sage: m = Matrix(QQ, 2, (1,1,1,1,1,1))
sage: m.is_symmetric()
False

sage: m = Matrix(QQ, 1, (2,))
sage: m.is_symmetric()
True

is_symmetrizable(return_diag=False, positive=True)
This function takes a square matrix over an ordered integral domain and checks if it is symmetrizable.

A matrix 𝐵 is symmetrizable iff there exists an invertible diagonal matrix 𝐷 such that 𝐷𝐵 is symmetric.

Warning

Expects self to be a matrix over an ordered integral domain.

INPUT:

• return_diag – boolean (default: False); if True and self is symmetrizable the diagonal entries
of the matrix 𝐷 are returned

• positive – boolean (default: True); if True, the condition that 𝐷 has positive entries is added

OUTPUT:
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• True – if self is symmetrizable and return_diag is False

• the diagonal entries of a matrix 𝐷 such that 𝐷𝐵 is symmetric – iff self is symmetrizable and re-
turn_diag is True

• False – iff self is not symmetrizable

EXAMPLES:

sage: matrix([[0,6],[3,0]]).is_symmetrizable(positive=False)
True

sage: matrix([[0,6],[3,0]]).is_symmetrizable(positive=True)
True

sage: matrix([[0,6],[0,0]]).is_symmetrizable(return_diag=True)
False

sage: matrix([2]).is_symmetrizable(positive=True)
True

sage: matrix([[1,2],[3,4]]).is_symmetrizable(return_diag=true)
[1, 2/3]

REFERENCES:

• [FZ2001]

is_unit()

Return True if this matrix is invertible.

EXAMPLES: The following matrix is invertible over 2 but not over Z.

sage: A = MatrixSpace(ZZ, 2)(range(4))
sage: A.is_invertible()
False
sage: A.matrix_over_field().is_invertible()
True

The inverse function is a constructor for matrices over the fraction field, so it can work even if A is not
invertible.

sage: ~A # inverse of A
[-3/2 1/2]
[ 1 0]

The next matrix is invertible over Z.

sage: A = MatrixSpace(IntegerRing(), 2)([1,10,0,-1])
sage: A.is_invertible()
True
sage: ~A # compute the inverse
[ 1 10]
[ 0 -1]

The following nontrivial matrix is invertible over Z[𝑥].

sage: R.<x> = PolynomialRing(IntegerRing())
sage: A = MatrixSpace(R, 2)([1,x,0,-1])

(continues on next page)
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sage: A.is_invertible()
True
sage: ~A
[ 1 x]
[ 0 -1]

items()

Return an iterable of ((i,j), value) elements.

This may (but is not guaranteed to) suppress zero values.

EXAMPLES:

sage: a = matrix(QQ[�x,y�], 2, range(6), sparse=True); a
[0 1 2]
[3 4 5]
sage: list(a.items())
[((0, 1), 1), ((0, 2), 2), ((1, 0), 3), ((1, 1), 4), ((1, 2), 5)]

iterates(v, n, rows=True)
Let 𝐴 be this matrix and 𝑣 be a free module element. If rows is True, return a matrix whose rows are the
entries of the following vectors:

𝑣, 𝑣𝐴, 𝑣𝐴2, . . . , 𝑣𝐴𝑛−1.

If rows is False, return a matrix whose columns are the entries of the following vectors:

𝑣,𝐴𝑣,𝐴2𝑣, . . . , 𝐴𝑛−1𝑣.

INPUT:

• v – free module element

• n – nonnegative integer

EXAMPLES:

sage: A = matrix(ZZ, 2, [1,1,3,5]); A
[1 1]
[3 5]
sage: v = vector([1,0])
sage: A.iterates(v, 0)
[]
sage: A.iterates(v, 5)
[ 1 0]
[ 1 1]
[ 4 6]
[ 22 34]
[124 192]

Another example:

sage: a = matrix(ZZ, 3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = vector([1,0,0])

(continues on next page)
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sage: a.iterates(v, 4)
[ 1 0 0]
[ 0 1 2]
[ 15 18 21]
[180 234 288]
sage: a.iterates(v, 4, rows=False)
[ 1 0 15 180]
[ 0 3 42 558]
[ 0 6 69 936]

linear_combination_of_columns(v)
Return the linear combination of the columns of self given by the coefficients in the list v.

INPUT:

• v – a list of scalars. The length can be less than the number of columns of self but not greater.

OUTPUT:

The vector (or free module element) that is a linear combination of the columns of self. If the list of scalars
has fewer entries than the number of columns, additional zeros are appended to the list until it has as many
entries as the number of columns.

EXAMPLES:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.linear_combination_of_columns([1,1,1])
(3, 12)

sage: a.linear_combination_of_columns([0,0,0])
(0, 0)

sage: a.linear_combination_of_columns([1/2,2/3,3/4])
(13/6, 95/12)

The list v can be anything that is iterable. Perhaps most naturally, a vector may be used.

sage: v = vector(ZZ, [1,2,3])
sage: a.linear_combination_of_columns(v)
(8, 26)

We check that a matrix with no columns behaves properly.

sage: matrix(QQ, 2, 0).linear_combination_of_columns([])
(0, 0)

The object returned is a vector, or a free module element.

sage: B = matrix(ZZ, 4, 3, range(12))
sage: w = B.linear_combination_of_columns([-1,2,-3])
sage: w
(-4, -10, -16, -22)
sage: w.parent()
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: x = B.linear_combination_of_columns([1/2,1/3,1/4])
sage: x

(continues on next page)
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(5/6, 49/12, 22/3, 127/12)
sage: x.parent()
Vector space of dimension 4 over Rational Field

The length of v can be less than the number of columns, but not greater.

sage: A = matrix(QQ, 3, 5, range(15))
sage: A.linear_combination_of_columns([1,-2,3,-4])
(-8, -18, -28)
sage: A.linear_combination_of_columns([1,2,3,4,5,6])
Traceback (most recent call last):
...
ValueError: length of v must be at most the number of columns of self

linear_combination_of_rows(v)
Return the linear combination of the rows of self given by the coefficients in the list v.

INPUT:

• v – a list of scalars. The length can be less than the number of rows of self but not greater.

OUTPUT:

The vector (or free module element) that is a linear combination of the rows of self. If the list of scalars
has fewer entries than the number of rows, additional zeros are appended to the list until it has as many entries
as the number of rows.

EXAMPLES:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.linear_combination_of_rows([1,2])
(6, 9, 12)

sage: a.linear_combination_of_rows([0,0])
(0, 0, 0)

sage: a.linear_combination_of_rows([1/2,2/3])
(2, 19/6, 13/3)

The list v can be anything that is iterable. Perhaps most naturally, a vector may be used.

sage: v = vector(ZZ, [1,2])
sage: a.linear_combination_of_rows(v)
(6, 9, 12)

We check that a matrix with no rows behaves properly.

sage: matrix(QQ, 0, 2).linear_combination_of_rows([])
(0, 0)

The object returned is a vector, or a free module element.

sage: B = matrix(ZZ, 4, 3, range(12))
sage: w = B.linear_combination_of_rows([-1,2,-3,4])
sage: w
(24, 26, 28)

(continues on next page)
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sage: w.parent()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: x = B.linear_combination_of_rows([1/2,1/3,1/4,1/5])
sage: x
(43/10, 67/12, 103/15)
sage: x.parent()
Vector space of dimension 3 over Rational Field

The length of v can be less than the number of rows, but not greater.

sage: A = matrix(QQ, 3, 4, range(12))
sage: A.linear_combination_of_rows([2,3])
(12, 17, 22, 27)
sage: A.linear_combination_of_rows([1,2,3,4])
Traceback (most recent call last):
...
ValueError: length of v must be at most the number of rows of self

list()

List of the elements of self ordered by elements in each row. It is safe to change the returned list.

Warning

This function returns a list of the entries in the matrix self. It does not return a list of the rows of self,
so it is different than the output of list(self), which returns [self[0],self[1],...].

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: a = matrix(R,2,[x,y,x*y, y,x,2*x+y]); a
[ x y x*y]
[ y x 2*x + y]
sage: v = a.list(); v
[x, y, x*y, y, x, 2*x + y]

Note that list(a) is different than a.list():

sage: a.list()
[x, y, x*y, y, x, 2*x + y]
sage: list(a)
[(x, y, x*y), (y, x, 2*x + y)]

Notice that changing the returned list does not change a (the list is a copy):

sage: v[0] = 25
sage: a
[ x y x*y]
[ y x 2*x + y]

mod(p)
Return matrix mod 𝑝, over the reduced ring.

EXAMPLES:
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sage: M = matrix(ZZ, 2, 2, [5, 9, 13, 15])
sage: M.mod(7)
[5 2]
[6 1]
sage: parent(M.mod(7))
Full MatrixSpace of 2 by 2 dense matrices over Ring of integers modulo 7

monomial_coefficients(copy=True)

Dictionary of the elements of self with keys pairs (i,j) and values the nonzero entries of self.

INPUT:

• copy – boolean (default: True); make a copy of the dict corresponding to self

If copy=True, then is safe to change the returned dictionary. Otherwise, this can cause undesired behavior
by mutating the dict.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: a = matrix(R,2,[x,y,0, 0,0,2*x+y]); a
[ x y 0]
[ 0 0 2*x + y]
sage: d = a.dict(); d
{(0, 0): x, (0, 1): y, (1, 2): 2*x + y}

Notice that changing the returned list does not change a (the list is a copy):

sage: d[0,0] = 25
sage: a
[ x y 0]
[ 0 0 2*x + y]

multiplicative_order()

Return the multiplicative order of this matrix, which must therefore be invertible.

Only implemented over finite fields and over Z.

EXAMPLES:

Over finite fields:

sage: A = matrix(GF(59), 3, [10,56,39,53,56,33,58,24,55])
sage: A.multiplicative_order() #␣
→˓needs sage.libs.pari
580
sage: (A^580).is_one()
True

sage: B = matrix(GF(10007^3, �b�), 0) #␣
→˓needs sage.rings.finite_rings
sage: B.multiplicative_order() #␣
→˓needs sage.rings.finite_rings
1

sage: # needs sage.rings.finite_rings
sage: M = MatrixSpace(GF(11^2, �e�), 5)
sage: E = M.random_element()
sage: while E.det() == 0:

(continues on next page)

107



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

....: E = M.random_element()
sage: (E^E.multiplicative_order()).is_one()
True

Over Z:

sage: m = matrix(ZZ, 2, 2, [-1,1,-1,0])
sage: m.multiplicative_order() #␣
→˓needs sage.libs.pari
3

sage: m = posets.ChainPoset(6).coxeter_transformation() #␣
→˓needs sage.combinat sage.graphs
sage: m.multiplicative_order() #␣
→˓needs sage.combinat sage.graphs sage.groups
7

sage: P = posets.TamariLattice(4).coxeter_transformation() #␣
→˓needs sage.combinat sage.graphs
sage: P.multiplicative_order() #␣
→˓needs sage.combinat sage.graphs sage.groups
10

sage: M = matrix(ZZ, 2, 2, [1, 1, 0, 1])
sage: M.multiplicative_order() #␣
→˓needs sage.libs.pari
+Infinity

sage: for k in range(600): #␣
→˓needs sage.groups sage.modular
....: m = SL2Z.random_element()
....: o = m.multiplicative_order()
....: if o != Infinity and m**o != SL2Z.one():
....: raise RuntimeError

sage: m24 = matrix.companion(cyclotomic_polynomial(24))
sage: def val(i, j):
....: if i < j:
....: return 0
....: elif i == j:
....: return 1
....: else:
....: return ZZ.random_element(-100,100)
sage: rnd = matrix(ZZ, 8, 8, val)
sage: (rnd * m24 * rnd.inverse_of_unit()).multiplicative_order() #␣
→˓needs sage.libs.pari
24

REFERENCES:

• [CLG1997]

• [KP2002b]

mutate(k)
Mutates self at row and column index k.
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Warning

Only makes sense if self is skew-symmetrizable.

INPUT:

• k – integer at which row/column self is mutated

EXAMPLES:

Mutation of the B-matrix of the quiver of type 𝐴3:

sage: M = matrix(ZZ, 3, [0,1,0,-1,0,-1,0,1,0]); M
[ 0 1 0]
[-1 0 -1]
[ 0 1 0]

sage: M.mutate(0); M
[ 0 -1 0]
[ 1 0 -1]
[ 0 1 0]

sage: M.mutate(1); M
[ 0 1 -1]
[-1 0 1]
[ 1 -1 0]

sage: M = matrix(ZZ, 6, [0,1,0,-1,0,-1,0,1,0,1,0,0,0,1,0,0,0,1]); M
[ 0 1 0]
[-1 0 -1]
[ 0 1 0]
[ 1 0 0]
[ 0 1 0]
[ 0 0 1]

sage: M.mutate(0); M
[ 0 -1 0]
[ 1 0 -1]
[ 0 1 0]
[-1 1 0]
[ 0 1 0]
[ 0 0 1]

REFERENCES:

• [FZ2001]

ncols()

Return the number of columns of this matrix.

EXAMPLES:

sage: M = MatrixSpace(QQ, 2, 3)
sage: A = M([1,2,3, 4,5,6])
sage: A
[1 2 3]
[4 5 6]
sage: A.ncols()

(continues on next page)
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3
sage: A.nrows()
2

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

nonpivots()

Return the list of 𝑖 such that the 𝑖-th column of self is NOT a pivot column of the reduced row echelon
form of self.

OUTPUT: sorted tuple of (Python) integers

EXAMPLES:

sage: a = matrix(QQ, 3, 3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.echelon_form()
[ 1 0 -1]
[ 0 1 2]
[ 0 0 0]
sage: a.nonpivots()
(2,)

nonzero_positions(copy=True, column_order=False)
Return the sorted list of pairs (i,j) such that self[i,j] != 0.

INPUT:

• copy – boolean (default: True); it is safe to change the resulting list (unless you give the option
copy=False)

• column_order – boolean (default: False); if True, returns the list of pairs (i,j) such that
self[i,j] != 0, but sorted by columns, i.e., column j=0 entries occur first, then column j=1
entries, etc.

EXAMPLES:

sage: a = matrix(QQ, 2,3, [1,2,0,2,0,0]); a
[1 2 0]
[2 0 0]
sage: a.nonzero_positions()
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(copy=False)
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(column_order=True)
[(0, 0), (1, 0), (0, 1)]
sage: a = matrix(QQ, 2,3, [1,2,0,2,0,0], sparse=True); a
[1 2 0]
[2 0 0]
sage: a.nonzero_positions()
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(copy=False)
[(0, 0), (0, 1), (1, 0)]
sage: a.nonzero_positions(column_order=True)
[(0, 0), (1, 0), (0, 1)]
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nonzero_positions_in_column(i)
Return a sorted list of the integers j such that self[j,i] is nonzero, i.e., such that the j-th position of
the i-th column is nonzero.

INPUT:

• i – integer

OUTPUT: list

EXAMPLES:

sage: a = matrix(QQ, 3,2, [1,2,0,2,0,0]); a
[1 2]
[0 2]
[0 0]
sage: a.nonzero_positions_in_column(0)
[0]
sage: a.nonzero_positions_in_column(1)
[0, 1]

You will get an IndexError if you select an invalid column:

sage: a.nonzero_positions_in_column(2)
Traceback (most recent call last):
...
IndexError: matrix column index out of range

nonzero_positions_in_row(i)
Return the integers j such that self[i,j] is nonzero, i.e., such that the j-th position of the i-th row is
nonzero.

INPUT:

• i – integer

OUTPUT: list

EXAMPLES:

sage: a = matrix(QQ, 3,2, [1,2,0,2,0,0]); a
[1 2]
[0 2]
[0 0]
sage: a.nonzero_positions_in_row(0)
[0, 1]
sage: a.nonzero_positions_in_row(1)
[1]
sage: a.nonzero_positions_in_row(2)
[]

nrows()

Return the number of rows of this matrix.

EXAMPLES:

sage: M = MatrixSpace(QQ,6,7)
sage: A = M([1,2,3,4,5,6,7, 22,3/4,34,11,7,5,3, 99,65,1/2,2/3,3/5,4/5,5/6, 9,
→˓8/9, 9/8,7/6,6/7,76,4, 0,9,8,7,6,5,4, 123,99,91,28,6,1024,1])
sage: A

(continues on next page)
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[ 1 2 3 4 5 6 7]
[ 22 3/4 34 11 7 5 3]
[ 99 65 1/2 2/3 3/5 4/5 5/6]
[ 9 8/9 9/8 7/6 6/7 76 4]
[ 0 9 8 7 6 5 4]
[ 123 99 91 28 6 1024 1]
sage: A.ncols()
7
sage: A.nrows()
6

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

permute_columns(permutation)
Permute the columns of self by applying the permutation group element permutation.

As permutation group elements act on integers {1, . . . , 𝑛}, columns are considered numbered from 1 for this
operation.

INPUT:

• permutation – a PermutationGroupElement

EXAMPLES: We create a matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M with it:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_columns(sigma)
sage: M
[0 0 1 0 0]
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 4]
[0 0 0 5 0]

permute_rows(permutation)

Permute the rows of self by applying the permutation group element permutation.

As permutation group elements act on integers {1, . . . , 𝑛}, rows are considered numbered from 1 for this
operation.

INPUT:

• permutation – a PermutationGroupElement
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EXAMPLES: We create a matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_rows(sigma)
sage: M
[0 2 0 0 0]
[0 0 3 0 0]
[1 0 0 0 0]
[0 0 0 0 5]
[0 0 0 4 0]

permute_rows_and_columns(row_permutation, column_permutation)
Permute the rows and columns of self by applying the permutation group elements row_permutation
and column_permutation respectively.

As permutation group elements act on integers {1, . . . , 𝑛}, rows and columns are considered numbered from
1 for this operation.

INPUT:

• row_permutation – a PermutationGroupElement

• column_permutation – a PermutationGroupElement

OUTPUT: a matrix

EXAMPLES: We create a matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.permute_rows_and_columns(sigma,tau)
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sage: M
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 1]
[0 0 0 5 0]
[0 0 4 0 0]

pivots()

Return the pivot column positions of this matrix.

OUTPUT: a tuple of Python integers: the position of the first nonzero entry in each row of the echelon form.

This returns a tuple so it is immutable; see Issue #10752.

EXAMPLES:

sage: A = matrix(QQ, 2, 2, range(4))
sage: A.pivots()
(0, 1)

rank()

Return the rank of this matrix.

EXAMPLES:

sage: m = matrix(GF(7), 5, range(25))
sage: m.rank()
2

Rank is not implemented over the integers modulo a composite yet.:

sage: m = matrix(Integers(4), 2, [2,2,2,2])
sage: m.rank()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 4�.

rescale_col(i, s, start_row=0)
Replace 𝑖-th col of self by 𝑠 times 𝑖-th col of self.

INPUT:

• i – 𝑖-th column

• s – scalar

• start_row – only rescale entries at this row and lower

EXAMPLES: We rescale the last column of a matrix over the rational numbers:

sage: a = matrix(QQ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.rescale_col(2, 1/2); a
[ 0 1 1]
[ 3 4 5/2]
sage: R.<x> = QQ[]
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We rescale the last column of a matrix over a polynomial ring:

sage: a = matrix(R, 2, 3, [1,x,x^2,x^3,x^4,x^5]); a
[ 1 x x^2]
[x^3 x^4 x^5]
sage: a.rescale_col(2, 1/2); a
[ 1 x 1/2*x^2]
[ x^3 x^4 1/2*x^5]

We try and fail to rescale a matrix over the integers by a non-integer:

sage: a = matrix(ZZ, 2, 3, [0,1,2, 3,4,4]); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(2, 1/2)
Traceback (most recent call last):
...
TypeError: Rescaling column by Rational Field element cannot be done
over Integer Ring, use change_ring or with_rescaled_col instead.

To rescale the matrix by 1/2, you must change the base ring to the rationals:

sage: a = a.change_ring(QQ); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(2,1/2); a
[0 1 1]
[3 4 2]

rescale_row(i, s, start_col=0)
Replace 𝑖-th row of self by 𝑠 times 𝑖-th row of self.

INPUT:

• i – 𝑖-th row

• s – scalar

• start_col – only rescale entries at this column and to the right

EXAMPLES: We rescale the second row of a matrix over the rational numbers:

sage: a = matrix(QQ, 3, range(6)); a
[0 1]
[2 3]
[4 5]
sage: a.rescale_row(1, 1/2); a
[ 0 1]
[ 1 3/2]
[ 4 5]

We rescale the second row of a matrix over a polynomial ring:

sage: R.<x> = QQ[]
sage: a = matrix(R, 3, [1,x,x^2,x^3,x^4,x^5]); a
[ 1 x]
[x^2 x^3]
[x^4 x^5]
sage: a.rescale_row(1, 1/2); a
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[ 1 x]
[1/2*x^2 1/2*x^3]
[ x^4 x^5]

We try and fail to rescale a matrix over the integers by a non-integer:

sage: a = matrix(ZZ, 2, 3, [0,1,2, 3,4,4]); a
[0 1 2]
[3 4 4]
sage: a.rescale_row(1, 1/2)
Traceback (most recent call last):
...
TypeError: Rescaling row by Rational Field element cannot be done
over Integer Ring, use change_ring or with_rescaled_row instead.

To rescale the matrix by 1/2, you must change the base ring to the rationals:

sage: a = a.change_ring(QQ); a
[0 1 2]
[3 4 4]
sage: a.rescale_col(1, 1/2); a
[ 0 1/2 2]
[ 3 2 4]

reverse_rows_and_columns()

Reverse the row order and column order of this matrix.

This method transforms a matrix𝑚𝑖,𝑗 with 0 ≤ 𝑖 < 𝑛𝑟𝑜𝑤𝑠 and 0 ≤ 𝑗 < 𝑛𝑐𝑜𝑙𝑠 into𝑚𝑛𝑟𝑜𝑤𝑠−𝑖−1,𝑛𝑐𝑜𝑙𝑠−𝑗−1.

EXAMPLES:

sage: m = matrix(ZZ, 2, 2, range(4))
sage: m.reverse_rows_and_columns()
sage: m
[3 2]
[1 0]

sage: m = matrix(ZZ, 2, 3, range(6), sparse=True)
sage: m.reverse_rows_and_columns()
sage: m
[5 4 3]
[2 1 0]
sage: m = matrix(ZZ, 3, 2, range(6), sparse=True)
sage: m.reverse_rows_and_columns()
sage: m
[5 4]
[3 2]
[1 0]
sage: m.reverse_rows_and_columns()
sage: m
[0 1]
[2 3]
[4 5]

sage: m = matrix(QQ, 3, 2, [1/i for i in range(1,7)])
sage: m.reverse_rows_and_columns()
sage: m

(continues on next page)
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[1/6 1/5]
[1/4 1/3]
[1/2 1]

sage: R.<x,y> = ZZ[�x,y�]
sage: m = matrix(R, 3, 3, lambda i,j: x**i*y**j, sparse=True)
sage: m.reverse_rows_and_columns()
sage: m
[x^2*y^2 x^2*y x^2]
[ x*y^2 x*y x]
[ y^2 y 1]

If the matrix is immutable, the method raises an error:

sage: m = matrix(ZZ, 2, [1, 3, -2, 4])
sage: m.set_immutable()
sage: m.reverse_rows_and_columns()
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy
instead (i.e., use copy(M) to change a copy of M).

set_col_to_multiple_of_col(i, j, s)
Set column i equal to s times column j.

EXAMPLES: We change the second column to -3 times the first column.

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_col_to_multiple_of_col(1, 0, -3)
sage: a
[ 0 0 2]
[ 3 -9 5]

If we try to multiply a column by a rational number, we get an error message:

sage: a.set_col_to_multiple_of_col(1, 0, 1/2)
Traceback (most recent call last):
...
TypeError: Multiplying column by Rational Field element cannot be done over␣
→˓Integer Ring, use change_ring or with_col_set_to_multiple_of_col instead.

set_immutable()

Call this function to set the matrix as immutable.

Matrices are always mutable by default, i.e., you can change their entries using A[i,j] = x. However,
mutable matrices aren’t hashable, so can’t be used as keys in dictionaries, etc. Also, often when implementing
a class, you might compute a matrix associated to it, e.g., the matrix of a Hecke operator. If you return this
matrix to the user you’re really returning a reference and the user could then change an entry; this could be
confusing. Thus you should set such a matrix immutable.

EXAMPLES:

sage: A = Matrix(QQ, 2, 2, range(4))
sage: A.is_mutable()
True
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sage: A[0,0] = 10
sage: A
[10 1]
[ 2 3]

Mutable matrices are not hashable, so can’t be used as keys for dictionaries:

sage: hash(A)
Traceback (most recent call last):
...
TypeError: mutable matrices are unhashable
sage: v = {A:1}
Traceback (most recent call last):
...
TypeError: mutable matrices are unhashable

If we make A immutable it suddenly is hashable.

sage: A.set_immutable()
sage: A.is_mutable()
False
sage: A[0,0] = 10
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).
sage: hash(A) #random
12
sage: v = {A:1}; v
{[10 1]
[ 2 3]: 1}

set_row_to_multiple_of_row(i, j, s)
Set row i equal to s times row j.

EXAMPLES: We change the second row to -3 times the first row:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1, 0, -3)
sage: a
[ 0 1 2]
[ 0 -3 -6]

If we try to multiply a row by a rational number, we get an error message:

sage: a.set_row_to_multiple_of_row(1, 0, 1/2)
Traceback (most recent call last):
...
TypeError: Multiplying row by Rational Field element cannot be done over
Integer Ring, use change_ring or with_row_set_to_multiple_of_row instead.

str(rep_mapping=None, zero=None, plus_one=None, minus_one=None, unicode=False, shape=None,
character_art=False, left_border=None, right_border=None, top_border=None, bottom_border=None)
Return a nice string representation of the matrix.
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INPUT:

• rep_mapping – dictionary or callable used to override the usual representation of elements

If rep_mapping is a dictionary then keys should be elements of the base ring and values the desired
string representation. Values sent in via the other keyword arguments will override values in the dictio-
nary. Use of a dictionary can potentially take a very long time due to the need to hash entries of the
matrix. Matrices with entries from QQbar are one example.

If rep_mapping is callable then it will be called with elements of the matrix and must return a string.
Simply call repr() on elements which should have the default representation.

• zero – string (default: None); if not None use the value of zero as the representation of the zero
element.

• plus_one – string (default: None); if not None use the value of plus_one as the representation of
the one element.

• minus_one – string (default: None); if not None use the value of minus_one as the representation
of the negative of the one element.

• unicode – boolean (default: False); whether to use Unicode symbols instead of ASCII symbols for
brackets and subdivision lines

• shape – one of �square� or �round� (default: None). Switches between round and square brack-
ets. The default depends on the setting of the unicode keyword argument. For Unicode symbols, the
default is round brackets in accordance with the TeX rendering, while the ASCII rendering defaults to
square brackets.

• character_art – boolean (default: False); if True, the result will be of type AsciiArt or
UnicodeArt which support line breaking of wide matrices that exceed the window width

• left_border, right_border – sequence (default: None); if not None, call str() on the el-
ements and use the results as labels for the rows of the matrix. The labels appear outside of the paren-
theses.

• top_border, bottom_border – sequence (default: None); if not None, call str() on the el-
ements and use the results as labels for the columns of the matrix. The labels appear outside of the
parentheses.

EXAMPLES:

sage: R = PolynomialRing(QQ,6,�z�)
sage: a = matrix(2,3, R.gens())
sage: a.__repr__()
�[z0 z1 z2]\n[z3 z4 z5]�

sage: M = matrix([[1,0],[2,-1]])
sage: M.str()
�[ 1 0]\n[ 2 -1]�
sage: M.str(plus_one=�+�,minus_one=�-�,zero=�.�)
�[+ .]\n[2 -]�
sage: M.str({1:"not this one",2:"II"},minus_one=�*�,plus_one=�I�)
�[ I 0]\n[II *]�

sage: def print_entry(x):
....: if x>0:
....: return �+�
....: elif x<0:
....: return �-�
....: else: return �.�

(continues on next page)
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...
sage: M.str(print_entry)
�[+ .]\n[+ -]�
sage: M.str(repr)
�[ 1 0]\n[ 2 -1]�

sage: M = matrix([[1,2,3],[4,5,6],[7,8,9]])
sage: M.subdivide(None, 2)
sage: print(M.str(unicode=True))
⎛1 2│3⎞
⎜4 5│6⎟
⎝7 8│9⎠
sage: M.subdivide([0,1,1,3], [0,2,3,3])
sage: print(M.str(unicode=True, shape=�square�))
⎡┼───┼─┼┼⎤
⎢│1 2│3││⎥
⎢┼───┼─┼┼⎥
⎢┼───┼─┼┼⎥
⎢│4 5│6││⎥
⎢│7 8│9││⎥
⎣┼───┼─┼┼⎦

If character_art is set, the lines of large matrices are wrapped in a readable way:

sage: set_random_seed(0)
sage: matrix.random(RDF, 3, 5).str(unicode=True, character_art=True)
⎛ -0.27440062056807446 0.5031965950979831 -0.001975438590219314
⎜ -0.05461130074681608 -0.033673314214051286 -0.9401270875197381
⎝ 0.19906256610645512 0.3242250183948632 0.6026443545751128

-0.9467802263760512 0.5056889961514748⎞
-0.35104242112828943 0.5084492941557279⎟
-0.9541798283979341 -0.8948790563276592⎠

The number of floating point digits to display is controlled by matrix.options.precision and can
also be set by the IPython magic %precision. This does not affect the internal precision of the represented
data, but only the textual display of matrices:

sage: matrix.options.precision = 4
sage: A = matrix(RR, [[1/3, 200/3], [-3, 1e6]]); A
[ 0.3333 66.67]
[ -3.000 1.000E+6]
sage: unicode_art(A)
⎛ 0.3333 66.67⎞
⎝ -3.000 1.000E+6⎠
sage: matrix.options.precision = None
sage: A
[ 0.333333333333333 66.6666666666667]
[ -3.00000000000000 1.00000000000000e6]

Matrices with borders:

sage: M = matrix([[1,2,3], [4,5,6], [7,8,9]])
sage: M.subdivide(None, 2)
sage: print(M.str(unicode=True,
....: top_border=[�ab�, �cde�, �f�],

(continues on next page)
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....: bottom_border=[�*�, ��, ��],

....: left_border=[1, 10, 100],

....: right_border=[��, � <�, ��]))
ab cde f

1⎛ 1 2│ 3⎞
10⎜ 4 5│ 6⎟ <

100⎝ 7 8│ 9⎠
*

swap_columns(c1, c2)
Swap columns c1 and c2 of self.

EXAMPLES: We create a rational matrix:

sage: M = MatrixSpace(QQ,3,3)
sage: A = M([1,9,-7,4/5,4,3,6,4,3])
sage: A
[ 1 9 -7]
[4/5 4 3]
[ 6 4 3]

Since the first column is numbered zero, this swaps the second and third columns:

sage: A.swap_columns(1,2); A
[ 1 -7 9]
[4/5 3 4]
[ 6 3 4]

swap_rows(r1, r2)
Swap rows r1 and r2 of self.

EXAMPLES: We create a rational matrix:

sage: M = MatrixSpace(QQ, 3, 3)
sage: A = M([1,9,-7, 4/5,4,3, 6,4,3])
sage: A
[ 1 9 -7]
[4/5 4 3]
[ 6 4 3]

Since the first row is numbered zero, this swaps the first and third rows:

sage: A.swap_rows(0, 2); A
[ 6 4 3]
[4/5 4 3]
[ 1 9 -7]

with_added_multiple_of_column(i, j, s, start_row=0)
Add s times column j to column i, returning new matrix.

EXAMPLES: We add -1 times the third column to the second column of an integer matrix, remembering to
start numbering cols at zero:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]

(continues on next page)
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sage: b = a.with_added_multiple_of_column(1, 2, -1); b
[ 0 -1 2]
[ 3 -1 5]

The original matrix is unchanged:

sage: a
[0 1 2]
[3 4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_added_multiple_of_column(0, 1, 1/3); a
[ 1/3 1 2]
[13/3 4 5]

with_added_multiple_of_row(i, j, s, start_col=0)
Add s times row j to row i, returning new matrix.

EXAMPLES: We add -3 times the first row to the second row of an integer matrix, remembering to start
numbering rows at zero:

sage: a = matrix(ZZ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_added_multiple_of_row(1,0,-3); b
[ 0 1 2]
[ 3 1 -1]

The original matrix is unchanged:

sage: a
[0 1 2]
[3 4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_added_multiple_of_row(0,1,1/3); a
[ 1 7/3 11/3]
[ 3 4 5]

with_col_set_to_multiple_of_col(i, j, s)
Set column i equal to s times column j, returning a new matrix.

EXAMPLES: We change the second column to -3 times the first column.

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_col_set_to_multiple_of_col(1, 0, -3); b
[ 0 0 2]
[ 3 -9 5]

Note that the original matrix is unchanged:
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sage: a
[0 1 2]
[3 4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_col_set_to_multiple_of_col(1, 0, 1/2); a
[ 0 0 2]
[ 3 3/2 5]

with_permuted_columns(permutation)
Return the matrix obtained from permuting the columns of self by applying the permutation group element
permutation.

As permutation group elements act on integers {1, . . . , 𝑛}, columns are considered numbered from 1 for this
operation.

INPUT:

• permutation – a PermutationGroupElement

OUTPUT: a matrix

EXAMPLES: We create some matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.with_permuted_columns(sigma)
[0 0 1 0 0]
[2 0 0 0 0]
[0 3 0 0 0]
[0 0 0 0 4]
[0 0 0 5 0]

with_permuted_rows(permutation)

Return the matrix obtained from permuting the rows of self by applying the permutation group element
permutation.

As permutation group elements act on integers {1, . . . , 𝑛}, rows are considered numbered from 1 for this
operation.

INPUT:

• permutation – a PermutationGroupElement

OUTPUT: a matrix
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EXAMPLES: We create a matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.with_permuted_rows(sigma)
[0 2 0 0 0]
[0 0 3 0 0]
[1 0 0 0 0]
[0 0 0 0 5]
[0 0 0 4 0]

with_permuted_rows_and_columns(row_permutation, column_permutation)
Return the matrix obtained from permuting the rows and columns of self by applying the permutation
group elements row_permutation and column_permutation.

As permutation group elements act on integers {1, . . . , 𝑛}, rows and columns are considered numbered from
1 for this operation.

INPUT:

• row_permutation – a PermutationGroupElement

• column_permutation – a PermutationGroupElement

OUTPUT: a matrix

EXAMPLES: We create a matrix:

sage: M = matrix(ZZ, [[1,0,0,0,0],[0,2,0,0,0],[0,0,3,0,0],[0,0,0,4,0],[0,0,0,
→˓0,5]])
sage: M
[1 0 0 0 0]
[0 2 0 0 0]
[0 0 3 0 0]
[0 0 0 4 0]
[0 0 0 0 5]

Next of all, create a permutation group element and act on M:

sage: # needs sage.groups
sage: G = PermutationGroup([�(1,2,3)(4,5)�, �(1,2,3,4,5)�])
sage: sigma, tau = G.gens()
sage: sigma
(1,2,3)(4,5)
sage: M.with_permuted_rows_and_columns(sigma,tau)
[2 0 0 0 0]

(continues on next page)
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[0 3 0 0 0]
[0 0 0 0 1]
[0 0 0 5 0]
[0 0 4 0 0]

with_rescaled_col(i, s, start_row=0)
Replaces 𝑖-th col of self by 𝑠 times 𝑖-th col of self, returning new matrix.

EXAMPLES: We rescale the last column of a matrix over the integers:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_rescaled_col(2, -2); b
[ 0 1 -4]
[ 3 4 -10]

The original matrix is unchanged:

sage: a
[0 1 2]
[3 4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_rescaled_col(1, 1/3); a
[ 0 1/3 2]
[ 3 4/3 5]

with_rescaled_row(i, s, start_col=0)
Replace 𝑖-th row of self by s times 𝑖-th row of self, returning new matrix.

EXAMPLES: We rescale the second row of a matrix over the integers:

sage: a = matrix(ZZ, 3, 2, range(6)); a
[0 1]
[2 3]
[4 5]
sage: b = a.with_rescaled_row(1, -2); b
[ 0 1]
[-4 -6]
[ 4 5]

The original matrix is unchanged:

sage: a
[0 1]
[2 3]
[4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_rescaled_row(2, 1/3); a
[ 0 1]
[ 2 3]
[4/3 5/3]
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with_row_set_to_multiple_of_row(i, j, s)
Set row i equal to s times row j, returning a new matrix.

EXAMPLES: We change the second row to -3 times the first row:

sage: a = matrix(ZZ, 2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: b = a.with_row_set_to_multiple_of_row(1, 0, -3); b
[ 0 1 2]
[ 0 -3 -6]

Note that the original matrix is unchanged:

sage: a
[0 1 2]
[3 4 5]

Adding a rational multiple is okay, and reassigning a variable is okay:

sage: a = a.with_row_set_to_multiple_of_row(1, 0, 1/2); a
[ 0 1 2]
[ 0 1/2 1]

with_swapped_columns(c1, c2)
Swap columns c1 and c2 of self and return a new matrix.

INPUT:

• c1, c2 – integers specifying columns of self to interchange

OUTPUT:

A new matrix, identical to self except that columns c1 and c2 are swapped.

EXAMPLES:

Remember that columns are numbered starting from zero.

sage: A = matrix(QQ, 4, range(20))
sage: A.with_swapped_columns(1, 2)
[ 0 2 1 3 4]
[ 5 7 6 8 9]
[10 12 11 13 14]
[15 17 16 18 19]

Trying to swap a column with itself will succeed, but still return a new matrix.

sage: A = matrix(QQ, 4, range(20))
sage: B = A.with_swapped_columns(2, 2)
sage: A == B
True
sage: A is B
False

The column specifications are checked.

sage: A = matrix(4, range(20))
sage: A.with_swapped_columns(-1, 2)
Traceback (most recent call last):

(continues on next page)
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...
IndexError: matrix column index out of range

sage: A.with_swapped_columns(2, 5)
Traceback (most recent call last):
...
IndexError: matrix column index out of range

with_swapped_rows(r1, r2)
Swap rows r1 and r2 of self and return a new matrix.

INPUT:

• r1, r2 – integers specifying rows of self to interchange

OUTPUT:

A new matrix, identical to self except that rows r1 and r2 are swapped.

EXAMPLES:

Remember that rows are numbered starting from zero.

sage: A = matrix(QQ, 4, range(20))
sage: A.with_swapped_rows(1, 2)
[ 0 1 2 3 4]
[10 11 12 13 14]
[ 5 6 7 8 9]
[15 16 17 18 19]

Trying to swap a row with itself will succeed, but still return a new matrix.

sage: A = matrix(QQ, 4, range(20))
sage: B = A.with_swapped_rows(2, 2)
sage: A == B
True
sage: A is B
False

The row specifications are checked.

sage: A = matrix(4, range(20))
sage: A.with_swapped_rows(-1, 2)
Traceback (most recent call last):
...
IndexError: matrix row index out of range

sage: A.with_swapped_rows(2, 5)
Traceback (most recent call last):
...
IndexError: matrix row index out of range

sage.matrix.matrix0.set_max_cols(n)
Set the global variable max_cols (which is used in deciding how to output a matrix).

EXAMPLES:
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sage: from sage.matrix.matrix0 import set_max_cols
sage: set_max_cols(50)
doctest:...: DeprecationWarning: �set_max_cols� is replaced by �matrix.options.
→˓max_cols�
See https://github.com/sagemath/sage/issues/30552 for details.

sage.matrix.matrix0.set_max_rows(n)

Set the global variable max_rows (which is used in deciding how to output a matrix).

EXAMPLES:

sage: from sage.matrix.matrix0 import set_max_rows
sage: set_max_rows(20)
doctest:...: DeprecationWarning: �set_max_rows� is replaced by �matrix.options.
→˓max_rows�
See https://github.com/sagemath/sage/issues/30552 for details.

sage.matrix.matrix0.unpickle(cls, parent, immutability, cache, data, version)
Unpickle a matrix. This is only used internally by Sage. Users should never call this function directly.

EXAMPLES: We illustrating saving and loading several different types of matrices.

OVER Z:

sage: A = matrix(ZZ, 2, range(4))
sage: loads(dumps(A)) # indirect doctest
[0 1]
[2 3]

Sparse OVER 2:

Dense over 2[𝑥, 𝑦]:

Dense over finite field.
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CHAPTER

SEVEN

BASE CLASS FOR MATRICES, PART 1

For design documentation see sage.matrix.docs.

class sage.matrix.matrix1.Matrix

Bases: Matrix

augment(right, subdivide=False)
Return a new matrix formed by appending the matrix (or vector) right on the right side of self.

INPUT:

• right – a matrix, vector or free module element, whose dimensions are compatible with self

• subdivide – (default: False) request the resulting matrix to have a new subdivision, separating
self from right.

OUTPUT:

A newmatrix formed by appending right onto the right side of self. If right is a vector (or free module
element) then in this context it is appropriate to consider it as a column vector. (The code first converts a vector
to a 1-column matrix.)

If subdivide is True then any column subdivisions for the two matrices are preserved, and a new sub-
division is added between self and right. If the row divisions are identical, then they are preserved,
otherwise they are discarded. When subdivide is False there is no subdivision information in the result.

Warning

If subdivide is True then unequal row subdivisions will be discarded, since it would be ambigu-
ous how to interpret them. If the subdivision behavior is not what you need, you can manage subdivi-
sions yourself with methods like get_subdivisions() and subdivide(). You might also find
block_matrix() or block_diagonal_matrix() useful and simpler in some instances.

EXAMPLES:

Augmenting with a matrix.

sage: A = matrix(QQ, 3, range(12))
sage: B = matrix(QQ, 3, range(9))
sage: A.augment(B)
[ 0 1 2 3 0 1 2]
[ 4 5 6 7 3 4 5]
[ 8 9 10 11 6 7 8]

Augmenting with a vector.
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sage: A = matrix(QQ, 2, [0, 2, 4, 6, 8, 10])
sage: v = vector(QQ, 2, [100, 200])
sage: A.augment(v)
[ 0 2 4 100]
[ 6 8 10 200]

Errors are raised if the sizes are incompatible.

sage: A = matrix(RR, [[1, 2],[3, 4]])
sage: B = matrix(RR, [[10, 20], [30, 40], [50, 60]])
sage: A.augment(B)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, 2 != 3

sage: v = vector(RR, [100, 200, 300])
sage: A.augment(v)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, 2 != 3

Setting subdivide to True will, in its simplest form, add a subdivision between self and right.

sage: A = matrix(QQ, 3, range(12))
sage: B = matrix(QQ, 3, range(15))
sage: A.augment(B, subdivide=True)
[ 0 1 2 3| 0 1 2 3 4]
[ 4 5 6 7| 5 6 7 8 9]
[ 8 9 10 11|10 11 12 13 14]

Column subdivisions are preserved by augmentation, and enriched, if subdivisions are requested. (So multiple
augmentations can be recorded.)

sage: A = matrix(QQ, 3, range(6))
sage: A.subdivide(None, [1])
sage: B = matrix(QQ, 3, range(9))
sage: B.subdivide(None, [2])
sage: A.augment(B, subdivide=True)
[0|1|0 1|2]
[2|3|3 4|5]
[4|5|6 7|8]

Row subdivisions can be preserved, but only if they are identical. Otherwise, this information is discarded
and must be managed separately.

sage: A = matrix(QQ, 3, range(6))
sage: A.subdivide([1,3], None)
sage: B = matrix(QQ, 3, range(9))
sage: B.subdivide([1,3], None)
sage: A.augment(B, subdivide=True)
[0 1|0 1 2]
[---+-----]
[2 3|3 4 5]
[4 5|6 7 8]
[---+-----]

sage: A.subdivide([1,2], None)

(continues on next page)
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sage: A.augment(B, subdivide=True)
[0 1|0 1 2]
[2 3|3 4 5]
[4 5|6 7 8]

The result retains the base ring of self by coercing the elements of right into the base ring of self.

sage: A = matrix(QQ, 2, [1,2])
sage: B = matrix(RR, 2, [sin(1.1), sin(2.2)])
sage: C = A.augment(B); C #␣
→˓needs sage.symbolic
[ 1 183017397/205358938]
[ 2 106580492/131825561]
sage: C.parent() #␣
→˓needs sage.symbolic
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

sage: D = B.augment(A); D
[0.89120736006... 1.00000000000000]
[0.80849640381... 2.00000000000000]
sage: D.parent()
Full MatrixSpace of 2 by 2 dense matrices
over Real Field with 53 bits of precision

Sometimes it is not possible to coerce into the base ring of self. A solution is to change the base ring of
self to amore expansive ring. Here wemix the rationals with a ring of polynomials with rational coefficients.

sage: R.<y> = PolynomialRing(QQ)
sage: A = matrix(QQ, 1, [1,2])
sage: B = matrix(R, 1, [y, y^2])

sage: C = B.augment(A); C
[ y y^2 1 2]
sage: C.parent()
Full MatrixSpace of 1 by 4 dense matrices over
Univariate Polynomial Ring in y over Rational Field

sage: D = A.augment(B)
Traceback (most recent call last):
...
TypeError: y is not a constant polynomial

sage: E = A.change_ring(R)
sage: F = E.augment(B); F
[ 1 2 y y^2]
sage: F.parent()
Full MatrixSpace of 1 by 4 dense matrices over
Univariate Polynomial Ring in y over Rational Field

AUTHORS:

• Naqi Jaffery (2006-01-24): examples

• Rob Beezer (2010-12-07): vector argument, docstring, subdivisions

block_sum(other)
Return the block matrix that has self and other on the diagonal:
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[ self 0 ]
[ 0 other ]

EXAMPLES:

sage: A = matrix(QQ[[�t�]], 2, range(1, 5))
sage: A.block_sum(100*A)
[ 1 2 0 0]
[ 3 4 0 0]
[ 0 0 100 200]
[ 0 0 300 400]

column(i, from_list=False)
Return the i-th column of this matrix as a vector.

This column is a dense vector if and only if the matrix is a dense matrix.

INPUT:

• i – integer

• from_list – boolean (default: False); if True, returns the i-th element of self.columns()
(see columns()), which may be faster, but requires building a list of all columns the first time it is
called after an entry of the matrix is changed.

EXAMPLES:

sage: a = matrix(2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.column(1)
(1, 4)

If the column is negative, it wraps around, just like with list indexing, e.g., -1 gives the right-most column:

sage: a.column(-1)
(2, 5)

column_ambient_module(base_ring=None, sparse=None)
Return the free module that contains the columns of the matrix.

EXAMPLES:

sage: M = matrix(Zmod(5), 2, 3)
sage: M.column_ambient_module()
Vector space of dimension 2 over Ring of integers modulo 5
sage: M.column(1).parent() == M.column_ambient_module()
True

sage: M = Matrix(ZZ, 3, 4)
sage: M.column_ambient_module()
Ambient free module of rank 3 over the principal ideal domain Integer Ring
sage: M.column_ambient_module(QQ)
Vector space of dimension 3 over Rational Field

sage: M = Matrix(QQ, 4, 5)
sage: M.column_ambient_module()
Vector space of dimension 4 over Rational Field

(continues on next page)
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sage: M.column_ambient_module(ZZ)
Ambient free module of rank 4 over the principal ideal domain Integer Ring

columns(copy=True)
Return a list of the columns of self.

INPUT:

• copy – boolean (default: True); if True, return a copy of the list of columns which is safe to change

If self is a sparse matrix, columns are returned as sparse vectors, otherwise returned vectors are dense.

EXAMPLES:

sage: matrix(3, [1..9]).columns()
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).columns() #␣
→˓needs sage.symbolic
[(1.41421356237310, 2.71828182845905), (3.14159265358979, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).columns()
[(), ()]
sage: matrix(RR, 2, 0, []).columns()
[]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)}) #␣
→˓needs sage.symbolic
sage: parent(m.columns()[0]) #␣
→˓needs sage.symbolic
Sparse vector space of dimension 3 over Real Field with 53 bits of precision

Sparse matrices produce sparse columns.

sage: A = matrix(QQ, 2, range(4), sparse=True)
sage: v = A.columns()[0]
sage: v.is_sparse()
True

delete_columns(dcols, check=True)
Return the matrix constructed from deleting the columns with indices in the dcols list.

INPUT:

• dcols – list of indices of columns to be deleted from self

• check – boolean (default: True); check whether any index in dcols is out of range

See also

The methods delete_rows() and matrix_from_columns() are related.

EXAMPLES:

sage: A = Matrix(3, 4, range(12)); A
[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
sage: A.delete_columns([0,2])
[ 1 3]

(continues on next page)
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[ 5 7]
[ 9 11]

dcols can be a tuple. But only the underlying set of indices matters.

sage: A.delete_columns((2,0,2))
[ 1 3]
[ 5 7]
[ 9 11]

The default is to check whether any index in dcols is out of range.

sage: A.delete_columns([-1,2,4])
Traceback (most recent call last):
...
IndexError: [-1, 4] contains invalid indices
sage: A.delete_columns([-1,2,4], check=False)
[ 0 1 3]
[ 4 5 7]
[ 8 9 11]

AUTHORS:

• Wai Yan Pong (2012-03-05)

delete_rows(drows, check=True)
Return the matrix constructed from deleting the rows with indices in the drows list.

INPUT:

• drows – list of indices of rows to be deleted from self

• check – boolean (default: True); whether to check if any index in drows is out of range

See also

The methods delete_columns() and matrix_from_rows() are related.

EXAMPLES:

sage: A = Matrix(4, 3, range(12)); A
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
sage: A.delete_rows([0,2])
[ 3 4 5]
[ 9 10 11]

drows can be a tuple. But only the underlying set of indices matters.

sage: A.delete_rows((2,0,2))
[ 3 4 5]
[ 9 10 11]

The default is to check whether the any index in drows is out of range.
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sage: A.delete_rows([-1,2,4])
Traceback (most recent call last):
...
IndexError: [-1, 4] contains invalid indices
sage: A.delete_rows([-1,2,4], check=False)
[ 0 1 2]
[ 3 4 5]
[ 9 10 11]

dense_columns(copy=True)
Return list of the dense columns of self.

INPUT:

• copy – boolean (default: True); if True, return a copy so you can modify it safely

EXAMPLES:

An example over the integers:

sage: a = matrix(3, 3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.dense_columns()
[(0, 3, 6), (1, 4, 7), (2, 5, 8)]

We do an example over a polynomial ring:

sage: R.<x> = QQ[]
sage: a = matrix(R, 2, [x,x^2, 2/3*x,1+x^5]); a
[ x x^2]
[ 2/3*x x^5 + 1]
sage: a.dense_columns()
[(x, 2/3*x), (x^2, x^5 + 1)]
sage: a = matrix(R, 2, [x,x^2, 2/3*x,1+x^5], sparse=True)
sage: c = a.dense_columns(); c
[(x, 2/3*x), (x^2, x^5 + 1)]
sage: parent(c[1])
Ambient free module of rank 2 over the principal ideal domain
Univariate Polynomial Ring in x over Rational Field

dense_matrix()

If this matrix is sparse, return a dense matrix with the same entries. If this matrix is dense, return this matrix
(not a copy).

Note

The definition of “dense” and “sparse” in Sage have nothing to do with the number of nonzero entries.
Sparse and dense are properties of the underlying representation of the matrix.

EXAMPLES:

sage: A = MatrixSpace(QQ,2, sparse=True)([1,2,0,1])
sage: A.is_sparse()
True

(continues on next page)
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sage: B = A.dense_matrix()
sage: B.is_sparse()
False
sage: A == B
True
sage: B.dense_matrix() is B
True
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

In Sage, the product of a sparse and a dense matrix is always dense:

sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

dense_rows(copy=True)
Return list of the dense rows of self.

INPUT:

• copy – boolean (default: True); if True, return a copy so you can modify it safely (note that the
individual vectors in the copy should not be modified since they are mutable!)

EXAMPLES:

sage: m = matrix(3, range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.dense_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: v is m.dense_rows()
False
sage: m.dense_rows(copy=False) is m.dense_rows(copy=False)
True
sage: m[0,0] = 10
sage: m.dense_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]

lift()

Return lift of self to the covering ring of the base ring R, which is by definition the ring returned by calling
cover_ring() on R, or just R itself if the cover_ring method is not defined.

EXAMPLES:

sage: M = Matrix(Integers(7), 2, 2, [5, 9, 13, 15]); M
[5 2]
[6 1]
sage: M.lift()
[5 2]

(continues on next page)
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[6 1]
sage: parent(M.lift())
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

The field QQ doesn’t have a cover_ring method:

sage: hasattr(QQ, �cover_ring�)
False

So lifting a matrix over QQ gives back the same exact matrix.

sage: B = matrix(QQ, 2, [1..4])
sage: B.lift()
[1 2]
[3 4]
sage: B.lift() is B
True

lift_centered()

Apply the lift_centered method to every entry of self.

OUTPUT:

Ifself is a matrix over the Integers mod𝑛, this method returns the uniquematrix𝑚 such that𝑚 is congruent
to self mod 𝑛 and for every entry𝑚[𝑖, 𝑗] we have −𝑛/2 < 𝑚[𝑖, 𝑗] ≤ 𝑛/2. If the coefficient ring does not
have a cover_ring method, return self.

EXAMPLES:

sage: M = Matrix(Integers(8), 2, 4, range(8)); M
[0 1 2 3]
[4 5 6 7]
sage: L = M.lift_centered(); L
[ 0 1 2 3]
[ 4 -3 -2 -1]
sage: parent(L)
Full MatrixSpace of 2 by 4 dense matrices over Integer Ring

The returned matrix is congruent to M modulo 8.:

sage: L.mod(8)
[0 1 2 3]
[4 5 6 7]

The field QQ doesn’t have a cover_ring method:

sage: hasattr(QQ, �cover_ring�)
False

So lifting a matrix over QQ gives back the same exact matrix.

sage: B = matrix(QQ, 2, [1..4])
sage: B.lift_centered()
[1 2]
[3 4]
sage: B.lift_centered() is B
True
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matrix_from_columns(columns)
Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8), 3, 3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[0 7]

matrix_from_rows(rows)
Return the matrix constructed from self using rows with indices in the rows list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8), 3, 3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows([2,1])
[6 7 0]
[3 4 5]

matrix_from_rows_and_columns(rows, columns)
Return the matrix constructed from self from the given rows and columns.

EXAMPLES:

sage: M = MatrixSpace(Integers(8), 3, 3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]

Note that row and column indices can be reordered or repeated:

sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times:

sage: A.matrix_from_rows_and_columns([1,1,1], [2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]

AUTHORS:
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• Jaap Spies (2006-02-18)

• Didier Deshommes: some Pyrex speedups implemented

matrix_over_field()

Return copy of this matrix, but with entries viewed as elements of the fraction field of the base ring (assuming
it is defined).

EXAMPLES:

sage: A = MatrixSpace(IntegerRing(),2)([1,2,3,4])
sage: B = A.matrix_over_field()
sage: B
[1 2]
[3 4]
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

matrix_space(nrows=None, ncols=None, sparse=None)
Return the ambient matrix space of self.

INPUT:

• nrows, ncols – (optional) number of rows and columns in returned matrix space

• sparse – whether the returned matrix space uses sparse or dense matrices

EXAMPLES:

sage: m = matrix(3, [1..9])
sage: m.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
sage: m.matrix_space(ncols=2)
Full MatrixSpace of 3 by 2 dense matrices over Integer Ring
sage: m.matrix_space(1)
Full MatrixSpace of 1 by 3 dense matrices over Integer Ring
sage: m.matrix_space(1, 2, True)
Full MatrixSpace of 1 by 2 sparse matrices over Integer Ring

sage: M = MatrixSpace(QQ, 3, implementation=�generic�)
sage: m = M.an_element()
sage: m.matrix_space()
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
(using Matrix_generic_dense)

sage: m.matrix_space(nrows=2, ncols=12)
Full MatrixSpace of 2 by 12 dense matrices over Rational Field
(using Matrix_generic_dense)

sage: m.matrix_space(nrows=2, sparse=True)
Full MatrixSpace of 2 by 3 sparse matrices over Rational Field

new_matrix(nrows=None, ncols=None, entries=None, coerce=True, copy=True, sparse=None)
Create a matrix in the parent of this matrix with the given number of rows, columns, etc. The default param-
eters are the same as for self.

INPUT:

These three variables get sent to matrix_space():

• nrows, ncols – number of rows and columns in returned matrix. If not specified, defaults to None
and will give a matrix of the same size as self.
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• sparse – whether returned matrix is sparse or not. Defaults to same value as self

The remaining three variables (coerce, entries, and copy) are used by sage.matrix.
matrix_space.MatrixSpace() to construct the new matrix.

Warning

This function called with no arguments returns the zero matrix of the same dimension and sparseness of
self.

EXAMPLES:

sage: A = matrix(ZZ,2,2,[1,2,3,4]); A
[1 2]
[3 4]
sage: A.new_matrix()
[0 0]
[0 0]
sage: A.new_matrix(1,1)
[0]
sage: A.new_matrix(3,3).parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring

sage: A = matrix(RR,2,3,[1.1,2.2,3.3,4.4,5.5,6.6]); A
[1.10000000000000 2.20000000000000 3.30000000000000]
[4.40000000000000 5.50000000000000 6.60000000000000]
sage: A.new_matrix()
[0.000000000000000 0.000000000000000 0.000000000000000]
[0.000000000000000 0.000000000000000 0.000000000000000]
sage: A.new_matrix().parent()
Full MatrixSpace of 2 by 3 dense matrices
over Real Field with 53 bits of precision

sage: M = MatrixSpace(ZZ, 2, 3, implementation=�generic�)
sage: m = M.an_element()
sage: m.new_matrix().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring
(using Matrix_generic_dense)

sage: m.new_matrix(3,3).parent()
Full MatrixSpace of 3 by 3 dense matrices over Integer Ring
(using Matrix_generic_dense)

sage: m.new_matrix(3,3, sparse=True).parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

numpy(dtype=None, copy=True)
Return the Numpy matrix associated to this matrix.

INPUT:

• dtype – the desired data-type for the array. If not given, then the type will be determined as the
minimum type required to hold the objects in the sequence.

• copy – if 𝑠𝑒𝑙𝑓 is already an 𝑛𝑑𝑎𝑟𝑟𝑎𝑦, then this flag determines whether the data is copied (the default),
or whether a view is constructed.

EXAMPLES:
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sage: # needs numpy
sage: a = matrix(3, range(12))
sage: a.numpy()
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

sage: a.numpy(�f�)
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]], dtype=float32)

sage: a.numpy(�d�)
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])

sage: a.numpy(�B�)
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], dtype=uint8)

Type numpy.typecodes for a list of the possible typecodes:

sage: import numpy # needs numpy
sage: numpy.typecodes.items() # needs numpy # random
[(�All�, �?bhilqpBHILQPefdgFDGSUVOMm�), (�AllFloat�, �efdgFDG�),
...

For instance, you can see possibilities for real floating point numbers:

sage: numpy.typecodes[�Float�] # needs numpy
�efdg�

Alternatively, numpy automatically calls this function (via the magic __array__() method) to convert
Sage matrices to numpy arrays:

sage: # needs numpy
sage: import numpy
sage: b = numpy.array(a); b
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

sage: b.dtype
dtype(�int32�) # 32-bit
dtype(�int64�) # 64-bit
sage: b.shape
(3, 4)

row(i, from_list=False)
Return the i-th row of this matrix as a vector.

This row is a dense vector if and only if the matrix is a dense matrix.

INPUT:

• i – integer

• from_list – boolean (default: False); if True, returns the i-th element of self.rows() (see
rows()), which may be faster, but requires building a list of all rows the first time it is called after an
entry of the matrix is changed.
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EXAMPLES:

sage: a = matrix(2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: a.row(0)
(0, 1, 2)
sage: a.row(1)
(3, 4, 5)
sage: a.row(-1) # last row
(3, 4, 5)

row_ambient_module(base_ring=None, sparse=None)
Return the free module that contains the rows of the matrix.

EXAMPLES:

sage: M = matrix(Zmod(5), 2, 3)
sage: M.row_ambient_module()
Vector space of dimension 3 over Ring of integers modulo 5
sage: M.row(1).parent() == M.row_ambient_module()
True

sage: M = Matrix(ZZ, 3, 4)
sage: M.row_ambient_module()
Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: M.row_ambient_module(QQ)
Vector space of dimension 4 over Rational Field

sage: M = Matrix(QQ, 4, 5)
sage: M.row_ambient_module()
Vector space of dimension 5 over Rational Field
sage: M.row_ambient_module(ZZ)
Ambient free module of rank 5 over the principal ideal domain Integer Ring

rows(copy=True)
Return a list of the rows of self.

INPUT:

• copy – boolean (default: True); if True, return a copy of the list of rows which is safe to change

If self is a sparse matrix, rows are returned as sparse vectors, otherwise returned vectors are dense.

EXAMPLES:

sage: matrix(3, [1..9]).rows()
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
sage: matrix(RR, 2, [sqrt(2), pi, exp(1), 0]).rows() #␣
→˓needs sage.symbolic
[(1.41421356237310, 3.14159265358979), (2.71828182845905, 0.000000000000000)]
sage: matrix(RR, 0, 2, []).rows()
[]
sage: matrix(RR, 2, 0, []).rows()
[(), ()]
sage: m = matrix(RR, 3, 3, {(1,2): pi, (2, 2): -1, (0,1): sqrt(2)}) #␣
→˓needs sage.symbolic
sage: parent(m.rows()[0]) #␣
→˓needs sage.symbolic
Sparse vector space of dimension 3 over Real Field with 53 bits of precision
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Sparse matrices produce sparse rows.

sage: A = matrix(QQ, 2, range(4), sparse=True)
sage: v = A.rows()[0]
sage: v.is_sparse()
True

set_column(col, v)
Set the entries of column col to the entries of v.

INPUT:

• col – index of column to be set

• v – list or vector of the new entries

OUTPUT:

Changes the matrix in-place, so there is no output.

EXAMPLES:

New entries may be contained in a vector.:

sage: A = matrix(QQ, 5, range(25))
sage: u = vector(QQ, [0, -1, -2, -3, -4])
sage: A.set_column(2, u)
sage: A
[ 0 1 0 3 4]
[ 5 6 -1 8 9]
[10 11 -2 13 14]
[15 16 -3 18 19]
[20 21 -4 23 24]

New entries may be in any sort of list.:

sage: A = matrix([[1, 2], [3, 4]]); A
[1 2]
[3 4]
sage: A.set_column(0, [0, 0]); A
[0 2]
[0 4]
sage: A.set_column(1, (0, 0)); A
[0 0]
[0 0]

set_row(row, v)
Set the entries of row row to the entries of v.

INPUT:

• row – index of row to be set

• v – list or vector of the new entries

OUTPUT:

Changes the matrix in-place, so there is no output.

EXAMPLES:

New entries may be contained in a vector.:
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sage: A = matrix(QQ, 5, range(25))
sage: u = vector(QQ, [0, -1, -2, -3, -4])
sage: A.set_row(2, u)
sage: A
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[ 0 -1 -2 -3 -4]
[15 16 17 18 19]
[20 21 22 23 24]

New entries may be in any sort of list.:

sage: A = matrix([[1, 2], [3, 4]]); A
[1 2]
[3 4]
sage: A.set_row(0, [0, 0]); A
[0 0]
[3 4]
sage: A.set_row(1, (0, 0)); A
[0 0]
[0 0]

sparse_columns(copy=True)
Return a list of the columns of self as sparse vectors (or free module elements).

INPUT:

• copy – boolean (default: True); if True, return a copy so you can modify it safely

EXAMPLES:

sage: a = matrix(2, 3, range(6)); a
[0 1 2]
[3 4 5]
sage: v = a.sparse_columns(); v
[(0, 3), (1, 4), (2, 5)]
sage: v[1].is_sparse()
True

sparse_matrix()

If this matrix is dense, return a sparse matrix with the same entries. If this matrix is sparse, return this matrix
(not a copy).

Note

The definition of “dense” and “sparse” in Sage have nothing to do with the number of nonzero entries.
Sparse and dense are properties of the underlying representation of the matrix.

EXAMPLES:

sage: A = MatrixSpace(QQ,2, sparse=False)([1,2,0,1])
sage: A.is_sparse()
False
sage: B = A.sparse_matrix()
sage: B.is_sparse()
True

(continues on next page)
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sage: A == B
True
sage: B.sparse_matrix() is B
True
sage: A*B
[1 4]
[0 1]
sage: A.parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: B.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Rational Field
sage: (A*B).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: (B*A).parent()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

sparse_rows(copy=True)

Return a list of the rows of self as sparse vectors (or free module elements).

INPUT:

• copy – boolean (default: True); if True, return a copy so you can modify it safely

EXAMPLES:

sage: m = Mat(ZZ, 3, 3, sparse=True)(range(9)); m
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = m.sparse_rows(); v
[(0, 1, 2), (3, 4, 5), (6, 7, 8)]
sage: m.sparse_rows(copy=False) is m.sparse_rows(copy=False)
True
sage: v[1].is_sparse()
True
sage: m[0,0] = 10
sage: m.sparse_rows()
[(10, 1, 2), (3, 4, 5), (6, 7, 8)]

stack(bottom, subdivide=False)
Return a new matrix formed by appending the matrix (or vector) bottom below self:

[ self ]
[ bottom ]

INPUT:

• bottom – a matrix, vector or free module element, whose dimensions are compatible with self

• subdivide – (default: False) request the resulting matrix to have a new subdivision, separating
self from bottom

OUTPUT:

A newmatrix formed by appending bottom beneath self. If bottom is a vector (or free module element)
then in this context it is appropriate to consider it as a row vector. (The code first converts a vector to a 1-row
matrix.)
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If subdivide is True then any row subdivisions for the two matrices are preserved, and a new subdivision
is added betweenself andbottom. If the column divisions are identical, then they are preserved, otherwise
they are discarded. When subdivide is False there is no subdivision information in the result.

Warning

If subdivide is True then unequal column subdivisions will be discarded, since it would be ambigu-
ous how to interpret them. If the subdivision behavior is not what you need, you can manage subdivisions
yourself with methods like subdivisions() and subdivide(). Youmight also find block_ma-
trix() or block_diagonal_matrix() useful and simpler in some instances.

EXAMPLES:

Stacking with a matrix.

sage: A = matrix(QQ, 4, 3, range(12))
sage: B = matrix(QQ, 3, 3, range(9))
sage: A.stack(B)
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]

Stacking with a vector.

sage: A = matrix(QQ, 3, 2, [0, 2, 4, 6, 8, 10])
sage: v = vector(QQ, 2, [100, 200])
sage: A.stack(v)
[ 0 2]
[ 4 6]
[ 8 10]
[100 200]

Errors are raised if the sizes are incompatible.

sage: A = matrix(RR, [[1, 2],[3, 4]])
sage: B = matrix(RR, [[10, 20, 30], [40, 50, 60]])
sage: A.stack(B)
Traceback (most recent call last):
...
TypeError: number of columns must be the same, not 2 and 3

sage: v = vector(RR, [100, 200, 300])
sage: A.stack(v)
Traceback (most recent call last):
...
TypeError: number of columns must be the same, not 2 and 3

Setting subdivide to True will, in its simplest form, add a subdivision between self and bottom.

sage: A = matrix(QQ, 2, 5, range(10))
sage: B = matrix(QQ, 3, 5, range(15))
sage: A.stack(B, subdivide=True)

(continues on next page)

146 Chapter 7. Base class for matrices, part 1



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

[ 0 1 2 3 4]
[ 5 6 7 8 9]
[--------------]
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]

Row subdivisions are preserved by stacking, and enriched, if subdivisions are requested. (So multiple stack-
ings can be recorded.)

sage: A = matrix(QQ, 2, 4, range(8))
sage: A.subdivide([1], None)
sage: B = matrix(QQ, 3, 4, range(12))
sage: B.subdivide([2], None)
sage: A.stack(B, subdivide=True)
[ 0 1 2 3]
[-----------]
[ 4 5 6 7]
[-----------]
[ 0 1 2 3]
[ 4 5 6 7]
[-----------]
[ 8 9 10 11]

Column subdivisions can be preserved, but only if they are identical. Otherwise, this information is discarded
and must be managed separately.

sage: A = matrix(QQ, 2, 5, range(10))
sage: A.subdivide(None, [2,4])
sage: B = matrix(QQ, 3, 5, range(15))
sage: B.subdivide(None, [2,4])
sage: A.stack(B, subdivide=True)
[ 0 1| 2 3| 4]
[ 5 6| 7 8| 9]
[-----+-----+--]
[ 0 1| 2 3| 4]
[ 5 6| 7 8| 9]
[10 11|12 13|14]

sage: A.subdivide(None, [1,2])
sage: A.stack(B, subdivide=True)
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[--------------]
[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]

The base ring of the result is the common parent for the base rings of self and bottom. In particular, the
parent for A.stack(B) and B.stack(A) should be equal:

sage: A = matrix(QQ, 1, 2, [1,2])
sage: B = matrix(RR, 1, 2, [sin(1.1), sin(2.2)])
sage: C = A.stack(B); C
[ 1.00000000000000 2.00000000000000]
[0.891207360061435 0.808496403819590]

(continues on next page)
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sage: C.parent()
Full MatrixSpace of 2 by 2 dense matrices
over Real Field with 53 bits of precision

sage: D = B.stack(A); D
[0.891207360061435 0.808496403819590]
[ 1.00000000000000 2.00000000000000]
sage: D.parent()
Full MatrixSpace of 2 by 2 dense matrices
over Real Field with 53 bits of precision

sage: R.<y> = PolynomialRing(ZZ)
sage: A = matrix(QQ, 1, 2, [1, 2/3])
sage: B = matrix(R, 1, 2, [y, y^2])

sage: C = A.stack(B); C
[ 1 2/3]
[ y y^2]
sage: C.parent()
Full MatrixSpace of 2 by 2 dense matrices over
Univariate Polynomial Ring in y over Rational Field

Stacking a dense matrix atop a sparse one returns a sparse matrix:

sage: M = Matrix(ZZ, 2, 3, range(6), sparse=False)
sage: N = diagonal_matrix([10,11,12], sparse=True)
sage: P = M.stack(N); P
[ 0 1 2]
[ 3 4 5]
[10 0 0]
[ 0 11 0]
[ 0 0 12]
sage: P.is_sparse()
True
sage: P = N.stack(M); P
[10 0 0]
[ 0 11 0]
[ 0 0 12]
[ 0 1 2]
[ 3 4 5]
sage: P.is_sparse()
True

One can stack matrices over different rings (Issue #16399).

sage: M = Matrix(ZZ, 2, 3, range(6))
sage: N = Matrix(QQ, 1, 3, [10,11,12])
sage: M.stack(N)
[ 0 1 2]
[ 3 4 5]
[10 11 12]
sage: N.stack(M)
[10 11 12]
[ 0 1 2]
[ 3 4 5]

AUTHORS:
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• Rob Beezer (2011-03-19): rewritten to mirror code for augment()

• Jeroen Demeyer (2015-01-06): refactor, see Issue #16399. Put all boilerplate in one place (here) and
put the actual type-dependent implementation in _stack_impl.

submatrix(row=0, col=0, nrows=-1, ncols=-1)
Return the matrix constructed from self using the specified range of rows and columns.

INPUT:

• row, col – index of the starting row and column (indices start at zero)

• nrows, ncols – (optional) number of rows and columns to take. If not provided, take all rows below
and all columns to the right of the starting entry.

See also

The functions matrix_from_rows(), matrix_from_columns(), and ma-
trix_from_rows_and_columns() allow one to select arbitrary subsets of rows and/or
columns.

EXAMPLES:

Take the 3× 3 submatrix starting from entry (1,1) in a 4× 4 matrix:

sage: m = matrix(4, [1..16])
sage: m.submatrix(1, 1)
[ 6 7 8]
[10 11 12]
[14 15 16]

Same thing, except take only two rows:

sage: m.submatrix(1, 1, 2)
[ 6 7 8]
[10 11 12]

And now take only one column:

sage: m.submatrix(1, 1, 2, 1)
[ 6]
[10]

You can take zero rows or columns if you want:

sage: m.submatrix(1, 1, 0)
[]
sage: parent(m.submatrix(1, 1, 0))
Full MatrixSpace of 0 by 3 dense matrices over Integer Ring

zero_pattern_matrix(ring=None)
Return a matrix that contains one for corresponding zero entries.

All other entries are zero.

INPUT:

• ring – (optional); base ring of the output; default is ZZ
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OUTPUT:

A new dense matrix with same dimensions as self and with base ring ring.

EXAMPLES:

sage: M = Matrix(ZZ, 2, [1,2,-2,0])
sage: M.zero_pattern_matrix()
[0 0]
[0 1]

sage: M = Matrix(QQ, 2, [1,2/3,-2,0])
sage: M.zero_pattern_matrix()
[0 0]
[0 1]

Default base ring for the output is ZZ:

sage: M.zero_pattern_matrix().base_ring()
Integer Ring

Specify a different base ring for the output:

sage: M.zero_pattern_matrix(GF(2)).base_ring()
Finite Field of size 2

Examples for different base rings for self:

sage: M = Matrix(Zmod(8), 3, 2, [2, 3, 9, 8, 1, 0]); M
[2 3]
[1 0]
[1 0]
sage: M.zero_pattern_matrix()
[0 0]
[0 1]
[0 1]

sage: W.<a> = CyclotomicField(100) #␣
→˓needs sage.rings.number_field
sage: M = Matrix(2, 3, [a, a/2, 0, a^2, a^100-1, a^2 - a]); M #␣
→˓needs sage.rings.number_field
[ a 1/2*a 0]
[ a^2 0 a^2 - a]
sage: M.zero_pattern_matrix() #␣
→˓needs sage.rings.number_field
[0 0 1]
[0 1 0]

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(2^4)
sage: l = [a^2 + 1, a^3 + 1, 0, 0, a, a^3 + a + 1, a + 1,
....: a + 1, a^2, a^3 + a + 1, a^3 + a, a^3 + a]
sage: M = Matrix(K, 3, 4, l); M
[ a^2 + 1 a^3 + 1 0 0]
[ a a^3 + a + 1 a + 1 a + 1]
[ a^2 a^3 + a + 1 a^3 + a a^3 + a]
sage: M.zero_pattern_matrix()
[0 0 1 1]

(continues on next page)
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[0 0 0 0]
[0 0 0 0]

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(25)
sage: M = Matrix(K, 2, 3, [0, 2, 3, 5, a, a^2])
sage: M
[ 0 2 3]
[ 0 a a + 3]
sage: M.zero_pattern_matrix()
[1 0 0]
[1 0 0]

Note

This method can be optimized by improving get_is_zero_unsafe() for derived matrix classes.
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CHAPTER

EIGHT

BASE CLASS FOR MATRICES, PART 2

For design documentation see matrix/docs.py.

AUTHORS:

• William Stein: initial version

• Jaap Spies (2006-02-24): addedprod_of_row_sums, permanent, permanental_minor, rook_vec-
tor methods

• Robert Bradshaw (2007-06-14): added subdivide method

• Jaap Spies (2007-11-14): implemented _binomial, _choose auxiliary functions

• William Stein (2007-11-18): added _gram_schmidt_noscale method

• David Loeffler (2008-12-05): added smith_form method

• David Loeffler (2009-06-01): added _echelon_form_PID method

• Sebastian Pancratz (2009-06-25): implemented adjoint and charpoly methods; fixed adjoint reflecting
the change that _adjoint is now implemented in Matrix; used the division-free algorithm for charpoly

• Rob Beezer (2009-07-13): added elementwise_product method

• Miguel Marco (2010-06-19): modified eigenvalues and eigenvectors functions to allow the option ex-
tend=False

• Thierry Monteil (2010-10-05): bugfix for Issue #10063, so that the determinant is computed even for rings for
which the is_field method is not implemented.

• Rob Beezer (2010-12-13): added conjugate_transpose method

• Rob Beezer (2011-02-05): refactored all of the matrix kernel routines; added extended_echelon_form,
right_kernel_matrix, QR, _gram_schmidt_noscale, is_similar methods

• Moritz Minzlaff (2011-03-17): corrected _echelon_form_PIDmethod for matrices of one row, fixed in Issue
#9053

• Rob Beezer (2011-06-09): added is_normal, is_diagonalizable, LU, cyclic_subspace,
zigzag_form, rational_form methods

• Rob Beezer (2012-05-27): added indefinite_factorization, is_positive_definite,
cholesky methods

• Darij Grinberg (2013-10-01): added first (slow) pfaffian implementation

• Mario Pernici (2014-07-01): modified rook_vector method

• Rob Beezer (2015-05-25): modified is_similar method
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• Samuel Lelièvre (2020-09-18): improved method LLL_gram based on a patch by William Stein posted at Issue
#5178, moving the method from its initial location in sage.matrix.integer_matrix_dense

• Michael Jung (2020-10-02): added Bär-Faddeev-LeVerrier algorithm for the Pfaffian

• Moritz Firsching(2020-10-05): added quantum_determinant

• Dima Pasechnik (2022-11-08): fixed echelonize for inexact matrices

class sage.matrix.matrix2.Matrix

Bases: Matrix

Base class for matrices, part 2.

C

Return the conjugate matrix.

EXAMPLES:

sage: A = matrix(QQbar, [[ -3, 5 - 3*I, 7 - 4*I], #␣
→˓needs sage.rings.number_field
....: [7 + 3*I, -1 + 6*I, 3 + 5*I],
....: [3 + 3*I, -3 + 6*I, 5 + I]])
sage: A.C #␣
→˓needs sage.rings.number_field
[ -3 5 + 3*I 7 + 4*I]
[ 7 - 3*I -1 - 6*I 3 - 5*I]
[ 3 - 3*I -3 - 6*I 5 - 1*I]

H

Return the conjugate-transpose (Hermitian) matrix.

EXAMPLES:

sage: A = matrix(QQbar, [[ -3, 5 - 3*I, 7 - 4*I], #␣
→˓needs sage.rings.number_field
....: [7 + 3*I, -1 + 6*I, 3 + 5*I],
....: [3 + 3*I, -3 + 6*I, 5 + I]])
sage: A.H #␣
→˓needs sage.rings.number_field
[ -3 7 - 3*I 3 - 3*I]
[ 5 + 3*I -1 - 6*I -3 - 6*I]
[ 7 + 4*I 3 - 5*I 5 - 1*I]

LLL_gram(flag=0)
Return the LLL transformation matrix for this Gram matrix.

That is, the transformation matrix U over ZZ of determinant 1 that transforms the lattice with this matrix as
Gram matrix to a lattice that is LLL-reduced.

Always works when self is positive definite, might work in some semidefinite and indefinite cases.

INPUT:

• self – the Gram matrix of a quadratic form or of a lattice equipped with a bilinear form

• flag – an optional flag passed to qflllgramAccording to pari:qflllgram’s documentation the options
are:

– 0 – (default), assume that self has either exact (integral or rational) or real floating point entries.
The matrix is rescaled, converted to integers and the behavior is then as in flag=1.
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– 1 – assume that G is integral. Computations involving Gram-Schmidt vectors are approximate, with
precision varying as needed.

OUTPUT:

A dense matrix U over the integers with determinant 1 such that U.T * M * U is LLL-reduced.

ALGORITHM:

Calls PARI’s pari:qflllgram.

EXAMPLES:

Create a Gram matrix and LLL-reduce it:

sage: M = Matrix(ZZ, 2, 2, [5, 3, 3, 2])
sage: U = M.LLL_gram() #␣
→˓needs sage.libs.pari
sage: MM = U.transpose() * M * U #␣
→˓needs sage.libs.pari
sage: M, U, MM #␣
→˓needs sage.libs.pari
(
[5 3] [-1 1] [1 0]
[3 2], [ 1 -2], [0 1]
)

For a Gram matrix over RR with a length one first vector and a very short second vector, the LLL-reduced
basis is obtained by swapping the two basis vectors (and changing sign to preserve orientation).

sage: M = Matrix(RDF, 2, 2, [1, 0, 0, 1e-5])
sage: M.LLL_gram() #␣
→˓needs sage.libs.pari
[ 0 -1]
[ 1 0]

The algorithm might work for some semidefinite and indefinite forms:

sage: Matrix(ZZ, 2, 2, [2, 6, 6, 3]).LLL_gram() #␣
→˓needs sage.libs.pari
[-3 -1]
[ 1 0]
sage: Matrix(ZZ, 2, 2, [1, 0, 0, -1]).LLL_gram() #␣
→˓needs sage.libs.pari
[ 0 -1]
[ 1 0]

However, it might fail for others, either raising a ValueError:

sage: Matrix(ZZ, 1, 1, [0]).LLL_gram() #␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: qflllgram did not return a square matrix,
perhaps the matrix is not positive definite

sage: Matrix(ZZ, 2, 2, [0, 1, 1, 0]).LLL_gram() #␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...

(continues on next page)

155

https://pari.math.u-bordeaux.fr/dochtml/help/qflllgram
https://docs.python.org/library/exceptions.html#ValueError


Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

ValueError: qflllgram did not return a square matrix,
perhaps the matrix is not positive definite

or running forever:

sage: Matrix(ZZ, 2, 2, [-5, -1, -1, -5]).LLL_gram() # not tested,␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...
RuntimeError: infinite loop while calling qflllgram

Nonreal input leads to a value error:

sage: Matrix(2, 2, [CDF(1, 1), 0, 0, 1]).LLL_gram()
→˓# needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: qflllgram failed, perhaps the matrix is not positive definite

LU(pivot=None, format='plu')
Finds a decomposition into a lower-triangular matrix and an upper-triangular matrix.

INPUT:

• pivot – pivoting strategy

– ‘auto’ (default) – see if the matrix entries are ordered (i.e. if they have an absolute value method),
and if so, use a the partial pivoting strategy. Otherwise, fall back to the nonzero strategy. This is the
best choice for general routines that may call this for matrix entries of a variety of types.

– �partial� – each column is examined for the element with the largest absolute value and the row
containing this element is swapped into place

– �nonzero� – the first nonzero element in a column is located and the row with this element is
used

• format – contents of output, see more discussion below about output

– ‘plu’ (default) – a triple; matrices P, L and U such that A = P*L*U

– �compact� – a pair; row permutation as a tuple, and the matrices L and U combined into one
matrix

OUTPUT:

Suppose that 𝐴 is an 𝑚 × 𝑛 matrix, then an LU decomposition is a lower-triangular 𝑚 ×𝑚 matrix 𝐿 with
every diagonal element equal to 1, and an upper-triangular𝑚× 𝑛 matrix, 𝑈 such that the product 𝐿𝑈 , after
a permutation of the rows, is then equal to 𝐴. For the ‘plu’ format the permutation is returned as an𝑚×𝑚
permutation matrix 𝑃 such that

𝐴 = 𝑃𝐿𝑈

It is more common to place the permutation matrix just to the left of 𝐴. If you desire this version, then use
the inverse of 𝑃 which is computed most efficiently as its transpose.

If the ‘partial’ pivoting strategy is used, then the non-diagonal entries of 𝐿 will be less than or equal to 1 in
absolute value. The ‘nonzero’ pivot strategy may be faster, but the growth of data structures for elements of
the decomposition might counteract the advantage.

By necessity, returned matrices have a base ring equal to the fraction field of the base ring of the original
matrix.
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In the ‘compact’ format, the first returned value is a tuple that is a permutation of the rows of 𝐿𝑈 that yields
𝐴. See the doctest for how you might employ this permutation. Then the matrices 𝐿 and 𝑈 are merged into
one matrix – remove the diagonal of ones in 𝐿 and the remaining nonzero entries can replace the entries of
𝑈 beneath the diagonal.

The results are cached, only in the compact format, separately for each pivot strategy called. Repeated requests
for the ‘plu’ format will require just a small amount of overhead in each call to bust out the compact format
to the three matrices. Since only the compact format is cached, the components of the compact format are
immutable, while the components of the ‘plu’ format are regenerated, and hence are mutable.

Notice that while 𝑈 is similar to row-echelon form and the rows of 𝑈 span the row space of𝐴, the rows of 𝑈
are not generally linearly independent. Nor are the pivot columns (or rank) immediately obvious. However
for rings without specialized echelon form routines, this method is about twice as fast as the generic echelon
form routine since it only acts “below the diagonal”, as would be predicted from a theoretical analysis of the
algorithms.

Note

This is an exact computation, so limited to exact rings. If you need numerical results, convert the base
ring to the field of real double numbers, RDF or the field of complex double numbers, CDF, which will
use a faster routine that is careful about numerical subtleties.

ALGORITHM:

“Gaussian Elimination with Partial Pivoting,” Algorithm 21.1 of [TB1997].

EXAMPLES:

Notice the difference in the 𝐿 matrix as a result of different pivoting strategies. With partial pivoting, every
entry of 𝐿 has absolute value 1 or less.

sage: A = matrix(QQ, [[1, -1, 0, 2, 4, 7, -1],
....: [2, -1, 0, 6, 4, 8, -2],
....: [2, 0, 1, 4, 2, 6, 0],
....: [1, 0, -1, 8, -1, -1, -3],
....: [1, 1, 2, -2, -1, 1, 3]])
sage: P, L, U = A.LU(pivot=�partial�)
sage: P
[0 0 0 0 1]
[1 0 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]
[0 1 0 0 0]
sage: L
[ 1 0 0 0 0]
[ 1/2 1 0 0 0]
[ 1/2 1/3 1 0 0]
[ 1 2/3 1/5 1 0]
[ 1/2 -1/3 -2/5 0 1]
sage: U
[ 2 -1 0 6 4 8 -2]
[ 0 3/2 2 -5 -3 -3 4]
[ 0 0 -5/3 20/3 -2 -4 -10/3]
[ 0 0 0 0 2/5 4/5 0]
[ 0 0 0 0 1/5 2/5 0]
sage: A == P*L*U
True

(continues on next page)
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sage: P, L, U = A.LU(pivot=�nonzero�)
sage: P
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
sage: L
[ 1 0 0 0 0]
[ 2 1 0 0 0]
[ 2 2 1 0 0]
[ 1 1 -1 1 0]
[ 1 2 2 0 1]
sage: U
[ 1 -1 0 2 4 7 -1]
[ 0 1 0 2 -4 -6 0]
[ 0 0 1 -4 2 4 2]
[ 0 0 0 0 1 2 0]
[ 0 0 0 0 -1 -2 0]
sage: A == P*L*U
True

An example of the compact format.

sage: B = matrix(QQ, [[ 1, 3, 5, 5],
....: [ 1, 4, 7, 8],
....: [-1, -4, -6, -6],
....: [ 0, -2, -5, -8],
....: [-2, -6, -6, -2]])
sage: perm, M = B.LU(format=�compact�)
sage: perm
(4, 3, 0, 1, 2)
sage: M
[ -2 -6 -6 -2]
[ 0 -2 -5 -8]
[-1/2 0 2 4]
[-1/2 -1/2 3/4 0]
[ 1/2 1/2 -1/4 0]

We can easily illustrate the relationships between the two formats with a square matrix.

sage: C = matrix(QQ, [[-2, 3, -2, -5],
....: [ 1, -2, 1, 3],
....: [-4, 7, -3, -8],
....: [-3, 8, -1, -5]])
sage: P, L, U = C.LU(format=�plu�)
sage: perm, M = C.LU(format=�compact�)
sage: (L - identity_matrix(4)) + U == M
True
sage: p = [perm[i]+1 for i in range(len(perm))]
sage: PP = Permutation(p).to_matrix()
sage: PP == P
True

For a nonsingular matrix, and the ‘nonzero’ pivot strategy there is no need to permute rows, so the permuta-
tion matrix will be the identity. Furthermore, it can be shown that then the 𝐿 and 𝑈 matrices are uniquely
determined by requiring 𝐿 to have ones on the diagonal.
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sage: D = matrix(QQ, [[ 1, 0, 2, 0, -2, -1],
....: [ 3, -2, 3, -1, 0, 6],
....: [-4, 2, -3, 1, -1, -8],
....: [-2, 2, -3, 2, 1, 0],
....: [ 0, -1, -1, 0, 2, 5],
....: [-1, 2, -4, -1, 5, -3]])
sage: P, L, U = D.LU(pivot=�nonzero�)
sage: P
[1 0 0 0 0 0]
[0 1 0 0 0 0]
[0 0 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 0]
[0 0 0 0 0 1]
sage: L
[ 1 0 0 0 0 0]
[ 3 1 0 0 0 0]
[ -4 -1 1 0 0 0]
[ -2 -1 -1 1 0 0]
[ 0 1/2 1/4 1/2 1 0]
[ -1 -1 -5/2 -2 -6 1]
sage: U
[ 1 0 2 0 -2 -1]
[ 0 -2 -3 -1 6 9]
[ 0 0 2 0 -3 -3]
[ 0 0 0 1 0 4]
[ 0 0 0 0 -1/4 -3/4]
[ 0 0 0 0 0 1]
sage: D == L*U
True

The base ring of the matrix may be any field, or a ring which has a fraction field implemented in Sage. The
ring needs to be exact (there is a numerical LU decomposition for matrices over RDF and CDF). Matrices
returned are over the original field, or the fraction field of the ring. If the field is not ordered (i.e. the absolute
value function is not implemented), then the pivot strategy needs to be ‘nonzero’.

sage: A = matrix(RealField(100), 3, 3, range(9))
sage: P, L, U = A.LU()
Traceback (most recent call last):
...
TypeError: base ring of the matrix must be exact,
not Real Field with 100 bits of precision

sage: A = matrix(Integers(6), 3, 2, range(6))
sage: A.LU()
Traceback (most recent call last):
...
TypeError: base ring of the matrix needs a field of fractions,
not Ring of integers modulo 6

sage: R.<y> = PolynomialRing(QQ, �y�)
sage: B = matrix(R, [[y+1, y^2+y], [y^2, y^3]])
sage: P, L, U = B.LU(pivot=�partial�)
Traceback (most recent call last):
...
TypeError: cannot take absolute value of matrix entries, try �pivot=nonzero�
sage: P, L, U = B.LU(pivot=�nonzero�)

(continues on next page)
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sage: P
[1 0]
[0 1]
sage: L
[ 1 0]
[y^2/(y + 1) 1]
sage: U
[ y + 1 y^2 + y]
[ 0 0]
sage: L.base_ring()
Fraction Field of Univariate Polynomial Ring in y over Rational Field
sage: B == P*L*U
True

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(5^2)
sage: C = matrix(F, [[a + 3, 4*a + 4, 2, 4*a + 2],
....: [3, 2*a + 4, 2*a + 4, 2*a + 1],
....: [3*a + 1, a + 3, 2*a + 4, 4*a + 3],
....: [a, 3, 3*a + 1, a]])
sage: P, L, U = C.LU(pivot=�nonzero�)
sage: P
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
sage: L #␣
→˓needs sage.combinat
[ 1 0 0 0]
[3*a + 3 1 0 0]
[ 2*a 4*a + 2 1 0]
[2*a + 3 2 2*a + 4 1]
sage: U #␣
→˓needs sage.combinat
[ a + 3 4*a + 4 2 4*a + 2]
[ 0 a + 1 a + 3 2*a + 4]
[ 0 0 1 4*a + 2]
[ 0 0 0 0]
sage: L.base_ring() #␣
→˓needs sage.combinat
Finite Field in a of size 5^2
sage: C == P*L*U #␣
→˓needs sage.combinat
True

With no pivoting strategy given (i.e. pivot=None) the routine will try to use partial pivoting, but then fall
back to the nonzero strategy. For the nonsingular matrix below, we see evidence of pivoting when viewed
over the rationals, and no pivoting over the integers mod 29.

sage: entries = [3, 20, 11, 7, 16, 28, 5, 15, 21, 23, 22, 18, 8, 23, 15, 2]
sage: A = matrix(Integers(29), 4, 4, entries)
sage: perm, _ = A.LU(format=�compact�); perm
(0, 1, 2, 3)
sage: B = matrix(QQ, 4, 4, entries)
sage: perm, _ = B.LU(format=�compact�); perm
(2, 0, 1, 3)
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The 𝑈 matrix is only guaranteed to be upper-triangular. The rows are not necessarily linearly independent,
nor are the pivots columns or rank in evidence.

sage: A = matrix(QQ, [[ 1, -4, 1, 0, -2, 1, 3, 3, 2],
....: [-1, 4, 0, -4, 0, -4, 5, -7, -7],
....: [ 0, 0, 1, -4, -1, -3, 6, -5, -6],
....: [-2, 8, -1, -4, 2, -4, 1, -8, -7],
....: [ 1, -4, 2, -4, -3, 2, 5, 6, 4]])
sage: P, L, U = A.LU()
sage: U
[ -2 8 -1 -4 2 -4 1 -8 -7]
[ 0 0 1/2 -2 -1 -2 9/2 -3 -7/2]
[ 0 0 3/2 -6 -2 0 11/2 2 1/2]
[ 0 0 0 0 -1/3 -1 5/3 -5/3 -5/3]
[ 0 0 0 0 1/3 -3 7/3 -19/3 -19/3]
sage: A.rref()
[ 1 -4 0 4 0 0 -1 -1 -1]
[ 0 0 1 -4 0 0 1 0 -1]
[ 0 0 0 0 1 0 -2 -1 -1]
[ 0 0 0 0 0 1 -1 2 2]
[ 0 0 0 0 0 0 0 0 0]
sage: A.pivots()
(0, 2, 4, 5)

QR(full=True)
Return a factorization of self as a unitary matrix and an upper-triangular matrix.

INPUT:

• full – (default: True) if True then the returned matrices have dimensions as described below. If
False the R matrix has no zero rows and the columns of Q are a basis for the column space of self.

OUTPUT:

If self is an𝑚× 𝑛 matrix and full=True then this method returns a pair of matrices: 𝑄 is an𝑚×𝑚
unitary matrix (meaning its inverse is its conjugate-transpose) and 𝑅 is an 𝑚 × 𝑛 upper-triangular matrix
with nonnegative entries on the diagonal. For a matrix of full rank this factorization is unique (due to the
restriction to positive entries on the diagonal).

If full=False then 𝑄 has 𝑚 rows and the columns form an orthonormal basis for the column space of
self. So, in particular, the conjugate-transpose of 𝑄 times 𝑄 will be an identity matrix. The matrix 𝑅 will
still be upper-triangular but will also have full rank, in particular it will lack the zero rows present in a full
factorization of a rank-deficient matrix.

The results obtained when full=True are cached, hence 𝑄 and 𝑅 are immutable matrices in this case.

Note

This is an exact computation, so limited to exact rings. Also the base ring needs to have a fraction field
implemented in Sage and this field must contain square roots. One example is the field of algebraic
numbers, QQbar, as used in the examples below. If you need numerical results, convert the base ring to
the field of complex double numbers, CDF, which will use a faster routine that is careful about numerical
subtleties.

ALGORITHM:

“Modified Gram-Schmidt,” Algorithm 8.1 of [TB1997].

EXAMPLES:
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For a nonsingular matrix, the QR decomposition is unique.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[-2, 0, -4, -1, -1],
....: [-2, 1, -6, -3, -1],
....: [1, 1, 7, 4, 5],
....: [3, 0, 8, 3, 3],
....: [-1, 1, -6, -6, 5]])
sage: Q, R = A.QR()
sage: Q
[ -0.4588314677411235? -0.1260506983326509? 0.3812120831224489? -0.
→˓394573711338418? -0.6874400625964?]
[ -0.4588314677411235? 0.4726901187474409? -0.05198346588033394? 0.
→˓7172941251646595? -0.2209628772631?]
[ 0.2294157338705618? 0.6617661662464172? 0.6619227988762521? -0.
→˓1808720937375480? 0.1964114464561?]
[ 0.6882472016116853? 0.1890760474989764? -0.2044682991293135? 0.
→˓0966302966543065? -0.6628886317894?]
[ -0.2294157338705618? 0.5357154679137663? -0.609939332995919? -0.
→˓536422031427112? 0.0245514308070?]
sage: R
[ 4.358898943540674? -0.4588314677411235? 13.07669683062202? 6.
→˓194224814505168? 2.982404540317303?]
[ 0 1.670171752907625? 0.5987408170800917? -1.
→˓292019657909672? 6.207996892883057?]
[ 0 0 5.444401659866974? 5.
→˓468660610611130? -0.6827161852283857?]
[ 0 0 0 1.
→˓027626039419836? -3.619300149686620?]
[ 0 0 0 ␣
→˓ 0 0.024551430807012?]
sage: Q.conjugate_transpose()*Q
[1.000000000000000? 0.?e-18 0.?e-17 0.?e-16 ␣
→˓ 0.?e-13]
[ 0.?e-18 1.000000000000000? 0.?e-17 0.?e-16 ␣
→˓ 0.?e-13]
[ 0.?e-17 0.?e-17 1.000000000000000? 0.?e-16 ␣
→˓ 0.?e-13]
[ 0.?e-16 0.?e-16 0.?e-16 1.000000000000000? ␣
→˓ 0.?e-13]
[ 0.?e-13 0.?e-13 0.?e-13 0.?e-13 ␣
→˓ 1.0000000000000?]
sage: Q * R == A
True

An example with complex numbers in QQbar, the field of algebraic numbers.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[-8, 4*I + 1, -I + 2, 2*I + 1],
....: [1, -2*I - 1, -I + 3, -I + 1],
....: [I + 7, 2*I + 1, -2*I + 7, -I + 1],
....: [I + 2, 0, I + 12, -1]])
sage: Q, R = A.QR()
sage: Q
[ -0.7302967433402215? 0.2070566455055649? + 0.
→˓5383472783144687?*I 0.2463049809998642? - 0.0764456358723292?*I 0.
→˓2381617683194332? - 0.1036596032779695?*I]
[ 0.0912870929175277? -0.2070566455055649? - 0.
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→˓3778783780476559?*I 0.3786559533863033? - 0.1952221495524667?*I 0.
→˓701244450214469? - 0.3643711650986595?*I]
[ 0.6390096504226938? + 0.0912870929175277?*I 0.1708217325420910? + 0.
→˓6677576817554466?*I -0.03411475806452072? + 0.04090198741767143?*I 0.
→˓3140171085506764? - 0.0825191718705412?*I]
[ 0.1825741858350554? + 0.0912870929175277?*I -0.03623491296347385? + 0.
→˓0724698259269477?*I 0.8632284069415110? + 0.06322839976356195?*I -0.
→˓4499694867611521? - 0.0116119181208918?*I]
sage: R
[ 10.95445115010333? 0.?e-18 - 1.
→˓917028951268082?*I 5.385938482134133? - 2.190890230020665?*I -0.
→˓2738612787525831? - 2.190890230020665?*I]
[ 0 4.829596256417300?
→˓ + 0.?e-18*I -0.869637911123373? - 5.864879483945125?*I 0.
→˓993871898426712? - 0.3054085521207082?*I]
[ 0 ␣
→˓ 0 12.00160760935814? + 0.?e-16*I -0.
→˓2709533402297273? + 0.4420629644486323?*I]
[ 0 ␣
→˓ 0 0 1.
→˓942963944258992? + 0.?e-16*I]
sage: Q.conjugate_transpose()*Q
[1.000000000000000? + 0.?e-19*I 0.?e-18 + 0.?e-17*I 0.?
→˓e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I]
[ 0.?e-18 + 0.?e-17*I 1.000000000000000? + 0.?e-17*I 0.?
→˓e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I]
[ 0.?e-17 + 0.?e-17*I 0.?e-17 + 0.?e-17*I 1.
→˓000000000000000? + 0.?e-17*I 0.?e-16 + 0.?e-16*I]
[ 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-16*I 0.?
→˓e-16 + 0.?e-16*I 1.000000000000000? + 0.?e-16*I]
sage: Q*R - A
[ 0.?e-17 0.?e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
→˓16*I]
[ 0.?e-18 0.?e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
→˓16*I]
[0.?e-17 + 0.?e-18*I 0.?e-17 + 0.?e-17*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
→˓16*I]
[0.?e-18 + 0.?e-18*I 0.?e-18 + 0.?e-18*I 0.?e-16 + 0.?e-16*I 0.?e-16 + 0.?e-
→˓16*I]

A rank-deficient rectangular matrix, with both values of the full keyword.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[2, -3, 3],
....: [-1, 1, -1],
....: [-1, 3, -3],
....: [-5, 1, -1]])
sage: Q, R = A.QR()
sage: Q
[ 0.3592106040535498? -0.5693261797050169? 0.7239227659930268? 0.
→˓1509015305256380?]
[ -0.1796053020267749? 0.1445907757980996? 0 0.
→˓9730546968377341?]
[ -0.1796053020267749? 0.7048800320157352? 0.672213996993525? -0.
→˓1378927778941174?]
[ -0.8980265101338745? -0.3976246334447737? 0.1551263069985058? -0.
→˓10667177157846818?]
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sage: R
[ 5.567764362830022? -2.694079530401624? 2.694079530401624?]
[ 0 3.569584777515583? -3.569584777515583?]
[ 0 0 0]
[ 0 0 0]
sage: Q.conjugate_transpose() * Q
[ 1 0.?e-18 0.?e-18 0.?e-18]
[ 0.?e-18 1 0.?e-18 0.?e-18]
[ 0.?e-18 0.?e-18 1.000000000000000? 0.?e-18]
[ 0.?e-18 0.?e-18 0.?e-18 1.000000000000000?]

sage: # needs sage.rings.number_field
sage: Q, R = A.QR(full=False)
sage: Q
[ 0.3592106040535498? -0.5693261797050169?]
[-0.1796053020267749? 0.1445907757980996?]
[-0.1796053020267749? 0.7048800320157352?]
[-0.8980265101338745? -0.3976246334447737?]
sage: R
[ 5.567764362830022? -2.694079530401624? 2.694079530401624?]
[ 0 3.569584777515583? -3.569584777515583?]
sage: Q.conjugate_transpose()*Q
[ 1 0.?e-18]
[0.?e-18 1]

Another rank-deficient rectangular matrix, with complex entries, as a reduced decomposition.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[-3*I - 3, I - 3, -12*I + 1, -2],
....: [-I - 1, -2, 5*I - 1, -I - 2],
....: [-4*I - 4, I - 5, -7*I, -I - 4]])
sage: Q, R = A.QR(full=False)
sage: Q
[ -0.4160251471689219? - 0.4160251471689219?*I 0.5370861555295747? + 0.
→˓1790287185098583?*I]
[ -0.1386750490563073? - 0.1386750490563073?*I -0.7519206177414046? - 0.
→˓2506402059138015?*I]
[ -0.5547001962252291? - 0.5547001962252291?*I -0.2148344622118299? - 0.
→˓07161148740394329?*I]
sage: R
[ 7.211102550927979? 3.328201177351375? - 5.
→˓269651864139676?*I 7.904477796209515? + 8.45917799243475?*I 4.
→˓021576422632911? - 2.634825932069838?*I]
[ 0 1.
→˓074172311059150? -1.611258466588724? - 9.13046464400277?*I 1.
→˓611258466588724? + 0.5370861555295747?*I]
sage: Q.conjugate_transpose()*Q
[1 0]
[0 1]
sage: Q*R - A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

Results of full decompositions are cached and thus returned immutable.
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sage: # needs sage.rings.number_field
sage: A = random_matrix(QQbar, 2, 2)
sage: Q, R = A.QR()
sage: Q.is_mutable()
False
sage: R.is_mutable()
False

Trivial cases return trivial results of the correct size, and we check 𝑄 itself in one case.

sage: # needs sage.rings.number_field
sage: A = zero_matrix(QQbar, 0, 10)
sage: Q, R = A.QR()
sage: Q.nrows(), Q.ncols()
(0, 0)
sage: R.nrows(), R.ncols()
(0, 10)
sage: A = zero_matrix(QQbar, 3, 0)
sage: Q, R = A.QR()
sage: Q.nrows(), Q.ncols()
(3, 3)
sage: R.nrows(), R.ncols()
(3, 0)
sage: Q
[1 0 0]
[0 1 0]
[0 0 1]

T

Return the transpose of a matrix.

EXAMPLES:

sage: A = matrix(QQ, 5, range(25))
sage: A.T
[ 0 5 10 15 20]
[ 1 6 11 16 21]
[ 2 7 12 17 22]
[ 3 8 13 18 23]
[ 4 9 14 19 24]

adjoint(*args, **kwds)
Deprecated: Use adjugate() instead. See Issue #10501 for details.

adjoint_classical()

Return the adjugate matrix of self (that is, the transpose of the matrix of cofactors).

Let 𝑀 be an 𝑛 × 𝑛-matrix. The adjugate matrix of 𝑀 is the 𝑛 × 𝑛-matrix 𝑁 whose (𝑖, 𝑗)-th entry is
(−1)𝑖+𝑗 det(𝑀𝑗,𝑖), where 𝑀𝑗,𝑖 is the matrix 𝑀 with its 𝑗-th row and 𝑖-th column removed. It is known to
satisfy 𝑁𝑀 = 𝑀𝑁 = det(𝑀)𝐼 .

EXAMPLES:

sage: M = Matrix(ZZ,2,2,[5,2,3,4]); M
[5 2]
[3 4]
sage: N = M.adjugate(); N

(continues on next page)
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[ 4 -2]
[-3 5]
sage: M * N
[14 0]
[ 0 14]
sage: N * M
[14 0]
[ 0 14]
sage: M = Matrix(QQ, 2, 2, [5/3,2/56, 33/13,41/10]); M
[ 5/3 1/28]
[33/13 41/10]
sage: N = M.adjugate(); N #␣
→˓needs sage.libs.pari
[ 41/10 -1/28]
[-33/13 5/3]
sage: M * N #␣
→˓needs sage.libs.pari
[7363/1092 0]
[ 0 7363/1092]

An alias is adjoint_classical(), which replaces the deprecated adjoint() method:

sage: M.adjoint() #␣
→˓needs sage.libs.pari
...: DeprecationWarning: adjoint is deprecated. Please use adjugate instead.
See https://github.com/sagemath/sage/issues/10501 for details.
[ 41/10 -1/28]
[-33/13 5/3]
sage: M.adjoint_classical() #␣
→˓needs sage.libs.pari
[ 41/10 -1/28]
[-33/13 5/3]

ALGORITHM:

Use PARI whenever the method self._adjugate is included to do so in an inheriting class. Otherwise,
use a generic division-free algorithm that computes the adjugate matrix from the characteristic polynomial.

The result is cached.

adjugate()

Return the adjugate matrix of self (that is, the transpose of the matrix of cofactors).

Let 𝑀 be an 𝑛 × 𝑛-matrix. The adjugate matrix of 𝑀 is the 𝑛 × 𝑛-matrix 𝑁 whose (𝑖, 𝑗)-th entry is
(−1)𝑖+𝑗 det(𝑀𝑗,𝑖), where 𝑀𝑗,𝑖 is the matrix 𝑀 with its 𝑗-th row and 𝑖-th column removed. It is known to
satisfy 𝑁𝑀 = 𝑀𝑁 = det(𝑀)𝐼 .

EXAMPLES:

sage: M = Matrix(ZZ,2,2,[5,2,3,4]); M
[5 2]
[3 4]
sage: N = M.adjugate(); N
[ 4 -2]
[-3 5]
sage: M * N
[14 0]
[ 0 14]

(continues on next page)
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sage: N * M
[14 0]
[ 0 14]
sage: M = Matrix(QQ, 2, 2, [5/3,2/56, 33/13,41/10]); M
[ 5/3 1/28]
[33/13 41/10]
sage: N = M.adjugate(); N #␣
→˓needs sage.libs.pari
[ 41/10 -1/28]
[-33/13 5/3]
sage: M * N #␣
→˓needs sage.libs.pari
[7363/1092 0]
[ 0 7363/1092]

An alias is adjoint_classical(), which replaces the deprecated adjoint() method:

sage: M.adjoint() #␣
→˓needs sage.libs.pari
...: DeprecationWarning: adjoint is deprecated. Please use adjugate instead.
See https://github.com/sagemath/sage/issues/10501 for details.
[ 41/10 -1/28]
[-33/13 5/3]
sage: M.adjoint_classical() #␣
→˓needs sage.libs.pari
[ 41/10 -1/28]
[-33/13 5/3]

ALGORITHM:

Use PARI whenever the method self._adjugate is included to do so in an inheriting class. Otherwise,
use a generic division-free algorithm that computes the adjugate matrix from the characteristic polynomial.

The result is cached.

apply_map(phi, R=None, sparse=None)
Apply the given map phi (an arbitrary Python function or callable object) to this dense matrix. If R is not
given, automatically determine the base ring of the resulting matrix.

INPUT:

• sparse – boolean (default: False); AATrue to make the output a sparse matrix

• phi – arbitrary Python function or callable object

• R – (optional) ring

OUTPUT: a matrix over R

EXAMPLES:

sage: m = matrix(ZZ, 3, 3, range(9))
sage: k.<a> = GF(9) #␣
→˓needs sage.rings.finite_rings
sage: f = lambda x: k(x)
sage: n = m.apply_map(f); n #␣
→˓needs sage.rings.finite_rings
[0 1 2]
[0 1 2]

(continues on next page)
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[0 1 2]
sage: n.parent() #␣
→˓needs sage.rings.finite_rings
Full MatrixSpace of 3 by 3 dense matrices
over Finite Field in a of size 3^2

In this example, we explicitly specify the codomain.

sage: s = GF(3)
sage: f = lambda x: s(x)
sage: n = m.apply_map(f, k); n #␣
→˓needs sage.rings.finite_rings
[0 1 2]
[0 1 2]
[0 1 2]
sage: n.parent() #␣
→˓needs sage.rings.finite_rings
Full MatrixSpace of 3 by 3 dense matrices
over Finite Field in a of size 3^2

If self is subdivided, the result will be as well:

sage: m = matrix(2, 2, srange(4))
sage: m.subdivide(None, 1); m
[0|1]
[2|3]
sage: m.apply_map(lambda x: x*x)
[0|1]
[4|9]

If the matrix is sparse, the result will be as well:

sage: m = matrix(ZZ,100,100,sparse=True)
sage: m[18,32] = -6
sage: m[1,83] = 19
sage: n = m.apply_map(abs, R=ZZ)
sage: n.dict()
{(1, 83): 19, (18, 32): 6}
sage: n.is_sparse()
True

If the map sends most of the matrix to zero, then it may be useful to get the result as a sparse matrix.

sage: m = matrix(ZZ, 3, 3, range(1, 10))
sage: n = m.apply_map(lambda x: 1//x, sparse=True); n
[1 0 0]
[0 0 0]
[0 0 0]
sage: n.parent()
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring

apply_morphism(phi)
Apply the morphism phi to the coefficients of this dense matrix.

The resulting matrix is over the codomain of phi.

INPUT:
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• phi – a morphism, so phi is callable and phi.domain() and phi.codomain() are defined. The
codomain must be a ring

OUTPUT: a matrix over the codomain of phi

EXAMPLES:

sage: m = matrix(ZZ, 3, 3, range(9))
sage: phi = ZZ.hom(GF(5))
sage: m.apply_morphism(phi)
[0 1 2]
[3 4 0]
[1 2 3]
sage: parent(m.apply_morphism(phi))
Full MatrixSpace of 3 by 3 dense matrices
over Finite Field of size 5

We apply a morphism to a matrix over a polynomial ring:

sage: R.<x,y> = QQ[]
sage: m = matrix(2, [x,x^2 + y, 2/3*y^2-x, x]); m
[ x x^2 + y]
[2/3*y^2 - x x]
sage: phi = R.hom([y,x])
sage: m.apply_morphism(phi)
[ y y^2 + x]
[2/3*x^2 - y y]

as_bipartite_graph()

Construct a bipartite graph B representing the matrix uniquely.

Vertices are labeled 1 to nrows on the left and nrows + 1 to nrows + ncols on the right, representing
rows and columns correspondingly. Each row is connected to each column with an edge weighted by the value
of the corresponding matrix entry.

This graph is a helper for calculating automorphisms of a matrix under row and column permutations. See
automorphisms_of_rows_and_columns().

OUTPUT: a bipartite graph

EXAMPLES:

sage: M = matrix(QQ, [[1/3, 7], [6, 1/4], [8, -5]])
sage: M
[1/3 7]
[ 6 1/4]
[ 8 -5]

sage: # needs sage.graphs
sage: B = M.as_bipartite_graph(); B
Bipartite graph on 5 vertices
sage: B.edges(sort=True)
[(1, 4, 1/3), (1, 5, 7), (2, 4, 6), (2, 5, 1/4), (3, 4, 8), (3, 5, -5)]
sage: len(B.left) == M.nrows()
True
sage: len(B.right) == M.ncols()
True

as_sum_of_permutations()

Return the current matrix as a sum of permutation matrices.
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According to the Birkhoff-von Neumann Theorem, any bistochastic matrix can be written as a positive sum
of permutation matrices, which also means that the polytope of bistochastic matrices is integer.

As a non-bistochastic matrix can obviously not be written as a sum of permutations, this theorem is an equiv-
alence.

This function, given a bistochastic matrix, returns the corresponding decomposition.

See also

• bistochastic_as_sum_of_permutations – for more information on this method.

• Birkhoff_polytope()

EXAMPLES:

We create a bistochastic matrix from a convex sum of permutations, then try to deduce the decomposition
from the matrix

sage: L = []
sage: L.append((9, Permutation([4, 1, 3, 5, 2])))
sage: L.append((6, Permutation([5, 3, 4, 1, 2])))
sage: L.append((3, Permutation([3, 1, 4, 2, 5])))
sage: L.append((2, Permutation([1, 4, 2, 3, 5])))
sage: M = sum([c * p.to_matrix() for c, p in L])
sage: from sage.combinat.permutation import bistochastic_as_sum_of_
→˓permutations
sage: decomp = bistochastic_as_sum_of_permutations(M) #␣
→˓needs sage.combinat sage.graphs
sage: print(decomp) #␣
→˓needs sage.combinat sage.graphs
2*B[[1, 4, 2, 3, 5]] + 3*B[[3, 1, 4, 2, 5]] + 9*B[[4, 1, 3, 5, 2]] + 6*B[[5,␣
→˓3, 4, 1, 2]]

An exception is raised when the matrix is not bistochastic:

sage: M = Matrix([[2,3],[2,2]])
sage: decomp = bistochastic_as_sum_of_permutations(M) #␣
→˓needs sage.graphs
Traceback (most recent call last):
...
ValueError: The matrix is not bistochastic

automorphisms_of_rows_and_columns()

Return the automorphisms of self under permutations of rows and columns as a list of pairs of Permu-
tationGroupElement objects.

EXAMPLES:

sage: # needs sage.graphs sage.groups
sage: M = matrix(ZZ,[[1,0],[1,0],[0,1]]); M
[1 0]
[1 0]
[0 1]
sage: A = M.automorphisms_of_rows_and_columns(); A
[((), ()), ((1,2), ())]
sage: M = matrix(ZZ, [[1,1,1,1],[1,1,1,1]])

(continues on next page)
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sage: A = M.automorphisms_of_rows_and_columns()
sage: len(A)
48

One can now apply these automorphisms to M to show that it leaves it invariant:

sage: all(M.with_permuted_rows_and_columns(*i) == M for i in A) #␣
→˓needs sage.graphs sage.groups
True

Check that Issue #25426 is fixed:

sage: j = matrix([(3, 2, 1, 0, 0),
....: (2, 2, 0, 1, 0),
....: (1, 0, 3, 0, 2),
....: (0, 1, 0, 2, 1),
....: (0, 0, 2, 1, 2)])
sage: j.automorphisms_of_rows_and_columns() #␣
→˓needs sage.graphs sage.groups
[((), ()), ((1,3)(2,5), (1,3)(2,5))]

block_ldlt(classical=False)

Compute a block-𝐿𝐷𝐿𝑇 factorization of a Hermitian matrix.

The standard 𝐿𝐷𝐿𝑇 factorization of a positive-definite matrix 𝐴 factors it as 𝐴 = 𝐿𝐷𝐿𝑇 where 𝐿 is
unit-lower-triangular and𝐷 is diagonal. If one allows row/column swaps via a permutationmatrix𝑃 , then this
factorization can be extended tomany positive-semidefinitematrices𝐴 via the factorization𝑃𝑇𝐴𝑃 = 𝐿𝐷𝐿𝑇

that places the zeros at the bottom of𝐷 to avoid division by zero. These factorizations extend easily to com-
plex Hermitian matrices when one replaces the transpose by the conjugate-transpose.

However, we can go one step further. If, in addition, we allow 𝐷 to potentially contain 2 × 2 blocks on its
diagonal, then every real or complex Hermitian matrix 𝐴 can be factored as 𝐴 = 𝑃𝐿𝐷𝐿*𝑃𝑇 . When the
row/column swaps are made intelligently, this process is numerically stable over inexact rings like RDF. Bunch
and Kaufman describe such a “pivot” scheme that is suitable for the solution of Hermitian systems, and that
is how we choose our row and column swaps.

INPUT:

• classical – boolean (default: False); whether or not to attempt a classical non-block 𝐿𝐷𝐿𝑇 fac-
torization with no row/column swaps.

Warning

Not all matrices have a classical 𝐿𝐷𝐿𝑇 factorization. Set classical=True at your own risk, prefer-
ably after verifying that your matrix is positive-definite and (over inexact rings) not ill-conditioned.

OUTPUT:

If the input matrix is not Hermitian, the output from this function is undefined. Otherwise, we return a triple
(𝑃,𝐿,𝐷) such that 𝐴 = 𝑃𝐿𝐷𝐿*𝑃𝑇 and

• 𝑃 is a permutation matrix,

• 𝐿 is unit lower-triangular,

• 𝐷 is a block-diagonal matrix whose blocks are of size one or two.
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With classical=True, the permutation matrix 𝑃 is always an identity matrix and the diagonal blocks
are always one-by-one. A ValueError is raised if the matrix has no classical 𝐿𝐷𝐿𝑇 factorization.

ALGORITHM:

We essentially follow “Algorithm A” in the paper by Bunch and Kaufman [BK1977] that describes the stable
pivoting strategy. The same scheme is described by Higham [Hig2002].

See also

indefinite_factorization()

REFERENCES:

• [BK1977]

• [Hig2002]

EXAMPLES:

This three-by-three real symmetric matrix has one positive, one negative, and one zero eigenvalue – so it is
not any flavor of (semi)definite, yet we can still factor it:

sage: A = matrix(QQ, [[0, 1, 0],
....: [1, 1, 2],
....: [0, 2, 0]])
sage: P,L,D = A.block_ldlt()
sage: P
[0 0 1]
[1 0 0]
[0 1 0]
sage: L
[ 1 0 0]
[ 2 1 0]
[ 1 1/2 1]
sage: D
[ 1| 0| 0]
[--+--+--]
[ 0|-4| 0]
[--+--+--]
[ 0| 0| 0]
sage: P.transpose()*A*P == L*D*L.transpose()
True

This two-by-two matrix has no classical factorization, but it constitutes its own block-factorization:

sage: A = matrix(QQ, [ [0,1],
....: [1,0] ])
sage: A.block_ldlt(classical=True)
Traceback (most recent call last):
...
ValueError: matrix has no classical LDL^T factorization
sage: A.block_ldlt()
(
[1 0] [1 0] [0 1]
[0 1], [0 1], [1 0]
)

The same is true of the following complex Hermitian matrix:
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sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [ [ 0,I],
....: [-I,0] ])
sage: A.block_ldlt(classical=True)
Traceback (most recent call last):
...
ValueError: matrix has no classical LDL^T factorization
sage: A.block_ldlt()
(
[1 0] [1 0] [ 0 I]
[0 1], [0 1], [-I 0]
)

Complete diagonal pivoting could cause problems for the following matrix, since the diagonal entries are small
compared to the off-diagonals that must be zeroed; however, the block algorithm refuses to factor it:

sage: A = matrix(RDF, 2, 2, [ [1e-10, 1 ],
....: [1 , 2e-10] ])
sage: _,L,D = A.block_ldlt(classical=True)
sage: L*D*L.T
[1e-10 1.0]
[ 1.0 0.0]
sage: A.block_ldlt() #␣
→˓needs scipy
(
[1.0 0.0] [1.0 0.0] [1e-10 1.0]
[0.0 1.0], [0.0 1.0], [ 1.0 2e-10]
)

The factorization over an inexact ring is necessarily inexact, but 𝑃𝑇𝐴𝑃 will ideally be close to 𝐿𝐷𝐿* in the
metric induced by the norm:

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, 2, 2, [ [-1.1933, -0.3185 - 1.3553*I],
....: [-0.3185 + 1.3553*I, 1.5729 ] ])
sage: P,L,D = A.block_ldlt()
sage: P.T*A*P == L*D*L.H
False
sage: (P.T*A*P - L*D*L.H).norm() < 1e-10
True

This matrix has a singular three-by-three leading principal submatrix, and therefore has no classical factor-
ization:

sage: A = matrix(QQ, [[21, 15, 12, -2],
....: [15, 12, 9, 6],
....: [12, 9, 7, 3],
....: [-2, 6, 3, 8]])
sage: A[0:3,0:3].det() == 0
True
sage: A.block_ldlt(classical=True)
Traceback (most recent call last):
...
ValueError: matrix has no classical LDL^T factorization
sage: A.block_ldlt()
(
[1 0 0 0] [ 1 0 0 0]

(continues on next page)
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[0 0 1 0] [ -2/21 1 0 0]
[0 0 0 1] [ 5/7 39/41 1 0]
[0 1 0 0], [ 4/7 87/164 48/79 1],

[ 21| 0| 0| 0]
[-------+-------+-------+-------]
[ 0| 164/21| 0| 0]
[-------+-------+-------+-------]
[ 0| 0|-237/41| 0]
[-------+-------+-------+-------]
[ 0| 0| 0| 25/316]
)

An indefinite symmetric matrix that happens to have a classical factorization:

sage: A = matrix(QQ, [[ 3, -6, 9, 6, -9],
....: [-6, 11, -16, -11, 17],
....: [ 9, -16, 28, 16, -40],
....: [ 6, -11, 16, 9, -19],
....: [-9, 17, -40, -19, 68]])
sage: A.block_ldlt(classical=True)[1:]
(

[ 3| 0| 0| 0| 0]
[--+--+--+--+--]
[ 0|-1| 0| 0| 0]
[--+--+--+--+--]

[ 1 0 0 0 0] [ 0| 0| 5| 0| 0]
[-2 1 0 0 0] [--+--+--+--+--]
[ 3 -2 1 0 0] [ 0| 0| 0|-2| 0]
[ 2 -1 0 1 0] [--+--+--+--+--]
[-3 1 -3 1 1], [ 0| 0| 0| 0|-1]
)

An indefinite Hermitian matrix that happens to have a classical factorization:

sage: F.<I> = QuadraticField(-1) #␣
→˓needs sage.rings.number_field
sage: A = matrix(F, [[ 2, 4 - 2*I, 2 + 2*I], #␣
→˓needs sage.rings.number_field
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: A.block_ldlt(classical=True)[1:] #␣
→˓needs sage.rings.number_field
(

[ 2| 0| 0]
[--+--+--]

[ 1 0 0] [ 0|-2| 0]
[ I + 2 1 0] [--+--+--]
[ -I + 1 2*I + 1 1], [ 0| 0| 3]
)

characteristic_polynomial(*args, **kwds)
Synonym for self.charpoly(…).

EXAMPLES:
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sage: a = matrix(QQ, 2,2, [1,2,3,4]); a
[1 2]
[3 4]
sage: a.characteristic_polynomial(�T�) #␣
→˓needs sage.libs.pari
T^2 - 5*T - 2

charpoly(var='x', algorithm=None)
Return the characteristic polynomial of self, as a polynomial over the base ring.

ALGORITHM:

If the base ring has a method 𝑚𝑎𝑡𝑟𝑖𝑥𝑐ℎ𝑎𝑟𝑝𝑜𝑙𝑦, we use it.

In the generic case of matrices over a ring (commutative and with unity), there is a division-free algorithm,
which can be accessed using �df�, with complexity 𝑂(𝑛4). Alternatively, by specifying �hessenberg�,
this method computes the Hessenberg form of the matrix and then reads off the characteristic polynomial.
Moreover, for matrices over number fields, this method can use PARI’s charpoly implementation instead.

The method’s logic is as follows: If no algorithm is specified, first check if the base ring is a number field (and
then use PARI), otherwise check if the base ring is the ring of integers modulo n (in which case compute
the characteristic polynomial of a lift of the matrix to the integers, and then coerce back to the base), next
check if the base ring is an exact field (and then use the Hessenberg form), or otherwise, use the generic
division-free algorithm. If an algorithm is specified explicitly, if algorithm == "hessenberg", use
the Hessenberg form, or otherwise use the generic division-free algorithm.

The result is cached.

INPUT:

• var – a variable name (default: �x�)

• algorithm – string; one of

– �df� – generic 𝑂(𝑛4) division-free algorithm

– �hessenberg� – use the Hessenberg form of the matrix

EXAMPLES:

First a matrix over Z:

sage: A = MatrixSpace(ZZ,2)( [1,2, 3,4] )
sage: f = A.charpoly(�x�)
sage: f
x^2 - 5*x - 2
sage: f.parent()
Univariate Polynomial Ring in x over Integer Ring
sage: f(A)
[0 0]
[0 0]

An example over 2:

sage: A = MatrixSpace(QQ, 3)(range(9))
sage: A.charpoly(�x�) #␣
→˓needs sage.libs.pari
x^3 - 12*x^2 - 18*x
sage: A.trace()
12

(continues on next page)
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sage: A.determinant()
0

We compute the characteristic polynomial of a matrix over the polynomial ring Z[𝑎]:

sage: R.<a> = PolynomialRing(ZZ)
sage: M = MatrixSpace(R, 2)([a,1, a,a+1]); M
[ a 1]
[ a a + 1]
sage: f = M.charpoly(�x�); f
x^2 + (-2*a - 1)*x + a^2
sage: f.parent()
Univariate Polynomial Ring in x
over Univariate Polynomial Ring in a over Integer Ring

sage: M.trace()
2*a + 1
sage: M.determinant()
a^2

We compute the characteristic polynomial of a matrix over the multi-variate polynomial ring Z[𝑥, 𝑦]:

sage: R.<x,y> = PolynomialRing(ZZ,2)
sage: A = MatrixSpace(R, 2)([x, y, x^2, y^2])
sage: f = A.charpoly(�x�); f
x^2 + (-y^2 - x)*x - x^2*y + x*y^2

It’s a little difficult to distinguish the variables. To fix this, we temporarily view the indeterminate as 𝑍:

sage: with localvars(f.parent(), �Z�): print(f)
Z^2 + (-y^2 - x)*Z - x^2*y + x*y^2

We could also compute f in terms of Z from the start:

sage: A.charpoly(�Z�)
Z^2 + (-y^2 - x)*Z - x^2*y + x*y^2

Here is an example over a number field:

sage: # needs sage.rings.number_field
sage: x = QQ[�x�].gen()
sage: K.<a> = NumberField(x^2 - 2)
sage: m = matrix(K, [[a-1, 2], [a, a+1]])
sage: m.charpoly(�Z�)
Z^2 - 2*a*Z - 2*a + 1
sage: m.charpoly(�a�)(m) == 0
True

Over integers modulo 𝑛 with composite 𝑛:

sage: A = Mat(Integers(6), 3, 3)(range(9))
sage: A.charpoly()
x^3

Here is an example over a general commutative ring, that is to say, as of version 4.0.2, Sage does not even
positively determine that S in the following example is an integral domain. But the computation of the
characteristic polynomial succeeds as follows:
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sage: # needs sage.libs.singular
sage: R.<a,b> = QQ[]
sage: S.<x,y> = R.quo((b^3))
sage: A = matrix(S, [[x*y^2, 2*x], [2, x^10*y]]); A
[ x*y^2 2*x]
[ 2 x^10*y]
sage: A.charpoly(�T�)
T^2 + (-x^10*y - x*y^2)*T - 4*x

cholesky()

Return the Cholesky decomposition of a Hermitian matrix.

Applies to a positive-definitematrix. Generally, the base ring for the entries of thematrix needs to be a subfield
of the algebraic numbers (QQbar). Examples include the rational numbers (QQ), some number fields, and
real algebraic numbers and the algebraic numbers themselves. Symbolic matrices can also occasionally be
factored.

OUTPUT:

For a matrix 𝐴 the routine returns a lower triangular matrix 𝐿 such that,

𝐴 = 𝐿𝐿*

where 𝐿* is the conjugate-transpose. If the matrix is not positive-definite (for example, if it is not Hermitian)
then a ValueError results.

If possible, the output matrix will be over the fraction field of the base ring of the input matrix. If that fraction
field is missing the requisite square roots but if no imaginaries are encountered, then the algebraic-reals will
be used. Otherwise, the algebraic closure of the fraction field (typically QQbar) will be used.

ALGORITHM:

First we ensure that the matrix 𝐴 is_hermitian(). Afterwards, we attempt to compute a classi-
cal block_ldlt() factorization, 𝐴 = 𝐿𝐷𝐿*, of the matrix. If that fails, then the matrix was not
positive-definite and an error is raised. Otherwise we take the entrywise square-root

√
𝐷 of the diagonal

matrix𝐷 (whose entries are the positive eigenvalues of the original matrix) to obtain the Cholesky factoriza-
tion 𝐴 =

(︁
𝐿
√
𝐷
)︁(︁

𝐿
√
𝐷
)︁*
. If the necessary square roots cannot be taken in the fraction field of original

base ring, then we move to either its algebraic closure or the algebraic reals, depending on whether or not
imaginary numbers are required.

EXAMPLES:

This simple example has a result with entries that remain in the field of rational numbers:

sage: A = matrix(QQ, [[ 4, -2, 4, 2],
....: [-2, 10, -2, -7],
....: [ 4, -2, 8, 4],
....: [ 2, -7, 4, 7]])
sage: A.is_symmetric()
True
sage: L = A.cholesky(); L
[ 2 0 0 0]
[-1 3 0 0]
[ 2 0 2 0]
[ 1 -2 1 1]
sage: L.parent()
Full MatrixSpace of 4 by 4 dense matrices over Rational Field
sage: L*L.transpose() == A
True
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This seemingly simple example requires first moving to the rational numbers for field operations, and then
square roots necessitate that the result has entries in the field of algebraic numbers:

sage: A = matrix(ZZ, [[ 78, -30, -37, -2],
....: [-30, 102, 179, -18],
....: [-37, 179, 326, -38],
....: [ -2, -18, -38, 15]])
sage: A.is_symmetric()
True
sage: L = A.cholesky(); L #␣
→˓needs sage.rings.number_field
[ 8.83176086632785? 0 0 ␣
→˓ 0]
[ -3.396831102433787? 9.51112708681461? 0 ␣
→˓ 0]
[ -4.189425026335004? 17.32383862241232? 2.886751345948129? ␣
→˓ 0]
[-0.2264554068289192? -1.973397116652010? -1.649572197684645? 2.
→˓886751345948129?]
sage: L.parent() #␣
→˓needs sage.rings.number_field
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Real Field
sage: L*L.transpose() == A #␣
→˓needs sage.rings.number_field
True

Some subfields of the complex numbers, such as this number field of complex numbers with rational real and
imaginary parts, allow for this computation:

sage: # needs sage.rings.number_field
sage: C.<I> = QuadraticField(-1)
sage: A = matrix(C, [[ 23, 17*I + 3, 24*I + 25, 21*I],
....: [ -17*I + 3, 38, -69*I + 89, 7*I + 15],
....: [-24*I + 25, 69*I + 89, 976, 24*I + 6],
....: [ -21*I, -7*I + 15, -24*I + 6, 28]])
sage: A.is_hermitian()
True
sage: L = A.cholesky(); L
[ 4.79...? 0 0 ␣
→˓ 0]
[ 0.62...? - 3.54...?*I 5.00...? 0 ␣
→˓ 0]
[ 5.21...? - 5.00...?*I 13.58...? + 10.72...?*I 24.98...? ␣
→˓ 0]
[ -4.37...?*I -0.10...? - 0.85...?*I -0.21...? + 0.37...?*I 2.
→˓81...?]
sage: L.parent()
Full MatrixSpace of 4 by 4 dense matrices over Algebraic Field
sage: (L*L.conjugate_transpose() - A.change_ring(QQbar)).norm() < 10^-10
True

The field of algebraic numbers is an ideal setting for this computation:

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ 2, 4 + 2*I, 6 - 4*I],
....: [ -2*I + 4, 11, 10 - 12*I],
....: [ 4*I + 6, 10 + 12*I, 37]])
sage: A.is_hermitian()

(continues on next page)
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True
sage: L = A.cholesky()
sage: L
[ 1.414213562373095? 0 0]
[2.828427124746190? - 1.414213562373095?*I 1 0]
[4.242640687119285? + 2.828427124746190?*I -2*I + 2 1.732050807568878?]
sage: L.parent()
Full MatrixSpace of 3 by 3 dense matrices over Algebraic Field
sage: L*L.conjugate_transpose() == A
True

Results are cached, hence immutable. Use the copy function if you need to make a change:

sage: A = matrix(QQ, [[ 4, -2, 4, 2],
....: [-2, 10, -2, -7],
....: [ 4, -2, 8, 4],
....: [ 2, -7, 4, 7]])
sage: L = A.cholesky()
sage: L.is_immutable()
True
sage: from copy import copy
sage: LC = copy(L)
sage: LC[0,0] = 1000
sage: LC
[1000 0 0 0]
[ -1 3 0 0]
[ 2 0 2 0]
[ 1 -2 1 1]

The base ring need not be exact, although you should expect the result to be inexact (correct only in the norm)
as well in that case:

sage: F = RealField(100)
sage: A = A = matrix(F, [[1.0, 2.0], [2.0, 6.0]])
sage: L = A.cholesky(); L
[ 1.000... 0.000...]
[ 2.000... 1.414...]
sage: (L*L.transpose() - A).norm() < 1e-10 #␣
→˓needs scipy
True

Even symbolic matrices can sometimes be factored:

sage: A = matrix(SR, [[pi,0], [0,pi]]) #␣
→˓needs sage.symbolic
sage: A.cholesky() #␣
→˓needs sage.symbolic
[sqrt(pi) 0]
[ 0 sqrt(pi)]

There are a variety of situations which will prevent the computation of a Cholesky decomposition.

The base ring may not be able to be viewed as a subset of the complex numbers, implying that “Hermitian”
is meaningless:

sage: A = matrix(Integers(6), [[2, 0], [0, 4]])
sage: A.cholesky()

(continues on next page)
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Traceback (most recent call last):
...
AttributeError: �sage.rings.finite_rings.integer_mod.IntegerMod_int�
object has no attribute �conjugate�

The matrix may not be Hermitian:

sage: F.<a> = FiniteField(5^4) #␣
→˓needs sage.rings.finite_rings
sage: A = matrix(F, [[2+a^3, 3], [3, 3]]) #␣
→˓needs sage.rings.finite_rings
sage: A.cholesky() #␣
→˓needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: matrix is not Hermitian

The matrix may not be positive-definite:

sage: # needs sage.rings.number_field
sage: C.<I> = QuadraticField(-1)
sage: B = matrix(C, [[ 2, 4 - 2*I, 2 + 2*I],
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: B.is_positive_definite()
False
sage: B.cholesky()
Traceback (most recent call last):
...
ValueError: matrix is not positive definite

sage: A = matrix(QQ, [[21, 15, 12, -3],
....: [15, 12, 9, 12],
....: [12, 9, 7, 3],
....: [-3, 12, 3, 8]])
sage: A.is_positive_definite()
False
sage: A.cholesky()
Traceback (most recent call last):
...
ValueError: matrix is not positive definite

column_module()

Return the free module over the base ring spanned by the columns of this matrix.

EXAMPLES:

sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: t.column_module()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
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column_space()

Return the vector space over the base ring spanned by the columns of this matrix.

EXAMPLES:

sage: M = MatrixSpace(QQ, 3, 3)
sage: A = M([1,9,-7, 4/5,4,3, 6,4,3])
sage: A.column_space()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

sage: # needs sage.rings.real_mpfr sage.symbolic
sage: W = MatrixSpace(CC, 2, 2)
sage: B = W([1, 2 + 3*I, 4 + 5*I, 9]); B
[ 1.00000000000000 2.00000000000000 + 3.00000000000000*I]
[4.00000000000000 + 5.00000000000000*I 9.00000000000000]
sage: B.column_space()
Vector space of degree 2 and dimension 2
over Complex Field with 53 bits of precision
Basis matrix:
[ 1.00000000000000 0.000000000000000]
[0.000000000000000 1.00000000000000]

conjugate()

Return the conjugate of self, i.e. the matrix whose entries are the conjugates of the entries of self.

EXAMPLES:

sage: # needs sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, [[1+I,1],[0,2*I]])
sage: A.conjugate()
[1.0 - 1.0*I 1.0]
[ 0.0 -2.0*I]

A matrix over a not-totally-real number field:

sage: x = polygen(ZZ, �x�)
sage: K.<j> = NumberField(x^2 + 5) #␣
→˓needs sage.rings.number_field
sage: M = matrix(K, [[1+j,1], [0,2*j]]) #␣
→˓needs sage.rings.number_field
sage: M.conjugate() #␣
→˓needs sage.rings.number_field
[-j + 1 1]
[ 0 -2*j]

There is a shortcut for the conjugate:

sage: M.C #␣
→˓needs sage.rings.number_field
[-j + 1 1]
[ 0 -2*j]

There is also a shortcut for the conjugate transpose, or “Hermitian transpose”:
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sage: M.H #␣
→˓needs sage.rings.number_field
[-j + 1 0]
[ 1 -2*j]

Conjugates work (trivially) for matrices over rings that embed canonically into the real numbers:

sage: M = random_matrix(ZZ, 2)
sage: M == M.conjugate()
True
sage: M = random_matrix(QQ, 3)
sage: M == M.conjugate()
True
sage: M = random_matrix(RR, 2)
sage: M == M.conjugate()
True

conjugate_transpose()

Return the transpose of self after each entry has been converted to its complex conjugate.

Note

This function is sometimes known as the “adjoint” of a matrix, though there is substantial variation and
some confusion with the use of that term.

OUTPUT:

A matrix formed by taking the complex conjugate of every entry of self and then transposing the resulting
matrix.

Complex conjugation is implemented for many subfields of the complex numbers. See the examples below,
or more at conjugate().

EXAMPLES:

sage: M = matrix(SR, 2, 2, [[2-I, 3+4*I], [9-6*I, 5*I]]) #␣
→˓needs sage.symbolic
sage: M.base_ring() #␣
→˓needs sage.symbolic
Symbolic Ring
sage: M.conjugate_transpose() #␣
→˓needs sage.symbolic
[ I + 2 6*I + 9]
[-4*I + 3 -5*I]

sage: # needs sage.rings.real_mpfr sage.symbolic
sage: P = matrix(CC, 3, 2, [0.95-0.63*I, 0.84+0.13*I,
....: 0.94+0.23*I, 0.23+0.59*I,
....: 0.52-0.41*I, -0.50+0.90*I])
sage: P.base_ring()
Complex Field with 53 bits of precision
sage: P.conjugate_transpose()
[ 0.950... + 0.630...*I 0.940... - 0.230...*I 0.520... + 0.410...*I]
[ 0.840... - 0.130...*I 0.230... - 0.590...*I -0.500... - 0.900...*I]

There is also a shortcut for the conjugate transpose, or “Hermitian transpose”:
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sage: M.H #␣
→˓needs sage.symbolic
[ I + 2 6*I + 9]
[-4*I + 3 -5*I]

Matrices over base rings that can be embedded in the real numbers will behave as expected.

sage: P = random_matrix(QQ, 3, 4)
sage: P.conjugate_transpose() == P.transpose()
True

The conjugate of a matrix is formed by taking conjugates of all the entries. Some specialized subfields of the
complex numbers are implemented in Sage and complex conjugation can be applied. (Matrices over quadratic
number fields are another class of examples.)

sage: # needs sage.rings.number_field
sage: C = CyclotomicField(5)
sage: a = C.gen(); a
zeta5
sage: CC(a)
0.309016994374947 + 0.951056516295154*I
sage: M = matrix(C, 1, 2, [a^2, a+a^3])
sage: M.conjugate_transpose()
[ zeta5^3]
[-zeta5^3 - zeta5 - 1]

Furthermore, this method can be applied to matrices over quadratic extensions of finite fields:

sage: F.<a> = GF(9,�a�) #␣
→˓needs sage.rings.finite_rings
sage: N = matrix(F, 2, [0,a,-a,1]); N #␣
→˓needs sage.rings.finite_rings
[ 0 a]
[2*a 1]
sage: N.conjugate_transpose() #␣
→˓needs sage.rings.finite_rings
[ 0 a + 2]
[2*a + 1 1]

Conjugation does not make sense over rings not containing complex numbers or finite fields which are not a
quadratic extension:

sage: N = matrix(GF(5), 2, [0,1,2,3])
sage: N.conjugate_transpose()
Traceback (most recent call last):
...
AttributeError: �sage.rings.finite_rings.integer_mod.IntegerMod_int� object
has no attribute �conjugate�...

cyclic_subspace(v, var=None, basis='echelon')
Create a cyclic subspace for a vector, and optionally, a minimal polynomial for the iterated powers.

These subspaces are also known as Krylov subspaces. They are spanned by the vectors

{𝑣,𝐴𝑣,𝐴2𝑣,𝐴3𝑣, . . . }

INPUT:
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• self – a square matrix with entries from a field

• v – a vector with a degree equal to the size of the matrix and entries compatible with the entries of the
matrix

• var – (default: None) if specified as a string or a generator of a polynomial ring, then this will be
used to construct a polynomial reflecting a relation of linear dependence on the powers𝐴𝑖𝑣 and this will
cause the polynomial to be returned along with the subspace. A generator must create polynomials with
coefficients from the same field as the matrix entries.

• basis – (default: echelon) the basis for the subspace is “echelonized” by default, but the key-
word ‘iterates’ will return a subspace with a user basis equal to the largest linearly independent set
{𝑣,𝐴𝑣,𝐴2𝑣,𝐴3𝑣, . . . , 𝐴𝑘−1𝑣}.

OUTPUT:

Suppose 𝑘 is the smallest power such that {𝑣,𝐴𝑣,𝐴2𝑣,𝐴3𝑣, . . . , 𝐴𝑘𝑣} is linearly dependent. Then the
subspace returned will have dimension 𝑘 and be spanned by the powers 0 through 𝑘 − 1.

If a polynomial is requested through the use of the var keyword, then a pair is returned, with the polynomial
first and the subspace second. The polynomial is the unique monic polynomial whose coefficients provide a
relation of linear dependence on the first 𝑘 powers.

For less convenient, but more flexible output, see the helper method “_cyclic_subspace” in this module.

EXAMPLES:

sage: A = matrix(QQ, [[5,4,2,1],[0,1,-1,-1],[-1,-1,3,0],[1,1,-1,2]])
sage: v = vector(QQ, [0,1,0,0])
sage: E = A.cyclic_subspace(v); E
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 0 1 -1]
sage: F = A.cyclic_subspace(v, basis=�iterates�); F
Vector space of degree 4 and dimension 3 over Rational Field
User basis matrix:
[ 0 1 0 0]
[ 4 1 -1 1]
[23 1 -8 8]
sage: E == F
True
sage: p, S = A.cyclic_subspace(v, var=�T�); p
T^3 - 9*T^2 + 24*T - 16
sage: p.degree() == E.dimension()
True

The polynomial has coefficients that yield a non-trivial relation of linear dependence on the iterates. Or,
equivalently, evaluating the polynomial with the matrix will create a matrix that annihilates the vector.

sage: A = matrix(QQ, [[15, 37/3, -16, -104/3, -29, -7/3, 35, 2/3, -29/3, -1/
→˓3],
....: [ 2, 9, -1, -6, -6, 0, 7, 0, -2, 0],
....: [24, 74/3, -29, -208/3, -58, -14/3, 70, 4/3, -58/3, -2/
→˓3],
....: [-6, -19, 3, 21, 19, 0, -21, 0, 6, 0],
....: [2, 6, -1, -6, -3, 0, 7, 0, -2, 0],
....: [-96, -296/3, 128, 832/3, 232, 65/3, -279, -16/3, 232/3,
→˓ 8/3],

(continues on next page)
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....: [0, 0, 0, 0, 0, 0, 3, 0, 0, 0],

....: [20, 26/3, -30, -199/3, -42, -14/3, 70, 13/3, -55/3, -2/
→˓3],
....: [18, 57, -9, -54, -57, 0, 63, 0, -15, 0],
....: [0, 0, 0, 0, 0, 0, 0, 0, 0, 3]])
sage: u = zero_vector(QQ, 10); u[0] = 1
sage: p, S = A.cyclic_subspace(u, var=�t�, basis=�iterates�)
sage: S
Vector space of degree 10 and dimension 3 over Rational Field
User basis matrix:
[ 1 0 0 0 0 0 0 0 0 0]
[ 15 2 24 -6 2 -96 0 20 18 0]
[ 79 12 140 -36 12 -560 0 116 108 0]
sage: p
t^3 - 9*t^2 + 27*t - 27
sage: k = p.degree()
sage: coeffs = p.list()
sage: iterates = S.basis() + [A^k*u]
sage: sum(coeffs[i]*iterates[i] for i in range(k+1))
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
sage: u in p(A).right_kernel()
True

decomposition(algorithm='spin', is_diagonalizable=False, dual=False)
Return the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x
goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be
sorted in the same way as the corresponding factors of the characteristic polynomial.

Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square.
This function computes maximal subspaces W_1, …, W_n corresponding to Galois conjugacy classes of
eigenvalues of A. More precisely, let 𝑓(𝑋) be the characteristic polynomial of A. This function computes the
subspace𝑊𝑖 = 𝑘𝑒𝑟(𝑔(𝐴)𝑛), where 𝑔𝑖(𝑋) is an irreducible factor of 𝑓(𝑋) and 𝑔𝑖(𝑋) exactly divides 𝑓(𝑋).
If the optional parameter is_diagonalizable is True, then we let 𝑊𝑖 = 𝑘𝑒𝑟(𝑔(𝐴)), since then we know that
𝑘𝑒𝑟(𝑔(𝐴)) = 𝑘𝑒𝑟(𝑔(𝐴)𝑛).

INPUT:

• self – a matrix

• algorithm – string (default: �spin�); �spin�: involves iterating the action of self on a vector.
�kernel�: naively just compute 𝑘𝑒𝑟(𝑓𝑖(𝐴)) for each factor 𝑓𝑖.

• dual – boolean (default: False); if True, also returns the corresponding decomposition of V under
the action of the transpose of A. The factors are guaranteed to correspond.

• is_diagonalizable – if the matrix is known to be diagonalizable, set this to True, which might
speed up the algorithm in some cases.

Note

If the base ring is not a field, the kernel algorithm is used.

OUTPUT:

• Sequence – list of pairs (V,t), where V is a vector spaces and t is a boolean, and t is True exactly
when the charpoly of self on V is irreducible.
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• (optional) list – list of pairs (W,t), where W is a vector space and t is a boolean, and t is True exactly
when the charpoly of the transpose of self on W is irreducible.

EXAMPLES:

sage: A = matrix(ZZ, 4, [3,4,5,6, 7,3,8,10, 14,5,6,7, 2,2,10,9])
sage: B = matrix(QQ, 6, 6, range(36))
sage: B*11
[ 0 11 22 33 44 55]
[ 66 77 88 99 110 121]
[132 143 154 165 176 187]
[198 209 220 231 242 253]
[264 275 286 297 308 319]
[330 341 352 363 374 385]
sage: A.decomposition() #␣
→˓needs sage.libs.pari
[ (Ambient free module of rank 4

over the principal ideal domain Integer Ring,
True) ]

sage: B.decomposition() #␣
→˓needs sage.libs.pari
[ (Vector space of degree 6 and dimension 2 over Rational Field

Basis matrix:
[ 1 0 -1 -2 -3 -4]
[ 0 1 2 3 4 5],

True),
(Vector space of degree 6 and dimension 4 over Rational Field
Basis matrix:
[ 1 0 0 0 -5 4]
[ 0 1 0 0 -4 3]
[ 0 0 1 0 -3 2]
[ 0 0 0 1 -2 1],

False) ]

decomposition_of_subspace(M , check_restrict=True, **kwds)
Suppose the right action of self on M leaves M invariant. Return the decomposition of M as a list of pairs
(W, is_irred) where is_irred is True if the charpoly of self acting on the factor W is irreducible.

Additional inputs besides M are passed onto the decomposition command.

INPUT:

• M – a subspace of the free module self acts on

• check_restrict – boolean (default: True); call restrict with or without check

• kwds – keywords that will be forwarded to decomposition()

EXAMPLES:

sage: # needs sage.libs.pari
sage: t = matrix(QQ, 3, [3, 0, -2, 0, -2, 0, 0, 0, 0]); t
[ 3 0 -2]
[ 0 -2 0]
[ 0 0 0]
sage: t.fcp(�X�) # factored charpoly
(X - 3) * X * (X + 2)
sage: v = kernel(t*(t+2)); v # an invariant subspace
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:

(continues on next page)
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[0 1 0]
[0 0 1]
sage: D = t.decomposition_of_subspace(v); D
[ (Vector space of degree 3 and dimension 1 over Rational Field

Basis matrix: [0 0 1],
True),

(Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix: [0 1 0],

True) ]
sage: t.restrict(D[0][0])
[0]
sage: t.restrict(D[1][0])
[-2]

We do a decomposition over ZZ:

sage: a = matrix(ZZ, 6, [0, 0, -2, 0, 2, 0,
....: 2, -4, -2, 0, 2, 0,
....: 0, 0, -2, -2, 0, 0,
....: 2, 0, -2, -4, 2, -2,
....: 0, 2, 0, -2, -2, 0,
....: 0, 2, 0, -2, 0, 0])
sage: a.decomposition_of_subspace(ZZ^6) #␣
→˓needs sage.libs.pari
[ (Free module of degree 6 and rank 2 over Integer Ring

Echelon basis matrix:
[ 1 0 1 -1 1 -1]
[ 0 1 0 -1 2 -1],

False),
(Free module of degree 6 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1 0 -1 0 1 0]
[ 0 1 0 0 0 0]
[ 0 0 0 1 0 0]
[ 0 0 0 0 0 1],

False) ]

denominator()

Return the least common multiple of the denominators of the elements of self.

If there is no denominator function for the base field, or no LCM function for the denominators, raise a
TypeError.

EXAMPLES:

sage: A = MatrixSpace(QQ, 2)([1/2, 1/3, 1/5, 1/7])
sage: A.denominator()
210

A trivial example:

sage: A = matrix(QQ, 0,2)
sage: A.denominator()
1

Denominators are not defined for real numbers:
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sage: A = MatrixSpace(RealField(),2)([1,2,3,4])
sage: A.denominator()
Traceback (most recent call last):
...
TypeError: denominator not defined for elements of the base ring

We can even compute the denominator of matrix over the fraction field of Z[𝑥].

sage: K.<x> = Frac(ZZ[�x�])
sage: A = MatrixSpace(K,2)([1/x, 2/(x+1), 1, 5/(x^3)])
sage: A.denominator()
x^4 + x^3

Here’s an example involving a cyclotomic field:

sage: # needs sage.rings.number_field
sage: K.<z> = CyclotomicField(3)
sage: M = MatrixSpace(K, 3, sparse=True)
sage: A = M([(1+z)/3, (2+z)/3, z/3, 1, 1+z, -2, 1, 5, -1+z])
sage: print(A)
[1/3*z + 1/3 1/3*z + 2/3 1/3*z]
[ 1 z + 1 -2]
[ 1 5 z - 1]
sage: print(A.denominator())
3

density()

Return the density of the matrix.

By density we understand the ratio of the number of nonzero positions and the self.nrows() * self.ncols(), i.e.
the number of possible nonzero positions.

EXAMPLES:

First, note that the density parameter does not ensure the density of a matrix, it is only an upper bound.

sage: A = random_matrix(GF(127), 200, 200, density=0.3)
sage: A.density() <= 0.3
True

sage: A = matrix(QQ, 3,3, [0,1,2,3,0,0,6,7,8])
sage: A.density()
2/3

sage: a = matrix([[],[],[],[]])
sage: a.density()
0

derivative(*args)
Derivative with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function
for more details.

EXAMPLES:
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sage: # needs sage.symbolic
sage: v = vector([1,x,x^2])
sage: v.derivative(x)
(0, 1, 2*x)
sage: type(v.derivative(x)) == type(v)
True
sage: v = vector([1,x,x^2], sparse=True)
sage: v.derivative(x)
(0, 1, 2*x)
sage: type(v.derivative(x)) == type(v)
True
sage: v.derivative(x,x)
(0, 0, 2)

det(*args, **kwds)
Synonym for self.determinant(…).

EXAMPLES:

sage: A = MatrixSpace(Integers(8), 3)([1,7,3, 1,1,1, 3,4,5])
sage: A.det()
6

determinant(algorithm=None)
Return the determinant of self.

ALGORITHM:

If the base ring has a method _matrix_determinant(), we call it.

Otherwise, for small matrices (n less than 4), this is computed using the naive formula. In the specific
case of matrices over the integers modulo a non-prime, the determinant of a lift is computed over the in-
tegers. In general, the characteristic polynomial is computed either using the Hessenberg form (specified by
�hessenberg�) or the generic division-free algorithm (specified by �df�). When the base ring is an exact
field, the default choice is �hessenberg�, otherwise it is �df�. Note that for matrices over most rings,
more sophisticated algorithms can be used. (Type A.determinant? to see what is done for a specific
matrix A.)

INPUT:

• algorithm – string; one of

– �df� – generic O(n^4) division-free algorithm

– �hessenberg� – use the Hessenberg form of the matrix

EXAMPLES:

sage: A = MatrixSpace(Integers(8), 3)([1,7,3, 1,1,1, 3,4,5])
sage: A.determinant()
6
sage: A.determinant() is A.determinant()
True
sage: A[0,0] = 10
sage: A.determinant()
7

We compute the determinant of the arbitrary 3x3 matrix:

189



Matrices and Spaces of Matrices, Release 10.5.rc0

sage: R = PolynomialRing(QQ, 9, �x�)
sage: A = matrix(R, 3, R.gens())
sage: A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: A.determinant()
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8

We create a matrix over Z[𝑥, 𝑦] and compute its determinant.

sage: R.<x,y> = PolynomialRing(IntegerRing(), 2)
sage: A = MatrixSpace(R,2)([x, y, x**2, y**2])
sage: A.determinant()
-x^2*y + x*y^2

A matrix over a non-domain:

sage: m = matrix(Integers(4), 2, [1,2,2,3])
sage: m.determinant()
3

diagonal()

Return the diagonal entries of self.

OUTPUT:

A list containing the entries of the matrix that have equal row and column indices, in order of the indices.
Behavior is not limited to square matrices.

EXAMPLES:

sage: A = matrix([[2,5], [3,7]]); A
[2 5]
[3 7]
sage: A.diagonal()
[2, 7]

Two rectangular matrices.

sage: B = matrix(3, 7, range(21)); B
[ 0 1 2 3 4 5 6]
[ 7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
sage: B.diagonal()
[0, 8, 16]

sage: C = matrix(3, 2, range(6)); C
[0 1]
[2 3]
[4 5]
sage: C.diagonal()
[0, 3]

Empty matrices behave properly.

sage: E = matrix(0, 5, []); E
[]

(continues on next page)
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sage: E.diagonal()
[]

diagonalization(base_field=None)
Return a diagonal matrix similar to self along with the transformation matrix.

INPUT:

• base_field – if given, self is regarded as a matrix over it

OUTPUT: a diagonal matrix𝐷 and an invertible matrix 𝑃 such that 𝑃−1𝐴𝑃 = 𝐷, if self is a diagonaliz-
able matrix 𝐴.

EXAMPLES:

sage: # needs sage.libs.pari
sage: A = matrix(QQ, 4, [-4, 6, 3, 3, -3, 5, 3, 3, 3, -6, -4, -3, -3, 6, 3,␣
→˓2])
sage: A
[-4 6 3 3]
[-3 5 3 3]
[ 3 -6 -4 -3]
[-3 6 3 2]
sage: A.is_diagonalizable()
True
sage: A.diagonalization()
(
[ 2 0 0 0] [ 1 1 0 0]
[ 0 -1 0 0] [ 1 0 1 0]
[ 0 0 -1 0] [-1 0 0 1]
[ 0 0 0 -1], [ 1 1 -2 -1]
)
sage: D, P = A.diagonalization()
sage: P^-1*A*P == D
True

sage: # needs sage.libs.pari
sage: A = matrix(QQ, 2, [0, 2, 1, 0])
sage: A.is_diagonalizable()
False
sage: A.is_diagonalizable(QQbar) #␣
→˓needs sage.rings.number_field
True
sage: D, P = A.diagonalization(QQbar) #␣
→˓needs sage.rings.number_field
sage: P^-1*A*P == D #␣
→˓needs sage.rings.number_field
True

Matrices may fail to be diagonalizable for various reasons:

sage: A = matrix(QQ, 2, [1,2,3, 4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.diagonalization()
Traceback (most recent call last):
...
TypeError: not a square matrix

(continues on next page)
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sage: B = matrix(ZZ, 2, [1, 2, 3, 4]); B
[1 2]
[3 4]
sage: B.diagonalization()
Traceback (most recent call last):
...
ValueError: matrix entries must be from a field

sage: C = matrix(RR, 2, [1., 2., 3., 4.]); C
[1.00000000000000 2.00000000000000]
[3.00000000000000 4.00000000000000]
sage: C.diagonalization()
Traceback (most recent call last):
...
ValueError: base field must be exact,
but Real Field with 53 bits of precision is not

sage: D = matrix(QQ, 2, [0, 2, 1, 0]); D
[0 2]
[1 0]
sage: D.diagonalization() #␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: not diagonalizable over Rational Field

sage: E = matrix(QQ, 2, [3, 1, 0, 3]); E
[3 1]
[0 3]
sage: E.diagonalization() #␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: not diagonalizable
sage: E.jordan_form() #␣
→˓needs sage.combinat sage.libs.pari
[3 1]
[0 3]

echelon_form(algorithm='default', cutoff=0, **kwds)
Return the echelon form of self.

Note

This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the
integers). If you want to calculate the echelon form using division, then use rref(), which assumes that
the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

• algorithm – string. Which algorithm to use. Choices are

– �default�: Let Sage choose an algorithm (default).

– �classical�: Gauss elimination.
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– �partial_pivoting�: Gauss elimination, using partial pivoting (if base ring has absolute
value)

– �scaled_partial_pivoting� – Gauss elimination, using scaled partial pivoting (if base
ring has absolute value)

– �scaled_partial_pivoting_valuation�: Gauss elimination, using scaled partial piv-
oting (if base ring has valuation)

– �strassen�: use a Strassen divide and conquer algorithm (if available)

• cutoff – integer; only used if the Strassen algorithm is selected

• transformation – boolean; whether to also return the transformation matrix. Some matrix back-
ends do not provide this information, in which case this option is ignored.

OUTPUT:

The reduced row echelon form of self, as an immutable matrix. Note that self is not changed by this
command. Use echelonize() to change self in place.

If the optional parameter transformation=True is specified, the output consists of a pair (𝐸, 𝑇 ) of
matrices where 𝐸 is the echelon form of self and 𝑇 is the transformation matrix.

EXAMPLES:

sage: MS = MatrixSpace(GF(19), 2, 3)
sage: C = MS.matrix([1,2,3,4,5,6])
sage: C.rank()
2
sage: C.nullity()
0
sage: C.echelon_form()
[ 1 0 18]
[ 0 1 2]

The matrix library used for Z/𝑝-matrices does not return the transformation matrix, so the transforma-
tion option is ignored:

sage: C.echelon_form(transformation=True)
[ 1 0 18]
[ 0 1 2]

sage: D = matrix(ZZ, 2, 3, [1,2,3,4,5,6])
sage: D.echelon_form(transformation=True)
(
[1 2 3] [ 1 0]
[0 3 6], [ 4 -1]
)
sage: E, T = D.echelon_form(transformation=True)
sage: T*D == E
True

echelonize(algorithm='default', cutoff=0, **kwds)
Transform self into a matrix in echelon form over the same base ring as self.

Note

This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the
integers). If you want to calculate the echelon form using division, then use rref(), which assumes that
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the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

• algorithm – string. Which algorithm to use. Choices are

– �default�: Let Sage choose an algorithm (default).

– �classical�: Gauss elimination.

– �partial_pivoting�: Gauss elimination, using partial pivoting (if base ring has absolute
value)

– �scaled_partial_pivoting�: Gauss elimination, using scaled partial pivoting (if base ring
has absolute value)

– �scaled_partial_pivoting_valuation�: Gauss elimination, using scaled partial piv-
oting (if base ring has valuation)

– �strassen�: use a Strassen divide and conquer algorithm (if available)

• cutoff – integer; only used if the Strassen algorithm is selected

• transformation – boolean; whether to also return the transformation matrix. Some matrix back-
ends do not provide this information, in which case this option is ignored.

OUTPUT:

The matrix self is put into echelon form. Nothing is returned unless the keyword option transforma-
tion=True is specified, in which case the transformation matrix is returned.

EXAMPLES:

sage: a = matrix(QQ, 3,3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.echelonize()
sage: a
[ 1 0 -1]
[ 0 1 2]
[ 0 0 0]

An immutable matrix cannot be transformed into echelon form. Use self.echelon_form() instead:

sage: a = matrix(QQ, 3,3, range(9)); a.set_immutable()
sage: a.echelonize()
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).
sage: a.echelon_form()
[ 1 0 -1]
[ 0 1 2]
[ 0 0 0]

Echelon form over the integers is what is also classically often known as Hermite normal form:

sage: a = matrix(ZZ, 3,3, range(9))
sage: a.echelonize(); a

(continues on next page)
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[ 3 0 -3]
[ 0 1 2]
[ 0 0 0]

We compute an echelon form both over a domain and fraction field:

sage: R.<x,y> = QQ[]
sage: a = matrix(R, 2, [x,y, x,y])
sage: a.echelon_form() # not very useful? -- why two copies of␣
→˓the same row? # needs sage.rings.function_field
[x y]
[x y]

sage: b = a.change_ring(R.fraction_field())
sage: b.echelon_form() # potentially useful
[ 1 y/x]
[ 0 0]

We check that the echelon form works for matrices over 𝑝-adics. See Issue #17272:

sage: # needs sage.rings.padics
sage: R = ZpCA(5,5,print_mode=�val-unit�)
sage: A = matrix(R, 3,3, [250,2369,1147, 106,927,362, 90,398,2483])
sage: A
[5^3 * 2 + O(5^5) 2369 + O(5^5) 1147 + O(5^5)]
[ 106 + O(5^5) 927 + O(5^5) 362 + O(5^5)]
[ 5 * 18 + O(5^5) 398 + O(5^5) 2483 + O(5^5)]
sage: K = R.fraction_field()
sage: A.change_ring(K).augment(identity_matrix(K,3)).echelon_form()
[ 1 + O(5^5) O(5^5) O(5^5) 5 * 212 + O(5^5) 3031␣
→˓+ O(5^5) 2201 + O(5^5)]
[ O(5^5) 1 + O(5^5) O(5^5) 1348 + O(5^5) 5 * 306␣
→˓+ O(5^5) 2648 + O(5^5)]
[ O(5^5) O(5^5) 1 + O(5^5) 1987 + O(5^5) 5 * 263␣
→˓+ O(5^5) 154 + O(5^5)]

Echelon form is not defined over arbitrary rings:

sage: a = matrix(Integers(9), 3,3, range(9))
sage: a.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 9�.

Involving a sparse matrix:

sage: m = matrix(3,[1, 1, 1, 1, 0, 2, 1, 2, 0], sparse=True); m
[1 1 1]
[1 0 2]
[1 2 0]
sage: m.echelon_form()
[ 1 0 2]
[ 0 1 -1]
[ 0 0 0]
sage: m.echelonize(); m

(continues on next page)
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[ 1 0 2]
[ 0 1 -1]
[ 0 0 0]

The transformation matrix is optionally returned:

sage: m_original = m
sage: transformation_matrix = m.echelonize(transformation=True)
sage: m == transformation_matrix * m_original
True

eigenmatrix_left(other=None)

Return matrices𝐷 and 𝑃 , where𝐷 is a diagonal matrix of eigenvalues and the rows of 𝑃 are corresponding
eigenvectors (or zero vectors).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

OUTPUT:

If self is a square matrix 𝐴, then the output is a diagonal matrix 𝐷 and a matrix 𝑃 such that

𝑃𝐴 = 𝐷𝑃,

where the rows of 𝑃 are eigenvectors of 𝐴 and the diagonal entries of 𝐷 are the corresponding eigenvalues.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝑃𝐴 = 𝐷𝑃𝐵.

The ordinary eigenvalue problem is equivalent to the generalized one if 𝐵 is the identity matrix.

The generalized eigenvector decomposition is currently only implemented for matrices over RDF and CDF.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_left()
sage: D
[ 0 0 0]
[ 0 -1.348469228349535? 0]
[ 0 0 13.34846922834954?]
sage: P
[ 1 -2 1]
[ 1 0.3101020514433644? -0.3797958971132713?]
[ 1 1.289897948556636? 1.579795897113272?]
sage: P*A == D*P
True

Because 𝑃 is invertible, 𝐴 is diagonalizable.
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sage: A == (~P)*D*P #␣
→˓needs sage.rings.number_field
True

The matrix 𝑃 may contain zero rows corresponding to eigenvalues for which the algebraic multiplicity is
greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

sage: # needs sage.rings.number_field
sage: A = jordan_block(2, 3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: D, P = A.eigenmatrix_left()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[0 0 1]
[0 0 0]
[0 0 0]
sage: P*A == D*P
True

A generalized eigenvector decomposition:

sage: # needs scipy
sage: A = matrix(RDF, [[1, -2], [3, 4]])
sage: B = matrix(RDF, [[0, 7], [2, -3]])
sage: D, P = A.eigenmatrix_left(B)
sage: (P * A - D * P * B).norm() < 1e-14
True

The matrix 𝐵 in a generalized eigenvalue problem may be singular:

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: A = matrix.identity(CDF, 2)
sage: B = matrix(CDF, [[2, 1+I], [4, 2+2*I]])
sage: D, P = A.eigenmatrix_left(B)
sage: D.diagonal() # tol 1e-14
[0.2 - 0.1*I, +infinity]

In this case, we can still verify the eigenvector equation for the first eigenvalue and first eigenvector:

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: l = D[0, 0]
sage: v = P[0, :]
sage: (v * A - l * v * B).norm() < 1e-14
True

The second eigenvector is contained in the left kernel of 𝐵:

sage: (P[1, :] * B).norm() < 1e-14 #␣
→˓needs scipy sage.rings.complex_double sage.symbolic
True
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See also

eigenvalues(), eigenvectors_left(), Matrix_double_dense.
eigenvectors_left(), eigenmatrix_right().

eigenmatrix_right(other=None)
Return matrices𝐷 and 𝑃 , where𝐷 is a diagonal matrix of eigenvalues and the columns of 𝑃 are correspond-
ing eigenvectors (or zero vectors).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

OUTPUT:

If self is a square matrix 𝐴, then the output is a diagonal matrix 𝐷 and a matrix 𝑃 such that

𝐴𝑃 = 𝑃𝐷,

where the columns of𝑃 are eigenvectors of𝐴 and the diagonal entries of𝐷 are the corresponding eigenvalues.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝐴𝑃 = 𝐵𝑃𝐷.

The ordinary eigenvalue problem is equivalent to the generalized one if 𝐵 is the identity matrix.

The generalized eigenvector decomposition is currently only implemented for matrices over RDF and CDF.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_right()
sage: D
[ 0 0 0]
[ 0 -1.348469228349535? 0]
[ 0 0 13.34846922834954?]
sage: P
[ 1 1 1]
[ -2 0.1303061543300932? 3.069693845669907?]
[ 1 -0.7393876913398137? 5.139387691339814?]
sage: A*P == P*D
True

Because 𝑃 is invertible, 𝐴 is diagonalizable.

sage: A == P*D*(~P) #␣
→˓needs sage.rings.number_field
True

The matrix 𝑃 may contain zero columns corresponding to eigenvalues for which the algebraic multiplicity is
greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.
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sage: # needs sage.rings.number_field
sage: A = jordan_block(2, 3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: D, P = A.eigenmatrix_right()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[1 0 0]
[0 0 0]
[0 0 0]
sage: A*P == P*D
True

A generalized eigenvector decomposition:

sage: # needs scipy
sage: A = matrix(RDF, [[1, -2], [3, 4]])
sage: B = matrix(RDF, [[0, 7], [2, -3]])
sage: D, P = A.eigenmatrix_right(B)
sage: (A * P - B * P * D).norm() < 1e-14
True

The matrix 𝐵 in a generalized eigenvalue problem may be singular:

sage: # needs scipy
sage: A = matrix.identity(RDF, 2)
sage: B = matrix(RDF, [[3, 5], [6, 10]])
sage: D, P = A.eigenmatrix_right(B); D # tol 1e-14
[0.07692307692307694 0.0]
[ 0.0 +infinity]

In this case, we can still verify the eigenvector equation for the first eigenvalue and first eigenvector:

sage: # needs scipy
sage: l = D[0, 0]
sage: v = P[:, 0]
sage: (A * v - B * v * l).norm() < 1e-14
True

The second eigenvector is contained in the right kernel of 𝐵:

sage: (B * P[:, 1]).norm() < 1e-14 #␣
→˓needs scipy
True

See also

eigenvalues(), eigenvectors_right(), Matrix_double_dense.
eigenvectors_right(), eigenmatrix_left().

eigenspaces_left(format='all', var='a', algebraic_multiplicity=False)
Compute the left eigenspaces of a matrix.
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Note that eigenspaces_left() and left_eigenspaces() are identical methods. Here “left”
refers to the eigenvectors being placed to the left of the matrix.

INPUT:

• self – a square matrix over an exact field. For inexact matrices consult the numerical or symbolic
matrix classes

• format – one of:

– �all� – attempts to create every eigenspace. This will always be possible for matrices with rational
entries

– �galois� – for each irreducible factor of the characteristic polynomial, a single eigenspace will
be output for a single root/eigenvalue for the irreducible factor

– None – default; uses the �all� format if the base ring is contained in an algebraically closed field
which is implemented. Otherwise, uses the �galois� format.

• var – string (default: �a�); variable name used to represent elements of the root field of each irreducible
factor of the characteristic polynomial. If var=�a�, then the root fields will be in terms of a0, a1,
a2, ..., where the numbering runs across all the irreducible factors of the characteristic polynomial,
even for linear factors.

• algebraic_multiplicity – boolean (default: False); whether to include the algebraic multi-
plicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (𝑒, 𝑉 ) where 𝑒 is an eigenvalue of the
matrix, and 𝑉 is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just
one representative eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (𝑒, 𝑉, 𝑛) where 𝑒 and 𝑉 are as above and
𝑛 is the algebraic multiplicity of the eigenvalue.

Warning

Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels
directly over the extension field).

EXAMPLES:

We compute the left eigenspaces of a 3× 3 rational matrix. First, we request �all� of the eigenvalues, so
the results are in the field of algebraic numbers, QQbar. Then we request just one eigenspace per irreducible
factor of the characteristic polynomial with format=�galois�.

sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenspaces_left(format=�all�); es #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(-1.348469228349535?,
Vector space of degree 3 and dimension 1 over Algebraic Field

(continues on next page)
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User basis matrix:
[ 1 0.3101020514433644? -0.3797958971132713?]),

(13.34846922834954?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 1.289897948556636? 1.579795897113272?]) ]

sage: # needs sage.rings.number_field
sage: es = A.eigenspaces_left(format=�galois�); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5]) ]

sage: es = A.eigenspaces_left(format=�galois�,
....: algebraic_multiplicity=True); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1],

1),
(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5],

1) ]
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = e*v - v*A
sage: abs(abs(delta)) < 1e-10
True

The same computation, but with implicit base change to a field.

sage: A = matrix(ZZ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_left(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5]) ]

We compute the left eigenspaces of the matrix of the Hecke operator 𝑇2 on level 43 modular symbols, both
with all eigenvalues (the default) and with one subspace per factor.
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sage: # needs sage.modular
sage: A = ModularSymbols(43).T(2).matrix(); A
[ 3 0 0 0 0 0 -1]
[ 0 -2 1 0 0 0 0]
[ 0 -1 1 1 0 -1 0]
[ 0 -1 0 -1 2 -1 1]
[ 0 -1 0 1 1 -1 1]
[ 0 0 -2 0 2 -2 1]
[ 0 0 -1 0 1 0 -1]
sage: A.base_ring()
Rational Field
sage: f = A.charpoly(); f
x^7 + x^6 - 12*x^5 - 16*x^4 + 36*x^3 + 52*x^2 - 32*x - 48
sage: factor(f)
(x - 3) * (x + 2)^2 * (x^2 - 2)^2
sage: A.eigenspaces_left(algebraic_multiplicity=True)
[ (3,

Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7 0 -1/7 0 -2/7],

1),
(-2,
Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ 0 1 0 1 -1 1 -1]
[ 0 0 1 0 -1 2 -1],

2),
(-1.414213562373095?,
Vector space of degree 7 and dimension 2 over Algebraic Field
User basis matrix:
[ 0 1 0 ␣

→˓ -1 0.4142135623730951? 1 -1]
[ 0 0 1 ␣

→˓ 0 -1 0 2.414213562373095?],
2),

(1.414213562373095?,
Vector space of degree 7 and dimension 2 over Algebraic Field
User basis matrix:
[ 0 1 0 ␣

→˓ -1 -2.414213562373095? 1 -1]
[ 0 0 1 ␣

→˓ 0 -1 0 -0.4142135623730951?],
2) ]

sage: A.eigenspaces_left(format=�galois�, algebraic_multiplicity=True)
[ (3,

Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7 0 -1/7 0 -2/7],

1),
(-2,
Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ 0 1 0 1 -1 1 -1]
[ 0 0 1 0 -1 2 -1],

2),
(a2,
Vector space of degree 7 and dimension 2

(continues on next page)
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over Number Field in a2 with defining polynomial x^2 - 2
User basis matrix:
[ 0 1 0 -1 -a2 - 1 1 -1]
[ 0 0 1 0 -1 0 -a2 + 1],

2) ]

Next we compute the left eigenspaces over the finite field of order 11.

sage: # needs sage.modular sage.rings.finite_rings
sage: A = ModularSymbols(43, base_ring=GF(11), sign=1).T(2).matrix(); A
[ 3 0 9 0]
[ 0 9 0 10]
[ 0 0 10 1]
[ 0 0 1 1]
sage: A.base_ring()
Finite Field of size 11
sage: A.charpoly()
x^4 + 10*x^3 + 3*x^2 + 2*x + 1
sage: A.eigenspaces_left(format=�galois�, var=�beta�)
[ (9,

Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix: [0 1 5 6]),

(3, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix: [1 0 1 6]),

(beta2, Vector space of degree 4 and dimension 1
over Univariate Quotient Polynomial Ring in beta2
over Finite Field of size 11 with modulus x^2 + 9

User basis matrix: [ 0 0 1 beta2 + 1])
]

This method is only applicable to exact matrices. The “eigenmatrix” routines for matrices with
double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return
eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also
“eigenmatrix” routines for matrices with symbolic entries.

sage: A = matrix(QQ, 3, 3, range(9))
sage: A.change_ring(RR).eigenspaces_left()
Traceback (most recent call last):
...
NotImplementedError: eigenspaces cannot be computed reliably
for inexact rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options

sage: # needs scipy
sage: em = A.change_ring(RDF).eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522 0.0 0.0]
[ 0.0 -1.348469228349534 0.0]
[ 0.0 0.0 0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.440242867... 0.567868371... 0.695493875...]
[ 0.897878732... 0.278434036... -0.341010658...]
[ 0.408248290... -0.816496580... 0.408248290...]

sage: # needs sage.symbolic
sage: x, y = var(�x y�)

(continues on next page)
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sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2) ␣
→˓ 0]
[ 0 3/2*x^2 + 1/2*x + 1/
→˓2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
[ 1 1/2*(3*x^2 - x -␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
[ 1 1/2*(3*x^2 - x +␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]

A request for �all� the eigenvalues, when it is not possible, will raise an error. Using the �galois�
format option is more likely to be successful.

sage: # needs sage.rings.finite_rings
sage: F.<b> = FiniteField(11^2)
sage: A = matrix(F, [[b + 1, b + 1], [10*b + 4, 5*b + 4]])
sage: A.eigenspaces_left(format=�all�) #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: unable to construct eigenspaces for eigenvalues outside␣
→˓the base field,
try the keyword option: format=�galois�
sage: A.eigenspaces_left(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (a0,

Vector space of degree 2 and dimension 1 over
Univariate Quotient Polynomial Ring in a0 over
Finite Field in b of size 11^2
with modulus x^2 + (5*b + 6)*x + 8*b + 10
User basis matrix:
[ 1 6*b*a0 + 3*b + 1]) ]

eigenspaces_right(format='all', var='a', algebraic_multiplicity=False)
Compute the right eigenspaces of a matrix.

Note that eigenspaces_right() and right_eigenspaces() are identical methods. Here “right”
refers to the eigenvectors being placed to the right of the matrix.

INPUT:

• self – a square matrix over an exact field. For inexact matrices consult the numerical or symbolic
matrix classes

• format – (default: None)

– �all� – attempts to create every eigenspace. This will always be possible for matrices with rational
entries

– �galois� – for each irreducible factor of the characteristic polynomial, a single eigenspace will
be output for a single root/eigenvalue for the irreducible factor

– None – uses the ‘all’ format if the base ring is contained in an algebraically closed field which is
implemented. Otherwise, uses the ‘galois’ format.
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• var – (default: �a�) variable name used to represent elements of the root field of each irreducible factor
of the characteristic polynomial. If var=’a’, then the root fields will be in terms of a0, a1, a2, …., where
the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear
factors.

• algebraic_multiplicity – (default: False) whether or not to include the algebraicmultiplicity
of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is
the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative
eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic
multiplicity of the eigenvalue.

Warning

Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels
directly over the extension field).

EXAMPLES:

Right eigenspaces are computed from the left eigenspaces of the transpose of the matrix. As such, there is a
greater collection of illustrative examples at the eigenspaces_left().

We compute the right eigenspaces of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right()
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(-1.348469228349535?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 0.1303061543300932? -0.7393876913398137?]),

(13.34846922834954?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 3.069693845669907? 5.139387691339814?]) ]

sage: es = A.eigenspaces_right(format=�galois�); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5]) ]

sage: es = A.eigenspaces_right(format=�galois�,
(continues on next page)
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....: algebraic_multiplicity=True); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1],

1),
(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5],

1) ]
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = v*e - A*v
sage: abs(abs(delta)) < 1e-10
True

The same computation, but with implicit base change to a field:

sage: A = matrix(ZZ, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5]) ]

This method is only applicable to exact matrices. The “eigenmatrix” routines for matrices with
double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return
eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also
“eigenmatrix” routines for matrices with symbolic entries.

sage: B = matrix(RR, 3, 3, range(9))
sage: B.eigenspaces_right()
Traceback (most recent call last):
...
NotImplementedError: eigenspaces cannot be computed reliably
for inexact rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options

sage: # needs scipy
sage: em = B.change_ring(RDF).eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522 0.0 0.0]
[ 0.0 -1.348469228349534 0.0]
[ 0.0 0.0 0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.164763817... 0.799699663... 0.408248290...]

(continues on next page)
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[ 0.505774475... 0.104205787... -0.816496580...]
[ 0.846785134... -0.591288087... 0.408248290...]

sage: # needs sage.symbolic
sage: x, y = var(�x y�)
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2) ␣
→˓ 0]
[ 0 3/2*x^2 + 1/2*x + 1/
→˓2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
[ 1 ␣
→˓ 1]
[1/2*(3*x^2 - x - sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y 1/2*(3*x^2 - x +␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]

eigenvalue_multiplicity(s)
Return the multiplicity of s as a generalized eigenvalue of the matrix.

EXAMPLES:

sage: M = Matrix(QQ, [[0,1],[0,0]])
sage: M.eigenvalue_multiplicity(0)
2
sage: M.eigenvalue_multiplicity(1)
0

sage: M = posets.DiamondPoset(5).coxeter_transformation() #␣
→˓needs sage.graphs sage.libs.flint
sage: [M.eigenvalue_multiplicity(x) for x in [-1, 1]] #␣
→˓needs sage.graphs sage.libs.flint
[3, 2]

eigenvalues(extend=True)
Return a sequence of the eigenvalues of a matrix, with multiplicity. If the eigenvalues are roots of polynomials
in QQ, then QQbar elements are returned that represent each separate root.

If the option extend is set to False, only eigenvalues in the base ring are considered.

EXAMPLES:

sage: a = matrix(ZZ, 4, range(16)); a
[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
sage: sorted(a.eigenvalues(), reverse=True) #␣
→˓needs sage.rings.number_field
[32.46424919657298?, 0, 0, -2.464249196572981?]

sage: a = matrix([(1, 9, -1, -1),
....: (-2, 0, -10, 2),
....: (-1, 0, 15, -2),
....: (0, 1, 0, -1)])
sage: a.eigenvalues() #␣

(continues on next page)
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→˓needs sage.rings.number_field
[-0.9386318578049146?,
15.50655435353258?,
0.2160387521361705? - 4.713151979747493?*I,
0.2160387521361705? + 4.713151979747493?*I]

A symmetric matrix a + a.transpose() should have real eigenvalues

sage: b = a + a.transpose()
sage: ev = b.eigenvalues(); ev #␣
→˓needs sage.rings.number_field
[-8.35066086057957?, -1.107247901349379?,
5.718651326708515?, 33.73925743522043?]

The eigenvalues are elements of QQbar, so they really represent exact roots of polynomials, not just approx-
imations.

sage: e = ev[0]; e #␣
→˓needs sage.rings.number_field
-8.35066086057957?
sage: p = e.minpoly(); p #␣
→˓needs sage.rings.number_field
x^4 - 30*x^3 - 171*x^2 + 1460*x + 1784
sage: p(e) == 0 #␣
→˓needs sage.rings.number_field
True

To perform computations on the eigenvalue as an element of a number field, you can always convert back to
a number field element.

sage: e.as_number_field_element() #␣
→˓needs sage.rings.number_field
(Number Field in a

with defining polynomial y^4 - 2*y^3 - 507*y^2 - 3972*y - 4264,
a + 7,
Ring morphism:

From: Number Field in a with defining polynomial y^4 - 2*y^3 - 507*y^2 -␣
→˓3972*y - 4264

To: Algebraic Real Field
Defn: a |--> -15.35066086057957?)

Notice the effect of the extend option.

sage: M = matrix(QQ, [[0,-1,0], [1,0,0], [0,0,2]])
sage: M.eigenvalues() #␣
→˓needs sage.rings.number_field
[2, -1*I, 1*I]
sage: M.eigenvalues(extend=False) #␣
→˓needs sage.libs.pari
[2]

The method also works for matrices over finite fields:

sage: M = matrix(GF(3), [[0,1,1], [1,2,0], [2,0,1]])
sage: ev = sorted(M.eigenvalues()); ev #␣
→˓needs sage.rings.finite_rings
[2*z3, 2*z3 + 1, 2*z3 + 2]
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Similarly as in the case of QQbar, the eigenvalues belong to some algebraic closure but they can be converted
to elements of a finite field:

sage: e = ev[0] #␣
→˓needs sage.rings.finite_rings
sage: e.parent() #␣
→˓needs sage.rings.finite_rings
Algebraic closure of Finite Field of size 3
sage: e.as_finite_field_element() #␣
→˓needs sage.rings.finite_rings
(Finite Field in z3 of size 3^3,
2*z3,
Ring morphism:

From: Finite Field in z3 of size 3^3
To: Algebraic closure of Finite Field of size 3
Defn: z3 |--> z3)

eigenvectors_left(other=None, extend=True)
Compute the left eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

• extend – boolean (default: True)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvec-
tors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

If the option extend is set to False, then only the eigenvalues that live in the base ring are considered.

EXAMPLES:

We compute the left eigenvectors of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(0, [ (1, -2, 1) ], 1),
(-1.348469228349535?, [(1, 0.3101020514433644?, -0.3797958971132713?)], 1),
(13.34846922834954?, [(1, 1.289897948556636?, 1.579795897113272?)], 1)]

sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: abs(abs(delta)) < 1e-10
True

Notice the difference between considering ring extensions or not.

sage: M = matrix(QQ, [[0,-1,0], [1,0,0], [0,0,2]])
sage: M.eigenvectors_left() #␣
→˓needs sage.rings.number_field
[(2, [ (0, 0, 1) ], 1),
(-1*I, [(1, -1*I, 0)], 1),
(1*I, [(1, 1*I, 0)], 1)]

(continues on next page)
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sage: M.eigenvectors_left(extend=False) #␣
→˓needs sage.rings.number_field
[(2, [ (0, 0, 1) ], 1)]

eigenvectors_right(other=None, extend=True)
Compute the right eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

• extend – boolean (default: True)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigen-
vectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the
eigenvalue. If extend = True (the default), this will return eigenspaces over the algebraic closure of the
base field where this is implemented; otherwise it will restrict to eigenvalues in the base field.

EXAMPLES:

We compute the right eigenvectors of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_right(); es
[(0, [ (1, -2, 1) ], 1),
(-1.348469228349535?, [(1, 0.1303061543300932?, -0.7393876913398137?)], 1),
(13.34846922834954?, [(1, 3.069693845669907?, 5.139387691339814?)], 1)]

sage: A.eigenvectors_right(extend=False)
[(0, [ (1, -2, 1) ], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - A*evec
sage: abs(abs(delta)) < 1e-10
True

elementary_divisors(algorithm=None)
If self is a matrix over a principal ideal domain 𝑅, return elements 𝑑𝑖 for 1 ≤ 𝑖 ≤ 𝑘 = min(𝑟, 𝑠) where 𝑟
and 𝑠 are the number of rows and columns of self, such that the cokernel of self is isomorphic to

𝑅/(𝑑1)⊕𝑅/(𝑑2)⊕𝑅/(𝑑𝑘)

with 𝑑𝑖 | 𝑑𝑖+1 for all 𝑖. These are the diagonal entries of the Smith form of self (see smith_form()).

INPUT:

• algorithm – ignored

EXAMPLES:

sage: x = polygen(ZZ, �x�)
sage: OE.<w> = EquationOrder(x^2 - x + 2) #␣
→˓needs sage.rings.number_field
sage: m = Matrix([[1, w], [w, 7]]) #␣

(continues on next page)
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→˓needs sage.rings.number_field
sage: m.elementary_divisors() #␣
→˓needs sage.rings.number_field
[1, -w + 9]

See also

smith_form()

elementwise_product(right)

Return the elementwise product of two matrices of the same size (also known as the Hadamard product).

INPUT:

• right – the right operand of the product. Amatrix of the same size as self such that multiplication of
elements of the base rings of self and right is defined, once Sage’s coercion model is applied. If the
matrices have different sizes, or if multiplication of individual entries cannot be achieved, a TypeError
will result.

OUTPUT:

A matrix of the same size as self and right. The entry in location (𝑖, 𝑗) of the output is the product of
the two entries in location (𝑖, 𝑗) of self and right (in that order).

The parent of the result is determined by Sage’s coercion model. If the base rings are identical, then the result
is dense or sparse according to this property for the left operand. If the base rings must be adjusted for one,
or both, matrices then the result will be sparse only if both operands are sparse. No subdivisions are present
in the result.

If the type of the result is not to your liking, or the ring could be “tighter,” adjust the operands with
change_ring(). Adjust sparse versus dense inputs with the methods sparse_matrix() and
dense_matrix().

EXAMPLES:

sage: A = matrix(ZZ, 2, 3, range(6))
sage: B = matrix(QQ, 2, 3, [5, 1/3, 2/7, 11/2, -3/2, 8])
sage: C = A.elementwise_product(B)
sage: C
[ 0 1/3 4/7]
[33/2 -6 40]
sage: C.parent()
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

Notice the base ring of the results in the next two examples.

sage: x = polygen(ZZ, �x�)
sage: D = matrix(ZZ[�x�],2,[1+x^2,2,3,4-x])
sage: E = matrix(QQ,2,[1,2,3,4])
sage: F = D.elementwise_product(E)
sage: F
[ x^2 + 1 4]
[ 9 -4*x + 16]
sage: F.parent()
Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in x over Rational Field
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sage: G = matrix(GF(3), 2, [0, 1, 2, 2])
sage: H = matrix(ZZ, 2, [1, 2, 3, 4])
sage: J = G.elementwise_product(H)
sage: J
[0 2]
[0 2]
sage: J.parent()
Full MatrixSpace of 2 by 2 dense matrices
over Finite Field of size 3

Non-commutative rings behave as expected. These are the usual quaternions.

sage: # needs sage.combinat
sage: R.<i,j,k> = QuaternionAlgebra(-1, -1)
sage: A = matrix(R, 2, [1,i,j,k])
sage: B = matrix(R, 2, [i,i,i,i])
sage: A.elementwise_product(B)
[ i -1]
[-k j]
sage: B.elementwise_product(A)
[ i -1]
[ k -j]

Input that is not a matrix will raise an error.

sage: A = random_matrix(ZZ, 5, 10, x=20)
sage: A.elementwise_product(vector(ZZ, [1,2,3,4]))
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
�Full MatrixSpace of 5 by 10 dense matrices over Integer Ring� and
�Ambient free module of rank 4 over the principal ideal domain Integer Ring�

sage: A = matrix(2, 2, range(4))
sage: A.elementwise_product(polygen(parent(A)))
Traceback (most recent call last):
...
TypeError: elementwise_product() argument should be a matrix
or coercible to a matrix

Matrices of different sizes for operands will raise an error.

sage: A = random_matrix(ZZ, 5, 10, x=20)
sage: B = random_matrix(ZZ, 10, 5, x=40)
sage: A.elementwise_product(B)
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
�Full MatrixSpace of 5 by 10 dense matrices over Integer Ring� and
�Full MatrixSpace of 10 by 5 dense matrices over Integer Ring�

Some pairs of rings do not have a common parent where multiplication makes sense. This will raise an error.

sage: A = matrix(QQ, 3, 2, range(6))
sage: B = matrix(GF(3), 3, [2]*6)
sage: A.elementwise_product(B)
Traceback (most recent call last):

(continues on next page)
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...
TypeError: no common canonical parent for objects with parents:
�Full MatrixSpace of 3 by 2 dense matrices over Rational Field� and
�Full MatrixSpace of 3 by 2 dense matrices over Finite Field of size 3�

We illustrate various combinations of sparse and dense matrices. The usual coercion rules apply:

sage: A = matrix(ZZ, 5, 6, range(30), sparse=False)
sage: B = matrix(ZZ, 5, 6, range(30), sparse=True)
sage: C = matrix(QQ, 5, 6, range(30), sparse=True)
sage: A.elementwise_product(C).is_sparse()
True
sage: B.elementwise_product(C).is_sparse()
True
sage: A.elementwise_product(B).is_dense()
True
sage: B.elementwise_product(A).is_dense()
True

exp()

Calculate the exponential of this matrix X, which is the matrix.

𝑒𝑋 =

∞∑︁
𝑘=0

𝑋𝑘

𝑘!
.

This function depends on maxima’s matrix exponentiation function, which does not deal well with floating
point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational num-
bers during the computation. If you want approximations to the exponential that are calculated numerically,
you may get better results by first converting your matrix to RDF or CDF, as shown in the last example.

EXAMPLES:

sage: # needs sage.symbolic
sage: a = matrix([[1,2], [3,4]])
sage: a.exp()
[-1/22*((sqrt(33) - 11)*e^sqrt(33) - sqrt(33) - 11)*e^(-1/2*sqrt(33) + 5/2) ␣
→˓ 2/33*(sqrt(33)*e^sqrt(33) - sqrt(33))*e^(-1/2*sqrt(33) + 5/2)]
[ 1/11*(sqrt(33)*e^sqrt(33) - sqrt(33))*e^(-1/2*sqrt(33) + 5/2) ␣
→˓1/22*((sqrt(33) + 11)*e^sqrt(33) - sqrt(33) + 11)*e^(-1/2*sqrt(33) + 5/2)]

sage: type(a.exp()) #␣
→˓needs sage.symbolic
<class �sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense�>

sage: a = matrix([[1/2,2/3], [3/4,4/5]])
sage: a.exp() #␣
→˓needs sage.symbolic
[-1/418*((3*sqrt(209) - 209)*e^(1/10*sqrt(209)) - 3*sqrt(209) - 209)*e^(-1/
→˓20*sqrt(209) + 13/20) 20/627*(sqrt(209)*e^(1/
→˓10*sqrt(209)) - sqrt(209))*e^(-1/20*sqrt(209) + 13/20)]
[ 15/418*(sqrt(209)*e^(1/10*sqrt(209)) - sqrt(209))*e^(-1/
→˓20*sqrt(209) + 13/20) 1/418*((3*sqrt(209) + 209)*e^(1/10*sqrt(209)) -␣
→˓3*sqrt(209) + 209)*e^(-1/20*sqrt(209) + 13/20)]

sage: a = matrix(RR, [[1,pi.n()], [1e2,1e-2]]) #␣
→˓needs sage.symbolic

(continues on next page)
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sage: a.exp() #␣
→˓needs sage.symbolic
[ 1/11882424341266*((11*sqrt(227345670387496707609) + 5941212170633)*e^(3/
→˓1275529100*sqrt(227345670387496707609)) - 11*sqrt(227345670387496707609) +␣
→˓5941212170633)*e^(-3/2551058200*sqrt(227345670387496707609) + 101/200) ␣
→˓ 445243650/
→˓75781890129165569203*(sqrt(227345670387496707609)*e^(3/
→˓1275529100*sqrt(227345670387496707609)) - sqrt(227345670387496707609))*e^(-
→˓3/2551058200*sqrt(227345670387496707609) + 101/200)]
[ 10000/
→˓53470909535697*(sqrt(227345670387496707609)*e^(3/
→˓1275529100*sqrt(227345670387496707609)) - sqrt(227345670387496707609))*e^(-
→˓3/2551058200*sqrt(227345670387496707609) + 101/200) -1/
→˓11882424341266*((11*sqrt(227345670387496707609) - 5941212170633)*e^(3/
→˓1275529100*sqrt(227345670387496707609)) - 11*sqrt(227345670387496707609) -␣
→˓5941212170633)*e^(-3/2551058200*sqrt(227345670387496707609) + 101/200)]
sage: a.change_ring(RDF).exp() # rel tol 6e-14 #␣
→˓needs sage.symbolic
[42748127.31532951 7368259.244159399]
[234538976.1381042 40426191.45156228]

extended_echelon_form(subdivide=False, **kwds)
Return the echelon form of self augmented with an identity matrix.

INPUT:

• subdivide – boolean (default: False); whether to subdivide the returnedmatrix. See the description
of the (output) below for details.

• kwds – additional keywords that can be passed to the method that computes the echelon form

OUTPUT:

If 𝐴 is an 𝑚 × 𝑛 matrix, add the 𝑚 columns of an 𝑚 × 𝑚 identity matrix to the right of self. Then
row-reduce this𝑚× (𝑛+𝑚) matrix. This matrix is returned as an immutable matrix.

If subdivide is True then the returned matrix has a single division among the columns and a single
division among the rows. The column subdivision has 𝑛 columns to the left and𝑚 columns to the right. The
row division separates the nonzero rows from the zero rows, when restricted to the first 𝑛 columns.

For a nonsingular matrix the final 𝑚 columns of the extended echelon form are the inverse of self. For
a matrix of any size, the final 𝑚 columns provide a matrix that transforms self to echelon form when
it multiplies self from the left. When the base ring is a field, the uniqueness of reduced row-echelon
form implies that this transformation matrix can be taken as the coefficients giving a canonical set of linear
combinations of the rows of self that yield reduced row-echelon form.

When subdivided as described above, and again over a field, the parts of the subdivision in the upper-left
corner and lower-right corner satisfy several interesting relationships with the row space, column space, left
kernel and right kernel of self. See the examples below.

Note

This method returns an echelon form. If the base ring is not a field, no attempt is made to move to the
fraction field. See an example below where the base ring is changed manually.

EXAMPLES:

The four relationships at the end of this example hold in general.
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sage: A = matrix(QQ, [[2, -1, 7, -1, 0, -3],
....: [-1, 1, -5, 3, 4, 4],
....: [2, -1, 7, 0, 2, -2],
....: [2, 0, 4, 3, 6, 1],
....: [2, -1, 7, 0, 2, -2]])
sage: E = A.extended_echelon_form(subdivide=True); E
[ 1 0 2 0 0 -1| 0 -1 0 1 -1]
[ 0 1 -3 0 -2 0| 0 -2 0 2 -3]
[ 0 0 0 1 2 1| 0 2/3 0 -1/3 2/3]
[-----------------------------+------------------------]
[ 0 0 0 0 0 0| 1 2/3 0 -1/3 -1/3]
[ 0 0 0 0 0 0| 0 0 1 0 -1]
sage: J = E.matrix_from_columns(range(6,11)); J
[ 0 -1 0 1 -1]
[ 0 -2 0 2 -3]
[ 0 2/3 0 -1/3 2/3]
[ 1 2/3 0 -1/3 -1/3]
[ 0 0 1 0 -1]
sage: J*A == A.rref()
True
sage: C = E.subdivision(0,0); C
[ 1 0 2 0 0 -1]
[ 0 1 -3 0 -2 0]
[ 0 0 0 1 2 1]
sage: L = E.subdivision(1,1); L
[ 1 2/3 0 -1/3 -1/3]
[ 0 0 1 0 -1]
sage: A.right_kernel() == C.right_kernel()
True
sage: A.row_space() == C.row_space()
True
sage: A.column_space() == L.right_kernel()
True
sage: A.left_kernel() == L.row_space()
True

For a nonsingular matrix, the right half of the extended echelon form is the inverse matrix.

sage: B = matrix(QQ, [[1,3,4], [1,4,4], [0,-2,-1]])
sage: E = B.extended_echelon_form()
sage: J = E.matrix_from_columns(range(3,6)); J
[-4 5 4]
[-1 1 0]
[ 2 -2 -1]
sage: J == B.inverse()
True

The result is in echelon form, so if the base ring is not a field, the leading entry of each row may not be 1.
But you can easily change to the fraction field if necessary.

sage: A = matrix(ZZ, [[16, 20, 4, 5, -4, 13, 5],
....: [10, 13, 3, -3, 7, 11, 6],
....: [-12, -15, -3, -3, 2, -10, -4],
....: [10, 13, 3, 3, -1, 9, 4],
....: [4, 5, 1, 8, -10, 1, -1]])
sage: E = A.extended_echelon_form(subdivide=True); E
[ 2 0 -2 2 -9 -3 -4| 0 4 -3 -9 4]

(continues on next page)
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[ 0 1 1 2 0 1 1| 0 1 2 1 1]
[ 0 0 0 3 -4 -1 -1| 0 3 1 -3 3]
[--------------------+--------------]
[ 0 0 0 0 0 0 0| 1 6 3 -6 5]
[ 0 0 0 0 0 0 0| 0 7 2 -7 6]
sage: J = E.matrix_from_columns(range(7,12)); J
[ 0 4 -3 -9 4]
[ 0 1 2 1 1]
[ 0 3 1 -3 3]
[ 1 6 3 -6 5]
[ 0 7 2 -7 6]
sage: J*A == A.echelon_form()
True
sage: B = A.change_ring(QQ)
sage: B.extended_echelon_form(subdivide=True)
[ 1 0 -1 0 -19/6 -7/6 -5/3| 0 0 -89/42 -5/2␣
→˓ 1/7]
[ 0 1 1 0 8/3 5/3 5/3| 0 0 34/21 2␣
→˓ -1/7]
[ 0 0 0 1 -4/3 -1/3 -1/3| 0 0 1/21 0␣
→˓ 1/7]
[------------------------------------------------+----------------------------
→˓------]
[ 0 0 0 0 0 0 0| 1 0 9/7 0␣
→˓ -1/7]
[ 0 0 0 0 0 0 0| 0 1 2/7 -1␣
→˓ 6/7]

Subdivided, or not, the result is immutable, so make a copy if you want to make changes.

sage: A = matrix(FiniteField(7), [[2,0,3], [5,5,3], [5,6,5]])
sage: E = A.extended_echelon_form()
sage: E.is_mutable()
False
sage: F = A.extended_echelon_form(subdivide=True)
sage: F
[1 0 0|0 4 6]
[0 1 0|4 2 2]
[0 0 1|5 2 3]
[-----+-----]
sage: F.is_mutable()
False
sage: G = copy(F)
sage: G.subdivide([], []); G
[1 0 0 0 4 6]
[0 1 0 4 2 2]
[0 0 1 5 2 3]

If you want to determine exactly which algorithm is used to compute the echelon form, you can add additional
keywords to pass on to the echelon_form() routine employed on the augmented matrix. Sending the
flag include_zero_rows is a bit silly, since the extended echelon form will never have any zero rows.

sage: A = matrix(ZZ, [[1,2], [5,0], [5,9]])
sage: E = A.extended_echelon_form(algorithm=�padic�, include_zero_rows=False)
sage: E
[ 1 0 36 1 -8]

(continues on next page)
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[ 0 1 5 0 -1]
[ 0 0 45 1 -10]

fcp(var='x')

Return the factorization of the characteristic polynomial of self.

INPUT:

• var – (default: �x�) name of variable of charpoly

EXAMPLES:

sage: M = MatrixSpace(QQ, 3, 3)
sage: A = M([1,9,-7, 4/5,4,3, 6,4,3])
sage: A.fcp() #␣
→˓needs sage.libs.pari
x^3 - 8*x^2 + 209/5*x - 286
sage: A = M([3, 0, -2, 0, -2, 0, 0, 0, 0])
sage: A.fcp(�T�) #␣
→˓needs sage.libs.pari
(T - 3) * T * (T + 2)

find(f , indices=False)
Find elements in this matrix satisfying the constraints in the function 𝑓 . The function is evaluated on each
element of the matrix .

INPUT:

• f – a function that is evaluated on each element of this matrix

• indices – whether or not to return the indices and elements of this matrix that satisfy the function

OUTPUT: if indices is not specified, return a matrix with 1 where 𝑓 is satisfied and 0 where it is not. If
indices is specified, return a dictionary containing the elements of this matrix satisfying 𝑓 .

EXAMPLES:

sage: M = matrix(4,3,[1, -1/2, -1, 1, -1, -1/2, -1, 0, 0, 2, 0, 1])
sage: M.find(lambda entry: entry == 0)
[0 0 0]
[0 0 0]
[0 1 1]
[0 1 0]

sage: M.find(lambda u: u < 0)
[0 1 1]
[0 1 1]
[1 0 0]
[0 0 0]

sage: M = matrix(4,3,[1, -1/2, -1, 1, -1, -1/2, -1, 0, 0, 2, 0, 1])
sage: len(M.find(lambda u:u<1 and u>-1,indices=True))
5

sage: M.find(lambda u: u != 1/2)
[1 1 1]
[1 1 1]

(continues on next page)
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[1 1 1]
[1 1 1]

sage: M.find(lambda u: u > 1.2)
[0 0 0]
[0 0 0]
[0 0 0]
[1 0 0]

sage: sorted(M.find(lambda u: u != 0, indices=True).keys()) == M.nonzero_
→˓positions()
True

fitting_ideal(i)
Return the 𝑖-th Fitting ideal of the matrix. This is the ideal generated by the 𝑛 − 𝑖 minors, where 𝑛 is the
number of columns.

INPUT:

• i – integer

OUTPUT: an ideal on the base ring

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: M = matrix(R, [[2*x-z, 0, y-z^2, 1], [0, z - y, z - x, 0],[z - y, x^2 -␣
→˓y, 0, 0]])
sage: M
[ 2*x - z 0 -z^2 + y 1]
[ 0 -y + z -x + z 0]
[ -y + z x^2 - y 0 0]
sage: [R.ideal(M.minors(i)) == M.fitting_ideal(4-i) for i in range(5)]
[True, True, True, True, True]
sage: M.fitting_ideal(0)
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: M.fitting_ideal(1)
Ideal (2*x^4 - 3*x^3*z + x^2*z^2 + y^2*z^2 - 2*y*z^3 + z^4 - 2*x^2*y - y^3 +␣
→˓3*x*y*z + 2*y^2*z - 2*y*z^2, -x^3 + x^2*z + x*y - y*z, y^2 - 2*y*z + z^2,␣
→˓x*y - x*z - y*z + z^2) of Multivariate Polynomial Ring in x, y, z over␣
→˓Rational Field
sage: M.fitting_ideal(3)
Ideal (2*x - z, -z^2 + y, 1, -y + z, -x + z, -y + z, x^2 - y) of Multivariate␣
→˓Polynomial Ring in x, y, z over Rational Field
sage: M.fitting_ideal(4)
Ideal (1) of Multivariate Polynomial Ring in x, y, z over Rational Field

If the base ring is a field, the Fitting ideals are zero under the corank:

sage: M = matrix(QQ, [[2,1,3,5],[4,2,6,6],[0,3,2,0]])
sage: M
[2 1 3 5]
[4 2 6 6]
[0 3 2 0]
sage: M.fitting_ideal(0)
Principal ideal (0) of Rational Field
sage: M.fitting_ideal(1)

(continues on next page)

218 Chapter 8. Base class for matrices, part 2



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

Principal ideal (1) of Rational Field
sage: M.fitting_ideal(2)
Principal ideal (1) of Rational Field
sage: M.fitting_ideal(3)
Principal ideal (1) of Rational Field
sage: M.fitting_ideal(4)
Principal ideal (1) of Rational Field

In the case of principal ideal domains, it is given by the elementary divisors:

sage: M = matrix([[2,1,3,5],[4,2,6,6],[0,3,2,0]])
sage: M
[2 1 3 5]
[4 2 6 6]
[0 3 2 0]
sage: M.fitting_ideal(0)
Principal ideal (0) of Integer Ring
sage: M.fitting_ideal(1)
Principal ideal (4) of Integer Ring
sage: M.fitting_ideal(2)
Principal ideal (1) of Integer Ring
sage: M.fitting_ideal(3)
Principal ideal (1) of Integer Ring
sage: M.fitting_ideal(4)
Principal ideal (1) of Integer Ring
sage: M.elementary_divisors()
[1, 1, 4]

This is also true for univariate polynomials over a field:

sage: R.<x> = QQ[]
sage: M = matrix(R,[[x^2-2*x+1, x-1,x^2-1],[0,x+1,1]])
sage: M.fitting_ideal(0)
Principal ideal (0) of Univariate Polynomial Ring in x over Rational Field
sage: M.fitting_ideal(1)
Principal ideal (x - 1) of Univariate Polynomial Ring in x over Rational Field
sage: M.fitting_ideal(2)
Principal ideal (1) of Univariate Polynomial Ring in x over Rational Field
sage: M.smith_form()[0]
[ 1 0 0]
[ 0 x - 1 0]

get_subdivisions()

Return the current subdivision of self.

EXAMPLES:

sage: M = matrix(5, 5, range(25))
sage: M.subdivisions()
([], [])
sage: M.subdivide(2,3)
sage: M.subdivisions()
([2], [3])
sage: N = M.parent()(1)
sage: N.subdivide(M.subdivisions()); N
[1 0 0|0 0]
[0 1 0|0 0]

(continues on next page)
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[-----+---]
[0 0 1|0 0]
[0 0 0|1 0]
[0 0 0|0 1]

gram_schmidt(orthonormal=False)
Perform Gram-Schmidt orthogonalization on the rows of the matrix, returning a new matrix and a matrix
accomplishing the transformation.

INPUT:

• self – a matrix whose rows are to be orthogonalized

• orthonormal – (default: False) if True the returned orthogonal vectors are unit vectors. This
keyword is ignored if the matrix is over RDF or CDF and the results are always orthonormal.

OUTPUT:

A pair of matrices, G and M such that if A represents self, where the parenthetical properties occur when
orthonormal = True:

• A = M*G

• The rows of G are an orthogonal (resp. orthonormal) set of vectors

• G times the conjugate-transpose of G is a diagonal (resp. identity) matrix

• The row space of G equals the row space of A

• M is a full-rank matrix with zeros above the diagonal

For exact rings, any zero vectors produced (when the original vectors are linearly dependent) are not output,
thus the orthonormal set is linearly independent, and thus a basis for the row space of the original matrix.

Any notion of a Gram-Schmidt procedure requires that the base ring of the matrix has a fraction field imple-
mented. In order to arrive at an orthonormal set, it must be possible to construct square roots of the elements
of the base field. In Sage, your best option is the field of algebraic numbers, QQbar, which properly contains
the rationals and number fields.

If you have an approximate numerical matrix, then this routine requires that your base field be the real and
complex double-precision floating point numbers, RDF and CDF. In this case, the matrix is treated as having
full rank, as no attempt is made to recognize linear dependence with approximate calculations.

EXAMPLES:

Inexact Rings, Numerical Matrices:

First, the inexact rings, CDF and RDF.

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, [[ 0.6454 + 0.7491*I, -0.8662 + 0.1489*I, 0.7656 - 0.
→˓00344*I],
....: [-0.2913 + 0.8057*I, 0.8321 + 0.8170*I, -0.6744 + 0.
→˓9248*I],
....: [ 0.2554 + 0.3517*I, -0.4454 - 0.1715*I, 0.8325 - 0.
→˓6282*I]])
sage: G, M = A.gram_schmidt()
sage: G.round(6) # random signs
[-0.422243 - 0.490087*I 0.566698 - 0.097416*I -0.500882 + 0.002251*I]
[-0.057002 - 0.495035*I -0.35059 - 0.625323*I 0.255514 - 0.415284*I]
[ 0.394105 - 0.421778*I -0.392266 - 0.039345*I -0.352905 + 0.62195*I]

(continues on next page)
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sage: M.round(6) # random
[ -1.528503 0.0 0.0]
[ 0.459974 - 0.40061*I -1.741233 0.0]
[-0.934304 + 0.148868*I 0.54833 + 0.073202*I -0.550725]
sage: (A - M*G).zero_at(10^-12)
[0.0 0.0 0.0]
[0.0 0.0 0.0]
[0.0 0.0 0.0]
sage: (G*G.conjugate_transpose()) # random
[0.9999999999999999 0.0 0.0]
[ 0.0 0.9999999999999997 0.0]
[ 0.0 0.0 1.0]

A rectangular matrix. Note that the orthonormal keyword is ignored in these cases.

sage: # needs scipy
sage: A = matrix(RDF, [[-0.978325, -0.751994, 0.925305, -0.200512, 0.420458],
....: [-0.474877, -0.983403, 0.089836, 0.132218, 0.672965]])
sage: G, M = A.gram_schmidt(orthonormal=False)
sage: G.round(6).zero_at(10^-6)
[-0.607223 -0.466745 0.574315 -0.124453 0.260968]
[ 0.123203 -0.617909 -0.530578 0.289773 0.487368]
sage: M.round(6).zero_at(10^-6)
[1.611147 0.0]
[0.958116 0.867778]
sage: (A - M*G).zero_at(10^-12)
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
sage: (G*G.transpose()).round(6).zero_at(10^-6)
[1.0 0.0]
[0.0 1.0]

Even though a set of vectors may be linearly dependent, no effort is made to decide when a zero vector is
really the result of a relation of linear dependence. So in this regard, input matrices are treated as being of
full rank. Try one of the base rings that provide exact results if you need exact results.

sage: # needs scipy
sage: entries = [[1,1,2], [2,1,3], [3,1,4]]
sage: A = matrix(QQ, entries)
sage: A.rank()
2
sage: B = matrix(RDF, entries)
sage: G, M = B.gram_schmidt()
sage: G.round(6) # random signs
[-0.408248 -0.408248 -0.816497]
[ 0.707107 -0.707107 -0.0]
[ -0.57735 -0.57735 0.57735]
sage: M.round(10) # random
[-2.4494897428 0.0 0.0]
[-3.6742346142 0.7071067812 0.0]
[-4.8989794856 1.4142135624 0.0]
sage: (A - M*G).zero_at(1e-14)
[0.0 0.0 0.0]
[0.0 0.0 0.0]
[0.0 0.0 0.0]
sage: (G*G.transpose()) # abs tol 1e-14
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[0.9999999999999997 0.0 0.0]
[ 0.0 0.9999999999999998 0.0]
[ 0.0 0.0 1.0]

Exact Rings, Orthonormalization:

To scale a vector to unit length requires taking a square root, which often takes us outside the base ring. For
the integers and the rationals, the field of algebraic numbers (QQbar) is big enough to contain what we need,
but the price is that the computations are very slow, hence mostly of value for small cases or instruction. Now
we need to use the orthonormal keyword.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[6, -8, 1],
....: [4, 1, 3],
....: [6, 3, 3],
....: [7, 1, -5],
....: [7, -3, 5]])
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: G
[ 0.5970223141259934? -0.7960297521679913? 0.09950371902099891?]
[ 0.6063218341690895? 0.5289635311888953? 0.5937772444966257?]
[ 0.5252981913594170? 0.2941669871612735? -0.798453250866314?]
sage: M
[ 10.04987562112089? 0 0]
[ 1.890570661398980? 4.735582601355131? 0]
[ 1.492555785314984? 7.006153332071100? 1.638930357041381?]
[ 2.885607851608969? 1.804330147889395? 7.963520581008761?]
[ 7.064764050490923? 5.626248468100069? -1.197679876299471?]
sage: M*G - A
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
[0 0 0]
sage: (G*G.transpose() - identity_matrix(3)).norm() < 10^-10
True
sage: G.row_space() == A.row_space()
True

After Issue #14047, the matrix can also be over the algebraic reals AA:

sage: # needs sage.rings.number_field
sage: A = matrix(AA, [[6, -8, 1],
....: [4, 1, 3],
....: [6, 3, 3],
....: [7, 1, -5],
....: [7, -3, 5]])
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: G
[ 0.5970223141259934? -0.7960297521679913? 0.09950371902099891?]
[ 0.6063218341690895? 0.5289635311888953? 0.5937772444966257?]
[ 0.5252981913594170? 0.2941669871612735? -0.798453250866314?]
sage: M
[ 10.04987562112089? 0 0]
[ 1.890570661398980? 4.735582601355131? 0]
[ 1.492555785314984? 7.006153332071100? 1.638930357041381?]
[ 2.885607851608969? 1.804330147889395? 7.963520581008761?]

(continues on next page)
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[ 7.064764050490923? 5.626248468100069? -1.197679876299471?]

Starting with complex numbers with rational real and imaginary parts. Note the use of the conjugate-transpose
when checking the orthonormality.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ -2, -I - 1, 4*I + 2, -1],
....: [-4*I, -2*I + 17, 0, 9*I + 1],
....: [ 1, -2*I - 6, -I + 11, -5*I + 1]])
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: (M*G - A).norm() < 10^-10
True
sage: id3 = G*G.conjugate().transpose()
sage: (id3 - identity_matrix(3)).norm() < 10^-10
True
sage: G.row_space() == A.row_space() # long time
True

A square matrix with small rank. The zero vectors produced as a result of linear dependence get eliminated,
so the rows of G are a basis for the row space of A.

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[2, -6, 3, 8],
....: [1, -3, 2, 5],
....: [0, 0, 2, 4],
....: [2, -6, 3, 8]])
sage: A.change_ring(QQ).rank()
2
sage: G, M = A.gram_schmidt(orthonormal=True)
sage: G
[ 0.1881441736767195? -0.5644325210301583? 0.2822162605150792? 0.
→˓7525766947068779?]
[-0.2502818123591464? 0.750845437077439? 0.3688363550555841? 0.
→˓4873908977520218?]
sage: M
[10.630145812734649? 0]
[ 6.208757731331742? 0.6718090752798139?]
[ 3.574739299857670? 2.687236301119256?]
[10.630145812734649? 0]
sage: M*G - A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: (G*G.transpose() - identity_matrix(2)).norm() < 10^-10
True
sage: G.row_space() == A.row_space()
True

Exact Rings, Orthogonalization:

If we forego scaling orthogonal vectors to unit vectors, we can apply Gram-Schmidt to a much greater va-
riety of rings. Use the orthonormal=False keyword (or assume it as the default). Note that now the
orthogonality check creates a diagonal matrix whose diagonal entries are the squares of the lengths of the
vectors.

First, in the rationals, without involving QQbar.
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sage: A = matrix(QQ, [[-1, 3, 2, 2],
....: [-1, 0, -1, 0],
....: [-1, -2, -3, -1],
....: [ 1, 1, 2, 0]])
sage: A.rank()
3
sage: G, M = A.gram_schmidt()
sage: G
[ -1 3 2 2]
[-19/18 1/6 -8/9 1/9]
[ 2/35 -4/35 -2/35 9/35]
sage: M
[ 1 0 0]
[ -1/18 1 0]
[-13/18 59/35 1]
[ 1/3 -48/35 -2]
sage: M*G-A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: G*G.transpose()
[ 18 0 0]
[ 0 35/18 0]
[ 0 0 3/35]
sage: G.row_space() == A.row_space()
True

A complex subfield of the complex numbers.

sage: # needs sage.rings.number_field
sage: C.<z> = CyclotomicField(5)
sage: A = matrix(C,
....: [[ -z^3 - 2*z, -z^3 - 1, 2*z^3 - 2*z^2 +␣
→˓2*z, 1],
....: [ z^3 - 2*z^2 + 1, -z^3 + 2*z^2 - z - 1, ␣
→˓ -1, z^2 + z],
....: [-1/2*z^3 - 2*z^2 + z + 1, -z^3 + z - 2, -2*z^3 + 1/
→˓2*z^2, 2*z^2 - z + 2]])
sage: G, M = A.gram_schmidt(orthonormal=False)
sage: G
[ -z^3 - 2*z ␣
→˓ -z^3 - 1 ␣
→˓ 2*z^3 - 2*z^2 + 2*z ␣
→˓ 1]
[ 155/139*z^3 - 161/139*z^2 + 31/139*z + 13/139 ␣
→˓ -175/139*z^3 + 180/139*z^2 - 125/139*z - 142/139 ␣
→˓230/139*z^3 + 124/139*z^2 + 6/139*z + 19/139 -14/139*z^
→˓3 + 92/139*z^2 - 6/139*z - 95/139]
[-10359/19841*z^3 - 36739/39682*z^2 + 24961/39682*z - 11879/39682 -28209/
→˓39682*z^3 - 3671/19841*z^2 + 51549/39682*z - 38613/39682 -42769/39682*z^
→˓3 - 615/39682*z^2 - 1252/19841*z - 14392/19841 4895/19841*z^3 + 57885/
→˓39682*z^2 - 46094/19841*z + 65747/39682]
sage: M
[ 1 ␣
→˓ 0 ␣
→˓ 0]

(continues on next page)
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[ 14/139*z^3 + 47/139*z^2 + 145/139*z + 95/139 ␣
→˓ 1 ␣
→˓ 0]
[ -7/278*z^3 + 199/278*z^2 + 183/139*z + 175/278 -3785/39682*z^3␣
→˓+ 3346/19841*z^2 - 3990/19841*z + 2039/19841 ␣
→˓ 1]
sage: M*G - A
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
sage: G*G.conjugate().transpose()
[ 15*z^3 + 15*z^2 + 28 ␣
→˓ 0 ␣
→˓ 0]
[ 0 463/139*z^
→˓3 + 463/139*z^2 + 1971/139 ␣
→˓ 0]
[ 0 ␣
→˓ 0 230983/19841*z^3 + 230983/19841*z^2 + 1003433/
→˓39682]
sage: G.row_space() == A.row_space()
True

A slightly edited legacy example.

sage: A = matrix(ZZ, 3, [-1, 2, 5, -11, 1, 1, 1, -1, -3]); A
[ -1 2 5]
[-11 1 1]
[ 1 -1 -3]
sage: G, mu = A.gram_schmidt()
sage: G
[ -1 2 5]
[ -52/5 -1/5 -2]
[ 2/187 36/187 -14/187]
sage: mu
[ 1 0 0]
[ 3/5 1 0]
[ -3/5 -7/187 1]
sage: G.row(0) * G.row(1)
0
sage: G.row(0) * G.row(2)
0
sage: G.row(1) * G.row(2)
0

The relation between mu and A is as follows.

sage: mu*G == A
True

hadamard_bound()

Return an int n such that the absolute value of the determinant of this matrix is at most 10𝑛.

This is got using both the row norms and the column norms.

This function only makes sense when the base field can be coerced to the real double field RDF or the MPFR
Real Field with 53-bits precision.
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EXAMPLES:

sage: a = matrix(ZZ, 3, [1,2,5,7,-3,4,2,1,123])
sage: a.hadamard_bound()
4
sage: a.det()
-2014
sage: 10^4
10000

In this example the Hadamard bound has to be computed (automatically) using MPFR instead of doubles,
since doubles overflow:

sage: a = matrix(ZZ, 2, [2^10000, 3^10000, 2^50, 3^19292])
sage: a.hadamard_bound()
12215
sage: len(str(a.det()))
12215

hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of self, if it is defined.

INPUT:

• include_zero_rows – boolean (default: True); if False the zero rows in the output matrix are
deleted

• transformation – boolean (default: False); a matrix 𝑈 such that U*self == H

OUTPUT:

• matrix H

• (optional) transformation matrix 𝑈 such that U*self == H, possibly with zero rows deleted

EXAMPLES:

sage: M = FunctionField(GF(7), �x�).maximal_order()
sage: K.<x> = FunctionField(GF(7)); M = K.maximal_order()
sage: A = matrix(M, 2, 3, [x, 1, 2*x, x, 1 + x, 2])
sage: A.hermite_form()
[ x 1 2*x]
[ 0 x 5*x + 2]
sage: A.hermite_form(transformation=True)
(
[ x 1 2*x] [1 0]
[ 0 x 5*x + 2], [6 1]
)
sage: A = matrix(M, 2, 3, [x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite_form(transformation=True, include_zero_rows=False)
([ x 1 2*x], [1 0])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=True)
sage: H, U
(
[ x 1 2*x] [1 0]
[ 0 0 0], [5 1]
)
sage: U * A == H
True
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)

(continues on next page)
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sage: U * A
[ x 1 2*x]
sage: U * A == H
True

hessenberg_form()

Return Hessenberg form of self.

If the base ring is merely an integral domain (and not a field), the Hessenberg form will (in general) only be
defined over the fraction field of the base ring.

EXAMPLES:

sage: A = matrix(ZZ, 4, [2, 1, 1, -2, 2, 2, -1, -1, -1,1,2,3,4,5,6,7])
sage: h = A.hessenberg_form(); h
[ 2 -7/2 -19/5 -2]
[ 2 1/2 -17/5 -1]
[ 0 25/4 15/2 5/2]
[ 0 0 58/5 3]
sage: parent(h)
Full MatrixSpace of 4 by 4 dense matrices over Rational Field
sage: A.hessenbergize()
Traceback (most recent call last):
...
TypeError: Hessenbergize only possible for matrices over a field

hessenbergize()

Transform self to Hessenberg form.

The hessenberg form of a matrix 𝐴 is a matrix that is similar to 𝐴, so has the same characteristic polynomial
as 𝐴, and is upper triangular except possible for entries right below the diagonal.

ALGORITHM: See Henri Cohen’s first book.

EXAMPLES:

sage: A = matrix(QQ, 3, [2, 1, 1, -2, 2, 2, -1, -1, -1])
sage: A.hessenbergize(); A
[ 2 3/2 1]
[ -2 3 2]
[ 0 -3 -2]

sage: A = matrix(QQ, 4, [2, 1, 1, -2, 2, 2, -1, -1, -1,1,2,3,4,5,6,7])
sage: A.hessenbergize(); A
[ 2 -7/2 -19/5 -2]
[ 2 1/2 -17/5 -1]
[ 0 25/4 15/2 5/2]
[ 0 0 58/5 3]

You can’t Hessenbergize an immutable matrix:

sage: A = matrix(QQ, 3, [1..9])
sage: A.set_immutable()
sage: A.hessenbergize()
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣
→˓copy(M) to change a copy of M).
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image()

Return the image of the homomorphism on rows defined by right multiplication by this matrix: that is, the
row-space.

EXAMPLES:

sage: MS1 = MatrixSpace(ZZ, 4)
sage: MS2 = MatrixSpace(QQ, 6)
sage: A = MS1.matrix([3,4,5,6, 7,3,8,10, 14,5,6,7, 2,2,10,9])
sage: B = MS2.random_element()

sage: image(A)
Free module of degree 4 and rank 4 over Integer Ring
Echelon basis matrix:
[ 1 0 0 426]
[ 0 1 0 518]
[ 0 0 1 293]
[ 0 0 0 687]

sage: image(B) == B.row_module()
True
sage: image(B) == B.transpose().column_module()
True

See also

row_module(), column_module()

indefinite_factorization(algorithm='symmetric', check=True)
Decomposes a symmetric or Hermitian matrix into a lower triangular matrix and a diagonal matrix.

INPUT:

• self – a square matrix over a ring; the base ring must have an implemented fraction field

• algorithm – (default: �symmetric�) either �symmetric� or �hermitian�, according to
whether the input matrix is symmetric or hermitian

• check – (default: True) if True then performs the check that the matrix is consistent with the al-
gorithm keyword

OUTPUT:

A lower triangular matrix 𝐿 with each diagonal element equal to 1 and a vector of entries that form a diagonal
matrix𝐷. The vector of diagonal entries can be easily used to form the matrix, as demonstrated below in the
examples.

For a symmetric matrix, 𝐴, these will be related by

𝐴 = 𝐿𝐷𝐿𝑇

If 𝐴 is Hermitian matrix, then the transpose of 𝐿 should be replaced by the conjugate-transpose of 𝐿.

If any leading principal submatrix (a square submatrix in the upper-left corner) is singular then this method
will fail with a ValueError.

ALGORITHM:

228 Chapter 8. Base class for matrices, part 2

https://docs.python.org/library/exceptions.html#ValueError


Matrices and Spaces of Matrices, Release 10.5.rc0

The algorithm employed only uses field operations, but the computation of each diagonal entry has the po-
tential for division by zero. The number of operations is of order 𝑛3/3, which is half the count for an LU
decomposition. This makes it an appropriate candidate for solving systems with symmetric (or Hermitian)
coefficient matrices.

See also

block_ldlt()

EXAMPLES:

There is no requirement that a matrix be positive definite, as indicated by the negative entries in the resulting
diagonal matrix. The default is that the input matrix is symmetric.

sage: A = matrix(QQ, [[ 3, -6, 9, 6, -9],
....: [-6, 11, -16, -11, 17],
....: [ 9, -16, 28, 16, -40],
....: [ 6, -11, 16, 9, -19],
....: [-9, 17, -40, -19, 68]])
sage: A.is_symmetric()
True
sage: L, d = A.indefinite_factorization()
sage: D = diagonal_matrix(d)
sage: L
[ 1 0 0 0 0]
[-2 1 0 0 0]
[ 3 -2 1 0 0]
[ 2 -1 0 1 0]
[-3 1 -3 1 1]
sage: D
[ 3 0 0 0 0]
[ 0 -1 0 0 0]
[ 0 0 5 0 0]
[ 0 0 0 -2 0]
[ 0 0 0 0 -1]
sage: A == L*D*L.transpose()
True

Optionally, Hermitian matrices can be factored and the result has a similar property (but not identical). Here,
the field is all complex numbers with rational real and imaginary parts. As theory predicts, the diagonal entries
will be real numbers.

sage: # needs sage.rings.number_field
sage: C.<I> = QuadraticField(-1)
sage: B = matrix(C, [[ 2, 4 - 2*I, 2 + 2*I],
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: B.is_hermitian()
True
sage: L, d = B.indefinite_factorization(algorithm=�hermitian�)
sage: D = diagonal_matrix(d)
sage: L
[ 1 0 0]
[ I + 2 1 0]
[ -I + 1 2*I + 1 1]
sage: D

(continues on next page)
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[ 2 0 0]
[ 0 -2 0]
[ 0 0 3]
sage: B == L*D*L.conjugate_transpose()
True

If a leading principal submatrix has zero determinant, this algorithm will fail. This will never happen with a
positive definite matrix.

sage: A = matrix(QQ, [[21, 15, 12, -2],
....: [15, 12, 9, 6],
....: [12, 9, 7, 3],
....: [-2, 6, 3, 8]])
sage: A.is_symmetric()
True
sage: A[0:3,0:3].det() == 0
True
sage: A.indefinite_factorization()
Traceback (most recent call last):
...
ValueError: 3x3 leading principal submatrix is singular,
so cannot create indefinite factorization

This algorithm only depends on field operations, so outside of the singular submatrix situation, any matrix
may be factored. This provides a reasonable alternative to the Cholesky decomposition.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(5^3)
sage: A = matrix(F,
....: [[ a^2 + 2*a, 4*a^2 + 3*a + 4, 3*a^2 + a, 2*a^2 + 2*a +␣
→˓1],
....: [4*a^2 + 3*a + 4, 4*a^2 + 2, 3*a, 2*a^2 + 4*a +␣
→˓2],
....: [ 3*a^2 + a, 3*a, 3*a^2 + 2, 3*a^2 + 2*a +␣
→˓3],
....: [2*a^2 + 2*a + 1, 2*a^2 + 4*a + 2, 3*a^2 + 2*a + 3, 3*a^2 + 2*a +␣
→˓4]])
sage: A.is_symmetric()
True
sage: L, d = A.indefinite_factorization()
sage: D = diagonal_matrix(d)
sage: L
[ 1 0 0 0]
[4*a^2 + 4*a + 3 1 0 0]
[ 3 4*a^2 + a + 2 1 0]
[ 4*a^2 + 4 2*a^2 + 3*a + 3 2*a^2 + 3*a + 1 1]
sage: D
[ a^2 + 2*a 0 0 0]
[ 0 2*a^2 + 2*a + 4 0 0]
[ 0 0 3*a^2 + 4*a + 3 0]
[ 0 0 0 a^2 + 3*a]
sage: A == L*D*L.transpose()
True

This works correctly for the 0x0 matrix:
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sage: Matrix(0).indefinite_factorization()
([], ())

integer_kernel(ring='ZZ')

Return the kernel of this matrix over the given ring (which should be either the base ring, or a PID whose
fraction field is the base ring).

Assume that the base field of this matrix has a numerator and denominator functions for its elements, e.g., it
is the rational numbers or a fraction field. This function computes a basis over the integers for the kernel of
self.

If the matrix is not coercible into QQ, then the PID itself should be given as a second argument, as in the
third example below.

EXAMPLES:

sage: A = MatrixSpace(QQ, 4)(range(16))
sage: A.integer_kernel()
Free module of degree 4 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 0 -3 2]
[ 0 1 -2 1]

The integer kernel even makes sense for matrices with fractional entries:

sage: A = MatrixSpace(QQ, 2)([1/2, 0, 0, 0])
sage: A.integer_kernel()
Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1]

An example over a bigger ring:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, �x�)
sage: L.<w> = NumberField(x^2 - x + 2)
sage: OL = L.ring_of_integers()
sage: A = matrix(L, 2, [1, w/2])
sage: A.integer_kernel(OL)
Free module of degree 2 and rank 1 over
Maximal Order generated by w in Number Field in w
with defining polynomial x^2 - x + 2
Echelon basis matrix:
[ -1 -w + 1]

inverse()

Return the inverse of self, without changing self.

Note that one can use the Python inverse operator to obtain the inverse as well.

See also

inverse_positive_definite()

EXAMPLES:
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sage: m = matrix([[1,2],[3,4]])
sage: m^(-1)
[ -2 1]
[ 3/2 -1/2]
sage: m.inverse()
[ -2 1]
[ 3/2 -1/2]
sage: ~m
[ -2 1]
[ 3/2 -1/2]

sage: m = matrix([[1,2],[3,4]], sparse=True)
sage: m^(-1)
[ -2 1]
[ 3/2 -1/2]
sage: m.inverse()
[ -2 1]
[ 3/2 -1/2]
sage: ~m
[ -2 1]
[ 3/2 -1/2]

inverse_positive_definite()

Compute the inverse of a positive-definite matrix.

In accord with is_positive_definite(), only Hermitian matrices are considered positive-definite.
Positive-definite matrices have several factorizations (Cholesky, LDLT, et cetera) that allow them to be in-
verted in a fast, numerically-stable way. This method uses an appropriate factorization, and is akin to the
cholinv and chol2inv functions available in R, Octave, and Stata.

You should ensure that your matrix is positive-definite before using this method. When in doubt, use the
generic inverse() method instead.

OUTPUT:

If the given matrix is positive-definite, the return value is the same as that of the inverse() method. If
the matrix is not positive-definite, the behavior of this function is undefined.

See also

inverse(), is_positive_definite(), cholesky(), indefinite_factoriza-
tion()

EXAMPLES:

A simple two-by-two matrix with rational entries:

sage: A = matrix(QQ, [[ 2, -1],
....: [-1, 2]])
sage: A.is_positive_definite()
True
sage: A.inverse_positive_definite()
[2/3 1/3]
[1/3 2/3]
sage: A.inverse_positive_definite() == A.inverse()
True
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A matrix containing real roots:

sage: # needs sage.rings.number_field sage.symbolic
sage: A = matrix(AA, [ [1, 0, sqrt(2)],
....: [0, sqrt(3), 0 ],
....: [sqrt(2), 0, sqrt(5)] ])
sage: A.is_positive_definite()
True
sage: B = matrix(AA, [ [2*sqrt(5) + 5, 0, -sqrt(8*sqrt(5) + 18)],
....: [0, sqrt(1/3), 0],
....: [-sqrt(8*sqrt(5) + 18), 0, sqrt(5) + 2] ])
sage: A.inverse_positive_definite() == B
True
sage: A*B == A.matrix_space().identity_matrix()
True

A Hermitian (but not symmetric) matrix with complex entries:

sage: # needs sage.rings.number_field sage.symbolic
sage: A = matrix(QQbar, [ [ 1, 0, I ],
....: [ 0, sqrt(5), 0 ],
....: [-I, 0, 3 ] ])
sage: A.is_positive_definite()
True
sage: B = matrix(QQbar, [ [ 3/2, 0, -I/2 ],
....: [ 0, sqrt(1/5), 0 ],
....: [ I/2, 0, 1/2 ] ])
sage: A.inverse_positive_definite() == B
True
sage: A*B == A.matrix_space().identity_matrix()
True

is_Z_operator_on(K)
Determine if this matrix is a Z-operator on a cone.

We say that a matrix 𝐿 is a Z-operator on a closed convex cone 𝐾 if the inner product of 𝐿𝑥 and 𝑠 is
nonpositive for all pairs of orthogonal vectors 𝑥 in 𝐾 and 𝑠 in the dual of 𝐾. This property need only be
checked for generators of𝐾 and its dual.

A matrix is a Z-operator on𝐾 if and only if its negation is a cross-positive operator on𝐾.

To reliably check whether or not this matrix is a Z operator, its base ring must be either exact (for example,
the rationals) or the symbolic ring. An exact ring is more reliable, but in some cases a matrix whose entries
contain symbolic constants like 𝑒 and 𝜋 will work.

INPUT:

• K – a polyhedral closed convex cone

OUTPUT:

If the base ring of this matrix is exact, then True will be returned if and only if this matrix is a Z-operator
on K.

If the base ring of this matrix is symbolic, then the situation is more complicated:

• True will be returned if it can be proven that this matrix is a Z-operator on K.

• False will be returned if it can be proven that this matrix is not a Z-operator on K.

• False will also be returned if we can’t decide; specifically if we arrive at a symbolic inequality that
cannot be resolved.
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See also

is_positive_operator_on(), is_cross_positive_on(), is_lya-
punov_like_on()

REFERENCES:

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia,
1994.

EXAMPLES:

Z-matrices are Z-operators on the nonnegative orthant:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [-1, -2, 0], #␣
→˓needs sage.symbolic
....: [ 0, 2, -7],
....: [-3, 0, 3] ])
sage: L.is_Z_operator_on(K) #␣
→˓needs sage.geometry.polyhedron sage.symbolic
True

Symbolic entries also work in some easy cases:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [-1, -e, 0 ], #␣
→˓needs sage.symbolic
....: [ 0, 2, -pi],
....: [-sqrt(2), 0, 3 ] ])
sage: L.is_Z_operator_on(K) #␣
→˓needs sage.geometry.polyhedron sage.symbolic
True

is_bistochastic(normalized=True)
Return True if this matrix is bistochastic.

A matrix is said to be bistochastic if both the sums of the entries of each row and the sum of the entries of
each column are equal to 1 and all entries are nonnegative.

INPUT:

• normalized – if set to True (default), checks that the sums are equal to 1. When set to False,
checks that the row sums and column sums are all equal to some constant possibly different from 1.

EXAMPLES:

The identity matrix is clearly bistochastic:

sage: Matrix(5,5,1).is_bistochastic()
True

The same matrix, multiplied by 2, is not bistochastic anymore, though is verifies the constraints of normal-
ized == False:

234 Chapter 8. Base class for matrices, part 2



Matrices and Spaces of Matrices, Release 10.5.rc0

sage: (2 * Matrix(5,5,1)).is_bistochastic()
False
sage: (2 * Matrix(5,5,1)).is_bistochastic(normalized=False)
True

Here is a matrix whose row and column sums is 1, but not all entries are nonnegative:

sage: m = matrix([[-1,2],[2,-1]])
sage: m.is_bistochastic()
False

is_cross_positive_on(K)
Determine if this matrix is cross-positive on a cone.

We say that a matrix 𝐿 is cross-positive on a closed convex cone 𝐾 if the inner product of 𝐿𝑥 and 𝑠 is
nonnegative for all pairs of orthogonal vectors 𝑥 in 𝐾 and 𝑠 in the dual of 𝐾. This property need only be
checked for generators of𝐾 and its dual.

To reliably check whether or not this matrix is cross-positive, its base ring must be either exact (for example,
the rationals) or the symbolic ring. An exact ring is more reliable, but in some cases a matrix whose entries
contain symbolic constants like 𝑒 and 𝜋 will work.

INPUT:

• K – a polyhedral closed convex cone

OUTPUT:

If the base ring of this matrix is exact, then True will be returned if and only if this matrix is cross-positive
on K.

If the base ring of this matrix is symbolic, then the situation is more complicated:

• True will be returned if it can be proven that this matrix is cross-positive on K.

• False will be returned if it can be proven that this matrix is not cross-positive on K.

• False will also be returned if we can’t decide; specifically if we arrive at a symbolic inequality that
cannot be resolved.

See also

is_positive_operator_on(), is_Z_operator_on(), is_lyapunov_like_on()

REFERENCES:

H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM Journal on Numerical Analysis, 7:508-519,
1970.

EXAMPLES:

Negative Z-matrices are cross-positive operators on the nonnegative orthant:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [-1, 2, 0], #␣
→˓needs sage.symbolic
....: [ 0, 2, 7],
....: [ 3, 0, 3] ])

(continues on next page)
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sage: L.is_cross_positive_on(K) #␣
→˓needs sage.geometry.polyhedron sage.symbolic
True

Symbolic entries also work in some easy cases:

sage: K = Cone([(1,0,0),(0,1,0),(0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [-1, e, 0 ], #␣
→˓needs sage.symbolic
....: [ 0, 2, pi],
....: [ sqrt(2), 0, 3 ] ])
sage: L.is_cross_positive_on(K) #␣
→˓needs sage.geometry.polyhedron sage.symbolic
True

is_diagonal()

Return True if this matrix is a diagonal matrix.

OUTPUT: boolean

EXAMPLES:

sage: m = matrix(QQ, 2,2, range(4))
sage: m.is_diagonal()
False
sage: m = matrix(QQ, 2, [5,0,0,5])
sage: m.is_diagonal()
True
sage: m = matrix(QQ, 2, [1,0,0,1])
sage: m.is_diagonal()
True
sage: m = matrix(QQ, 2, [1,1,1,1])
sage: m.is_diagonal()
False

is_diagonalizable(base_field=None)
Determine if the matrix is similar to a diagonal matrix.

INPUT:

• base_field – a new field to use for entries of the matrix

OUTPUT:

If self is the matrix 𝐴, then it is diagonalizable if there is an invertible matrix 𝑃 and a diagonal matrix 𝐷
such that

𝑃−1𝐴𝑃 = 𝐷

This routine returns True if self is diagonalizable. The diagonal entries of the matrix𝐷 are the eigenvalues
of 𝐴.

A matrix not diagonalizable over the base field may become diagonalizable by extending the base field to
contain all of the eigenvalues. Over the rationals, the field of algebraic numbers, sage.rings.qqbar is
a good choice.

To obtain the matrices 𝐷 and 𝑃 , use the diagonalization() method.

ALGORITHM:
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For each eigenvalue, this routine checks that the algebraic multiplicity (number of occurrences as a root of
the characteristic polynomial) is equal to the geometric multiplicity (dimension of the eigenspace), which is
sufficient to ensure a basis of eigenvectors for the columns of 𝑃 .

EXAMPLES:

A matrix that is diagonalizable over the rationals:

sage: A = matrix(QQ, [[-7, 16, 12, 0, 6],
....: [-9, 15, 0, 12, -27],
....: [ 9, -8, 11, -12, 51],
....: [ 3, -4, 0, -1, 9],
....: [-1, 0, -4, 4, -12]])
sage: A.is_diagonalizable() #␣
→˓needs sage.libs.pari
True
sage: A.diagonalization() #␣
→˓needs sage.libs.pari
(
[ 2 0 0 0 0] [ 1 1 0 1 0]
[ 0 3 0 0 0] [ 1/2 0 1 0 1]
[ 0 0 3 0 0] [ 1/6 1 -3/2 2/3 -14/9]
[ 0 0 0 -1 0] [ -1/6 0 -1/4 0 -1/3]
[ 0 0 0 0 -1], [ -1/6 -1/3 1/3 -1/3 4/9]
)

This is a matrix not diagonalizable over the rationals, but you can still get its Jordan form.

sage: A = matrix(QQ, [[-3, -14, 2, -1, 15],
....: [4, 6, -2, 3, -8],
....: [-2, -14, 0, 0, 10],
....: [3, 13, -2, 0, -11],
....: [-1, 6, 1, -3, 1]])
sage: A.is_diagonalizable() #␣
→˓needs sage.libs.pari
False
sage: A.jordan_form(subdivide=False) #␣
→˓needs sage.combinat sage.libs.pari
[-1 1 0 0 0]
[ 0 -1 0 0 0]
[ 0 0 2 1 0]
[ 0 0 0 2 1]
[ 0 0 0 0 2]

If any eigenvalue of a matrix is outside the base ring, then this routine raises an error. However, the ring can
be extended to contain the eigenvalues.

sage: A = matrix(QQ, [[1, 0, 1, 1, -1],
....: [0, 1, 0, 4, 8],
....: [2, 1, 3, 5, 1],
....: [2, -1, 1, 0, -2],
....: [0, -1, -1, -5, -8]])

sage: [e in QQ for e in A.eigenvalues()] #␣
→˓needs sage.rings.number_field
[False, False, False, False, False]
sage: A.is_diagonalizable() #␣
→˓needs sage.libs.pari

(continues on next page)
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False
sage: A.diagonalization() #␣
→˓needs sage.libs.pari
Traceback (most recent call last):
...
ValueError: not diagonalizable over Rational Field

sage: [e in QQbar for e in A.eigenvalues()] #␣
→˓needs sage.rings.number_field
[True, True, True, True, True]
sage: A.is_diagonalizable(base_field=QQbar) #␣
→˓needs sage.rings.number_field
True

Other exact fields may be employed, though it will not always be possible to extend their base fields to contain
all the eigenvalues.

sage: # needs sage.rings.finite_rings
sage: F.<b> = FiniteField(5^2)
sage: A = matrix(F, [[ 4, 3*b + 2, 3*b + 1, 3*b + 4],
....: [2*b + 1, 4*b, 0, 2],
....: [ 4*b, b + 2, 2*b + 3, 3],
....: [ 2*b, 3*b, 4*b + 4, 3*b + 3]])
sage: A.is_diagonalizable()
False
sage: A.jordan_form() #␣
→˓needs sage.combinat
[ 4 1| 0 0]
[ 0 4| 0 0]
[---------------+---------------]
[ 0 0|2*b + 1 1]
[ 0 0| 0 2*b + 1]

sage: # needs sage.rings.number_field
sage: F.<c> = QuadraticField(-7)
sage: A = matrix(F, [[ c + 3, 2*c - 2, -2*c + 2, c - 1],
....: [2*c + 10, 13*c + 15, -13*c - 17, 11*c + 31],
....: [2*c + 10, 14*c + 10, -14*c - 12, 12*c + 30],
....: [ 0, 2*c - 2, -2*c + 2, 2*c + 2]])
sage: A.is_diagonalizable()
True
sage: A.diagonalization()
(
[ 4 0 0 0] [ 1 0 1 0]
[ 0 -2 0 0] [ 4 1 0 1]
[ 0 0 c + 3 0] [ 5 1 -2/9 10/9]
[ 0 0 0 c + 3], [ 1 0 -4/9 2/9]
)

A trivial matrix is diagonalizable, trivially.

sage: A = matrix(QQ, 0, 0)
sage: A.is_diagonalizable() #␣
→˓needs sage.libs.pari
True

A matrix must be square to be diagonalizable.
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sage: A = matrix(QQ, 3, 4)
sage: A.is_diagonalizable()
Traceback (most recent call last):
...
TypeError: not a square matrix

The matrix must have entries from a field, and it must be an exact field.

sage: A = matrix(ZZ, 4, range(16))
sage: A.is_diagonalizable()
Traceback (most recent call last):
...
ValueError: matrix entries must be from a field

sage: A = matrix(RDF, 4, range(16))
sage: A.is_diagonalizable()
Traceback (most recent call last):
...
ValueError: base field must be exact, but Real Double Field is not

is_lyapunov_like_on(K)
Determine if this matrix is Lyapunov-like on a cone.

We say that a matrix 𝐿 is Lyapunov-like on a closed convex cone𝐾 if the inner product of 𝐿𝑥 and 𝑠 is zero
for all pairs of orthogonal vectors 𝑥 in 𝐾 and 𝑠 in the dual of 𝐾. This property need only be checked for
generators of𝐾 and its dual.

An operator is Lyapunov-like on 𝐾 if and only if both the operator itself and its negation are cross-positive
on𝐾.

To reliably check whether or not this matrix is Lyapunov-like, its base ring must be either exact (for example,
the rationals) or the symbolic ring. An exact ring is more reliable, but in some cases a matrix whose entries
contain symbolic constants like 𝑒 and 𝜋 will work.

INPUT:

• K – a polyhedral closed convex cone

OUTPUT:

If the base ring of this matrix is exact, then True will be returned if and only if this matrix is Lyapunov-like
on K.

If the base ring of this matrix is symbolic, then the situation is more complicated:

• True will be returned if it can be proven that this matrix is Lyapunov-like on K.

• False will be returned if it can be proven that this matrix is not Lyapunov-like on K.

• False will also be returned if we can’t decide; specifically if we arrive at a symbolic inequality that
cannot be resolved.

See also

is_positive_operator_on(), is_cross_positive_on(), is_Z_operator_on()

REFERENCES:

• [Or2017]
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EXAMPLES:

Diagonal matrices are Lyapunov-like operators on the nonnegative orthant:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = diagonal_matrix(random_vector(QQ, 3))
sage: L.is_lyapunov_like_on(K) #␣
→˓needs sage.geometry.polyhedron
True

Symbolic entries also work in some easy cases:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [e, 0, 0 ], #␣
→˓needs sage.symbolic
....: [0, pi, 0 ],
....: [0, 0, sqrt(2)] ])
sage: L.is_lyapunov_like_on(K) #␣
→˓needs sage.geometry.polyhedron
True

is_nilpotent()

Return if self is a nilpotent matrix.

A matrix 𝐴 is nilpotent if there exists a positive integer 𝑘 such that 𝐴𝑘 = 0. We test this by using the
Cayley-Hamilton theorem to see if the characteristic polynomial is 𝑥𝑛 = 0.

EXAMPLES:

sage: A = matrix([[0,2,1,6], [0,0,1,2], [0,0,0,3], [0,0,0,0]])
sage: A.is_nilpotent()
True
sage: B = matrix([[2,2,2,2,-4], [7,1,1,1,-5], [1,7,1,1,-5],
....: [1,1,7,1,-5], [1,1,1,7,-5]])
sage: B.is_nilpotent()
True
sage: C = matrix(GF(7), [[1, 2], [2, 6]])
sage: C.is_nilpotent()
False
sage: D = matrix([[1,0],[0,0]])
sage: D.is_nilpotent()
False
sage: Z = matrix.zero(QQ, 5)
sage: Z.is_nilpotent()
True

is_normal()

Return True if the matrix commutes with its conjugate-transpose.

OUTPUT:

True if the matrix is square and commutes with its conjugate-transpose, and False otherwise.

Normal matrices are precisely those that can be diagonalized by a unitary matrix.

This routine is for matrices over exact rings and so may not work properly for matrices over RR or CC.
For matrices with approximate entries, the rings of double-precision floating-point numbers, RDF and CDF,
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are a better choice since the sage.matrix.matrix_double_dense.Matrix_double_dense.
is_normal() method has a tolerance parameter. This provides control over allowing for minor discrep-
ancies between entries when checking equality.

The result is cached.

EXAMPLES:

Hermitian matrices are normal.

sage: # needs sage.symbolic
sage: A = matrix(QQ, 5, 5, range(25)) + I*matrix(QQ, 5, 5, range(0, 50, 2))
sage: B = A*A.conjugate_transpose()
sage: B.is_hermitian()
True
sage: B.is_normal()
True

Circulant matrices are normal.

sage: # needs sage.graphs
sage: G = graphs.CirculantGraph(20, [3, 7])
sage: D = digraphs.Circuit(20)
sage: A = 3*D.adjacency_matrix() - 5*G.adjacency_matrix()
sage: A.is_normal()
True

Skew-symmetric matrices are normal.

sage: A = matrix(QQ, 5, 5, range(25))
sage: B = A - A.transpose()
sage: B.is_skew_symmetric()
True
sage: B.is_normal()
True

A small matrix that does not fit into any of the usual categories of normal matrices.

sage: A = matrix(ZZ, [[1, -1],
....: [1, 1]])
sage: A.is_normal()
True
sage: not A.is_hermitian() and not A.is_skew_symmetric()
True

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.

sage: # needs sage.rings.number_field
sage: F.<b> = QuadraticField(-7)
sage: C = matrix(F, [[-2*b - 3, 7*b - 6, -b + 3],
....: [-2*b - 3, -3*b + 2, -2*b],
....: [ b + 1, 0, -2]])
sage: C = C*C.conjugate_transpose()
sage: C.is_normal()
True

A matrix that is nearly normal, but for a non-real diagonal entry.
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sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ 2, 2-I, 1+4*I],
....: [ 2+I, 3+I, 2-6*I],
....: [1-4*I, 2+6*I, 5]])
sage: A.is_normal()
False
sage: A[1,1] = 132
sage: A.is_normal()
True

Rectangular matrices are never normal.

sage: A = matrix(QQbar, 3, 4) #␣
→˓needs sage.rings.number_field
sage: A.is_normal() #␣
→˓needs sage.rings.number_field
False

A square, empty matrix is trivially normal.

sage: A = matrix(QQ, 0, 0)
sage: A.is_normal()
True

is_one()

Return True if this matrix is the identity matrix.

EXAMPLES:

sage: m = matrix(QQ, 2,2, range(4))
sage: m.is_one()
False
sage: m = matrix(QQ, 2, [5,0,0,5])
sage: m.is_one()
False
sage: m = matrix(QQ, 2, [1,0,0,1])
sage: m.is_one()
True
sage: m = matrix(QQ, 2, [1,1,1,1])
sage: m.is_one()
False

is_permutation_of(N , check=False)
Return True if there exists a permutation of rows and columns sending self to N and False otherwise.

INPUT:

• N – a matrix

• check – boolean (default: False); if False return Boolean indicating whether there exists a per-
mutation of rows and columns sending self to N and False otherwise. If True return a tuple of a
Boolean and a permutation mapping self to N if such a permutation exists, and (False, None) if it
does not.

OUTPUT: a Boolean or a tuple of a Boolean and a permutation

EXAMPLES:
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sage: M = matrix(ZZ, [[1,2,3], [3,5,3], [2,6,4]])
sage: M
[1 2 3]
[3 5 3]
[2 6 4]
sage: N = matrix(ZZ, [[1,2,3], [2,6,4], [3,5,3]])
sage: N
[1 2 3]
[2 6 4]
[3 5 3]
sage: M.is_permutation_of(N) #␣
→˓needs sage.graphs
True

Some examples that are not permutations of each other:

sage: N = matrix(ZZ, [[1,2,3], [4,5,6], [7,8,9]]); N
[1 2 3]
[4 5 6]
[7 8 9]
sage: M.is_permutation_of(N) #␣
→˓needs sage.graphs
False
sage: N = matrix(ZZ, [[1,2], [3,4]]); N
[1 2]
[3 4]
sage: M.is_permutation_of(N)
False

And for when check is True:

sage: # needs sage.graphs sage.groups
sage: N = matrix(ZZ, [[3,5,3], [2,6,4], [1,2,3]]); N
[3 5 3]
[2 6 4]
[1 2 3]
sage: r = M.is_permutation_of(N, check=True)
sage: r
(True, ((1,2,3), ()))
sage: p = r[1]
sage: M.with_permuted_rows_and_columns(*p) == N
True

is_positive_definite(certificate=False)

Determine if a matrix is positive-definite.

A matrix 𝐴 is positive definite if it is_hermitian() and if, for every nonzero vector 𝑥,

⟨𝐴𝑥, 𝑥⟩ > 0.

ALGORITHM:

AHermitian matrix is positive-definite if and only if the diagonal blocks in its block_ldlt() factorization
are all 1-by-1 and have positive entries. We first check that thematrixis_hermitian(), and then compute
this factorization.

INPUT:

• self – a matrix
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• certificate – boolean (default: False); return the lower-triangular and diagonal parts of the
block_ldlt() factorization when the matrix is positive-definite. Deprecated.

OUTPUT:

This routine will return True if the matrix is Hermitian and meets the condition above for the quadratic
form.

The base ring for the elements of the matrix must

1. Have a fraction field implemented; and

2. Be a subring of the real numbers, complex numbers, or symbolic ring.

If certificate is True, a triplet (b, L, d) will be returned instead, with b containing the result
(true or false). If the matrix is positive-definite, then L and d will contain the lower-triangular and diagonal
parts of the block_ldlt() factorization, respectively. Or if the matrix is not positive-definite (that is, if
b is False), then both L and d will be None.

See also

block_ldlt(), is_hermitian(), is_positive_semidefinite()

EXAMPLES:

A real symmetric matrix that is positive-definite, as evidenced by the positive determinants of its leading
principal submatrices:

sage: A = matrix(QQ, [[ 4, -2, 4, 2],
....: [-2, 10, -2, -7],
....: [ 4, -2, 8, 4],
....: [ 2, -7, 4, 7]])
sage: A.is_positive_definite()
True
sage: [A[:i,:i].determinant() for i in range(1, A.nrows() + 1)]
[4, 36, 144, 144]

A real symmetric matrix that is not positive-definite and a vector u that makes the corresponding quadratic
form negative:

sage: A = matrix(QQ, [[ 3, -6, 9, 6, -9],
....: [-6, 11, -16, -11, 17],
....: [ 9, -16, 28, 16, -40],
....: [ 6, -11, 16, 9, -19],
....: [-9, 17, -40, -19, 68]])
sage: A.is_positive_definite()
False
sage: u = vector(QQ, [2, 2, 0, 1, 0])
sage: (A*u).inner_product(u)
-3

Another real symmetric matrix that is not positive-definite and a vector u that makes the corresponding
quadratic form zero:

sage: A = matrix(QQ, [[21, 15, 12, -2],
....: [15, 12, 9, 6],
....: [12, 9, 7, 3],
....: [-2, 6, 3, 8]])

(continues on next page)
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sage: A.is_positive_definite()
False
sage: u = vector(QQ, [1,1,-3,0])
sage: (A*u).inner_product(u)
0

A complex Hermitian matrix that is positive-definite, confirmed by the positive determinants of its leading
principal submatrices:

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, �x�)
sage: C.<I> = NumberField(x^2 + 1, embedding=CC(0,1))
sage: A = matrix(C, [[ 23, 17*I + 3, 24*I + 25, 21*I],
....: [ -17*I + 3, 38, -69*I + 89, 7*I + 15],
....: [-24*I + 25, 69*I + 89, 976, 24*I + 6],
....: [ -21*I, -7*I + 15, -24*I + 6, 28]])
sage: A.is_positive_definite()
True
sage: [A[:i,:i].determinant() for i in range(1,A.nrows()+1)]
[23, 576, 359540, 2842600]

An Hermitian matrix that is not positive-definite and a vector u that makes the corresponding quadratic form
negative:

sage: # needs sage.rings.number_field
sage: C.<I> = QuadraticField(-1)
sage: B = matrix(C, [[ 2, 4 - 2*I, 2 + 2*I],
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: B.is_positive_definite()
False
sage: u = vector(C, [-5 + 10*I, 4 - 3*I, 0])
sage: (B*u).hermitian_inner_product(u)
-50

A positive-definite matrix over an algebraically-closed field, confirmed by the positive determinants of its
leading principal submatrices:

sage: # needs sage.rings.number_field
sage: A = matrix(QQbar, [[ 2, 4 + 2*I, 6 - 4*I],
....: [ -2*I + 4, 11, 10 - 12*I],
....: [ 4*I + 6, 10 + 12*I, 37]])
sage: A.is_positive_definite()
True
sage: [A[:i,:i].determinant() for i in range(1, A.nrows() + 1)]
[2, 2, 6]

is_positive_operator_on(K1, K2=None)
Determine if this matrix is a positive operator on a cone.

A matrix is a positive operator on a cone if the image of the cone under the matrix is itself a subset of the
cone. That concept can be extended to two cones: a matrix is a positive operator on a pair of cones if the
image of the first cone is contained in the second cone.

To reliably check whether or not this matrix is a positive operator, its base ring must be either exact (for
example, the rationals) or the symbolic ring. An exact ring is more reliable, but in some cases a matrix whose

245



Matrices and Spaces of Matrices, Release 10.5.rc0

entries contain symbolic constants like 𝑒 and 𝜋 will work. Performance is best for integer or rational matrices,
for which we can check the “is a subset of the other cone” condition quickly.

INPUT:

• K1 – a polyhedral closed convex cone

• K2 – (default: K1) the codomain cone; this matrix is a positive operator if the image of K1 is a subset
of K2

OUTPUT:

If the base ring of this matrix is exact, then True will be returned if and only if this matrix is a positive
operator.

If the base ring of this matrix is symbolic, then the situation is more complicated:

• True will be returned if it can be proven that this matrix is a positive operator.

• False will be returned if it can be proven that this matrix is not a positive operator.

• False will also be returned if we can’t decide; specifically if we arrive at a symbolic inequality that
cannot be resolved.

See also

is_cross_positive_on(), is_Z_operator_on(), is_lyapunov_like_on()

REFERENCES:

A. Berman and P. Gaiha. A generalization of irreducible monotonicity. Linear Algebra and its Applications,
5:29-38, 1972.

A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia,
1994.

EXAMPLES:

Nonnegative matrices are positive operators on the nonnegative orthant:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = random_matrix(QQ, 3).apply_map(abs)
sage: L.is_positive_operator_on(K) #␣
→˓needs sage.geometry.polyhedron
True

Symbolic entries also work in some easy cases:

sage: K = Cone([(1,0,0), (0,1,0), (0,0,1)]) #␣
→˓needs sage.geometry.polyhedron
sage: L = matrix(SR, [ [0, e, 0 ], #␣
→˓needs sage.symbolic
....: [0, 2, pi],
....: [sqrt(2), 0, 0 ] ])
sage: L.is_positive_operator_on(K) #␣
→˓needs sage.geometry.polyhedron
True

Your matrix can be over any exact ring, for example the ring of univariate polynomials with rational coef-
ficients:
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sage: # needs sage.geometry.polyhedron
sage: K = Cone([(1,0), (-1,0), (0,1), (0,-1)])
sage: K.is_full_space()
True
sage: x = polygen(ZZ, �x�)
sage: L = matrix(QQ[x], [[x,0],[0,1]])
sage: L.is_positive_operator_on(K)
True

is_positive_semidefinite()

Return whether or not this matrix is positive-semidefinite.

By SageMath convention, positive (semi)definite matrices must be either real symmetric or complex Hermi-
tian.

ALGORITHM:

Bunch and Kaufman [BK1977] describe a fast, numerically-stable scheme for computing the “inertia” of a
matrix by way Sylvester’s inertia theorem and a block-𝐿𝐷𝐿𝑇 factorization. We perform this factorization,
and read off the signs of the eigenvalues from the resulting diagonal blocks.

REFERENCES:

• [BK1977]

See also

block_ldlt(), is_positive_definite()

EXAMPLES:

A positive-definite matrix:

sage: A = matrix(QQ, [ [2,1],
....: [1,2] ] )
sage: A.eigenvalues() #␣
→˓needs sage.rings.number_field
[3, 1]
sage: A.is_positive_semidefinite()
True

A positive-semidefinite (but not positive-definite) matrix:

sage: A = matrix(QQ, [ [1,1],
....: [1,1] ] )
sage: A.eigenvalues() #␣
→˓needs sage.rings.number_field
[2, 0]
sage: A.is_positive_semidefinite()
True

And finally, an indefinite matrix:

sage: A = matrix(QQ, [ [0,1],
....: [1,0] ] )
sage: A.eigenvalues() #␣
→˓needs sage.rings.number_field

(continues on next page)
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[1, -1]
sage: A.is_positive_semidefinite()
False

A non-Hermitian matrix cannot be positive-semidefinite, regardless of its eigenvalues:

sage: A = matrix(QQ, [ [2,1],
....: [0,0] ])
sage: A.eigenvalues() #␣
→˓needs sage.rings.number_field
[2, 0]
sage: A.is_positive_semidefinite()
False

Any of the preceding examples are valid over inexact rings and with complex numbers as well:

sage: # needs sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, [ [ 2, I],
....: [-I, 2] ] )
sage: A.is_positive_semidefinite()
True
sage: A = matrix(CDF, [ [ 1, I],
....: [-I, 1] ] )
sage: A.is_positive_semidefinite()
True
sage: A = matrix(CDF, [ [0,I],
....: [I,0] ] )
sage: A.is_positive_semidefinite()
False
sage: A = matrix(CDF, [ [2,I],
....: [0,0] ])
sage: A.is_positive_semidefinite()
False

is_scalar(a=None)
Return True if this matrix is a scalar matrix.

INPUT:

• a – base_ring element; chosen as self[0][0] if a==None

OUTPUT:

Whether self is a scalar matrix (in fact the scalar matrix aI if a is input).

EXAMPLES:

sage: m = matrix(QQ, 2,2, range(4))
sage: m.is_scalar(5)
False
sage: m = matrix(QQ, 2, [5,0,0,5])
sage: m.is_scalar(5)
True
sage: m = matrix(QQ, 2, [1,0,0,1])
sage: m.is_scalar(1)
True
sage: m = matrix(QQ, 2, [1,1,1,1])

(continues on next page)
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sage: m.is_scalar(1)
False

is_semisimple()

Return if self is semisimple.

A (square) matrix 𝐴 is semisimple if the minimal polynomial of 𝐴 is sqaure-free.

If 𝐴 represents a linear map from 𝐹𝑛 → 𝐹𝑛 for some field 𝐹 , then this is equivalent to every 𝐴-invariant
subspace of 𝐹𝑛 has a complementary 𝐴-invariant subspace. This is also equivalent to saying the matrix is
diagonalizable over 𝐹 , the algebraic closure of 𝐹 .

EXAMPLES:

sage: A = matrix([[0, -1], [1, 0]]); A
[ 0 -1]
[ 1 0]
sage: A.is_semisimple()
True
sage: A.change_ring(QQ).is_diagonalizable()
False
sage: A.change_ring(CyclotomicField(4)).is_diagonalizable()
True

is_similar(other, transformation=False)
Return True if self and other are similar, i.e. related by a change-of-basis matrix.

INPUT:

• other – a matrix, which should be square, and of the same size as self

• transformation – (default: False) if True, the output may include the change-of-basis matrix
(also known as the similarity transformation). See below for an exact description.

OUTPUT:

Two matrices, 𝐴 and 𝐵 are similar if they are square matrices of the same size and there is an invertible
matrix 𝑆 such that 𝐴 = 𝑆−1𝐵𝑆. 𝑆 can be interpreted as a change-of-basis matrix if 𝐴 and 𝐵 are viewed as
matrix representations of the same linear transformation from a vector space to itself.

When transformation=False this method will return True if such a matrix 𝑆 exists, otherwise it will
return False. When transformation=True the method returns a pair. The first part of the pair is
True or False depending on if the matrices are similar. The second part of the pair is the change-of-basis
matrix when the matrices are similar and None when the matrices are not similar.

When a similarity transformation matrix S is requested, it will satisfy self = S.inverse()*other*S.

rings and coefficients

Inexact rings are not supported. Only rings having a fraction field can be used as coefficients.

The base rings for the matrices are promoted to a common field for the similarity check using rational form
over this field.

If the fraction fields of both matrices are the same, this field is used. Otherwise, if the fraction fields are only
related by a canonical coercion, the common coercion field is used.

In all cases, the result is about similarity over a common field.
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similarity transformation

For computation of the similarity transformation, the matrices are first checked to be similar over their com-
mon field.

In this case, a similarity transformation is then searched for over the common field. If this fails, the matri-
ces are promoted to the algebraic closure of their common field (whenever it is available) and a similarity
transformation is looked for over the algebraic closure.

For example, matrices over the rationals may be promoted to the field of algebraic numbers (QQbar) for
computation of the similarity transformation.

Warning

When the two matrices are similar, this routine may fail to find the similarity transformation. A technical
explanation follows.

The similarity check is accomplished with rational form, which will be successful for any pair of matrices
over the same field. However, the computation of rational form does not provide a transformation. So we
instead compute Jordan form, which does provide a transformation. But Jordan form will require that the
eigenvalues of the matrix can be represented within Sage, requiring the existence of the appropriate extension
field. When this is not possible, a RuntimeError is raised, as demonstrated in an example below.

EXAMPLES:

The two matrices in this example were constructed to be similar. The computations happen in the field of
algebraic numbers, but we are able to convert the change-of-basis matrix back to the rationals (which may
not always be possible).

sage: A = matrix(ZZ, [[-5, 2, -11],
....: [-6, 7, -42],
....: [0, 1, -6]])
sage: B = matrix(ZZ, [[ 1, 12, 3],
....: [-1, -6, -1],
....: [ 0, 6, 1]])
sage: A.is_similar(B)
True

sage: # needs sage.combinat sage.libs.pari
sage: _, T = A.is_similar(B, transformation=True)
sage: T
[ 1.00000000000000? + 0.?e-14*I 0.?e-14 + 0.?e-14*I 0.?
→˓e-14 + 0.?e-14*I]
[-0.66666666666667? + 0.?e-15*I 0.166666666666667? + 0.?e-15*I -0.
→˓83333333333334? + 0.?e-14*I]
[ 0.66666666666667? + 0.?e-14*I 0.?e-14 + 0.?e-14*I -0.
→˓33333333333333? + 0.?e-14*I]
sage: T.change_ring(QQ)
[ 1 0 0]
[-2/3 1/6 -5/6]
[ 2/3 0 -1/3]
sage: A == T.inverse()*B*T
True

Other exact fields are supported.
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sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(7^2)
sage: A = matrix(F, [[2*a + 5, 6*a + 6, a + 3],
....: [ a + 3, 2*a + 2, 4*a + 2],
....: [2*a + 6, 5*a + 5, 3*a]])
sage: B = matrix(F, [[5*a + 5, 6*a + 4, a + 1],
....: [ a + 5, 4*a + 3, 3*a + 3],
....: [3*a + 5, a + 4, 5*a + 6]])
sage: A.is_similar(B)
True
sage: B.is_similar(A)
True
sage: _, T = A.is_similar(B, transformation=True)
sage: T
[ 1 0 0]
[6*a + 1 4*a + 3 4*a + 2]
[6*a + 3 3*a + 5 3*a + 6]
sage: A == T.inverse() * B * T
True

Two matrices with different sets of eigenvalues, so they cannot possibly be similar.

sage: A = matrix(QQ, [[ 2, 3, -3, -6],
....: [ 0, 1, -2, -8],
....: [-3, -3, 4, 3],
....: [-1, -2, 2, 6]])
sage: B = matrix(QQ, [[ 1, 1, 2, 4],
....: [-1, 2, -3, -7],
....: [-2, 3, -4, -7],
....: [ 0, -1, 0, 0]])
sage: A.eigenvalues() == B.eigenvalues() #␣
→˓needs sage.rings.number_field
False
sage: A.is_similar(B, transformation=True)
(False, None)

Similarity is an equivalence relation, so this routine computes a representative of the equivalence class for
each matrix, the rational form, as provided by rational_form(). The matrices below have identical
eigenvalues (as evidenced by equal characteristic polynomials), but slightly different rational forms, and hence
are not similar.

sage: A = matrix(QQ, [[ 19, -7, -29],
....: [-16, 11, 30],
....: [ 15, -7, -25]])
sage: B = matrix(QQ, [[-38, -63, 42],
....: [ 14, 25, -14],
....: [-14, -21, 18]])
sage: A.charpoly() == B.charpoly() #␣
→˓needs sage.libs.pari
True
sage: A.rational_form()
[ 0 0 -48]
[ 1 0 8]
[ 0 1 5]
sage: B.rational_form()
[ 4| 0 0]
[--+-----]

(continues on next page)
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[ 0| 0 12]
[ 0| 1 1]
sage: A.is_similar(B)
False

Obtaining the transformation between two similar matrices requires the Jordan form, which requires com-
puting the eigenvalues of the matrix, which may not lie in the field used for entries of the matrix. In this
unfortunate case, the computation of the transformation may fail with a RuntimeError, EVEN when the
matrices are similar. This is not the case for matrices over the integers, rationals or algebraic numbers, since
the computations are done in the algebraically closed field of algebraic numbers. Here is an example where
the similarity is obvious by design, but we are not able to resurrect a similarity transformation.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(7^2)
sage: C = matrix(F, [[ a + 2, 5*a + 4],
....: [6*a + 6, 6*a + 4]])
sage: S = matrix(F, [[0, 1],
....: [1, 0]])
sage: D = S.inverse()*C*S
sage: C.is_similar(D)
True
sage: C.is_similar(D, transformation=True) #␣
→˓needs sage.combinat
Traceback (most recent call last):
...
RuntimeError: unable to compute transformation for similar matrices
sage: C.jordan_form() #␣
→˓needs sage.combinat
Traceback (most recent call last):
...
RuntimeError: Some eigenvalue does not exist in
Finite Field in a of size 7^2.

An example over a finite field of prime order, which uses the algebraic closure of this field to find the
change-of-basis matrix:

sage: # needs sage.combinat sage.graphs sage.rings.finite_rings
sage: cox = posets.TamariLattice(3).coxeter_transformation()
sage: M = cox.change_ring(GF(3))
sage: M.is_similar(M**3, True) # long time
(

[1 0 0 0 0]
[0 1 1 0 2]
[0 0 0 0 1]
[1 2 0 2 1]

True, [0 0 1 0 0]
)

Inexact rings and fields are not supported.

sage: A = matrix(CDF, 2, 2, range(4))
sage: B = copy(A)
sage: A.is_similar(B)
Traceback (most recent call last):
...
TypeError: matrix entries must come from an exact field,

(continues on next page)
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not Complex Double Field

Base rings for the matrices need to have a fraction field. So in particular, the ring needs to be at least an
integral domain.

sage: Z6 = Integers(6)
sage: A = matrix(Z6, 2, 2, range(4))
sage: A.is_similar(A)
Traceback (most recent call last):
...
ValueError: base ring of a matrix needs a fraction field,
maybe the ring is not an integral domain

If the fraction fields of the entries are unequal and do not coerce in a common field, it is an error.

sage: A = matrix(GF(3), 2, 2, range(4))
sage: B = matrix(GF(2), 2, 2, range(4))
sage: A.is_similar(B, transformation=True)
Traceback (most recent call last):
...
TypeError: no common canonical parent for objects with parents:
�Full MatrixSpace of 2 by 2 dense matrices over Finite Field
of size 3� and
�Full MatrixSpace of 2 by 2 dense matrices over Finite Field
of size 2�

A matrix over the integers and a matrix over the algebraic numbers will be compared over the algebraic
numbers (by coercion of QQ in QQbar).

sage: A = matrix(ZZ, 2, 2, range(4))
sage: B = matrix(QQbar, 2, 2, range(4)) #␣
→˓needs sage.rings.number_field
sage: A.is_similar(B) #␣
→˓needs sage.rings.number_field
True

is_triangular(side='lower')
Return True if this matrix is a triangular matrix.

INPUT:

• side – either �lower� (default) or �upper�

OUTPUT: boolean

EXAMPLES:

sage: m = matrix(QQ, 2, 2, range(4))
sage: m.is_triangular()
False
sage: m = matrix(QQ, 2, [5, 0, 0, 5])
sage: m.is_triangular()
True
sage: m = matrix(QQ, 2, [1, 2, 0, 1])
sage: m.is_triangular("upper")
True
sage: m.is_triangular("lower")
False
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is_unitary()

Return True if the columns of the matrix are an orthonormal basis.

For a matrix with real entries this determines if a matrix is “orthogonal” and for a matrix with complex entries
this determines if the matrix is “unitary.”

OUTPUT:

True if the matrix is square and its conjugate-transpose is its inverse, and False otherwise. In other words,
a matrix is orthogonal or unitary if the product of its conjugate-transpose times the matrix is the identity
matrix.

For numerical matrices a specialized routine available over RDF and CDF is a good choice.

EXAMPLES:

sage: A = matrix(QQbar, #␣
→˓needs sage.rings.number_field sage.symbolic
....: [[(1/sqrt(5))*(1+i), (1/sqrt(55))*(3+2*I), (1/
→˓sqrt(22))*(2+2*I)],
....: [(1/sqrt(5))*(1-i), (1/sqrt(55))*(2+2*I), (1/sqrt(22))*(-
→˓3+I)],
....: [ (1/sqrt(5))*I, (1/sqrt(55))*(3-5*I), (1/sqrt(22))*(-
→˓2)]])
sage: A.is_unitary() #␣
→˓needs sage.rings.number_field sage.symbolic
True

A permutation matrix is always orthogonal.

sage: # needs sage.combinat
sage: sigma = Permutation([1,3,4,5,2])
sage: P = sigma.to_matrix(); P
[1 0 0 0 0]
[0 0 0 0 1]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
sage: P.is_unitary()
True
sage: P.change_ring(GF(3)).is_unitary()
True
sage: P.change_ring(GF(3)).is_unitary()
True

A square matrix far from unitary.

sage: A = matrix(QQ, 4, range(16))
sage: A.is_unitary()
False

Rectangular matrices are never unitary.

sage: A = matrix(QQbar, 3, 4) #␣
→˓needs sage.rings.number_field
sage: A.is_unitary()
False

jordan_decomposition()

Return the Jordan decomposition of self.
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The Jordan decomposition of a matrix 𝐴 is a pair of matrices (𝑆,𝑁) such that

• 𝐴 = 𝑆 +𝑁 ,

• 𝑆 is semisimple,

• 𝑁 is nilpotent.

EXAMPLES:

sage: A = matrix(QQ, 5, 5, {(0,1): -1, (1,0): 1, (2,3): -1}); A
[ 0 -1 0 0 0]
[ 1 0 0 0 0]
[ 0 0 0 -1 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
sage: S, N = A.jordan_decomposition()
sage: S
[ 0 -1 0 0 0]
[ 1 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
sage: N
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 -1 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
sage: A == S + N
True
sage: S.is_semisimple()
True
sage: N.is_nilpotent()
True
sage: A.jordan_form()
Traceback (most recent call last):
...
RuntimeError: Some eigenvalue does not exist in Rational Field.

jordan_form(base_ring=None, sparse=False, subdivide=True, transformation=False, eigenvalues=None,
check_input=True)

Compute the Jordan normal form of this square matrix 𝐴, if it exists.

This computation is performed in a naive way using the ranks of powers of 𝐴−𝑥𝐼 , where 𝑥 is an eigenvalue
of the matrix 𝐴. If desired, a transformation matrix 𝑃 can be returned, which is such that the Jordan canon-
ical form is given by 𝑃−1𝐴𝑃 ; if the matrix is diagonalizable, this equals to eigendecomposition or spectral
decomposition.

INPUT:

• base_ring – ring in which to compute the Jordan form

• sparse – (default: False) if sparse=True, return a sparse matrix

• subdivide – (default: True) if subdivide=True, the subdivisions for the Jordan blocks in the
matrix are shown

• transformation – (default: False) if transformation=True, computes also the transfor-
mation matrix
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• eigenvalues – (default: None) a complete set of roots, with multiplicity, of the characteristic poly-
nomial of 𝐴, encoded as a list of pairs, each having the form (𝑟,𝑚) with 𝑟 a root and𝑚 its multiplicity.
If this is None, then Sage computes this list itself, but this is only possible over base rings in whose
quotient fields polynomial factorization is implemented. Over all other rings, providing this list manually
is the only way to compute Jordan normal forms.

• check_input – boolean (default: True); whether the list eigenvalues (if provided) has to be
checked for correctness. Set this to False for a speedup if the eigenvalues are known to be correct.

Note

Currently, the Jordan normal form is not computed over inexact rings in any but the trivial cases when
the matrix is either 0× 0 or 1× 1.

In the case of exact rings, this method does not compute any generalized form of the Jordan normal form,
but is only able to compute the result if the characteristic polynomial of the matrix splits over the specific
base ring.

Note that the base ring must be a field or a ring with an implemented fraction field.

EXAMPLES:

sage: # needs sage.combinat sage.libs.pari
sage: a = matrix(ZZ,4,[1, 0, 0, 0, 0, 1, 0, 0,
....: 1, -1, 1, 0, 1, -1, 1, 2]); a
[ 1 0 0 0]
[ 0 1 0 0]
[ 1 -1 1 0]
[ 1 -1 1 2]
sage: a.jordan_form()
[2|0 0|0]
[-+---+-]
[0|1 1|0]
[0|0 1|0]
[-+---+-]
[0|0 0|1]
sage: a.jordan_form(subdivide=False)
[2 0 0 0]
[0 1 1 0]
[0 0 1 0]
[0 0 0 1]
sage: b = matrix(ZZ,3,3,range(9)); b
[0 1 2]
[3 4 5]
[6 7 8]
sage: b.jordan_form()
Traceback (most recent call last):
...
RuntimeError: Some eigenvalue does not exist in Rational Field.
sage: b.jordan_form(RealField(15))
Traceback (most recent call last):
...
ValueError: Jordan normal form not implemented over inexact rings.

Here we need to specify a field, since the eigenvalues are not defined in the smallest ring containing the matrix
entries (Issue #14508):
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sage: c = matrix([[0,1,0], [0,0,1], [1,0,0]])
sage: c.jordan_form(CyclotomicField(3)) #␣
→˓needs sage.combinat sage.rings.number_field
[ 1| 0| 0]
[----------+----------+----------]
[ 0| zeta3| 0]
[----------+----------+----------]
[ 0| 0|-zeta3 - 1]

If you need the transformation matrix as well as the Jordan form of self, then pass the option transfor-
mation=True. For example:

sage: # needs sage.combinat sage.libs.pari
sage: m = matrix([[5,4,2,1], [0,1,-1,-1], [-1,-1,3,0], [1,1,-1,2]]); m
[ 5 4 2 1]
[ 0 1 -1 -1]
[-1 -1 3 0]
[ 1 1 -1 2]
sage: jf, p = m.jordan_form(transformation=True)
sage: jf
[2|0|0 0]
[-+-+---]
[0|1|0 0]
[-+-+---]
[0|0|4 1]
[0|0|0 4]
sage: ~p * m * p
[2 0 0 0]
[0 1 0 0]
[0 0 4 1]
[0 0 0 4]

Note that for matrices over inexact rings, we do not attempt to compute the Jordan normal form, since it is
not numerically stable:

sage: b = matrix(ZZ, 3, 3, range(9))
sage: jf, p = b.jordan_form(RealField(15), transformation=True) #␣
→˓needs sage.combinat
Traceback (most recent call last):
...
ValueError: Jordan normal form not implemented over inexact rings.

kernel(*args, **kwds)
Return the left kernel of this matrix, as a vector space or free module.

This is the set of vectors x such that x*self = 0.

Note

For the right kernel, use right_kernel(). The method kernel() is exactly equal to left_ker-
nel().

For inexact rings use right_kernel_matrix() with basis=�computed� (on the transpose of
the matrix) to avoid echelonizing.

INPUT:
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• algorithm – (default: �default�) a keyword that selects the algorithm employed. Allowable values
are:

– �default� – allows the algorithm to be chosen automatically

– �generic� – naive algorithm usable for matrices over any field

– �flint� – FLINT library code for matrices over the rationals or the integers

– �pari� – PARI library code for matrices over number fields or the integers

– �padic� – padic algorithm from IML library for matrices over the rationals and integers

– �pluq� – PLUQ matrix factorization for matrices mod 2

• basis – (default: �echelon�) a keyword that describes the format of the basis used to construct the
left kernel. Allowable values are:

– ‘echelon’: the basis matrix is returned in echelon form

– ‘pivot’ : each basis vector is computed from the reduced row-echelon form of self by placing a
single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for
matrices over fields.

– ‘LLL’: an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of rows in self and which contains all the
vectors x such that x*self = 0.

If self has 0 rows, the kernel has dimension 0, while if self has 0 columns the kernel is the entire ambient
vector space.

The result is cached. Requesting the left kernel a second time, but with a different basis format, will return
the cached result with the format from the first computation.

Note

Formuchmore detailed documentation of the various options seeright_kernel(), since this method
just computes the right kernel of the transpose of self.

EXAMPLES:

Over the rationals with a basis matrix in echelon form.

sage: A = matrix(QQ, [[1, 2, 4, -7, 4],
....: [1, 1, 0, 2, -1],
....: [1, 0, 3, -3, 1],
....: [0, -1, -1, 3, -2],
....: [0, 0, -1, 2, -1]])
sage: A.left_kernel()
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1 2 -1]
[ 0 1 -1 1 -4]

Over a finite field, with a basis matrix in “pivot” format.
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sage: A = matrix(FiniteField(7), [[5, 0, 5, 2, 4],
....: [1, 3, 2, 3, 6],
....: [1, 1, 6, 5, 3],
....: [2, 5, 6, 0, 0]])
sage: A.kernel(basis=�pivot�)
Vector space of degree 4 and dimension 2 over Finite Field of size 7
User basis matrix:
[5 2 1 0]
[6 3 0 1]

The left kernel of a zero matrix is the entire ambient vector space whose degree equals the number of rows
of self (i.e. everything).

sage: A = MatrixSpace(QQ, 3, 4)(0)
sage: A.kernel()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

We test matrices with no rows or columns.

sage: A = matrix(QQ, 2, 0)
sage: A.left_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
sage: A = matrix(QQ, 0, 2)
sage: A.left_kernel()
Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:
[]

The results are cached. Note that requesting a new format for the basis is ignored and the cached copy is
returned. Work with a copy if you need a new left kernel, or perhaps investigate the right_kernel_ma-
trix() method on the transpose, which does not cache its results and is more flexible.

sage: A = matrix(QQ, [[1,1],[2,2]])
sage: K1 = A.left_kernel()
sage: K1
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 -1/2]
sage: K2 = A.left_kernel()
sage: K1 is K2
True
sage: K3 = A.left_kernel(basis=�pivot�)
sage: K3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 -1/2]
sage: B = copy(A)
sage: K3 = B.left_kernel(basis=�pivot�)
sage: K3
Vector space of degree 2 and dimension 1 over Rational Field

(continues on next page)
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User basis matrix:
[-2 1]
sage: K3 is K1
False
sage: K3 == K1
True

kernel_on(V , poly=None, check=True)
Return the kernel of self restricted to the invariant subspace 𝑉 . The result is a vector subspace of 𝑉 , which
is also a subspace of the ambient space.

INPUT:

• V – vector subspace

• check – boolean (default: True); whether to check that 𝑉 is invariant under the action of self

• poly – (default: None) if not None, compute instead the kernel of poly(self) on 𝑉

OUTPUT: a subspace

Warning

This function does not check that 𝑉 is in fact invariant under self if check is False. With check
False this function is much faster.

EXAMPLES:

sage: t = matrix(QQ, 4, [39, -10, 0, -12, 0, 2, 0, -1, 0, 1, -2, 0, 0, 2, 0, -
→˓2]); t
[ 39 -10 0 -12]
[ 0 2 0 -1]
[ 0 1 -2 0]
[ 0 2 0 -2]
sage: t.fcp() #␣
→˓needs sage.libs.pari
(x - 39) * (x + 2) * (x^2 - 2)
sage: s = (t-39)*(t^2-2)
sage: V = s.kernel(); V
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
sage: s.restrict(V)
[0 0 0]
[0 0 0]
[0 0 0]
sage: s.kernel_on(V)
Vector space of degree 4 and dimension 3 over Rational Field
Basis matrix:
[1 0 0 0]
[0 1 0 0]
[0 0 0 1]
sage: k = t-39
sage: k.restrict(V)

(continues on next page)
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[ 0 -10 -12]
[ 0 -37 -1]
[ 0 2 -41]
sage: ker = k.kernel_on(V); ker
Vector space of degree 4 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2/7 0 -2/7]
sage: ker.0 * k
(0, 0, 0, 0)

Test that Issue #9425 is fixed.

sage: V = span([[1/7,0,0] ,[0,1,0]], ZZ); V
Free module of degree 3 and rank 2 over Integer Ring
Echelon basis matrix:
[1/7 0 0]
[ 0 1 0]
sage: T = matrix(ZZ,3,[1,0,0,0,0,0,0,0,0]); T
[1 0 0]
[0 0 0]
[0 0 0]
sage: W = T.kernel_on(V); W.basis()
[
(0, 1, 0)
]
sage: W.is_submodule(V)
True

left_eigenmatrix(other=None)
Return matrices𝐷 and 𝑃 , where𝐷 is a diagonal matrix of eigenvalues and the rows of 𝑃 are corresponding
eigenvectors (or zero vectors).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

OUTPUT:

If self is a square matrix 𝐴, then the output is a diagonal matrix 𝐷 and a matrix 𝑃 such that

𝑃𝐴 = 𝐷𝑃,

where the rows of 𝑃 are eigenvectors of 𝐴 and the diagonal entries of 𝐷 are the corresponding eigenvalues.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝑃𝐴 = 𝐷𝑃𝐵.

The ordinary eigenvalue problem is equivalent to the generalized one if 𝐵 is the identity matrix.

The generalized eigenvector decomposition is currently only implemented for matrices over RDF and CDF.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A

(continues on next page)
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[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_left()
sage: D
[ 0 0 0]
[ 0 -1.348469228349535? 0]
[ 0 0 13.34846922834954?]
sage: P
[ 1 -2 1]
[ 1 0.3101020514433644? -0.3797958971132713?]
[ 1 1.289897948556636? 1.579795897113272?]
sage: P*A == D*P
True

Because 𝑃 is invertible, 𝐴 is diagonalizable.

sage: A == (~P)*D*P #␣
→˓needs sage.rings.number_field
True

The matrix 𝑃 may contain zero rows corresponding to eigenvalues for which the algebraic multiplicity is
greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

sage: # needs sage.rings.number_field
sage: A = jordan_block(2, 3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: D, P = A.eigenmatrix_left()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[0 0 1]
[0 0 0]
[0 0 0]
sage: P*A == D*P
True

A generalized eigenvector decomposition:

sage: # needs scipy
sage: A = matrix(RDF, [[1, -2], [3, 4]])
sage: B = matrix(RDF, [[0, 7], [2, -3]])
sage: D, P = A.eigenmatrix_left(B)
sage: (P * A - D * P * B).norm() < 1e-14
True

The matrix 𝐵 in a generalized eigenvalue problem may be singular:

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: A = matrix.identity(CDF, 2)
sage: B = matrix(CDF, [[2, 1+I], [4, 2+2*I]])
sage: D, P = A.eigenmatrix_left(B)

(continues on next page)
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sage: D.diagonal() # tol 1e-14
[0.2 - 0.1*I, +infinity]

In this case, we can still verify the eigenvector equation for the first eigenvalue and first eigenvector:

sage: # needs scipy sage.rings.complex_double sage.symbolic
sage: l = D[0, 0]
sage: v = P[0, :]
sage: (v * A - l * v * B).norm() < 1e-14
True

The second eigenvector is contained in the left kernel of 𝐵:

sage: (P[1, :] * B).norm() < 1e-14 #␣
→˓needs scipy sage.rings.complex_double sage.symbolic
True

See also

eigenvalues(), eigenvectors_left(), Matrix_double_dense.
eigenvectors_left(), eigenmatrix_right().

left_eigenspaces(format='all', var='a', algebraic_multiplicity=False)
Compute the left eigenspaces of a matrix.

Note that eigenspaces_left() and left_eigenspaces() are identical methods. Here “left”
refers to the eigenvectors being placed to the left of the matrix.

INPUT:

• self – a square matrix over an exact field. For inexact matrices consult the numerical or symbolic
matrix classes

• format – one of:

– �all� – attempts to create every eigenspace. This will always be possible for matrices with rational
entries

– �galois� – for each irreducible factor of the characteristic polynomial, a single eigenspace will
be output for a single root/eigenvalue for the irreducible factor

– None – default; uses the �all� format if the base ring is contained in an algebraically closed field
which is implemented. Otherwise, uses the �galois� format.

• var – string (default: �a�); variable name used to represent elements of the root field of each irreducible
factor of the characteristic polynomial. If var=�a�, then the root fields will be in terms of a0, a1,
a2, ..., where the numbering runs across all the irreducible factors of the characteristic polynomial,
even for linear factors.

• algebraic_multiplicity – boolean (default: False); whether to include the algebraic multi-
plicity of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (𝑒, 𝑉 ) where 𝑒 is an eigenvalue of the
matrix, and 𝑉 is the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just
one representative eigenspace, depending on the format keyword.
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If algebraic_multiplicity=True, return a list of triples (𝑒, 𝑉, 𝑛) where 𝑒 and 𝑉 are as above and
𝑛 is the algebraic multiplicity of the eigenvalue.

Warning

Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels
directly over the extension field).

EXAMPLES:

We compute the left eigenspaces of a 3× 3 rational matrix. First, we request �all� of the eigenvalues, so
the results are in the field of algebraic numbers, QQbar. Then we request just one eigenspace per irreducible
factor of the characteristic polynomial with format=�galois�.

sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenspaces_left(format=�all�); es #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(-1.348469228349535?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 0.3101020514433644? -0.3797958971132713?]),

(13.34846922834954?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 1.289897948556636? 1.579795897113272?]) ]

sage: # needs sage.rings.number_field
sage: es = A.eigenspaces_left(format=�galois�); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5]) ]

sage: es = A.eigenspaces_left(format=�galois�,
....: algebraic_multiplicity=True); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1],

1),
(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5],

(continues on next page)
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1) ]
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = e*v - v*A
sage: abs(abs(delta)) < 1e-10
True

The same computation, but with implicit base change to a field.

sage: A = matrix(ZZ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_left(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/15*a1 + 2/5 2/15*a1 - 1/5]) ]

We compute the left eigenspaces of the matrix of the Hecke operator 𝑇2 on level 43 modular symbols, both
with all eigenvalues (the default) and with one subspace per factor.

sage: # needs sage.modular
sage: A = ModularSymbols(43).T(2).matrix(); A
[ 3 0 0 0 0 0 -1]
[ 0 -2 1 0 0 0 0]
[ 0 -1 1 1 0 -1 0]
[ 0 -1 0 -1 2 -1 1]
[ 0 -1 0 1 1 -1 1]
[ 0 0 -2 0 2 -2 1]
[ 0 0 -1 0 1 0 -1]
sage: A.base_ring()
Rational Field
sage: f = A.charpoly(); f
x^7 + x^6 - 12*x^5 - 16*x^4 + 36*x^3 + 52*x^2 - 32*x - 48
sage: factor(f)
(x - 3) * (x + 2)^2 * (x^2 - 2)^2
sage: A.eigenspaces_left(algebraic_multiplicity=True)
[ (3,

Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7 0 -1/7 0 -2/7],

1),
(-2,
Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ 0 1 0 1 -1 1 -1]
[ 0 0 1 0 -1 2 -1],

2),
(-1.414213562373095?,
Vector space of degree 7 and dimension 2 over Algebraic Field
User basis matrix:

(continues on next page)
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[ 0 1 0 ␣
→˓ -1 0.4142135623730951? 1 -1]

[ 0 0 1 ␣
→˓ 0 -1 0 2.414213562373095?],

2),
(1.414213562373095?,
Vector space of degree 7 and dimension 2 over Algebraic Field
User basis matrix:
[ 0 1 0 ␣

→˓ -1 -2.414213562373095? 1 -1]
[ 0 0 1 ␣

→˓ 0 -1 0 -0.4142135623730951?],
2) ]

sage: A.eigenspaces_left(format=�galois�, algebraic_multiplicity=True)
[ (3,

Vector space of degree 7 and dimension 1 over Rational Field
User basis matrix:
[ 1 0 1/7 0 -1/7 0 -2/7],

1),
(-2,
Vector space of degree 7 and dimension 2 over Rational Field
User basis matrix:
[ 0 1 0 1 -1 1 -1]
[ 0 0 1 0 -1 2 -1],

2),
(a2,
Vector space of degree 7 and dimension 2
over Number Field in a2 with defining polynomial x^2 - 2
User basis matrix:
[ 0 1 0 -1 -a2 - 1 1 -1]
[ 0 0 1 0 -1 0 -a2 + 1],

2) ]

Next we compute the left eigenspaces over the finite field of order 11.

sage: # needs sage.modular sage.rings.finite_rings
sage: A = ModularSymbols(43, base_ring=GF(11), sign=1).T(2).matrix(); A
[ 3 0 9 0]
[ 0 9 0 10]
[ 0 0 10 1]
[ 0 0 1 1]
sage: A.base_ring()
Finite Field of size 11
sage: A.charpoly()
x^4 + 10*x^3 + 3*x^2 + 2*x + 1
sage: A.eigenspaces_left(format=�galois�, var=�beta�)
[ (9,

Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix: [0 1 5 6]),

(3, Vector space of degree 4 and dimension 1 over Finite Field of size 11
User basis matrix: [1 0 1 6]),

(beta2, Vector space of degree 4 and dimension 1
over Univariate Quotient Polynomial Ring in beta2
over Finite Field of size 11 with modulus x^2 + 9

User basis matrix: [ 0 0 1 beta2 + 1])
]
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This method is only applicable to exact matrices. The “eigenmatrix” routines for matrices with
double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return
eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also
“eigenmatrix” routines for matrices with symbolic entries.

sage: A = matrix(QQ, 3, 3, range(9))
sage: A.change_ring(RR).eigenspaces_left()
Traceback (most recent call last):
...
NotImplementedError: eigenspaces cannot be computed reliably
for inexact rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options

sage: # needs scipy
sage: em = A.change_ring(RDF).eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522 0.0 0.0]
[ 0.0 -1.348469228349534 0.0]
[ 0.0 0.0 0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.440242867... 0.567868371... 0.695493875...]
[ 0.897878732... 0.278434036... -0.341010658...]
[ 0.408248290... -0.816496580... 0.408248290...]

sage: # needs sage.symbolic
sage: x, y = var(�x y�)
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_left()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2) ␣
→˓ 0]
[ 0 3/2*x^2 + 1/2*x + 1/
→˓2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
[ 1 1/2*(3*x^2 - x -␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]
[ 1 1/2*(3*x^2 - x +␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]

A request for �all� the eigenvalues, when it is not possible, will raise an error. Using the �galois�
format option is more likely to be successful.

sage: # needs sage.rings.finite_rings
sage: F.<b> = FiniteField(11^2)
sage: A = matrix(F, [[b + 1, b + 1], [10*b + 4, 5*b + 4]])
sage: A.eigenspaces_left(format=�all�) #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
NotImplementedError: unable to construct eigenspaces for eigenvalues outside␣
→˓the base field,
try the keyword option: format=�galois�
sage: A.eigenspaces_left(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (a0,

Vector space of degree 2 and dimension 1 over
Univariate Quotient Polynomial Ring in a0 over
Finite Field in b of size 11^2

(continues on next page)
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with modulus x^2 + (5*b + 6)*x + 8*b + 10
User basis matrix:
[ 1 6*b*a0 + 3*b + 1]) ]

left_eigenvectors(other=None, extend=True)
Compute the left eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

• extend – boolean (default: True)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvec-
tors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

If the option extend is set to False, then only the eigenvalues that live in the base ring are considered.

EXAMPLES:

We compute the left eigenvectors of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(0, [ (1, -2, 1) ], 1),
(-1.348469228349535?, [(1, 0.3101020514433644?, -0.3797958971132713?)], 1),
(13.34846922834954?, [(1, 1.289897948556636?, 1.579795897113272?)], 1)]

sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: abs(abs(delta)) < 1e-10
True

Notice the difference between considering ring extensions or not.

sage: M = matrix(QQ, [[0,-1,0], [1,0,0], [0,0,2]])
sage: M.eigenvectors_left() #␣
→˓needs sage.rings.number_field
[(2, [ (0, 0, 1) ], 1),
(-1*I, [(1, -1*I, 0)], 1),
(1*I, [(1, 1*I, 0)], 1)]

sage: M.eigenvectors_left(extend=False) #␣
→˓needs sage.rings.number_field
[(2, [ (0, 0, 1) ], 1)]

left_kernel(*args, **kwds)
Return the left kernel of this matrix, as a vector space or free module.

This is the set of vectors x such that x*self = 0.

Note
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For the right kernel, use right_kernel(). The method kernel() is exactly equal to left_ker-
nel().

For inexact rings use right_kernel_matrix() with basis=�computed� (on the transpose of
the matrix) to avoid echelonizing.

INPUT:

• algorithm – (default: �default�) a keyword that selects the algorithm employed. Allowable values
are:

– �default� – allows the algorithm to be chosen automatically

– �generic� – naive algorithm usable for matrices over any field

– �flint� – FLINT library code for matrices over the rationals or the integers

– �pari� – PARI library code for matrices over number fields or the integers

– �padic� – padic algorithm from IML library for matrices over the rationals and integers

– �pluq� – PLUQ matrix factorization for matrices mod 2

• basis – (default: �echelon�) a keyword that describes the format of the basis used to construct the
left kernel. Allowable values are:

– ‘echelon’: the basis matrix is returned in echelon form

– ‘pivot’ : each basis vector is computed from the reduced row-echelon form of self by placing a
single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for
matrices over fields.

– ‘LLL’: an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of rows in self and which contains all the
vectors x such that x*self = 0.

If self has 0 rows, the kernel has dimension 0, while if self has 0 columns the kernel is the entire ambient
vector space.

The result is cached. Requesting the left kernel a second time, but with a different basis format, will return
the cached result with the format from the first computation.

Note

Formuchmore detailed documentation of the various options seeright_kernel(), since this method
just computes the right kernel of the transpose of self.

EXAMPLES:

Over the rationals with a basis matrix in echelon form.

sage: A = matrix(QQ, [[1, 2, 4, -7, 4],
....: [1, 1, 0, 2, -1],
....: [1, 0, 3, -3, 1],
....: [0, -1, -1, 3, -2],
....: [0, 0, -1, 2, -1]])
sage: A.left_kernel()

(continues on next page)
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Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1 2 -1]
[ 0 1 -1 1 -4]

Over a finite field, with a basis matrix in “pivot” format.

sage: A = matrix(FiniteField(7), [[5, 0, 5, 2, 4],
....: [1, 3, 2, 3, 6],
....: [1, 1, 6, 5, 3],
....: [2, 5, 6, 0, 0]])
sage: A.kernel(basis=�pivot�)
Vector space of degree 4 and dimension 2 over Finite Field of size 7
User basis matrix:
[5 2 1 0]
[6 3 0 1]

The left kernel of a zero matrix is the entire ambient vector space whose degree equals the number of rows
of self (i.e. everything).

sage: A = MatrixSpace(QQ, 3, 4)(0)
sage: A.kernel()
Vector space of degree 3 and dimension 3 over Rational Field
Basis matrix:
[1 0 0]
[0 1 0]
[0 0 1]

We test matrices with no rows or columns.

sage: A = matrix(QQ, 2, 0)
sage: A.left_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]
sage: A = matrix(QQ, 0, 2)
sage: A.left_kernel()
Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:
[]

The results are cached. Note that requesting a new format for the basis is ignored and the cached copy is
returned. Work with a copy if you need a new left kernel, or perhaps investigate the right_kernel_ma-
trix() method on the transpose, which does not cache its results and is more flexible.

sage: A = matrix(QQ, [[1,1],[2,2]])
sage: K1 = A.left_kernel()
sage: K1
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 -1/2]
sage: K2 = A.left_kernel()
sage: K1 is K2
True
sage: K3 = A.left_kernel(basis=�pivot�)

(continues on next page)
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sage: K3
Vector space of degree 2 and dimension 1 over Rational Field
Basis matrix:
[ 1 -1/2]
sage: B = copy(A)
sage: K3 = B.left_kernel(basis=�pivot�)
sage: K3
Vector space of degree 2 and dimension 1 over Rational Field
User basis matrix:
[-2 1]
sage: K3 is K1
False
sage: K3 == K1
True

left_kernel_matrix(*args, **kwds)
Return a matrix whose rows form a basis for the left kernel of self.

This method is a thin wrapper around right_kernel_matrix(). For supported parameters and in-
put/output formats, see there.

EXAMPLES:

sage: M = matrix([[1,2],[3,4],[5,6]])
sage: K = M.left_kernel_matrix(); K
[ 1 -2 1]
sage: K * M
[0 0]

left_nullity()

Return the (left) nullity of this matrix, which is the dimension of the (left) kernel of this matrix acting from
the right on row vectors.

EXAMPLES:

sage: M = Matrix(QQ, [[1,0,0,1], [0,1,1,0], [1,1,1,0]])
sage: M.nullity()
0
sage: M.left_nullity()
0

sage: A = M.transpose()
sage: A.nullity()
1
sage: A.left_nullity()
1

sage: M = M.change_ring(ZZ)
sage: M.nullity()
0
sage: A = M.transpose()
sage: A.nullity()
1

matrix_window(row=0, col=0, nrows=-1, ncols=-1, check=1)
Return the requested matrix window.
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EXAMPLES:

sage: A = matrix(QQ, 3, 3, range(9))
sage: A.matrix_window(1,1, 2, 1)
Matrix window of size 2 x 1 at (1,1):
[0 1 2]
[3 4 5]
[6 7 8]

We test the optional check flag.

sage: matrix([1]).matrix_window(0,1,1,1, check=False)
Matrix window of size 1 x 1 at (0,1):
[1]
sage: matrix([1]).matrix_window(0,1,1,1)
Traceback (most recent call last):
...
IndexError: matrix window index out of range

Another test of bounds checking:

sage: matrix([1]).matrix_window(1,1,1,1)
Traceback (most recent call last):
...
IndexError: matrix window index out of range

maxspin(v)
Compute the largest integer n such that the list of vectors 𝑆 = [𝑣, 𝑣 *𝐴, ..., 𝑣 *𝐴𝑛] are linearly independent,
and returns that list.

INPUT:

• self – matrix

• v – vector

OUTPUT: list of Vectors

ALGORITHM: The current implementation just adds vectors to a vector space until the dimension doesn’t
grow. This could be optimized by directly using matrices and doing an efficient Echelon form. Also, when the
base is Q, maybe we could simultaneously keep track of what is going on in the reduction modulo p, which
might make things much faster.

EXAMPLES:

sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: v = (QQ^3).0
sage: t.maxspin(v)
[(1, 0, 0), (0, 1, 2), (15, 18, 21)]
sage: k = t.kernel(); k
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]
sage: t.maxspin(k.0)
[(1, -2, 1)]
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minimal_polynomial(var='x', **kwds)
This is a synonym for self.minpoly.

EXAMPLES:

sage: a = matrix(QQ, 4, 4, range(16))
sage: a.minimal_polynomial(�z�) #␣
→˓needs sage.libs.pari
z^3 - 30*z^2 - 80*z
sage: a.minpoly() #␣
→˓needs sage.libs.pari
x^3 - 30*x^2 - 80*x

minors(k)

Return the list of all 𝑘 × 𝑘 minors of self.

Let 𝐴 be an 𝑚 × 𝑛 matrix and 𝑘 an integer with 0 ≤ 𝑘, 𝑘 ≤ 𝑚 and 𝑘 ≤ 𝑛. A 𝑘 × 𝑘 minor of 𝐴 is the
determinant of a 𝑘 × 𝑘 matrix obtained from 𝐴 by deleting 𝑚 − 𝑘 rows and 𝑛 − 𝑘 columns. There are no
𝑘 × 𝑘 minors of 𝐴 if 𝑘 is larger than either𝑚 or 𝑛.

The returned list is sorted in lexicographical row major ordering, e.g., if A is a 3× 3 matrix then the minors
returned are with these rows/columns: [ [0, 1]x[0, 1], [0, 1]x[0, 2], [0, 1]x[1, 2], [0, 2]x[0, 1], [0, 2]x[0, 2],
[0, 2]x[1, 2], [1, 2]x[0, 1], [1, 2]x[0, 2], [1, 2]x[1, 2] ].

INPUT:

• k – integer

EXAMPLES:

sage: A = Matrix(ZZ, 2,3, [1,2,3,4,5,6]); A
[1 2 3]
[4 5 6]
sage: A.minors(2)
[-3, -6, -3]
sage: A.minors(1)
[1, 2, 3, 4, 5, 6]
sage: A.minors(0)
[1]
sage: A.minors(5)
[]

sage: k = GF(37)
sage: P.<x0,x1,x2> = PolynomialRing(k)
sage: A = Matrix(P, 2, 3, [x0*x1, x0, x1, x2, x2 + 16, x2 + 5*x1])
sage: A.minors(2) #␣
→˓needs sage.rings.finite_rings
[x0*x1*x2 + 16*x0*x1 - x0*x2,
5*x0*x1^2 + x0*x1*x2 - x1*x2,
5*x0*x1 + x0*x2 - x1*x2 - 16*x1]

This test addresses an issue raised at Issue #20512:

sage: A.minors(0)[0].parent() == P
True

minpoly(var='x', **kwds)
Return the minimal polynomial of self.
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This uses a simplistic - and potentially very very slow - algorithm that involves computing kernels to determine
the powers of the factors of the charpoly that divide the minpoly.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: A = matrix(GF(9, �c�), 4, [1,1,0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5])
sage: factor(A.minpoly())
(x + 1) * (x + 2)^2
sage: A.minpoly()(A) == 0
True
sage: factor(A.charpoly())
(x + 1)^2 * (x + 2)^2

The default variable name is 𝑥, but you can specify another name:

sage: factor(A.minpoly(�y�)) #␣
→˓needs sage.rings.finite_rings
(y + 1) * (y + 2)^2

norm(p=2)
Return the p-norm of this matrix, where 𝑝 can be 1, 2, inf, or the Frobenius norm.

INPUT:

• self – a matrix whose entries are coercible into CDF

• p – one of the following options:

– 1 – the largest column-sum norm

– 2 – (default) the Euclidean norm

– Infinity – the largest row-sum norm

– �frob� – the Frobenius (sum of squares) norm

OUTPUT: RDF number

See also

• sage.misc.functional.norm()

EXAMPLES:

sage: A = matrix(ZZ, [[1,2,4,3], [-1,0,3,-10]])
sage: A.norm(1)
13.0
sage: A.norm(Infinity)
14.0
sage: B = random_matrix(QQ, 20, 21)
sage: B.norm(Infinity) == (B.transpose()).norm(1)
True

sage: Id = identity_matrix(12)
sage: Id.norm(2) #␣
→˓needs scipy
1.0

(continues on next page)
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sage: # needs scipy sage.rings.real_mpfr
sage: A = matrix(RR, 2, 2, [13,-4,-4,7])
sage: A.norm() # rel tol 2e-16
14.999999999999998

Norms of numerical matrices over high-precision reals are computed by this routine. Faster routines for
double precision entries from 𝑅𝐷𝐹 or 𝐶𝐷𝐹 are provided by the Matrix_double_dense class.

sage: # needs sage.rings.real_mpfr sage.symbolic
sage: A = matrix(CC, 2, 3, [3*I,4,1-I,1,2,0])
sage: A.norm(�frob�)
5.656854249492381
sage: A.norm(2)
5.470684443210...
sage: A.norm(1)
6.0
sage: A.norm(Infinity)
8.414213562373096

sage: a = matrix([[],[],[],[]])
sage: a.norm()
0.0
sage: a.norm(Infinity) == a.norm(1)
True

nullity()

Return the (left) nullity of this matrix, which is the dimension of the (left) kernel of this matrix acting from
the right on row vectors.

EXAMPLES:

sage: M = Matrix(QQ, [[1,0,0,1], [0,1,1,0], [1,1,1,0]])
sage: M.nullity()
0
sage: M.left_nullity()
0

sage: A = M.transpose()
sage: A.nullity()
1
sage: A.left_nullity()
1

sage: M = M.change_ring(ZZ)
sage: M.nullity()
0
sage: A = M.transpose()
sage: A.nullity()
1

numerical_approx(prec=None, digits=None, algorithm=None)
Return a numerical approximation of self with prec bits (or decimal digits) of precision.

INPUT:

• prec – precision in bits
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• digits – precision in decimal digits (only used if prec is not given)

• algorithm – ignored for matrices

OUTPUT: a matrix converted to a real or complex field

EXAMPLES:

sage: # needs sage.symbolic
sage: d = matrix([[3, 0], [0, sqrt(2)]])
sage: b = matrix([[1, -1], [2, 2]]); e = b * d * b.inverse(); e
[ 1/2*sqrt(2) + 3/2 -1/4*sqrt(2) + 3/4]
[ -sqrt(2) + 3 1/2*sqrt(2) + 3/2]
sage: e.numerical_approx(53)
[ 2.20710678118655 0.396446609406726]
[ 1.58578643762690 2.20710678118655]
sage: e.numerical_approx(20)
[ 2.2071 0.39645]
[ 1.5858 2.2071]
sage: (e - I).numerical_approx(20)
[2.2071 - 1.0000*I 0.39645]
[ 1.5858 2.2071 - 1.0000*I]

sage: M = matrix(QQ, 4, [i/(i+1) for i in range(12)]); M
[ 0 1/2 2/3]
[ 3/4 4/5 5/6]
[ 6/7 7/8 8/9]
[ 9/10 10/11 11/12]

sage: M.numerical_approx()
[0.000000000000000 0.500000000000000 0.666666666666667]
[0.750000000000000 0.800000000000000 0.833333333333333]
[0.857142857142857 0.875000000000000 0.888888888888889]
[0.900000000000000 0.909090909090909 0.916666666666667]

sage: matrix(SR, 2, 2, range(4)).n() #␣
→˓needs sage.symbolic
[0.000000000000000 1.00000000000000]
[ 2.00000000000000 3.00000000000000]

sage: numerical_approx(M)
[0.000000000000000 0.500000000000000 0.666666666666667]
[0.750000000000000 0.800000000000000 0.833333333333333]
[0.857142857142857 0.875000000000000 0.888888888888889]
[0.900000000000000 0.909090909090909 0.916666666666667]

We check that Issue #29700 is fixed:

sage: M = matrix(3, [1,1,1,1,0,0,0,1,0])
sage: A, B = M.diagonalization(QQbar) #␣
→˓needs sage.rings.number_field
sage: _ = A.n() #␣
→˓needs sage.rings.number_field

permanent(algorithm='Ryser')
Return the permanent of this matrix.
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Let 𝐴 = (𝑎𝑖,𝑗) be an𝑚× 𝑛 matrix over any commutative ring with𝑚 ≤ 𝑛. The permanent of 𝐴 is

per(𝐴) =
∑︁
𝜋

𝑎1,𝜋(1)𝑎2,𝜋(2) · · · 𝑎𝑚,𝜋(𝑚)

where the summation extends over all one-to-one functions 𝜋 from {1, . . . ,𝑚} to {1, . . . , 𝑛}.

The product 𝑎1,𝜋(1)𝑎2,𝜋(2) · · · 𝑎𝑚,𝜋(𝑚) is called diagonal product. So the permanent of an𝑚× 𝑛 matrix 𝐴
is the sum of all the diagonal products of 𝐴.

By default, this method uses Ryser’s algorithm, but setting algorithm to “ButeraPernici” you can use
the algorithm of Butera and Pernici (which is well suited for band matrices, i.e. matrices whose entries are
concentrated near the diagonal).

INPUT:

• A – matrix of size𝑚× 𝑛 with𝑚 ≤ 𝑛

• algorithm – either “Ryser” (default) or “ButeraPernici”. The Butera-Pernici algorithm takes advan-
tage of presence of zeros and is very well suited for sparse matrices.

ALGORITHM:

The Ryser algorithm is implemented in the method _permanent_ryser(). It is a modification of theo-
rem 7.1.1. from Brualdi and Ryser: Combinatorial Matrix Theory. Instead of deleting columns from 𝐴, we
choose columns from 𝐴 and calculate the product of the row sums of the selected submatrix.

The Butera-Pernici algorithm is implemented in the function permanental_minor_polynomial().
It takes advantage of cancellations that may occur in the computations.

EXAMPLES:

sage: A = ones_matrix(4,4)
sage: A.permanent()
24

sage: A = matrix(3,6, [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A.permanent()
36
sage: B = A.change_ring(RR)
sage: B.permanent()
36.0000000000000

The permanent above is directed to the Sloane’s sequence OEIS sequence A079908 (“The Dancing School
Problems”) for which the third term is 36:

sage: oeis(79908) # optional -- internet
A079908: Solution to the Dancing School Problem with 3 girls and n+3 boys:␣
→˓f(3,n).
sage: _(3) # optional -- internet
36

sage: A = matrix(4,5, [1,1,0,1,1,0,1,1,1,1,1,0,1,0,1,1,1,0,1,0])
sage: A.permanent()
32

A huge permanent that cannot be reasonably computed with the Ryser algorithm (a 50×50 band matrix with
width 5):
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sage: n, w = 50, 5
sage: A = matrix(ZZ, n, n, lambda i,j: (i+j)%5 + 1 if abs(i-j) <= w else 0)
sage: A.permanent(algorithm=�ButeraPernici�)
57766972735511097036962481710892268404670105604676932908

See Minc: Permanents, Example 2.1, p. 5.

sage: A = matrix(QQ, 2,2, [1/5,2/7,3/2,4/5])
sage: A.permanent()
103/175

sage: R.<a> = PolynomialRing(ZZ)
sage: A = matrix(R, 2,2, [a,1,a,a+1])
sage: A.permanent()
a^2 + 2*a

sage: R.<x,y> = PolynomialRing(ZZ, 2)
sage: A = matrix(R, 2,2, [x, y, x^2, y^2])
sage: A.permanent()
x^2*y + x*y^2

permanental_minor(k, algorithm='Ryser')
Return the permanental 𝑘-minor of this matrix.

The permanental 𝑘-minor of a matrix 𝐴 is the sum of the permanents of all possible 𝑘 by 𝑘 submatrices of
𝐴. Note that the maximal permanental minor is just the permanent.

For a (0,1)-matrix 𝐴 the permanental 𝑘-minor counts the number of different selections of 𝑘 1s of 𝐴 with no
two of the 1s on the same row and no two of the 1s on the same column.

See Brualdi and Ryser: Combinatorial Matrix Theory, p. 203. Note the typo 𝑝0(𝐴) = 0 in that reference!
For applications see Theorem 7.2.1 and Theorem 7.2.4.

See also

The method rook_vector() returns the list of all permanental minors.

INPUT:

• k – the size of the minor

• algorithm – either “Ryser” (default) or “ButeraPernici”; the Butera-Pernici algorithm is well suited
for band matrices

EXAMPLES:

sage: A = matrix(4, [1,0,1,0,1,0,1,0,1,0,10,10,1,0,1,1])
sage: A.permanental_minor(2)
114

sage: A = matrix(3,6, [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A.permanental_minor(0)
1
sage: A.permanental_minor(1)
12
sage: A.permanental_minor(2)

(continues on next page)
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40
sage: A.permanental_minor(3)
36

Note that if 𝑘 = 𝑚 = 𝑛, the permanental 𝑘-minor equals per(𝐴):

sage: A.permanent()
36

The permanental minors of the “complement” matrix of 𝐴 is related to the permanent of 𝐴:

sage: m, n = 3, 6
sage: C = matrix(m, n, lambda i,j: 1 - A[i,j])
sage: sum((-1)^k * C.permanental_minor(k)*factorial(n-k)/factorial(n-m)
....: for k in range(m+1))
36

See Theorem 7.2.1 of Brualdi and Ryser: Combinatorial Matrix Theory: per(A)

permutation_normal_form(check=False)
Take the set of matrices that are self permuted by any row and column permutation, and return the maximal
one of the set where matrices are ordered lexicographically going along each row.

INPUT:

• check – boolean (default: False); if True return a tuple of the maximal matrix and the permutations
taking self to the maximal matrix. If False, return only the maximal matrix.

OUTPUT: the maximal matrix

EXAMPLES:

sage: M = matrix(ZZ, [[0, 0, 1], [1, 0, 2], [0, 0, 0]])
sage: M
[0 0 1]
[1 0 2]
[0 0 0]

sage: M.permutation_normal_form()
[2 1 0]
[1 0 0]
[0 0 0]

sage: M = matrix(ZZ, [[-1, 3], [-1, 5], [2, 4]])
sage: M
[-1 3]
[-1 5]
[ 2 4]

sage: M.permutation_normal_form(check=True) #␣
→˓needs sage.graphs sage.groups
(
[ 5 -1]
[ 4 2]
[ 3 -1],
((1,2,3), (1,2))
)
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pfaffian(algorithm=None, check=True)
Return the Pfaffian of self, assuming that self is an alternating matrix.

The result is cached.

INPUT:

• algorithm – string (default: None); the algorithm to use. Currently the following algorithms have
been implemented:

– �bfl� – using the Bär-Faddeev-LeVerrier algorithm

– �definition� – using the definition given by perfect matchings

• check – boolean (default: True); whether to check self for alternatingness and squareness. This has
to be set to False if self is defined over a non-discrete ring.

The Pfaffian of an alternating matrix is defined as follows:

Let 𝐴 be an alternating 𝑘 × 𝑘 matrix over a commutative ring. (Here, “alternating” means that 𝐴𝑇 = −𝐴
and that the diagonal entries of 𝐴 are zero.) If 𝑘 is odd, then the Pfaffian of the matrix 𝐴 is defined to be
0. Let us now define it when 𝑘 is even. In this case, set 𝑛 = 𝑘/2 (this is an integer). For every 𝑖 and 𝑗, we
denote the (𝑖, 𝑗)-th entry of𝐴 by 𝑎𝑖,𝑗 . Let𝑀 denote the set of all perfect matchings of the set {1, 2, . . . , 2𝑛}
(see sage.combinat.perfect_matching.PerfectMatchings ). For every matching𝑚 ∈ 𝑀 ,
define the sign sign(𝑚) of 𝑚 by writing 𝑚 as {{𝑖1, 𝑗1}, {𝑖2, 𝑗2}, . . . , {𝑖𝑛, 𝑗𝑛}} with 𝑖𝑘 < 𝑗𝑘 for all 𝑘, and
setting sign(𝑚) to be the sign of the permutation (𝑖1, 𝑗1, 𝑖2, 𝑗2, . . . , 𝑖𝑛, 𝑗𝑛) (written here in one-line notation).
For every matching𝑚 ∈ 𝑀 , define the weight𝑤(𝑚) of𝑚 by writing𝑚 as {{𝑖1, 𝑗1}, {𝑖2, 𝑗2}, . . . , {𝑖𝑛, 𝑗𝑛}}
with 𝑖𝑘 < 𝑗𝑘 for all 𝑘, and setting𝑤(𝑚) = 𝑎𝑖1,𝑗1𝑎𝑖2,𝑗2 · · · 𝑎𝑖𝑛,𝑗𝑛 . Now, the Pfaffian of thematrix𝐴 is defined
to be the sum ∑︁

𝑚∈𝑀

sign(𝑚)𝑤(𝑚).

The Pfaffian of 𝐴 is commonly denoted by Pf(𝐴). It is well-known that (Pf(𝐴))2 = det𝐴 for every alter-
nating matrix 𝐴, and that Pf(𝑈𝑇𝐴𝑈) = det𝑈 · Pf(𝐴) for any 𝑛 × 𝑛 matrix 𝑈 and any alternating 𝑛 × 𝑛
matrix 𝐴.

See [Knu1995], [DW1995] and [Rot2001], [Baer2020], just to name a few sources, for further properties of
Pfaffians.

ALGORITHM:

If the matrix is small, namely up to size 4× 4, the naive formulas are always used.

The Bär-Faddeev-LeVerrier algorithm can be accessed using �bfl�. It works over any 2-algebra or ring
whose fraction field is an2-algebra (see [Baer2020] for details). If that check fails, the implementation raises
an error because correct results cannot be guaranteed.

To access the algorithm using the above definition, use �definition�. However, notice that this algorithm
is usually very slow.

By default, i.e. if no options are set, the implementation tries to apply the BFL algorithm first. If BFL is not
applicable, it uses the definition by perfect matchings.

The alternatingness of the matrix self is checked only if check is True (this is important because even
if self is alternating, a non-discrete base ring might prevent Sage from being able to check this).

EXAMPLES:

A 3× 3 alternating matrix has Pfaffian 0 independently of its entries:
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sage: MSp = MatrixSpace(Integers(27), 3)
sage: A = MSp([0, 2, -3, -2, 0, 8, 3, -8, 0])
sage: A.pfaffian()
0
sage: parent(A.pfaffian())
Ring of integers modulo 27

The Pfaffian of a 2× 2 alternating matrix is just its northeast entry:

sage: MSp = MatrixSpace(QQ, 2)
sage: A = MSp([0, 4, -4, 0])
sage: A.pfaffian()
4
sage: parent(A.pfaffian())
Rational Field

The Pfaffian of a 0× 0 alternating matrix is 1:

sage: MSp = MatrixSpace(ZZ, 0)
sage: A = MSp([])
sage: A.pfaffian()
1
sage: parent(A.pfaffian())
Integer Ring

Let us compute the Pfaffian of a generic 4× 4 alternating matrix:

sage: R = PolynomialRing(QQ, �x12,x13,x14,x23,x24,x34�)
sage: x12, x13, x14, x23, x24, x34 = R.gens()
sage: A = matrix(R, [[ 0, x12, x13, x14],
....: [-x12, 0, x23, x24],
....: [-x13, -x23, 0, x34],
....: [-x14, -x24, -x34, 0]])
sage: A.pfaffian()
x14*x23 - x13*x24 + x12*x34
sage: parent(A.pfaffian())
Multivariate Polynomial Ring in x12, x13, x14, x23, x24, x34 over Rational␣
→˓Field

The Pfaffian of an alternating matrix squares to its determinant:

sage: A = [[0] * 6 for i in range(6)]
sage: for i in range(6):
....: for j in range(i):
....: u = floor(random() * 10)
....: A[i][j] = u
....: A[j][i] = -u
....: A[i][i] = 0
sage: AA = Matrix(ZZ, A)
sage: AA.pfaffian() ** 2 == AA.det()
True

In order to use the Bär-Faddeev-LeVerrier algorithm, the base ring must have characteristic zero:

sage: A = matrix(GF(5), [(0, 3, 4, 1, 3, 4),
....: (2, 0, 2, 0, 1, 0),
....: (1, 3, 0, 4, 1, 0),

(continues on next page)
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....: (4, 0, 1, 0, 2, 0),

....: (2, 4, 4, 3, 0, 0),

....: (1, 0, 0, 0, 0, 0)])
sage: A.pfaffian(algorithm=�bfl�)
Traceback (most recent call last):
...
TypeError: Bär-Faddeev-LeVerrier algorithm not applicable,
use another algorithm instead

In that case, the definition by perfect matchings is used instead:

sage: A.pfaffian() #␣
→˓needs sage.combinat
2

pivot_rows()

Return the pivot row positions for this matrix, which are a topmost subset of the rows that span the row space
and are linearly independent.

OUTPUT: a tuple of integers

EXAMPLES:

sage: A = matrix(QQ, 3,3, [0,0,0,1,2,3,2,4,6]); A
[0 0 0]
[1 2 3]
[2 4 6]
sage: A.pivot_rows()
(1,)
sage: A.pivot_rows() # testing cached value
(1,)

plot(*args, **kwds)
A plot of this matrix.

Each (ith, jth) matrix element is given a different color value depending on its relative size compared to the
other elements in the matrix.

The tick marks drawn on the frame axes denote the (ith, jth) element of the matrix.

This method just calls matrix_plot. *args and **kwds are passed to matrix_plot.

EXAMPLES:

A matrix over ZZ colored with different grey levels:

sage: A = matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]])
sage: A.plot() #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

Here we make a random matrix over RR and use cmap=�hsv� to color the matrix elements different RGB
colors (see documentation for matrix_plot for more information on cmaps):

sage: A = random_matrix(RDF, 50)
sage: plot(A, cmap=�hsv�) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive
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Another random plot, but over GF(389):

sage: A = random_matrix(GF(389), 10)
sage: A.plot(cmap=�Oranges�) #␣
→˓needs sage.plot
Graphics object consisting of 1 graphics primitive

principal_square_root(check_positivity=True)
Return the principal square root of a positive definite matrix.

A positive definite matrix 𝐴 has a unique positive definite matrix𝑀 such that𝑀2 = 𝐴.

See Wikipedia article Square_root_of_a_matrix.

EXAMPLES:

sage: A = Matrix([[1,-1/2,0], [-1/2,1,-1/2], [0,-1/2,1]])
sage: B = A.principal_square_root()
sage: A == B^2
True

prod_of_row_sums(cols)
Calculate the product of all row sums of a submatrix of 𝐴 for a list of selected columns cols.

EXAMPLES:

sage: a = matrix(QQ, 2, 2, [1,2,3,2]); a
[1 2]
[3 2]
sage: a.prod_of_row_sums([0,1])
15

Another example:

sage: a = matrix(QQ, 2,3, [1,2,3,2,5,6]); a
[1 2 3]
[2 5 6]
sage: a.prod_of_row_sums([1,2])
55

pseudoinverse(algorithm=None)
Return the Moore-Penrose pseudoinverse of this matrix.

INPUT:

• algorithm – (default: guess) one of the following:

– �numpy� – use numpy’s linalg.pinv() which is suitable over real or complex fields

– �exact� – use a simple algorithm which is not numerically stable but useful over exact fields.
Assume that no conjugation is needed, that the conjugate transpose is just the transpose.

– �exactconj� – like exact but use the conjugate transpose

OUTPUT: a matrix

EXAMPLES:

sage: # needs sage.rings.complex_double sage.symbolic
sage: M = diagonal_matrix(CDF, [0, I, 1+I]); M
[ 0.0 0.0 0.0]

(continues on next page)
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[ 0.0 1.0*I 0.0]
[ 0.0 0.0 1.0 + 1.0*I]
sage: M.pseudoinverse() # tol 1e-15
[ 0.0 0.0 0.0]
[ 0.0 -1.0*I 0.0]
[ 0.0 0.0 0.5 - 0.5*I]

We check the properties of the pseudoinverse over an exact field:

sage: M = random_matrix(QQ, 6, 3) * random_matrix(QQ, 3, 5)
sage: Mx = M.pseudoinverse()
sage: M * Mx * M == M
True
sage: Mx * M * Mx == Mx
True
sage: (M * Mx).is_symmetric()
True
sage: (Mx * M).is_symmetric()
True

Beware that the exact algorithm is not numerically stable, but the default numpy algorithm is:

sage: M = matrix.hilbert(12, ring=RR)
sage: (~M * M).norm() # a considerable error #␣
→˓needs scipy
1.3...
sage: Mx = M.pseudoinverse(algorithm=�exact�)
sage: (Mx * M).norm() # huge error #␣
→˓needs scipy
11.5...
sage: Mx = M.pseudoinverse(algorithm=�numpy�) #␣
→˓needs numpy
sage: (Mx * M).norm() # still OK
1.00...

When multiplying the given matrix with the pseudoinverse, the result is symmetric for the exact algorithm
or hermitian for the exactconj algorithm:

sage: # needs sage.rings.number_field sage.symbolic
sage: M = matrix(QQbar, 2, 2, [1, sqrt(-3), -sqrt(-3), 3])
sage: M * M.pseudoinverse()
[ 0.2500000000000000? 0.4330127018922193?*I]
[-0.4330127018922193?*I 0.750000000000000?]
sage: M * M.pseudoinverse(algorithm=�exactconj�)
[ 1/4 0.4330127018922193?*I]
[-0.4330127018922193?*I 3/4]
sage: M * M.pseudoinverse(algorithm=�exact�)
[ -1/2 0.866025403784439?*I]
[0.866025403784439?*I 3/2]

For an invertible matrix, the pseudoinverse is just the inverse:

sage: M = matrix([[1,2], [3,4]])
sage: ~M
[ -2 1]
[ 3/2 -1/2]

(continues on next page)
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sage: M.pseudoinverse()
[ -2 1]
[ 3/2 -1/2]

Numpy gives a strange answer due to rounding errors:

sage: M.pseudoinverse(algorithm=�numpy�) # random #␣
→˓needs numpy
[-1286742750677287/643371375338643 1000799917193445/1000799917193444]
[ 519646110850445/346430740566963 -300239975158034/600479950316067]

Although it is not too far off:

sage: (~M - M.pseudoinverse(algorithm=�numpy�)).norm() < 1e-14 #␣
→˓needs numpy
True

qdet(q=None)
Return the quantum deteminant of self.

The quantum determinant of a matrix𝑀 = (𝑚𝑖𝑗)
𝑛
𝑖,𝑗=1 is defined by

det
𝑞
(𝑀) =

∑︁
𝜎∈𝑆𝑛

(−𝑞)ℓ(𝜎)𝑀𝜎(𝑖),𝑗 ,

where 𝑆𝑛 is the symmetric group on {1, . . . , 𝑛} and ℓ(𝜎) denotes the length of 𝜎 written as simple transpo-
sitions (equivalently the number of inversions when written in one-line notation).

INPUT:

• q – the parameter 𝑞; the default is 𝑞 ∈ 𝐹 [𝑞], where 𝐹 is the base ring of self

EXAMPLES:

sage: A = matrix(SR, 2, lambda i, j: f�a{i}{j}�); A #␣
→˓needs sage.symbolic
[a00 a01]
[a10 a11]
sage: A.quantum_determinant() #␣
→˓needs sage.symbolic
-a01*a10*q + a00*a11

sage: A = matrix(SR, 3, lambda i, j: f�a{i}{j}�) #␣
→˓needs sage.symbolic
sage: A.quantum_determinant() #␣
→˓needs sage.symbolic
-a02*a11*a20*q^3 + (a01*a12*a20 + a02*a10*a21)*q^2
+ (-a00*a12*a21 - a01*a10*a22)*q + a00*a11*a22

sage: R.<q> = LaurentPolynomialRing(ZZ)
sage: MS = MatrixSpace(Integers(8), 3)
sage: A = MS([1,7,3, 1,1,1, 3,4,5])
sage: A.det()
6
sage: A.quantum_determinant(q^-2)
7*q^-6 + q^-4 + q^-2 + 5

(continues on next page)
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sage: S.<x,y> = PolynomialRing(GF(7))
sage: R.<q> = LaurentPolynomialRing(S)
sage: MS = MatrixSpace(S, 3, sparse=True)
sage: A = MS([[x, y, 3], [4, 2+y, x^2], [0, 1-x, x+y]])
sage: A.det()
x^4 - x^3 + x^2*y + x*y^2 + 2*x^2 - 2*x*y + 3*y^2 + 2*x - 2
sage: A.quantum_determinant()
(2*x - 2)*q^2 + (x^4 - x^3 + 3*x*y + 3*y^2)*q + x^2*y + x*y^2 + 2*x^2 + 2*x*y
sage: A.quantum_determinant(int(2))
2*x^4 - 2*x^3 + x^2*y + x*y^2 + 2*x^2 + x*y - y^2 + x - 1
sage: A.quantum_determinant(q*x + q^-1*y)
(2*x*y^2 - 2*y^2)*q^-2 + (x^4*y - x^3*y + 3*x*y^2 + 3*y^3)*q^-1
+ (-2*x^2*y + x*y^2 + 2*x^2 - 2*x*y)
+ (x^5 - x^4 + 3*x^2*y + 3*x*y^2)*q + (2*x^3 - 2*x^2)*q^2

quantum_determinant(q=None)
Return the quantum deteminant of self.

The quantum determinant of a matrix𝑀 = (𝑚𝑖𝑗)
𝑛
𝑖,𝑗=1 is defined by

det
𝑞
(𝑀) =

∑︁
𝜎∈𝑆𝑛

(−𝑞)ℓ(𝜎)𝑀𝜎(𝑖),𝑗 ,

where 𝑆𝑛 is the symmetric group on {1, . . . , 𝑛} and ℓ(𝜎) denotes the length of 𝜎 written as simple transpo-
sitions (equivalently the number of inversions when written in one-line notation).

INPUT:

• q – the parameter 𝑞; the default is 𝑞 ∈ 𝐹 [𝑞], where 𝐹 is the base ring of self

EXAMPLES:

sage: A = matrix(SR, 2, lambda i, j: f�a{i}{j}�); A #␣
→˓needs sage.symbolic
[a00 a01]
[a10 a11]
sage: A.quantum_determinant() #␣
→˓needs sage.symbolic
-a01*a10*q + a00*a11

sage: A = matrix(SR, 3, lambda i, j: f�a{i}{j}�) #␣
→˓needs sage.symbolic
sage: A.quantum_determinant() #␣
→˓needs sage.symbolic
-a02*a11*a20*q^3 + (a01*a12*a20 + a02*a10*a21)*q^2
+ (-a00*a12*a21 - a01*a10*a22)*q + a00*a11*a22

sage: R.<q> = LaurentPolynomialRing(ZZ)
sage: MS = MatrixSpace(Integers(8), 3)
sage: A = MS([1,7,3, 1,1,1, 3,4,5])
sage: A.det()
6
sage: A.quantum_determinant(q^-2)
7*q^-6 + q^-4 + q^-2 + 5

sage: S.<x,y> = PolynomialRing(GF(7))
sage: R.<q> = LaurentPolynomialRing(S)
sage: MS = MatrixSpace(S, 3, sparse=True)

(continues on next page)

286 Chapter 8. Base class for matrices, part 2



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

sage: A = MS([[x, y, 3], [4, 2+y, x^2], [0, 1-x, x+y]])
sage: A.det()
x^4 - x^3 + x^2*y + x*y^2 + 2*x^2 - 2*x*y + 3*y^2 + 2*x - 2
sage: A.quantum_determinant()
(2*x - 2)*q^2 + (x^4 - x^3 + 3*x*y + 3*y^2)*q + x^2*y + x*y^2 + 2*x^2 + 2*x*y
sage: A.quantum_determinant(int(2))
2*x^4 - 2*x^3 + x^2*y + x*y^2 + 2*x^2 + x*y - y^2 + x - 1
sage: A.quantum_determinant(q*x + q^-1*y)
(2*x*y^2 - 2*y^2)*q^-2 + (x^4*y - x^3*y + 3*x*y^2 + 3*y^3)*q^-1
+ (-2*x^2*y + x*y^2 + 2*x^2 - 2*x*y)
+ (x^5 - x^4 + 3*x^2*y + 3*x*y^2)*q + (2*x^3 - 2*x^2)*q^2

randomize(density=1, nonzero=False, *args, **kwds)
Replace a proportion of the entries of a matrix by random elements, leaving the remaining entries unchanged.

Note

The locations of the entries of the matrix to change are determined randomly, with the total number of
locations determined by the density keyword. These locations are not guaranteed to be distinct. So it
is possible that the same position can be chosen multiple times, especially for a very small matrix. The
exception is when density = 1, in which case every entry of the matrix will be changed.

INPUT:

• density – float (default: 1); upper bound for the proportion of entries that are changed

• nonzero – boolean (default: False); if True, then new entries will be nonzero

• *args, **kwds – remaining parameters may be passed to the random_element function of the
base ring

EXAMPLES:

We construct the zero matrix over a polynomial ring.

sage: a = matrix(QQ[�x�], 3); a
[0 0 0]
[0 0 0]
[0 0 0]

We then randomize roughly half the entries:

sage: a.randomize(0.5)
sage: a.density() <= 0.5
True

Now we randomize all the entries of the resulting matrix:

sage: while a.density() < 0.9:
....: a = matrix(QQ[�x�], 3)
....: a.randomize()

We create the zero matrix over the integers:
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sage: a = matrix(ZZ, 2); a
[0 0]
[0 0]

Then we randomize it; the x and y keywords, which determine the size of the random elements, are passed
on to the random_element method for ZZ.

sage: a.randomize(x=-2^64, y=2^64)
sage: while all(abs(b) < 2^63 for b in a.list()):
....: a.randomize(x=-2^64, y=2^64)
sage: all(abs(b) < 2^64 for b in a.list())
True

rational_form(format='right', subdivide=True)
Return the rational canonical form, also known as Frobenius form.

INPUT:

• self – a square matrix with entries from an exact field

• format – (default: �right�) one of �right�, �bottom�, �left�, �top� or
�invariants�. The first four will cause a matrix to be returned with companion matrices
dictated by the keyword. The value ‘invariants’ will cause a list of lists to be returned, where each list
contains coefficients of a polynomial associated with a companion matrix.

• subdivide – (default: �True�) if ‘True’ and a matrix is returned, then it contains subdivisions de-
lineating the companion matrices along the diagonal

OUTPUT:

The rational form of a matrix is a similar matrix composed of submatrices (“blocks”) placed on the main
diagonal. Each block is a companion matrix. Associated with each companion matrix is a polynomial. In
rational form, the polynomial of one block will divide the polynomial of the next block (and thus, the poly-
nomials of all subsequent blocks).

Rational form, also known as Frobenius form, is a canonical form. In other words, two matrices are similar
if and only if their rational canonical forms are equal. The algorithm used does not provide the similarity
transformation matrix (also known as the change-of-basis matrix).

Companion matrices may be written in one of four styles, and any such style may be selected with
the format keyword. See the companion matrix constructor, sage.matrix.constructor.
companion_matrix(), for more information about companion matrices.

If the ‘invariants’ value is used for the format keyword, then the return value is a list of lists, where each list
is the coefficients of the polynomial associated with one of the companion matrices on the diagonal. These
coefficients include the leading one of the monic polynomial and are ready to be coerced into any polynomial
ring over the same field (see examples of this below). This return value is intended to be the most compact
representation and the easiest to use for testing equality of rational forms.

Because the minimal and characteristic polynomials of a companion matrix are the associated polynomial, it
is easy to see that the product of the polynomials of the blocks will be the characteristic polynomial and the
final polynomial will be the minimal polynomial of the entire matrix.

ALGORITHM:

We begin with ZigZag form, which is due to Arne Storjohann and is documented atzigzag_form(). Then
we eliminate ‘’corner’’ entries enroute to rational form via an additional algorithm of Storjohann’s [Sto2011].

EXAMPLES:
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The lists of coefficients returned with the invariants keyword are designed to easily convert to the poly-
nomials associated with the companion matrices. This is illustrated by the construction below of the polys
list. Then we can test the divisibility condition on the list of polynomials. Also the minimal and characteristic
polynomials are easy to determine from this list.

sage: A = matrix(QQ, [[ 11, 14, -15, -4, -38, -29, 1, 23, 14, -63, 17, ␣
→˓24, 36, 32],
....: [ 18, 6, -17, -11, -31, -43, 12, 26, 0, -69, 11, ␣
→˓13, 17, 24],
....: [ 11, 16, -22, -8, -48, -34, 0, 31, 16, -82, 26, ␣
→˓31, 39, 37],
....: [ -8, -18, 22, 10, 46, 33, 3, -27, -12, 70, -19, -
→˓20, -42, -31],
....: [-13, -21, 16, 10, 52, 43, 4, -28, -25, 89, -37, -
→˓20, -53, -62],
....: [ -2, -6, 0, 0, 6, 10, 1, 1, -7, 14, -11, ␣
→˓-3, -10, -18],
....: [ -9, -19, -3, 4, 23, 30, 8, -3, -27, 55, -40, ␣
→˓-5, -40, -69],
....: [ 4, -8, -1, -1, 5, -4, 9, 5, -11, 4, -14, ␣
→˓-2, -13, -17],
....: [ 1, -2, 16, -1, 19, -2, -1, -17, 2, 19, 5, -
→˓25, -7, 14],
....: [ 7, 7, -13, -4, -26, -21, 3, 18, 5, -40, 7, ␣
→˓15, 20, 14],
....: [ -6, -7, -12, 4, -1, 18, 3, 8, -11, 15, -18, ␣
→˓17, -15, -41],
....: [ 5, 11, -11, -3, -26, -19, -1, 14, 10, -42, 14, ␣
→˓17, 25, 23],
....: [-16, -15, 3, 10, 29, 45, -1, -13, -19, 71, -35, ␣
→˓-2, -35, -65],
....: [ 4, 2, 3, -2, -2, -10, 1, 0, 3, -11, 6, ␣
→˓-4, 6, 17]])
sage: A.rational_form()
[ 0 -4| 0 0 0 0| 0 0 0 0 0 0 0 0]
[ 1 4| 0 0 0 0| 0 0 0 0 0 0 0 0]
[---------+-------------------+---------------------------------------]
[ 0 0| 0 0 0 12| 0 0 0 0 0 0 0 0]
[ 0 0| 1 0 0 -4| 0 0 0 0 0 0 0 0]
[ 0 0| 0 1 0 -9| 0 0 0 0 0 0 0 0]
[ 0 0| 0 0 1 6| 0 0 0 0 0 0 0 0]
[---------+-------------------+---------------------------------------]
[ 0 0| 0 0 0 0| 0 0 0 0 0 0 0 -216]
[ 0 0| 0 0 0 0| 1 0 0 0 0 0 0 108]
[ 0 0| 0 0 0 0| 0 1 0 0 0 0 0 306]
[ 0 0| 0 0 0 0| 0 0 1 0 0 0 0 -271]
[ 0 0| 0 0 0 0| 0 0 0 1 0 0 0 -41]
[ 0 0| 0 0 0 0| 0 0 0 0 1 0 0 134]
[ 0 0| 0 0 0 0| 0 0 0 0 0 1 0 -64]
[ 0 0| 0 0 0 0| 0 0 0 0 0 0 1 13]

sage: R = PolynomialRing(QQ, �x�)
sage: invariants = A.rational_form(format=�invariants�)
sage: invariants
[[4, -4, 1], [-12, 4, 9, -6, 1], [216, -108, -306, 271, 41, -134, 64, -13, 1]]
sage: polys = [R(p) for p in invariants]
sage: [p.factor() for p in polys] #␣
→˓needs sage.rings.finite_rings

(continues on next page)
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[(x - 2)^2, (x - 3) * (x + 1) * (x - 2)^2, (x + 1)^2 * (x - 3)^3 * (x - 2)^3]
sage: all(polys[i].divides(polys[i+1]) for i in range(len(polys)-1))
True
sage: polys[-1] == A.minimal_polynomial(var=�x�) #␣
→˓needs sage.libs.pari
True
sage: prod(polys) == A.characteristic_polynomial(var=�x�) #␣
→˓needs sage.libs.pari
True

Rational form is a canonical form. Any two matrices are similar if and only if their rational forms are equal.
By starting with Jordan canonical forms, the matrices C and D below were built as similar matrices, while
E was built to be just slightly different. All three matrices have equal characteristic polynomials though E’s
minimal polynomial differs.

sage: C = matrix(QQ, [[2, 31, -10, -9, -125, 13, 62, -12],
....: [0, 48, -16, -16, -188, 20, 92, -16],
....: [0, 9, -1, 2, -33, 5, 18, 0],
....: [0, 15, -5, 0, -59, 7, 30, -4],
....: [0, -21, 7, 2, 84, -10, -42, 5],
....: [0, -42, 14, 8, 167, -17, -84, 13],
....: [0, -50, 17, 10, 199, -23, -98, 14],
....: [0, 15, -5, -2, -59, 7, 30, -2]])
sage: C.minimal_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^2
sage: C.characteristic_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^8
sage: C.rational_form()
[ 0 -4| 0 0| 0 0| 0 0]
[ 1 4| 0 0| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 -4| 0 0| 0 0]
[ 0 0| 1 4| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 -4| 0 0]
[ 0 0| 0 0| 1 4| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 0| 0 -4]
[ 0 0| 0 0| 0 0| 1 4]

sage: D = matrix(QQ, [[ -4, 3, 7, 2, -4, 5, 7, -3],
....: [ -6, 5, 7, 2, -4, 5, 7, -3],
....: [ 21, -12, 89, 25, 8, 27, 98, -95],
....: [ -9, 5, -44, -11, -3, -13, -48, 47],
....: [ 23, -13, 74, 21, 12, 22, 85, -84],
....: [ 31, -18, 135, 38, 12, 47, 155, -147],
....: [-33, 19, -138, -39, -13, -45, -156, 151],
....: [ -7, 4, -29, -8, -3, -10, -34, 34]])
sage: D.minimal_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^2
sage: D.characteristic_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^8

(continues on next page)
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sage: D.rational_form()
[ 0 -4| 0 0| 0 0| 0 0]
[ 1 4| 0 0| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 -4| 0 0| 0 0]
[ 0 0| 1 4| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 -4| 0 0]
[ 0 0| 0 0| 1 4| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 0| 0 -4]
[ 0 0| 0 0| 0 0| 1 4]

sage: E = matrix(QQ, [[ 0, -8, 4, -6, -2, 5, -3, 11],
....: [-2, -4, 2, -4, -2, 4, -2, 6],
....: [ 5, 14, -7, 12, 3, -8, 6, -27],
....: [-3, -8, 7, -5, 0, 2, -6, 17],
....: [ 0, 5, 0, 2, 4, -4, 1, 2],
....: [-3, -7, 5, -6, -1, 5, -4, 14],
....: [ 6, 18, -10, 14, 4, -10, 10, -28],
....: [-2, -6, 4, -5, -1, 3, -3, 13]])
sage: E.minimal_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^3
sage: E.characteristic_polynomial().factor() #␣
→˓needs sage.libs.pari
(x - 2)^8
sage: E.rational_form()
[ 2| 0 0| 0 0| 0 0 0]
[---+-------+-------+-----------]
[ 0| 0 -4| 0 0| 0 0 0]
[ 0| 1 4| 0 0| 0 0 0]
[---+-------+-------+-----------]
[ 0| 0 0| 0 -4| 0 0 0]
[ 0| 0 0| 1 4| 0 0 0]
[---+-------+-------+-----------]
[ 0| 0 0| 0 0| 0 0 8]
[ 0| 0 0| 0 0| 1 0 -12]
[ 0| 0 0| 0 0| 0 1 6]

The principal feature of rational canonical form is that it can be computed over any field using only field
operations. Other forms, such as Jordan canonical form, are complicated by the need to determine the eigen-
values of the matrix, which can lie outside the field. The following matrix has all of its eigenvalues outside
the rationals - some are irrational (±

√
2) and the rest are complex (−1± 2𝑖).

sage: A = matrix(QQ,
....: [[-154, -3, -54, 44, 48, -244, -19, 67, -326, 85, 355, ␣
→˓581],
....: [ 504, 25, 156, -145, -171, 793, 99, -213, 1036, -247, -1152, -
→˓1865],
....: [ 294, -1, 112, -89, -90, 469, 36, -128, 634, -160, -695, -
→˓1126],
....: [ -49, -32, 25, 7, 37, -64, -58, 12, -42, -14, 72, ␣
→˓106],
....: [-261, -123, 65, 47, 169, -358, -254, 70, -309, -29, 454, ␣
→˓673],

(continues on next page)
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....: [-448, -123, -10, 109, 227, -668, -262, 163, -721, 95, 896, ␣
→˓1410],
....: [ 38, 7, 8, -14, -17, 66, 6, -23, 73, -29, -78, -
→˓143],
....: [ -96, 10, -55, 37, 24, -168, 17, 56, -231, 88, 237, ␣
→˓412],
....: [ 310, 67, 31, -81, -143, 473, 143, -122, 538, -98, -641, -
→˓1029],
....: [ 139, -35, 99, -49, -18, 236, -41, -70, 370, -118, -377, -
→˓619],
....: [ 243, 9, 81, -72, -81, 386, 43, -105, 508, -124, -564, -
→˓911],
....: [-155, -3, -55, 45, 50, -245, -27, 65, -328, 77, 365, ␣
→˓583]])
sage: A.characteristic_polynomial().factor() #␣
→˓needs sage.libs.pari
(x^2 - 2)^2 * (x^2 + 2*x + 5)^4
sage: A.eigenvalues(extend=False) #␣
→˓needs sage.libs.pari
[]
sage: A.rational_form()
[ 0 -5| 0 0 0 0| 0 0 0 0 0 0]
[ 1 -2| 0 0 0 0| 0 0 0 0 0 0]
[-------+---------------+-----------------------]
[ 0 0| 0 0 0 10| 0 0 0 0 0 0]
[ 0 0| 1 0 0 4| 0 0 0 0 0 0]
[ 0 0| 0 1 0 -3| 0 0 0 0 0 0]
[ 0 0| 0 0 1 -2| 0 0 0 0 0 0]
[-------+---------------+-----------------------]
[ 0 0| 0 0 0 0| 0 0 0 0 0 50]
[ 0 0| 0 0 0 0| 1 0 0 0 0 40]
[ 0 0| 0 0 0 0| 0 1 0 0 0 3]
[ 0 0| 0 0 0 0| 0 0 1 0 0 -12]
[ 0 0| 0 0 0 0| 0 0 0 1 0 -12]
[ 0 0| 0 0 0 0| 0 0 0 0 1 -4]
sage: F.<x> = QQ[]
sage: polys = A.rational_form(format=�invariants�)
sage: [F(p).factor() for p in polys] #␣
→˓needs sage.libs.pari
[x^2 + 2*x + 5, (x^2 - 2) * (x^2 + 2*x + 5), (x^2 - 2) * (x^2 + 2*x + 5)^2]

Rational form may be computed over any field. The matrix below is an example where the eigenvalues lie
outside the field.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(7^2)
sage: A = matrix(F,
....: [[5*a + 3, 4*a + 1, 6*a + 2, 2*a + 5, 6, 4*a + 5, 4*a + 5, ␣
→˓5, a + 6, 5, 4*a + 4],
....: [6*a + 3, 2*a + 4, 0, 6, 5*a + 5, 2*a, 5*a + 1, ␣
→˓1, 5*a + 2, 4*a, 5*a + 6],
....: [3*a + 1, 6*a + 6, a + 6, 2, 0, 3*a + 6, 5*a + 4, 5*a +␣
→˓6, 5*a + 2, 3, 4*a + 2],
....: [ 3*a, 6*a, 3*a, 4*a, 4*a + 4, 3*a + 6, 6*a, ␣
→˓4, 3*a + 4, 6*a + 2, 4*a],
....: [4*a + 5, a + 1, 4*a + 3, 6*a + 5, 5*a + 2, 5*a + 2, 6*a, 4*a +␣
→˓6, 6*a + 4, 5*a + 3, 3*a + 1],

(continues on next page)
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....: [ 3*a, 6*a, 4*a + 1, 6*a + 2, 2*a + 5, 4*a + 6, 2, a +␣
→˓5, 2*a + 4, 2*a + 1, 2*a + 1],
....: [4*a + 5, 3*a + 3, 6, 4*a + 1, 4*a + 3, 6*a + 3, 6, 3*a +␣
→˓3, 3, a + 3, 0],
....: [6*a + 6, a + 4, 2*a + 6, 3*a + 5, 4*a + 3, 2, a, 3*a +␣
→˓4, 5*a, 2*a + 5, 4*a + 3],
....: [3*a + 5, 6*a + 2, 4*a, a + 5, 0, 5*a, 6*a + 5, 2*a +␣
→˓1, 3*a + 1, 3*a + 5, 4*a + 2],
....: [3*a + 2, a + 3, 3*a + 6, a, 3*a + 5, 5*a + 1, 3*a + 2, a +␣
→˓3, a + 2, 6*a + 1, 3*a + 3],
....: [6*a + 6, 5*a + 1, 4*a, 2, 5*a + 5, 3*a + 5, 3*a + 1, ␣
→˓2*a, 2*a, 2*a + 4, 4*a + 2]])
sage: A.rational_form()
[ a + 2| 0 0 0| 0 0 0 0 0 ␣
→˓ 0 0]
[-------+-----------------------+---------------------------------------------
→˓----------]
[ 0| 0 0 a + 6| 0 0 0 0 0 ␣
→˓ 0 0]
[ 0| 1 0 6*a + 4| 0 0 0 0 0 ␣
→˓ 0 0]
[ 0| 0 1 6*a + 4| 0 0 0 0 0 ␣
→˓ 0 0]
[-------+-----------------------+---------------------------------------------
→˓----------]
[ 0| 0 0 0| 0 0 0 0 0 ␣
→˓ 0 2*a]
[ 0| 0 0 0| 1 0 0 0 0 ␣
→˓ 0 6*a + 3]
[ 0| 0 0 0| 0 1 0 0 0 ␣
→˓ 0 6*a + 1]
[ 0| 0 0 0| 0 0 1 0 0 ␣
→˓ 0 a + 2]
[ 0| 0 0 0| 0 0 0 1 0 ␣
→˓ 0 a + 6]
[ 0| 0 0 0| 0 0 0 0 1 ␣
→˓ 0 2*a + 1]
[ 0| 0 0 0| 0 0 0 0 0 ␣
→˓ 1 2*a + 1]
sage: invariants = A.rational_form(format=�invariants�)
sage: invariants
[[6*a + 5, 1], [6*a + 1, a + 3, a + 3, 1], [5*a, a + 4, a + 6, 6*a + 5, 6*a +␣
→˓1, 5*a + 6, 5*a + 6, 1]]
sage: R.<x> = F[]
sage: polys = [R(p) for p in invariants]
sage: [p.factor() for p in polys]
[x + 6*a + 5, (x + 6*a + 5) * (x^2 + (2*a + 5)*x + 5*a), (x + 6*a + 5) * (x^2␣
→˓+ (2*a + 5)*x + 5*a)^3]
sage: polys[-1] == A.minimal_polynomial()
True
sage: prod(polys) == A.characteristic_polynomial()
True
sage: A.eigenvalues()
Traceback (most recent call last):
...
TypeError: no canonical coercion from Finite Field in a of size 7^2 to Finite␣
→˓Field in z2 of size 7^2

293



Matrices and Spaces of Matrices, Release 10.5.rc0

Companion matrices may be selected as any one of four different types. See the documentation for the com-
panion matrix constructor, sage.matrix.constructor.companion_matrix(), for more infor-
mation.

sage: A = matrix(QQ, [[35, -18, -2, -45],
....: [22, -22, 12, -16],
....: [ 5, -12, 12, 4],
....: [16, -6, -4, -23]])
sage: A.rational_form(format=�right�)
[ 2| 0 0 0]
[--+--------]
[ 0| 0 0 10]
[ 0| 1 0 -1]
[ 0| 0 1 0]
sage: A.rational_form(format=�bottom�)
[ 2| 0 0 0]
[--+--------]
[ 0| 0 1 0]
[ 0| 0 0 1]
[ 0|10 -1 0]
sage: A.rational_form(format=�left�)
[ 2| 0 0 0]
[--+--------]
[ 0| 0 1 0]
[ 0|-1 0 1]
[ 0|10 0 0]
sage: A.rational_form(format=�top�)
[ 2| 0 0 0]
[--+--------]
[ 0| 0 -1 10]
[ 0| 1 0 0]
[ 0| 0 1 0]

restrict(V , check=True)
Return the matrix that defines the action of self on the chosen basis for the invariant subspace V. If V is an
ambient, returns self (not a copy of self).

INPUT:

• V – vector subspace

• check – boolean (default: True); if False may not check that V is invariant (hence can be faster)

OUTPUT: a matrix

Warning

This function returns an nxn matrix, where V has dimension n. It does not check that V is in fact invariant
under self, unless check is True.

EXAMPLES:

sage: V = VectorSpace(QQ, 3)
sage: M = MatrixSpace(QQ, 3)
sage: A = M([1,2,0, 3,4,0, 0,0,0])
sage: W = V.subspace([[1,0,0], [0,1,0]])
sage: A.restrict(W)

(continues on next page)
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[1 2]
[3 4]
sage: A.restrict(W, check=True)
[1 2]
[3 4]

We illustrate the warning about invariance not being checked by default, by giving a non-invariant subspace.
With the default check=False this function returns the ‘restriction’ matrix, which is meaningless as check=True
reveals.

sage: W2 = V.subspace([[1,0,0], [0,1,1]])
sage: A.restrict(W2, check=False)
[1 2]
[3 4]
sage: A.restrict(W2, check=True)
Traceback (most recent call last):
...
ArithmeticError: subspace is not invariant under matrix

restrict_codomain(V)
Suppose that self defines a linear map from some domain to a codomain that contains 𝑉 and that the image
of self is contained in 𝑉 . This function returns a new matrix𝐴 that represents this linear map but as a map
to 𝑉 , in the sense that if 𝑥 is in the domain, then 𝑥𝐴 is the linear combination of the elements of the basis of
𝑉 that equals v*self.

INPUT:

• V – vector space (space of degree self.ncols()) that contains the image of self

See also

restrict(), restrict_domain()

EXAMPLES:

sage: A = matrix(QQ, 3, [1..9])
sage: V = (QQ^3).span([[1,2,3], [7,8,9]]); V
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]
sage: z = vector(QQ,[1,2,5])
sage: B = A.restrict_codomain(V); B
[1 2]
[4 5]
[7 8]
sage: z*B
(44, 52)
sage: z*A
(44, 52, 60)
sage: 44*V.0 + 52*V.1
(44, 52, 60)

restrict_domain(V)

Compute the matrix relative to the basis for V on the domain obtained by restricting self to V, but not
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changing the codomain of the matrix. This is the matrix whose rows are the images of the basis for V.

INPUT:

• V – vector space (subspace of ambient space on which self acts)

See also

restrict()

EXAMPLES:

sage: V = QQ^3
sage: A = matrix(QQ, 3, [1,2,0, 3,4,0, 0,0,0])
sage: W = V.subspace([[1,0,0], [1,2,3]])
sage: A.restrict_domain(W)
[1 2 0]
[3 4 0]
sage: W2 = V.subspace_with_basis([[1,0,0], [1,2,3]])
sage: A.restrict_domain(W2)
[ 1 2 0]
[ 7 10 0]

right_eigenmatrix(other=None)
Return matrices𝐷 and 𝑃 , where𝐷 is a diagonal matrix of eigenvalues and the columns of 𝑃 are correspond-
ing eigenvectors (or zero vectors).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

OUTPUT:

If self is a square matrix 𝐴, then the output is a diagonal matrix 𝐷 and a matrix 𝑃 such that

𝐴𝑃 = 𝑃𝐷,

where the columns of𝑃 are eigenvectors of𝐴 and the diagonal entries of𝐷 are the corresponding eigenvalues.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝐴𝑃 = 𝐵𝑃𝐷.

The ordinary eigenvalue problem is equivalent to the generalized one if 𝐵 is the identity matrix.

The generalized eigenvector decomposition is currently only implemented for matrices over RDF and CDF.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: D, P = A.eigenmatrix_right()
sage: D
[ 0 0 0]

(continues on next page)
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[ 0 -1.348469228349535? 0]
[ 0 0 13.34846922834954?]
sage: P
[ 1 1 1]
[ -2 0.1303061543300932? 3.069693845669907?]
[ 1 -0.7393876913398137? 5.139387691339814?]
sage: A*P == P*D
True

Because 𝑃 is invertible, 𝐴 is diagonalizable.

sage: A == P*D*(~P) #␣
→˓needs sage.rings.number_field
True

The matrix 𝑃 may contain zero columns corresponding to eigenvalues for which the algebraic multiplicity is
greater than the geometric multiplicity. In these cases, the matrix is not diagonalizable.

sage: # needs sage.rings.number_field
sage: A = jordan_block(2, 3); A
[2 1 0]
[0 2 1]
[0 0 2]
sage: D, P = A.eigenmatrix_right()
sage: D
[2 0 0]
[0 2 0]
[0 0 2]
sage: P
[1 0 0]
[0 0 0]
[0 0 0]
sage: A*P == P*D
True

A generalized eigenvector decomposition:

sage: # needs scipy
sage: A = matrix(RDF, [[1, -2], [3, 4]])
sage: B = matrix(RDF, [[0, 7], [2, -3]])
sage: D, P = A.eigenmatrix_right(B)
sage: (A * P - B * P * D).norm() < 1e-14
True

The matrix 𝐵 in a generalized eigenvalue problem may be singular:

sage: # needs scipy
sage: A = matrix.identity(RDF, 2)
sage: B = matrix(RDF, [[3, 5], [6, 10]])
sage: D, P = A.eigenmatrix_right(B); D # tol 1e-14
[0.07692307692307694 0.0]
[ 0.0 +infinity]

In this case, we can still verify the eigenvector equation for the first eigenvalue and first eigenvector:
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sage: # needs scipy
sage: l = D[0, 0]
sage: v = P[:, 0]
sage: (A * v - B * v * l).norm() < 1e-14
True

The second eigenvector is contained in the right kernel of 𝐵:

sage: (B * P[:, 1]).norm() < 1e-14 #␣
→˓needs scipy
True

See also

eigenvalues(), eigenvectors_right(), Matrix_double_dense.
eigenvectors_right(), eigenmatrix_left().

right_eigenspaces(format='all', var='a', algebraic_multiplicity=False)
Compute the right eigenspaces of a matrix.

Note that eigenspaces_right() and right_eigenspaces() are identical methods. Here “right”
refers to the eigenvectors being placed to the right of the matrix.

INPUT:

• self – a square matrix over an exact field. For inexact matrices consult the numerical or symbolic
matrix classes

• format – (default: None)

– �all� – attempts to create every eigenspace. This will always be possible for matrices with rational
entries

– �galois� – for each irreducible factor of the characteristic polynomial, a single eigenspace will
be output for a single root/eigenvalue for the irreducible factor

– None – uses the ‘all’ format if the base ring is contained in an algebraically closed field which is
implemented. Otherwise, uses the ‘galois’ format.

• var – (default: �a�) variable name used to represent elements of the root field of each irreducible factor
of the characteristic polynomial. If var=’a’, then the root fields will be in terms of a0, a1, a2, …., where
the numbering runs across all the irreducible factors of the characteristic polynomial, even for linear
factors.

• algebraic_multiplicity – (default: False) whether or not to include the algebraicmultiplicity
of each eigenvalue in the output. See the discussion below.

OUTPUT:

If algebraic_multiplicity=False, return a list of pairs (e, V) where e is an eigenvalue of the matrix, and V is
the corresponding left eigenspace. For Galois conjugates of eigenvalues, there may be just one representative
eigenspace, depending on the format keyword.

If algebraic_multiplicity=True, return a list of triples (e, V, n) where e and V are as above and n is the algebraic
multiplicity of the eigenvalue.
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Warning

Uses a somewhat naive algorithm (simply factors the characteristic polynomial and computes kernels
directly over the extension field).

EXAMPLES:

Right eigenspaces are computed from the left eigenspaces of the transpose of the matrix. As such, there is a
greater collection of illustrative examples at the eigenspaces_left().

We compute the right eigenspaces of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right()
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(-1.348469228349535?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 0.1303061543300932? -0.7393876913398137?]),

(13.34846922834954?,
Vector space of degree 3 and dimension 1 over Algebraic Field
User basis matrix:
[ 1 3.069693845669907? 5.139387691339814?]) ]

sage: es = A.eigenspaces_right(format=�galois�); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5]) ]

sage: es = A.eigenspaces_right(format=�galois�,
....: algebraic_multiplicity=True); es
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1],

1),
(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5],

1) ]
sage: e, v, n = es[0]; v = v.basis()[0]
sage: delta = v*e - A*v
sage: abs(abs(delta)) < 1e-10
True
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The same computation, but with implicit base change to a field:

sage: A = matrix(ZZ, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.eigenspaces_right(format=�galois�) #␣
→˓needs sage.rings.number_field
[ (0,

Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]),

(a1,
Vector space of degree 3 and dimension 1 over
Number Field in a1 with defining polynomial x^2 - 12*x - 18
User basis matrix:
[ 1 1/5*a1 + 2/5 2/5*a1 - 1/5]) ]

This method is only applicable to exact matrices. The “eigenmatrix” routines for matrices with
double-precision floating-point entries (RDF, CDF) are the best alternative. (Since some platforms return
eigenvectors that are the negatives of those given here, this one example is not tested here.) There are also
“eigenmatrix” routines for matrices with symbolic entries.

sage: B = matrix(RR, 3, 3, range(9))
sage: B.eigenspaces_right()
Traceback (most recent call last):
...
NotImplementedError: eigenspaces cannot be computed reliably
for inexact rings such as Real Field with 53 bits of precision,
consult numerical or symbolic matrix classes for other options

sage: # needs scipy
sage: em = B.change_ring(RDF).eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues.dense_matrix() # abs tol 1e-13
[13.348469228349522 0.0 0.0]
[ 0.0 -1.348469228349534 0.0]
[ 0.0 0.0 0.0]
sage: eigenvectors = em[1]; eigenvectors # not tested
[ 0.164763817... 0.799699663... 0.408248290...]
[ 0.505774475... 0.104205787... -0.816496580...]
[ 0.846785134... -0.591288087... 0.408248290...]

sage: # needs sage.symbolic
sage: x, y = var(�x y�)
sage: S = matrix([[x, y], [y, 3*x^2]])
sage: em = S.eigenmatrix_right()
sage: eigenvalues = em[0]; eigenvalues
[3/2*x^2 + 1/2*x - 1/2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2) ␣
→˓ 0]
[ 0 3/2*x^2 + 1/2*x + 1/
→˓2*sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2)]
sage: eigenvectors = em[1]; eigenvectors
[ 1 ␣
→˓ 1]
[1/2*(3*x^2 - x - sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y 1/2*(3*x^2 - x +␣
→˓sqrt(9*x^4 - 6*x^3 + x^2 + 4*y^2))/y]

right_eigenvectors(other=None, extend=True)
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Compute the right eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

• extend – boolean (default: True)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigen-
vectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the
eigenvalue. If extend = True (the default), this will return eigenspaces over the algebraic closure of the
base field where this is implemented; otherwise it will restrict to eigenvalues in the base field.

EXAMPLES:

We compute the right eigenvectors of a 3× 3 rational matrix.

sage: # needs sage.rings.number_field
sage: A = matrix(QQ, 3, 3, range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_right(); es
[(0, [ (1, -2, 1) ], 1),
(-1.348469228349535?, [(1, 0.1303061543300932?, -0.7393876913398137?)], 1),
(13.34846922834954?, [(1, 3.069693845669907?, 5.139387691339814?)], 1)]

sage: A.eigenvectors_right(extend=False)
[(0, [ (1, -2, 1) ], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - A*evec
sage: abs(abs(delta)) < 1e-10
True

right_kernel(*args, **kwds)
Return the right kernel of this matrix, as a vector space or free module. This is the set of vectors x such that
self*x = 0.

Note

For the left kernel, use left_kernel(). The method kernel() is exactly equal to left_ker-
nel().

For inexact rings use right_kernel_matrix() with basis=�computed� to avoid echeloniz-
ing.

INPUT:

• algorithm – (default: �default�) a keyword that selects the algorithm employed. Allowable values
are:

– �default� – allows the algorithm to be chosen automatically

– �generic� – naive algorithm usable for matrices over any field

– �flint� – FLINT library code for matrices over the rationals or the integers

– �pari� – PARI library code for matrices over number fields or the integers
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– �padic� – padic algorithm from IML library for matrices over the rationals and integers

– �pluq� – PLUQ matrix factorization for matrices mod 2

• basis – (default: �echelon�) a keyword that describes the format of the basis used to construct the
right kernel. Allowable values are:

– ‘echelon’: the basis matrix is returned in echelon form

– ‘pivot’ : each basis vector is computed from the reduced row-echelon form of self by placing a
single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for
matrices over fields.

– ‘LLL’: an LLL-reduced basis. Only available for matrices over the integers.

OUTPUT:

A vector space or free module whose degree equals the number of columns in self and which contains all
the vectors x such that self*x = 0.

If self has 0 columns, the kernel has dimension 0, while if self has 0 rows the kernel is the entire ambient
vector space.

The result is cached. Requesting the right kernel a second time, but with a different basis format, will return
the cached result with the format from the first computation.

Note

For more detailed documentation on the selection of algorithms used and a more flexible method for
computing a basis matrix for a right kernel (rather than computing a vector space), see right_ker-
nel_matrix(), which powers the computations for this method.

EXAMPLES:

sage: A = matrix(QQ, [[0, 0, 1, 2, 2, -5, 3],
....: [-1, 5, 2, 2, 1, -7, 5],
....: [0, 0, -2, -3, -3, 8, -5],
....: [-1, 5, 0, -1, -2, 1, 0]])
sage: K = A.right_kernel(); K
Vector space of degree 7 and dimension 4 over Rational Field
Basis matrix:
[ 1 0 0 0 -1 -1 -1]
[ 0 1 0 0 5 5 5]
[ 0 0 1 0 -1 -2 -3]
[ 0 0 0 1 0 1 1]
sage: A * K.basis_matrix().transpose() == zero_matrix(QQ, 4, 4)
True

The default is basis vectors that form a matrix in echelon form. A “pivot basis” instead has a basis matrix
where the columns of an identity matrix are in the locations of the non-pivot columns of the original matrix.
This alternate format is available whenever the base ring is a field.

sage: A = matrix(QQ, [[0, 0, 1, 2, 2, -5, 3],
....: [-1, 5, 2, 2, 1, -7, 5],
....: [0, 0, -2, -3, -3, 8, -5],
....: [-1, 5, 0, -1, -2, 1, 0]])
sage: A.rref()
[ 1 -5 0 0 1 1 -1]
[ 0 0 1 0 0 -1 1]

(continues on next page)
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[ 0 0 0 1 1 -2 1]
[ 0 0 0 0 0 0 0]
sage: A.nonpivots()
(1, 4, 5, 6)
sage: K = A.right_kernel(basis=�pivot�); K
Vector space of degree 7 and dimension 4 over Rational Field
User basis matrix:
[ 5 1 0 0 0 0 0]
[-1 0 0 -1 1 0 0]
[-1 0 1 2 0 1 0]
[ 1 0 -1 -1 0 0 1]
sage: A * K.basis_matrix().transpose() == zero_matrix(QQ, 4, 4)
True

Matrices may have any field as a base ring. Number fields are computed by PARI library code, matrices
over 𝐺𝐹 (2) are computed by the M4RI library, and matrices over the rationals are computed by the IML
library. For any of these specialized cases, general-purpose code can be called instead with the keyword
setting algorithm=�generic�.

Over an arbitrary field, with two basis formats. Same vector space, different bases.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(5^2)
sage: A = matrix(F, 3, 4, [[ 1, a, 1+a, a^3+a^5],
....: [ a, a^4, a+a^4, a^4+a^8],
....: [a^2, a^6, a^2+a^6, a^5+a^10]])
sage: K = A.right_kernel(); K
Vector space of degree 4 and dimension 2
over Finite Field in a of size 5^2

Basis matrix:
[ 1 0 3*a + 4 2*a + 2]
[ 0 1 2*a 3*a + 3]
sage: A * K.basis_matrix().transpose() == zero_matrix(F, 3, 2)
True

In the following test, we have to force usage of Matrix_generic_dense, since the option basis =
�pivot�would simply yield the same result as the previous test, if the optional meataxe package is installed.

sage: from sage.matrix.matrix_generic_dense import Matrix_generic_dense
sage: B = Matrix_generic_dense(A.parent(), A.list(), False, False)
sage: P = B.right_kernel(basis=�pivot�); P #␣
→˓needs sage.rings.finite_rings
Vector space of degree 4 and dimension 2
over Finite Field in a of size 5^2

User basis matrix:
[ 4 4 1 0]
[ a + 2 3*a + 3 0 1]

If the optional meataxe package is installed, we again have to make sure to work with a copy of B that has
the same type as P.basis_matrix():

sage: (B.parent()(B.list()) * P.basis_matrix().transpose() #␣
→˓needs sage.rings.finite_rings
....: == zero_matrix(F, 3, 2))
True
sage: K == P #␣

(continues on next page)
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→˓needs sage.rings.finite_rings
True

Over number fields, PARI is used by default, but general-purpose code can be requested. Same vector space,
same bases, different code.:

sage: # needs sage.rings.number_field
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[ 2, 5 - a, 15 - a, 16 + 4*a],
....: [2 + a, a, -7 + 5*a, -3 + 3*a]])
sage: K = A.right_kernel(algorithm=�default�); K
Vector space of degree 4 and dimension 2
over Number Field in a with defining polynomial x^2 + 7 with a = 2.
→˓645751311064591?*I
Basis matrix:
[ 1 0 7/88*a + 3/88 -3/176*a - 39/176]
[ 0 1 -1/88*a - 13/88 13/176*a - 7/176]
sage: A * K.basis_matrix().transpose() == zero_matrix(Q, 2, 2)
True
sage: B = copy(A)
sage: G = A.right_kernel(algorithm=�generic�); G
Vector space of degree 4 and dimension 2
over Number Field in a with defining polynomial x^2 + 7 with a = 2.
→˓645751311064591?*I
Basis matrix:
[ 1 0 7/88*a + 3/88 -3/176*a - 39/176]
[ 0 1 -1/88*a - 13/88 13/176*a - 7/176]
sage: B * G.basis_matrix().transpose() == zero_matrix(Q, 2, 2)
True
sage: K == G
True

For matrices over the integers, several options are possible. The basis can be an LLL-reduced basis or an
echelon basis. The pivot basis isnot available. A heuristic will decide whether to use a 𝑝-adic algorithm
from the IML library or an algorithm from the PARI library. Note how specifying the algorithm can mildly
influence the LLL basis.

sage: A = matrix(ZZ, [[0, -1, -1, 2, 9, 4, -4],
....: [-1, 1, 0, -2, -7, -1, 6],
....: [2, 0, 1, 0, 1, -5, -2],
....: [-1, -1, -1, 3, 10, 10, -9],
....: [-1, 2, 0, -3, -7, 1, 6]])
sage: A.right_kernel(basis=�echelon�)
Free module of degree 7 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 5 -8 3 -1 -1 -1]
[ 0 11 -19 5 -2 -3 -3]
sage: B = copy(A)
sage: B.right_kernel(basis=�LLL�)
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[ 2 -1 3 1 0 1 1]
[-5 -3 2 -5 1 -1 -1]
sage: C = copy(A)
sage: C.right_kernel(basis=�pivot�)

(continues on next page)
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Traceback (most recent call last):
...
ValueError: pivot basis only available over a field, not over Integer Ring
sage: D = copy(A)
sage: D.right_kernel(algorithm=�pari�)
Free module of degree 7 and rank 2 over Integer Ring
Echelon basis matrix:
[ 1 5 -8 3 -1 -1 -1]
[ 0 11 -19 5 -2 -3 -3]
sage: E = copy(A)
sage: E.right_kernel(algorithm=�padic�, basis=�LLL�)
Free module of degree 7 and rank 2 over Integer Ring
User basis matrix:
[-2 1 -3 -1 0 -1 -1]
[ 5 3 -2 5 -1 1 1]

Besides the integers, rings may be as general as principal ideal domains. Results are then free modules.

sage: R.<y> = QQ[]
sage: A = matrix(R, [[ 1, y, 1+y^2],
....: [y^3, y^2, 2*y^3]])
sage: K = A.right_kernel(algorithm=�default�, basis=�echelon�); K
Free module of degree 3 and rank 1
over Univariate Polynomial Ring in y over Rational Field
Echelon basis matrix:
[-1 -y 1]

sage: A * K.basis_matrix().transpose() == zero_matrix(ZZ, 2, 1)
True

It is possible to compute a kernel for a matrix over an integral domain which is not a PID, but usually this
will fail.

sage: D.<x> = ZZ[]
sage: A = matrix(D, 2, 2, [[x^2 - x, -x + 5],
....: [x^2 - 8, -x + 2]])
sage: A.right_kernel()
Traceback (most recent call last):
...
ArithmeticError: Ideal Ideal (x^2 - x, x^2 - 8) of Univariate
Polynomial Ring in x over Integer Ring not principal

Matrices over non-commutative rings are not a good idea either. These are the “usual” quaternions.

sage: Q.<i,j,k> = QuaternionAlgebra(-1,-1)
sage: A = matrix(Q, 2, [i,j,-1,k])
sage: A.right_kernel()
Traceback (most recent call last):
...
NotImplementedError: Cannot compute a matrix kernel over
Quaternion Algebra (-1, -1) with base ring Rational Field

Sparse matrices, over the rationals and the integers, use the same routines as the dense versions.

sage: A = matrix(ZZ, [[0, -1, 1, 1, 2],
....: [1, -2, 0, 1, 3],
....: [-1, 2, 0, -1, -3]],

(continues on next page)
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....: sparse=True)
sage: A.right_kernel()
Free module of degree 5 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 0 0 2 -1]
[ 0 1 0 -1 1]
[ 0 0 1 -3 1]
sage: B = A.change_ring(QQ)
sage: B.is_sparse()
True
sage: B.right_kernel()
Vector space of degree 5 and dimension 3 over Rational Field
Basis matrix:
[ 1 0 0 2 -1]
[ 0 1 0 -1 1]
[ 0 0 1 -3 1]

With no columns, the kernel can only have dimension zero. With no rows, every possible vector is in the
kernel.

sage: A = matrix(QQ, 2, 0)
sage: A.right_kernel()
Vector space of degree 0 and dimension 0 over Rational Field
Basis matrix:
[]
sage: A = matrix(QQ, 0, 2)
sage: A.right_kernel()
Vector space of degree 2 and dimension 2 over Rational Field
Basis matrix:
[1 0]
[0 1]

Every vector is in the kernel of a zero matrix, the dimension is the number of columns.

sage: A = zero_matrix(QQ, 10, 20)
sage: A.right_kernel()
Vector space of degree 20 and dimension 20 over Rational Field
Basis matrix:
20 x 20 dense matrix over Rational Field

Results are cached as the right kernel of the matrix. Subsequent requests for the right kernel will return the
cached result, without regard for new values of the algorithm or format keyword. Work with a copy if you
need a new right kernel, or perhaps investigate the right_kernel_matrix() method, which does not
cache its results and is more flexible.

sage: A = matrix(QQ, 3, 3, range(9))
sage: K1 = A.right_kernel(basis=�echelon�)
sage: K1
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]
sage: K2 = A.right_kernel(basis=�pivot�)
sage: K2
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1]

(continues on next page)
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sage: K1 is K2
True
sage: B = copy(A)
sage: K3 = B.kernel(basis=�pivot�)
sage: K3
Vector space of degree 3 and dimension 1 over Rational Field
User basis matrix:
[ 1 -2 1]
sage: K3 is K1
False
sage: K3 == K1
True

right_kernel_matrix(*args, **kwds)
Return a matrix whose rows form a basis for the right kernel of self.

INPUT:

• algorithm – (default: �default�) a keyword that selects the algorithm employed. Allowable values
are:

– �default� – allows the algorithm to be chosen automatically

– �generic� – naive algorithm usable for matrices over any field

– �flint� – FLINT library code for matrices over the rationals or the integers

– �pari� – PARI library code for matrices over number fields or the integers

– �padic� – padic algorithm from IML library for matrices over the rationals and integers

– �pluq� – PLUQ matrix factorization for matrices mod 2

• basis – (default: �default�) a keyword that describes the format of the basis returned. Allowable
values are:

– ‘default’: uses ‘echelon’ over fields; ‘computed’ otherwise.

– ‘echelon’: the basis matrix is returned in echelon form.

– ‘pivot’ : each basis vector is computed from the reduced row-echelon form of self by placing a
single one in a non-pivot column and zeros in the remaining non-pivot columns. Only available for
matrices over fields.

– ‘LLL’: an LLL-reduced basis. Only available for matrices over the integers.

– ‘computed’: no work is done to transform the basis, it is returned exactly as provided by whichever
routine actually computed the basis. Request this for the least possible computation possible, but
with no guarantees about the format of the basis. This option is recommended for inexact rings.

OUTPUT:

A matrix X whose rows are an independent set spanning the right kernel of self. So self*X.
transpose() is a zero matrix.

The output varies depending on the choice of algorithm and the format chosen by basis.

The results of this routine are not cached, so you can call it again with different options to get possibly different
output (like the basis format). Conversely, repeated calls on the same matrix will always start from scratch.
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Note

If you want to get the most basic description of a kernel, with a minimum of overhead, then ask for the
right kernel matrix with the basis format requested as ‘computed’. You are then free to work with the
output for whatever purpose. For a left kernel, call this method on the transpose of your matrix.

For greater convenience, plus cached results, request an actual vector space or free module with
right_kernel() or left_kernel().

EXAMPLES:

Over the Rational Numbers:

Kernels are computed by the IML library in _right_kernel_matrix(). Setting the 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 key-
word to ‘default’, ‘padic’ or unspecified will yield the same result, as there is no optional behavior. The
‘computed’ format of the basis vectors are exactly the negatives of the vectors in the ‘pivot’ format.

sage: A = matrix(QQ, [[1, 0, 1, -3, 1],
....: [-5, 1, 0, 7, -3],
....: [0, -1, -4, 6, -2],
....: [4, -1, 0, -6, 2]])
sage: C = A.right_kernel_matrix(algorithm=�default�, basis=�computed�); C
[-1 2 -2 -1 0]
[ 1 2 0 0 -1]
sage: A * C.transpose() == zero_matrix(QQ, 4, 2)
True
sage: P = A.right_kernel_matrix(algorithm=�padic�, basis=�pivot�); P
[ 1 -2 2 1 0]
[-1 -2 0 0 1]
sage: A * P.transpose() == zero_matrix(QQ, 4, 2)
True
sage: C == -P
True
sage: E = A.right_kernel_matrix(algorithm=�default�, basis=�echelon�); E
[ 1 0 1 1/2 -1/2]
[ 0 1 -1/2 -1/4 -1/4]
sage: A * E.transpose() == zero_matrix(QQ, 4, 2)
True

Since the rationals are a field, we can call the general code available for any field by using the ‘generic’ keyword.

sage: A = matrix(QQ, [[1, 0, 1, -3, 1],
....: [-5, 1, 0, 7, -3],
....: [0, -1, -4, 6, -2],
....: [4, -1, 0, -6, 2]])
sage: G = A.right_kernel_matrix(algorithm=�generic�, basis=�echelon�); G
[ 1 0 1 1/2 -1/2]
[ 0 1 -1/2 -1/4 -1/4]
sage: A * G.transpose() == zero_matrix(QQ, 4, 2)
True

We verify that the rational matrix code is called for both dense and sparse rational matrices, with equal result.

sage: A = matrix(QQ, [[1, 0, 1, -3, 1],
....: [-5, 1, 0, 7, -3],
....: [0, -1, -4, 6, -2],
....: [4, -1, 0, -6, 2]],

(continues on next page)
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....: sparse=False)
sage: B = copy(A).sparse_matrix()
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(2)
sage: D = A.right_kernel(); D
verbose 2 (<module>) computing a right kernel for 4x5 matrix over Rational␣
→˓Field
...
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 1 1/2 -1/2]
[ 0 1 -1/2 -1/4 -1/4]
sage: S = B.right_kernel(); S
verbose 2 (<module>) computing a right kernel for 4x5 matrix over Rational␣
→˓Field
...
Vector space of degree 5 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 1 1/2 -1/2]
[ 0 1 -1/2 -1/4 -1/4]
sage: set_verbose(0)
sage: D == S
True

Over Number Fields:

Kernels are by default computed by PARI, (except for exceptions like the rationals themselves). The raw
results from PARI are a pivot basis, so the 𝑏𝑎𝑠𝑖𝑠 keywords ‘computed’ and ‘pivot’ will return the same results.

sage: # needs sage.rings.number_field
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a],
....: [2+a, a, -7 + 5*a, -3+3*a]])
sage: C = A.right_kernel_matrix(algorithm=�default�, basis=�computed�); C
[ -a -3 1 0]
[ -2 -a - 1 0 1]
sage: A*C.transpose() == zero_matrix(Q, 2, 2)
True
sage: P = A.right_kernel_matrix(algorithm=�pari�, basis=�pivot�); P #␣
→˓needs sage.libs.pari
[ -a -3 1 0]
[ -2 -a - 1 0 1]
sage: A*P.transpose() == zero_matrix(Q, 2, 2) #␣
→˓needs sage.libs.pari
True
sage: E = A.right_kernel_matrix(algorithm=�default�, basis=�echelon�); E
[ 1 0 7/88*a + 3/88 -3/176*a - 39/176]
[ 0 1 -1/88*a - 13/88 13/176*a - 7/176]
sage: A*E.transpose() == zero_matrix(Q, 2, 2)
True

We can bypass using PARI for number fields and use Sage’s general code for matrices over any field. The
basis vectors as computed are in pivot format.

sage: # needs sage.rings.number_field
sage: Q = QuadraticField(-7)

(continues on next page)
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sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a], [2+a, a, -7 + 5*a, -3+3*a]])
sage: G = A.right_kernel_matrix(algorithm=�generic�, basis=�computed�); G
[ -a -3 1 0]
[ -2 -a - 1 0 1]
sage: A*G.transpose() == zero_matrix(Q, 2, 2)
True

We check that number fields are handled by the right routine as part of typical right kernel computation.

sage: # needs sage.rings.number_field
sage: Q = QuadraticField(-7)
sage: a = Q.gen(0)
sage: A = matrix(Q, [[2, 5-a, 15-a, 16+4*a], [2+a, a, -7 + 5*a, -3+3*a]])
sage: set_verbose(2)
sage: A.right_kernel(algorithm=�default�)
verbose ...
verbose 2 (<module>) computing right kernel matrix over a number field for␣
→˓2x4 matrix
verbose 2 (<module>) done computing right kernel matrix over a number field␣
→˓for 2x4 matrix
...
Vector space of degree 4 and dimension 2 over
Number Field in a with defining polynomial x^2 + 7 with a = 2.
→˓645751311064591?*I
Basis matrix:
[ 1 0 7/88*a + 3/88 -3/176*a - 39/176]
[ 0 1 -1/88*a - 13/88 13/176*a - 7/176]
sage: set_verbose(0)

Over the Finite Field of Order 2:

Kernels are computed by the M4RI library using PLUQ matrix decomposition in the _right_ker-
nel_matrix() method. There are no options for the algorithm used.

sage: A = matrix(GF(2),[[0, 1, 1, 0, 0, 0],
....: [1, 0, 0, 0, 1, 1,],
....: [1, 0, 0, 0, 1, 1]])
sage: E = A.right_kernel_matrix(algorithm=�default�, format=�echelon�); E
[1 0 0 0 0 1]
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 1]
sage: A*E.transpose() == zero_matrix(GF(2), 3, 4)
True

Since GF(2) is a field we can route this computation to the generic code and obtain the ‘pivot’ form of the
basis. The algorithm keywords, ‘pluq’, ‘default’ and unspecified, all have the same effect as there is no
optional behavior.

sage: A = matrix(GF(2), [[0, 1, 1, 0, 0, 0],
....: [1, 0, 0, 0, 1, 1,],
....: [1, 0, 0, 0, 1, 1]])
sage: P = A.right_kernel_matrix(algorithm=�generic�, basis=�pivot�); P
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 1 0]
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[1 0 0 0 0 1]
sage: A*P.transpose() == zero_matrix(GF(2), 3, 4)
True
sage: DP = A.right_kernel_matrix(algorithm=�default�, basis=�pivot�); DP
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[1 0 0 0 1 0]
[1 0 0 0 0 1]
sage: A*DP.transpose() == zero_matrix(GF(2), 3, 4)
True
sage: A.right_kernel_matrix(algorithm=�pluq�, basis=�echelon�) #␣
→˓needs sage.libs.m4ri
[1 0 0 0 0 1]
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 1]

We test that the mod 2 code is called for matrices over GF(2).

sage: A = matrix(GF(2), [[0, 1, 1, 0, 0, 0],
....: [1, 0, 0, 0, 1, 1,],
....: [1, 0, 0, 0, 1, 1]])
sage: set_verbose(2) #␣
→˓needs sage.rings.finite_rings
sage: A.right_kernel(algorithm=�default�)
verbose ...
verbose ... (<module>) computing right kernel matrix over integers mod 2 for␣
→˓3x6 matrix
verbose ... (<module>) done computing right kernel matrix over integers mod 2␣
→˓for 3x6 matrix
...
Vector space of degree 6 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1]
[0 1 1 0 0 0]
[0 0 0 1 0 0]
[0 0 0 0 1 1]
sage: set_verbose(0)

Over Arbitrary Fields:

For kernels over fields not listed above, totally general code will compute a set of basis vectors in the pivot
format. These could be returned as a basis in echelon form.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(5^2)
sage: A = matrix(F, 3, 4, [[ 1, a, 1+a, a^3+a^5],
....: [ a, a^4, a+a^4, a^4+a^8],
....: [a^2, a^6, a^2+a^6, a^5+a^10]])
sage: P = A.right_kernel_matrix(algorithm=�default�, basis=�pivot�); P
[ 4 4 1 0]
[ a + 2 3*a + 3 0 1]
sage: A*P.transpose() == zero_matrix(F, 3, 2)
True
sage: E = A.right_kernel_matrix(algorithm=�default�, basis=�echelon�); E
[ 1 0 3*a + 4 2*a + 2]
[ 0 1 2*a 3*a + 3]
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sage: A*E.transpose() == zero_matrix(F, 3, 2)
True

This general code can be requested for matrices over any field with the algorithm keyword ‘generic’.
Normally, matrices over the rationals would be handled by specific routines from the IML library. The default
format is an echelon basis, but a pivot basis may be requested, which is identical to the computed basis.

sage: A = matrix(QQ, 3, 4, [[1,3,-2,4],
....: [2,0,2,2],
....: [-1,1,-2,0]])
sage: G = A.right_kernel_matrix(algorithm=�generic�); G
[ 1 0 -1/2 -1/2]
[ 0 1 1/2 -1/2]
sage: A*G.transpose() == zero_matrix(QQ, 3, 2)
True
sage: C = A.right_kernel_matrix(algorithm=�generic�, basis=�computed�); C
[-1 1 1 0]
[-1 -1 0 1]
sage: A*C.transpose() == zero_matrix(QQ, 3, 2)
True

We test that the generic code is called for matrices over fields, lacking any more specific routine.

sage: # needs sage.rings.finite_rings
sage: F.<a> = FiniteField(5^2)
sage: A = matrix(F, 3, 4, [[ 1, a, 1+a, a^3+a^5],
....: [ a, a^4, a+a^4, a^4+a^8],
....: [a^2, a^6, a^2+a^6, a^5+a^10]])
sage: set_verbose(2)
sage: A.right_kernel(algorithm=�default�)
verbose ...
verbose 2 (<module>) computing right kernel matrix over an arbitrary field␣
→˓for 3x4 matrix
...
Vector space of degree 4 and dimension 2 over Finite Field in a of size 5^2
Basis matrix:
[ 1 0 3*a + 4 2*a + 2]
[ 0 1 2*a 3*a + 3]
sage: set_verbose(0)

Over the Integers:

Either the IML or PARI libraries are used to provide a set of basis vectors. The algorithm keyword can be
used to select either, or when set to ‘default’ a heuristic will choose between the two. Results can be returned
in the ‘compute’ format, straight out of the libraries. Unique to the integers, the basis vectors can be returned
as an LLL basis. Note the similarities and differences in the results. The ‘pivot’ format is not available, since
the integers are not a field.

sage: A = matrix(ZZ, [[8, 0, 7, 1, 3, 4, 6],
....: [4, 0, 3, 4, 2, 7, 7],
....: [1, 4, 6, 1, 2, 8, 5],
....: [0, 3, 1, 2, 3, 6, 2]])

sage: X = A.right_kernel_matrix(algorithm=�default�, basis=�echelon�); X
[ 1 12 3 14 -3 -10 1]
[ 0 35 0 25 -1 -31 17]

(continues on next page)
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[ 0 0 7 12 -3 -1 -8]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True

sage: X = A.right_kernel_matrix(algorithm=�padic�, basis=�LLL�); X
[ -3 -1 5 7 2 -3 -2]
[ 3 1 2 5 -5 2 -6]
[ -4 -13 2 -7 5 7 -3]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True

sage: # needs sage.libs.pari
sage: X = A.right_kernel_matrix(algorithm=�pari�, basis=�computed�); X
[ 3 1 -5 -7 -2 3 2]
[ 3 1 2 5 -5 2 -6]
[ 4 13 -2 7 -5 -7 3]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True

sage: X = A.right_kernel_matrix(algorithm=�padic�, basis=�computed�); X
[ 265 345 -178 17 -297 0 0]
[-242 -314 163 -14 271 -1 0]
[ -36 -47 25 -1 40 0 -1]
sage: A*X.transpose() == zero_matrix(ZZ, 4, 3)
True

We test that the code for integer matrices is called for matrices defined over the integers, both dense and
sparse, with equal result.

sage: A = matrix(ZZ, [[8, 0, 7, 1, 3, 4, 6],
....: [4, 0, 3, 4, 2, 7, 7],
....: [1, 4, 6, 1, 2, 8, 5],
....: [0, 3, 1, 2, 3, 6, 2]],
....: sparse=False)
sage: B = copy(A).sparse_matrix()
sage: set_verbose(2)
sage: D = A.right_kernel(); D
verbose ... (<module>) computing a right kernel for 4x7 matrix over Integer␣
→˓Ring
verbose ... (<module>) computing right kernel matrix over the integers for␣
→˓4x7 matrix
...
verbose ... (<module>) done computing right kernel matrix over the integers␣
→˓for 4x7 matrix
...
Free module of degree 7 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 12 3 14 -3 -10 1]
[ 0 35 0 25 -1 -31 17]
[ 0 0 7 12 -3 -1 -8]
sage: S = B.right_kernel(); S
verbose ... (<module>) computing a right kernel for 4x7 matrix over Integer␣
→˓Ring
verbose ... (<module>) computing right kernel matrix over the integers for␣
→˓4x7 matrix
...
verbose ... (<module>) done computing right kernel matrix over the integers␣

(continues on next page)
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→˓for 4x7 matrix
...
Free module of degree 7 and rank 3 over Integer Ring
Echelon basis matrix:
[ 1 12 3 14 -3 -10 1]
[ 0 35 0 25 -1 -31 17]
[ 0 0 7 12 -3 -1 -8]
sage: set_verbose(0)
sage: D == S
True

Over Principal Ideal Domains:

Kernels can be computed using Smith normal form. Only the default algorithm is available, and the ‘pivot’
basis format is not available.

sage: R.<y> = QQ[]
sage: A = matrix(R, [[ 1, y, 1+y^2],
....: [y^3, y^2, 2*y^3]])
sage: E = A.right_kernel_matrix(algorithm=�default�, basis=�echelon�); E
[-1 -y 1]
sage: A*E.transpose() == zero_matrix(ZZ, 2, 1)
True

It can be computationally expensive to determine if an integral domain is a principal ideal domain. The Smith
normal form routine can fail for non-PIDs, as in this example.

sage: D.<x> = ZZ[]
sage: A = matrix(D, 2, 2, [[x^2 - x, -x + 5],
....: [x^2 - 8, -x + 2]])
sage: A.right_kernel_matrix()
Traceback (most recent call last):
...
ArithmeticError: Ideal Ideal (x^2 - x, x^2 - 8) of
Univariate Polynomial Ring in x over Integer Ring not principal

We test that the domain code is called for domains that lack any extra structure.

sage: R.<y> = QQ[]
sage: A = matrix(R, [[ 1, y, 1+y^2],
....: [y^3, y^2, 2*y^3]])
sage: set_verbose(2)
sage: A.right_kernel(algorithm=�default�, basis=�echelon�)
verbose ...
verbose 2 (<module>) computing right kernel matrix over a domain for 2x3␣
→˓matrix
verbose 2 (<module>) done computing right kernel matrix over a domain for 2x3␣
→˓matrix
...
Free module of degree 3 and rank 1 over
Univariate Polynomial Ring in y over Rational Field

Echelon basis matrix:
[-1 -y 1]
sage: set_verbose(0)

Over inexact rings:

For inexact rings one should avoid echelonizing if possible:
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sage: A = Matrix(
....: [[ 0.0, 0.5, 0.8090169944],
....: [ 0.0, 0.5, -0.8090169944],
....: [ 0.0, -0.5, 0.8090169944],
....: [ 0.0, -0.5, -0.8090169944],
....: [ 0.5, 0.8090169944, 0.0],
....: [ 0.5, -0.8090169944, 0.0],
....: [ -0.5, 0.8090169944, 0.0],
....: [ -0.5, -0.8090169944, 0.0],
....: [ 0.8090169944, 0.0, 0.5],
....: [-0.8090169944, 0.0, 0.5],
....: [ 0.8090169944, 0.0, -0.5],
....: [-0.8090169944, 0.0, -0.5]]).transpose()
sage: (A * A.right_kernel_matrix().transpose()).norm() > 2
True
sage: (A * A.right_kernel_matrix(basis=�computed�).transpose()).norm() < 1e-15
True

Trivial Cases:

We test two trivial cases. Any possible values for the keywords (algorithm, basis) will return identical
results.

sage: A = matrix(ZZ, 0, 2)
sage: A.right_kernel_matrix()
[1 0]
[0 1]
sage: A = matrix(FiniteField(7), 2, 0)
sage: A.right_kernel_matrix().parent()
Full MatrixSpace of 0 by 0 dense matrices over Finite Field of size 7

right_nullity()

Return the right nullity of this matrix, which is the dimension of the right kernel.

EXAMPLES:

sage: A = MatrixSpace(QQ,3,2)(range(6))
sage: A.right_nullity()
0

sage: A = matrix(ZZ,3,3,range(9))
sage: A.right_nullity()
1

rook_vector(algorithm=None, complement=False, use_complement=None)
Return the rook vector of this matrix.

Let 𝐴 be an 𝑚 by 𝑛 (0,1)-matrix. We identify 𝐴 with a chessboard where rooks can be placed on the fields
(𝑖, 𝑗) with 𝐴𝑖,𝑗 = 1. The number 𝑟𝑘 = 𝑝𝑘(𝐴) (the permanental 𝑘-minor) counts the number of ways to
place 𝑘 rooks on this board so that no rook can attack another.

The rook vector of the matrix 𝐴 is the list consisting of 𝑟0, 𝑟1, . . . , 𝑟ℎ, where ℎ = 𝑚𝑖𝑛(𝑚,𝑛). The rook
polynomial is defined by 𝑟(𝑥) =

∑︀ℎ
𝑘=0 𝑟𝑘𝑥

𝑘.

The rook vector can be generalized to matrices defined over any rings using permanental minors. Among the
available algorithms, only “Godsil” needs the condition on the entries to be either 0 or 1.

See Wikipedia article Rook_polynomial for more information and also the method permanental_mi-
nor() to compute individual permanental minor.
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See also sage.matrix.matrix2.permanental_minor_polynomial and the graph method
matching_polynomial.

INPUT:

• self – an𝑚 by 𝑛 matrix

• algorithm – string which must be either �Ryser� or �ButeraPernici� (default) or
�Godsil�; Ryser one might be faster on simple and small instances. Godsil only accepts input in
0,1.

• complement – boolean (default: False); whether we consider the rook vector of the complement
matrix. If set to True then the matrix must have entries in {0, 1} and the complement matrix is the one
for which the 0s are replaced by 1s and 1s by 0s.

• use_complement – boolean (default: None); whether to compute the rook vector of a (0,1)-matrix
from its complement. By default this is determined by the density of ones in the matrix.

EXAMPLES:

The standard chessboard is an 8 by 8 grid in which any positions is allowed. In that case one gets that the
number of ways to position 4 non-attacking rooks is 117600 while for 8 rooks it is 40320:

sage: ones_matrix(8,8).rook_vector()
[1, 64, 1568, 18816, 117600, 376320, 564480, 322560, 40320]

These numbers are the coefficients of a modified Laguerre polynomial:

sage: x = polygen(QQ)
sage: factorial(8) * laguerre(8,-x) #␣
→˓needs sage.symbolic
x^8 + 64*x^7 + 1568*x^6 + 18816*x^5 + 117600*x^4 + 376320*x^3 +
564480*x^2 + 322560*x + 40320

The number of derangements of length 𝑛 is the permanent of a matrix with 0 on the diagonal and 1 elsewhere;
for 𝑛 = 21 it is 18795307255050944540 (see OEIS sequence A000166):

sage: A = identity_matrix(21) sage: A.rook_vector(complement=True)[-1]
18795307255050944540 sage: Derangements(21).cardinality() # needs sage.combinat
18795307255050944540

An other example that we convert into a rook polynomial:

sage: A = matrix(3,6, [1,1,1,1,0,0,0,1,1,1,1,0,0,0,1,1,1,1])
sage: A
[1 1 1 1 0 0]
[0 1 1 1 1 0]
[0 0 1 1 1 1]
sage: A.rook_vector()
[1, 12, 40, 36]

sage: R = PolynomialRing(ZZ, �x�)
sage: R(A.rook_vector())
36*x^3 + 40*x^2 + 12*x + 1

Different algorithms are available:

sage: A = matrix([[1,0,0,1],[0,1,1,0],[0,1,1,0],[1,0,0,1]])
sage: A.rook_vector(algorithm=�ButeraPernici�)
[1, 8, 20, 16, 4]

(continues on next page)
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sage: A.rook_vector(algorithm=�Ryser�)
[1, 8, 20, 16, 4]
sage: A.rook_vector(algorithm=�Godsil�) #␣
→˓needs sage.graphs sage.libs.flint
[1, 8, 20, 16, 4]

When the matrix 𝐴 has more ones then zeroes it is usually faster to compute the rook polynomial of the
complementary matrix, with zeroes and ones interchanged, and use the inclusion-exclusion theorem, giving
for a𝑚× 𝑛 matrix 𝐴 with complementary matrix 𝐵

𝑟𝑘(𝐴) =

𝑘∑︁
𝑗=0

(−1)𝑗
(︂
𝑚− 𝑗

𝑘 − 𝑗

)︂(︂
𝑛− 𝑗

𝑘 − 𝑗

)︂
(𝑘 − 𝑗)!𝑟𝑗(𝐵)

see [Rio1958] or the introductory text [AS2011]. This can be done setting the argumentuse_complement
to True.

An example with an exotic matrix (for which only Butera-Pernici and Ryser algorithms are available):

sage: R.<x,y> = PolynomialRing(GF(5))
sage: A = matrix(R, [[1, x, y], [x*y, x**2+y, 0]])
sage: A.rook_vector(algorithm=�ButeraPernici�)
[1, x^2 + x*y + x + 2*y + 1, 2*x^2*y + x*y^2 + x^2 + y^2 + y]
sage: A.rook_vector(algorithm=�Ryser�)
[1, x^2 + x*y + x + 2*y + 1, 2*x^2*y + x*y^2 + x^2 + y^2 + y]
sage: A.rook_vector(algorithm=�Godsil�)
Traceback (most recent call last):
...
ValueError: coefficients must be zero or one, but we have �x� in position (0,
→˓1).
sage: B = A.transpose()
sage: B.rook_vector(algorithm=�ButeraPernici�)
[1, x^2 + x*y + x + 2*y + 1, 2*x^2*y + x*y^2 + x^2 + y^2 + y]
sage: B.rook_vector(algorithm=�Ryser�)
[1, x^2 + x*y + x + 2*y + 1, 2*x^2*y + x*y^2 + x^2 + y^2 + y]

row_module(base_ring=None)
Return the free module over the base ring spanned by the rows of self.

EXAMPLES:

sage: A = MatrixSpace(IntegerRing(), 2)([1,2,3,4])
sage: A.row_module()
Free module of degree 2 and rank 2 over Integer Ring
Echelon basis matrix:
[1 0]
[0 2]

row_space(base_ring=None)
Return the row space of this matrix. (Synonym for self.row_module().)

EXAMPLES:

sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]

(continues on next page)
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sage: t.row_space()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2]

sage: m = Matrix(Integers(5),2,2,[2,2,2,2])
sage: m.row_space()
Vector space of degree 2 and dimension 1 over Ring of integers modulo 5
Basis matrix:
[1 1]

rref(*args, **kwds)
Return the reduced row echelon form of the matrix, considered as a matrix over a field.

If the matrix is over a ring, then an equivalent matrix is constructed over the fraction field, and then row
reduced.

All arguments are passed on to echelon_form().

Note

Because the matrix is viewed as a matrix over a field, every leading coefficient of the returned matrix will
be one and will be the only nonzero entry in its column.

EXAMPLES:

sage: A = matrix(3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.rref()
[ 1 0 -1]
[ 0 1 2]
[ 0 0 0]

Note that there is a difference between rref() and echelon_form() when the matrix is not over a field
(in this case, the integers instead of the rational numbers):

sage: A.base_ring()
Integer Ring
sage: A.echelon_form()
[ 3 0 -3]
[ 0 1 2]
[ 0 0 0]

sage: B = random_matrix(QQ, 3, num_bound=10)
sage: while B.rank() != 3:
....: B = random_matrix(QQ, 3, num_bound=10)
sage: B.rref()
[1 0 0]
[0 1 0]
[0 0 1]

In this case, since B is a matrix over a field (the rational numbers), rref() and echelon_form() are

318 Chapter 8. Base class for matrices, part 2



Matrices and Spaces of Matrices, Release 10.5.rc0

exactly the same:

sage: B.echelon_form()
[1 0 0]
[0 1 0]
[0 0 1]
sage: B.echelon_form() is B.rref()
True

Since echelon_form() is not implemented for every ring, sometimes behavior varies, as here:

sage: R.<x> = ZZ[]
sage: C = matrix(3, [2,x,x^2, x+1,3-x,-1, 3,2,1])
sage: C.rref()
[1 0 0]
[0 1 0]
[0 0 1]
sage: C.base_ring()
Univariate Polynomial Ring in x over Integer Ring
sage: C.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Ideal Ideal (2, x + 1) of Univariate
Polynomial Ring in x over Integer Ring not principal
Echelon form not implemented over �Univariate Polynomial Ring in x over␣
→˓Integer Ring�.
sage: C = matrix(3,[2,x,x^2,x+1,3-x,-1,3,2,1/2])
sage: C.echelon_form()
[ 2 x ␣
→˓ x^2]
[ 0 1 ␣
→˓15*x^2 - 3/2*x - 31/2]
[ 0 0 5/2*x^3 -␣
→˓15/4*x^2 - 9/4*x + 7/2]
sage: C.rref()
[1 0 0]
[0 1 0]
[0 0 1]
sage: C = matrix(3, [2,x,x^2, x+1,3-x,-1/x, 3,2,1/2])
sage: C.echelon_form()
[1 0 0]
[0 1 0]
[0 0 1]

set_block(row, col, block)
Set the sub-matrix of self, with upper left corner given by row, col to block.

EXAMPLES:

sage: A = matrix(QQ, 3, 3, range(9))/2
sage: B = matrix(ZZ, 2, 1, [100,200])
sage: A.set_block(0, 1, B)
sage: A
[ 0 100 1]
[3/2 200 5/2]
[ 3 7/2 4]

We test that an exception is raised when the block is out of bounds:
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sage: matrix([1]).set_block(0,1,matrix([1]))
Traceback (most recent call last):
...
IndexError: matrix window index out of range

smith_form(transformation=True, integral=None, exact=True)
Return a Smith normal form of this matrix.

For a matrix𝑀 , a Smith normal form is a matrix 𝑆 = 𝑈𝑀𝑉 such that:

• 𝑈 and 𝑉 are invertible matrices

• the only non-vanishing entries of 𝑆 are located on the diagonal (though 𝑆 might not be a square matrix)

• if 𝑑𝑖 denotes the entry of 𝑆 at (𝑖, 𝑖), then 𝑑𝑖 divides 𝑑𝑖+1 for all 𝑖, i.e., the 𝑑𝑖 are the ordered elemen-
tary_divisors() of𝑀

Note that the matrices 𝑈 and 𝑉 are not uniquely determined and the 𝑑𝑖 are only uniquely determined up to
units. For some base rings, such as local rings, the 𝑑𝑖 might be further normalized, see LOCAL RINGS
below.

If the base ring is not a PID, the routine might work, or else it will fail having found an example of a
non-principal ideal. Note that we do not call any methods to check whether or not the base ring is a PID,
since this might be quite expensive (e.g. for rings of integers of number fields of large degree).

INPUT:

• transformation – boolean (default: True); whether the matrices 𝑈 and 𝑉 should be returned

• integral – a subring of the base ring, boolean or None (default: None); the entries of 𝑈 and 𝑉 are
taken from this subring. If True, the ring is taken to be the ring of integers of the base ring; if False
the fraction field of the base ring; if None the base ring itself. When a subring is specified, multiplying
by the denominator must map the entries into the subring; in this case the transformation matrices will
have entries in this subring.

• exact – boolean (default: True); only used for local rings/fields. See LOCAL RINGS for more details.

OUTPUT:

The matrices 𝑆,𝑈, 𝑉 or the matrix 𝑆 depending on transformation.

ALGORITHM:

If the base ring has a method _matrix_smith_form, use it; note that _matrix_smith_formmight
choose to further normalize the output.

Otherwise, use the algorithm from Wikipedia article Smith_normal_form.

LOCAL RINGS:

Over local rings, we normalize 𝑆 to only contain powers of the uniformizer.

In order to simplify the precision handling, we truncate the absolute precision of the input matrix to the
minimum absolute precision of any of its entries. As long as all of the elementary divisors are nonzero
modulo this precision, they can be determined exactly since they are defined to be powers of the uniformizer.
In this case, which is specified by the keyword exact=True, one of the transformation matrices will be
inexact: 𝑈 in the case that the number of rows is at least the number of columns, and 𝑉 otherwise.

If exact=False, we instead return an inexact Smith form. Now the transformation matrices are exact and
we can deal gracefully with elementary divisors that are zero modulo the working precision. However, the
off-diagonal entries of the smith form carry a precision that can affect the precision of future calculations.

See _matrix_smith_form on the base ring for more detail.
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EXAMPLES:

An example over the ring of integers of a number field (of class number 1):

sage: # needs sage.rings.number_field
sage: x = polygen(ZZ, �x�)
sage: OE.<w> = EquationOrder(x^2 - x + 2)
sage: m = Matrix([[1, w], [w, 7]])
sage: d, u, v = m.smith_form()
sage: (d, u, v)
(
[ 1 0] [ 1 0] [ 1 -w]
[ 0 -w + 9], [-w 1], [ 0 1]
)
sage: u * m * v == d
True
sage: u.base_ring() == v.base_ring() == d.base_ring() == OE
True
sage: u.det().is_unit() and v.det().is_unit()
True

An example over the polynomial ring QQ[x]:

sage: R.<x> = QQ[]; m = x*matrix(R, 2, 2, 1) - matrix(R, 2, 2, [3,-4,1,-1])
sage: m.smith_form()
(
[ 1 0] [ 0 -1] [ 1 x + 1]
[ 0 x^2 - 2*x + 1], [ 1 x - 3], [ 0 1]
)

An example over a field:

sage: m = matrix(GF(17), 3, 3, [11,5,1, 3,6,8, 1,16,0])
sage: d, u, v = m.smith_form()
sage: d
[1 0 0]
[0 1 0]
[0 0 0]
sage: u * m * v == d
True

When the base ring has a ring_of_integersmethod and supports denominators, you can get an integral
version of the smith form:

sage: m = matrix(QQ, 2, 2, [17/6, 47/6, 25/6, 23/2])
sage: m.smith_form()
(
[1 0] [6/17 0] [ 1 -47/17]
[0 1], [ 75 -51], [ 0 1]
)
sage: m.smith_form(integral=True)
(
[1/6 0] [ 3 -2] [ 1 3]
[ 0 1/3], [-25 17], [ 0 -1]
)

Some examples over non-PID’s work anyway:
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sage: # needs sage.rings.number_field
sage: R.<s> = EquationOrder(x^2 + 5) # class number 2
sage: A = matrix(R, 2, 2, [s - 1, -s, -s, 2*s + 1])
sage: D, U, V = A.smith_form()
sage: D, U, V
(
[ 1 0] [ 4 s + 4] [ 1 -5*s + 6]
[ 0 -s - 6], [ s s - 1], [ 0 1]
)
sage: D == U * A * V
True

Others don’t, but they fail quite constructively:

sage: matrix(R, 2, 2, [s - 1, -s - 2, -2*s, -s - 2]).smith_form() #␣
→˓needs sage.rings.number_field
Traceback (most recent call last):
...
ArithmeticError: Ideal Fractional ideal (2, s + 1) not principal

Empty matrices are handled safely:

sage: # needs sage.rings.number_field
sage: m = MatrixSpace(OE, 2,0)(0)
sage: d, u, v = m.smith_form(); u * m * v == d
True
sage: m = MatrixSpace(OE, 0,2)(0)
sage: d, u, v = m.smith_form(); u * m * v == d
True
sage: m = MatrixSpace(OE, 0,0)(0)
sage: d, u, v = m.smith_form(); u * m * v == d
True

Some pathological cases that crashed earlier versions:

sage: # needs sage.rings.number_field
sage: m = Matrix(OE, [[ 2*w, 2*w - 1, -w + 1],
....: [ 2*w + 2, -2*w - 1, w - 1],
....: [-2*w - 1, -2*w - 2, 2*w - 1]])
sage: d, u, v = m.smith_form(); u * m * v == d
True
sage: m = matrix(OE, [[-5*w - 1, -2*w - 2, 4*w - 10],
....: [ 8*w, -w, w - 1],
....: [ -1, 1, -8]])
sage: d, u, v = m.smith_form(); u * m * v == d
True

Over local fields, we can request the transformation matrices to be integral:;

sage: K = Qp(2, 5, print_mode=’terse’) # needs sage.rings.padics sage: M = matrix(K, 2, 3,
[1/2, 1, 2, 1/3, 1, 3]) # needs sage.rings.padics sage: M.smith_form(integral=True) # needs
sage.rings.padics ( [1/2 + O(2^4) 0 0] [ 1 + O(2^5) 0] [ 0 1 + O(2^5) 0], [42 + O(2^6) 1 + O(2^5)],
<BLANKLINE> [ 1 + O(2^5) 26 + O(2^5) 6 + O(2^5)] [ O(2^4) 3 + O(2^4) 11 + O(2^4)] [ 0 0
1 + O(2^5)] )

solve_left(B, check=True, extend=True)
Try to find a solution 𝑋 to the equation 𝑋𝐴 = 𝐵.
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If self is a matrix 𝐴, then this function returns a vector or matrix 𝑋 such that 𝑋𝐴 = 𝐵. If 𝐵 is a vector
then 𝑋 is a vector and if 𝐵 is a matrix, then 𝑋 is a matrix.

Over inexact rings, the output of this function may not be an exact solution. For example, over the real or
complex double field, this method computes a least-squares solution if the system is not square.

INPUT:

• B – a matrix or vector

• extend – boolean (default: True); when set to True, some solvers will return solutions over a larger
ring than the base ring of the inputs (a typical case are rational solutions for integer linear systems).
When set to False, a solution over the base ring is returned, with a ValueError being raised if none
exists.

• check – boolean (default: True); verify the answer if the system is non-square or rank-deficient, and
if its entries lie in an exact ring. Meaningless over most inexact rings, or when the system is square and
of full rank.

OUTPUT:

If the system is square and has full rank, the unique solution is returned, and no check is done on the answer.
Over inexact rings, you should expect this answer to be inexact. Moreover, due to the numerical issues
involved, an error may be thrown in this case – specifically if the system is singular but if SageMath fails to
notice that.

If the system is not square or does not have full rank, then a solution is attempted via other means. For
example, over RDF or CDF a least-squares solution is returned, as with MATLAB’s “backslash” operator.
For most inexact rings, the check parameter is ignored because an approximate solution will be returned in
any case. Over exact rings, on the other hand, setting the check parameter results in an additional test to
determine whether or not the answer actually solves the system exactly. If a symbolic system involves only
exact elements, its solution can still be checked.

If 𝐵 is a vector, the result is returned as a vector, as well, and as a matrix, otherwise.

See also

solve_right()

EXAMPLES:

sage: A = matrix(QQ, 4,2, [0, -1, 1, 0, -2, 2, 1, 0])
sage: B = matrix(QQ, 2,2, [1, 0, 1, -1])
sage: X = A.solve_left(B)
sage: X*A == B
True
sage: X == B / A
True

sage: A = matrix([(3, -1, 0, 0), (1, 1, -2, 0), (0, 0, 0, -3)])
sage: B = matrix(QQ, 3, 1, [0, 0, -1])
sage: A.solve_left(B)
Traceback (most recent call last):
...
ValueError: number of columns of self must equal number of columns
of right-hand side

Over the reals:
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sage: A = matrix(RDF, 3,3, [1,2,5,7.6,2.3,1,1,2,-1]); A
[ 1.0 2.0 5.0]
[ 7.6 2.3 1.0]
[ 1.0 2.0 -1.0]
sage: b = vector(RDF,[1,2,3])
sage: x = A.solve_left(b); x.zero_at(2e-17) # fix noisy zeroes #␣
→˓needs scipy
(0.666666666..., 0.0, 0.333333333...)
sage: x.parent() #␣
→˓needs scipy
Vector space of dimension 3 over Real Double Field
sage: x*A # tol 1e-14 #␣
→˓needs scipy
(0.9999999999999999, 1.9999999999999998, 3.0)

Over the complex numbers:

sage: # needs sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, [[ 0, -1 + 2*I, 1 - 3*I, I],
....: [2 + 4*I, -2 + 3*I, -1 + 2*I, -1 - I],
....: [ 2 + I, 1 - I, -1, 5],
....: [ 3*I, -1 - I, -1 + I, -3 + I]])
sage: b = vector(CDF, [2 -3*I, 3, -2 + 3*I, 8])
sage: x = A.solve_left(b); x #␣
→˓needs scipy
(-1.55765124... - 0.644483985...*I, 0.183274021... + 0.286476868...*I,
0.270818505... + 0.246619217...*I, -1.69003558... - 0.828113879...*I)

sage: x.parent() #␣
→˓needs scipy
Vector space of dimension 4 over Complex Double Field
sage: abs(x*A - b) < 1e-14 #␣
→˓needs scipy
True

If b is given as a matrix, the result will be a matrix, as well:

sage: A = matrix(RDF, 3, 3, [2, 5, 0, 7, 7, -2, -4.3, 0, 1])
sage: b = matrix(RDF, 2, 3, [2, -4, -5, 1, 1, 0.1])
sage: A.solve_left(b) # tol 1e-14 #␣
→˓needs scipy
[ -6.495454545454545 4.068181818181818 3.1363636363636354]
[ 0.5277272727272727 -0.2340909090909091 -0.36818181818181817]

If 𝐴 is a non-square matrix, the result is a least-squares solution. For a tall matrix, this may give a solution
with a least-squares error of almost zero:

sage: A = matrix(RDF, 3, 2, [1, 3, 4, 2, 0, -3])
sage: b = vector(RDF, [5, 6])
sage: x = A.solve_left(b) #␣
→˓needs scipy
sage: (x * A - b).norm() < 1e-14 #␣
→˓needs scipy
True

For a wide matrix 𝐴, the error is usually not small:
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sage: A = matrix(RDF, 2, 3, [1, 3, 4, 2, 0, -3])
sage: b = vector(RDF, [5, 6, 1])
sage: x = A.solve_left(b) #␣
→˓needs scipy
sage: (x * A - b).norm() # tol 1e-14 #␣
→˓needs scipy
0.9723055853282466

solve_right(B, check=True, extend=True)
Try to find a solution 𝑋 to the equation 𝐴𝑋 = 𝐵.

If self is a matrix 𝐴, then this function returns a vector or matrix 𝑋 such that 𝐴𝑋 = 𝐵. If 𝐵 is a vector
then 𝑋 is a vector and if 𝐵 is a matrix, then 𝑋 is a matrix.

Over inexact rings, the output of this function may not be an exact solution. For example, over the real or
complex double field, this method computes a least-squares solution if the system is not square.

INPUT:

• B – a matrix or vector

• extend – boolean (default: True); when set to True, some solvers will return solutions over a larger
ring than the base ring of the inputs (a typical case are rational solutions for integer linear systems).
When set to False, a solution over the base ring is returned, with a ValueError being raised if none
exists.

• check – boolean (default: True); verify the answer if the system is non-square or rank-deficient, and
if its entries lie in an exact ring. Meaningless over most inexact rings, or when the system is square and
of full rank.

OUTPUT:

If the system is square and has full rank, the unique solution is returned, and no check is done on the answer.
Over inexact rings, you should expect this answer to be inexact. Moreover, due to the numerical issues
involved, an error may be thrown in this case – specifically if the system is singular but if SageMath fails to
notice that.

If the system is not square or does not have full rank, then a solution is attempted via other means. For
example, over RDF or CDF a least-squares solution is returned, as with MATLAB’s “backslash” operator.
For most inexact rings, the check parameter is ignored because an approximate solution will be returned in
any case. Over exact rings, on the other hand, setting the check parameter results in an additional test to
determine whether or not the answer actually solves the system exactly. If a symbolic system involves only
exact elements, its solution can still be checked.

If 𝐵 is a vector, the result is returned as a vector, as well, and as a matrix, otherwise.

See also

solve_left()

EXAMPLES:

sage: A = matrix(QQ, 3, [1,2,3,-1,2,5,2,3,1])
sage: b = vector(QQ, [1,2,3])
sage: x = A.solve_right(b); x
(-13/12, 23/12, -7/12)
sage: A * x
(1, 2, 3)
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We solve with A nonsquare:

sage: A = matrix(QQ, 2,4, [0, -1, 1, 0, -2, 2, 1, 0])
sage: B = matrix(QQ, 2,2, [1, 0, 1, -1])
sage: X = A.solve_right(B); X
[-3/2 1/2]
[ -1 0]
[ 0 0]
[ 0 0]
sage: A*X == B
True

Another nonsingular example:

sage: A = matrix(QQ,2,3, [1,2,3,2,4,6]); v = vector([-1/2,-1])
sage: x = A.solve_right(v); x
(-1/2, 0, 0)
sage: A*x == v
True

Same example but over Z:

sage: A = matrix(ZZ,2,3, [1,2,3,2,4,6]); v = vector([-1,-2])
sage: A.solve_right(v)
(-1, 0, 0)

An example in which there is no solution:

sage: A = matrix(QQ,2,3, [1,2,3,2,4,6]); v = vector([1,1])
sage: A.solve_right(v)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

A ValueError is raised if the input is invalid:

sage: A = matrix(QQ, 4,2, [0, -1, 1, 0, -2, 2, 1, 0])
sage: B = matrix(QQ, 2,2, [1, 0, 1, -1])
sage: X = A.solve_right(B)
Traceback (most recent call last):
...
ValueError: number of rows of self must equal number of rows of
right-hand side

We solve with A singular:

sage: A = matrix(QQ, 2,3, [1,2,3,2,4,6]); B = matrix(QQ, 2,2, [6, -6, 12, -
→˓12])
sage: X = A.solve_right(B); X
[ 6 -6]
[ 0 0]
[ 0 0]
sage: A*X == B
True

We illustrate left associativity, etc., of the solve_right operator.
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sage: A = matrix(QQ, 2, [1,2,3,4])
sage: A.solve_right(A)
[1 0]
[0 1]
sage: (A.solve_right(A)).solve_right(A)
[1 2]
[3 4]
sage: A.parent()(1).solve_right(A)
[1 2]
[3 4]
sage: A.solve_right(A.solve_right(A))
[ -2 1]
[ 3/2 -1/2]
sage: X = A.solve_right(A - 2); X
[ 5 -2]
[-3 2]
sage: A * X
[-1 2]
[ 3 2]

Solving over a polynomial ring:

sage: x = polygen(QQ, �x�)
sage: A = matrix(2, [x, 2*x, -5*x^2 + 1, 3])
sage: v = vector([3, 4*x - 2])
sage: X = A.solve_right(v)
sage: X
((-4/5*x^2 + 2/5*x + 9/10)/(x^3 + 1/10*x),
(19/10*x^2 - 1/5*x - 3/10)/(x^3 + 1/10*x))

sage: A * X == v
True

Solving some systems over Z/𝑛Z:

sage: # needs sage.libs.pari
sage: A = Matrix(Zmod(6), 3, 2, [1,2,3,4,5,6])
sage: B = vector(Zmod(6), [1,1,1])
sage: A.solve_right(B)
(5, 1)
sage: B = vector(Zmod(6), [5,1,1])
sage: A.solve_right(B)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions
sage: A = Matrix(Zmod(128), 2, 3, [23,11,22,4,1,0])
sage: B = Matrix(Zmod(128), 2, 1, [1,0])
sage: A.solve_right(B)
[ 5]
[108]
[127]
sage: B = B.column(0)
sage: A.solve_right(B)
(5, 108, 127)
sage: A = Matrix(Zmod(15), 3,4, range(12))
sage: B = Matrix(Zmod(15), 3,3, range(3,12))
sage: X = A.solve_right(B)
sage: A*X == B
True
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Solving a system over the 𝑝-adics:

sage: # needs sage.rings.padics
sage: k = Qp(5, 4)
sage: a = matrix(k, 3, [1,7,3, 2,5,4, 1,1,2]); a
[ 1 + O(5^4) 2 + 5 + O(5^4) 3 + O(5^4)]
[ 2 + O(5^4) 5 + O(5^5) 4 + O(5^4)]
[ 1 + O(5^4) 1 + O(5^4) 2 + O(5^4)]
sage: v = vector(k, 3, [1,2,3])
sage: x = a.solve_right(v); x
(4 + 5 + 5^2 + 3*5^3 + O(5^4), 2 + 5 + 3*5^2 + 5^3 + O(5^4), 1 + 5 + O(5^4))
sage: a * x == v
True

Solving a system of linear equations symbolically using symbolic matrices:

sage: # needs sage.symbolic
sage: var(�a,b,c,d,x,y�)
(a, b, c, d, x, y)
sage: A = matrix(SR, 2, [a,b,c,d]); A
[a b]
[c d]
sage: result = vector(SR, [3,5]); result
(3, 5)
sage: soln = A.solve_right(result); soln
(-b*(3*c/a - 5)/(a*(b*c/a - d)) + 3/a, (3*c/a - 5)/(b*c/a - d))
sage: (a*x + b*y).subs(x=soln[0], y=soln[1]).simplify_full()
3
sage: (c*x + d*y).subs(x=soln[0], y=soln[1]).simplify_full()
5
sage: (A*soln).apply_map(lambda x: x.simplify_full())
(3, 5)

Over inexact rings, the output of this function may not be an exact solution. For example, over the real or
complex double field, this computes a least-squares solution:

sage: A = matrix(RDF, 3, 2, [1, 3, 4, 2, 0, -3])
sage: b = vector(RDF, [5, 6, 1])
sage: A.solve_right(b) # tol 1e-14 #␣
→˓needs scipy
(1.4782608695652177, 0.35177865612648235)
sage: ~(A.T * A) * A.T * b # closed form solution, tol 1e-14 #␣
→˓needs scipy
(1.4782608695652177, 0.35177865612648235)

Over the reals:

sage: A = matrix(RDF, 3,3, [1,2,5,7.6,2.3,1,1,2,-1]); A
[ 1.0 2.0 5.0]
[ 7.6 2.3 1.0]
[ 1.0 2.0 -1.0]
sage: b = vector(RDF, [1,2,3])
sage: x = A.solve_right(b); x # tol 1e-14 #␣
→˓needs scipy
(-0.1136950904392765, 1.3901808785529717, -0.33333333333333337)
sage: x.parent() #␣
→˓needs scipy
Vector space of dimension 3 over Real Double Field

(continues on next page)
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sage: A*x # tol 1e-14 #␣
→˓needs scipy
(1.0, 1.9999999999999996, 3.0000000000000004)

Over the complex numbers:

sage: # needs sage.rings.complex_double sage.symbolic
sage: A = matrix(CDF, [[ 0, -1 + 2*I, 1 - 3*I, I],
....: [2 + 4*I, -2 + 3*I, -1 + 2*I, -1 - I],
....: [ 2 + I, 1 - I, -1, 5],
....: [ 3*I, -1 - I, -1 + I, -3 + I]])
sage: b = vector(CDF, [2 - 3*I, 3, -2 + 3*I, 8])
sage: x = A.solve_right(b); x #␣
→˓needs scipy
(1.96841637... - 1.07606761...*I, -0.614323843... + 1.68416370...*I,
0.0733985765... + 1.73487544...*I, -1.6018683... + 0.524021352...*I)

sage: x.parent() #␣
→˓needs scipy
Vector space of dimension 4 over Complex Double Field
sage: abs(A*x - b) < 1e-14 #␣
→˓needs scipy
True

If b is given as a matrix, the result will be a matrix, as well:

sage: A = matrix(RDF, 3, 3, [1, 2, 2, 3, 4, 5, 2, 2, 2])
sage: b = matrix(RDF, 3, 2, [3, 2, 3, 2, 3, 2])
sage: A.solve_right(b) # tol 1e-14 #␣
→˓needs scipy
[ 0.0 0.0]
[ 4.5 3.0]
[-3.0 -2.0]

If 𝐴 is a non-square matrix, the result is a least-squares solution. For a wide matrix, this may give a solution
with a least-squares error of almost zero:

sage: A = matrix(RDF, 2, 3, [1, 3, 4, 2, 0, -3])
sage: b = vector(RDF, [5, 6])
sage: x = A.solve_right(b) #␣
→˓needs scipy
sage: (A * x - b).norm() < 1e-14 #␣
→˓needs scipy
True

For a tall matrix 𝐴, the error is usually not small:

sage: A = matrix(RDF, 3, 2, [1, 3, 4, 2, 0, -3])
sage: b = vector(RDF, [5, 6, 1])
sage: x = A.solve_right(b) #␣
→˓needs scipy
sage: (A * x - b).norm() # tol 1e-14 #␣
→˓needs scipy
3.2692119900020438

subdivide(row_lines=None, col_lines=None)
Divide self into logical submatrices which can then be queried and extracted.
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If a subdivision already exists, this method forgets the previous subdivision and flushes the cache.

INPUT:

• row_lines – None, an integer, or a list of integers (lines at which self must be split)

• col_lines – None, an integer, or a list of integers (columns at which self must be split)

OUTPUT: none but changes self

Note

One may also pass a tuple into the first argument which will be interpreted as (row_lines,
col_lines).

EXAMPLES:

sage: # needs sage.libs.pari
sage: M = matrix(5, 5, prime_range(100))
sage: M.subdivide(2,3); M
[ 2 3 5| 7 11]
[13 17 19|23 29]
[--------+-----]
[31 37 41|43 47]
[53 59 61|67 71]
[73 79 83|89 97]
sage: M.subdivision(0,0)
[ 2 3 5]
[13 17 19]
sage: M.subdivision(1,0)
[31 37 41]
[53 59 61]
[73 79 83]
sage: M.subdivision_entry(1,0,0,0)
31
sage: M.subdivisions()
([2], [3])
sage: M.subdivide(None, [1,3]); M
[ 2| 3 5| 7 11]
[13|17 19|23 29]
[31|37 41|43 47]
[53|59 61|67 71]
[73|79 83|89 97]

Degenerate cases work too:

sage: # needs sage.libs.pari
sage: M.subdivide([2,5], [0,1,3]); M
[| 2| 3 5| 7 11]
[|13|17 19|23 29]
[+--+-----+-----]
[|31|37 41|43 47]
[|53|59 61|67 71]
[|73|79 83|89 97]
[+--+-----+-----]
sage: M.subdivision(0,0)
[]
sage: M.subdivision(0,1)

(continues on next page)
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[ 2]
[13]
sage: M.subdivide([2,2,3], [0,0,1,1]); M
[|| 2|| 3 5 7 11]
[||13||17 19 23 29]
[++--++-----------]
[++--++-----------]
[||31||37 41 43 47]
[++--++-----------]
[||53||59 61 67 71]
[||73||79 83 89 97]
sage: M.subdivision(0,0)
[]
sage: M.subdivision(2,4)
[37 41 43 47]

Indices do not need to be in the right order (Issue #14064):

sage: M.subdivide([4, 2], [3, 1]); M #␣
→˓needs sage.libs.pari
[ 2| 3 5| 7 11]
[13|17 19|23 29]
[--+-----+-----]
[31|37 41|43 47]
[53|59 61|67 71]
[--+-----+-----]
[73|79 83|89 97]

subdivision(i, j)
Return an immutable copy of the (i,j)th submatrix of self, according to a previously set subdivision.

Before a subdivision is set, the only valid arguments are (0,0) which returns self.

EXAMPLES:

sage: M = matrix(3, 4, range(12))
sage: M.subdivide(1,2); M
[ 0 1| 2 3]
[-----+-----]
[ 4 5| 6 7]
[ 8 9|10 11]
sage: M.subdivision(0,0)
[0 1]
sage: M.subdivision(0,1)
[2 3]
sage: M.subdivision(1,0)
[4 5]
[8 9]

It handles size-zero subdivisions as well.

sage: M = matrix(3, 4, range(12))
sage: M.subdivide([0],[0,2,2,4]); M
[+-----++-----+]
[| 0 1|| 2 3|]
[| 4 5|| 6 7|]
[| 8 9||10 11|]

(continues on next page)
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sage: M.subdivision(0,0)
[]
sage: M.subdivision(1,1)
[0 1]
[4 5]
[8 9]
sage: M.subdivision(1,2)
[]
sage: M.subdivision(1,0)
[]
sage: M.subdivision(0,1)
[]

subdivision_entry(i, j, x, y)
Return the x,y entry of the i,j submatrix of self.

EXAMPLES:

sage: M = matrix(5, 5, range(25))
sage: M.subdivide(3,3); M
[ 0 1 2| 3 4]
[ 5 6 7| 8 9]
[10 11 12|13 14]
[--------+-----]
[15 16 17|18 19]
[20 21 22|23 24]
sage: M.subdivision_entry(0,0,1,2)
7
sage: M.subdivision(0,0)[1,2]
7
sage: M.subdivision_entry(0,1,0,0)
3
sage: M.subdivision_entry(1,0,0,0)
15
sage: M.subdivision_entry(1,1,1,1)
24

Even though this entry exists in the matrix, the index is invalid for the submatrix.

sage: M.subdivision_entry(0,0,4,0)
Traceback (most recent call last):
...
IndexError: Submatrix 0,0 has no entry 4,0

subdivisions()

Return the current subdivision of self.

EXAMPLES:

sage: M = matrix(5, 5, range(25))
sage: M.subdivisions()
([], [])
sage: M.subdivide(2,3)
sage: M.subdivisions()
([2], [3])
sage: N = M.parent()(1)
sage: N.subdivide(M.subdivisions()); N

(continues on next page)
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[1 0 0|0 0]
[0 1 0|0 0]
[-----+---]
[0 0 1|0 0]
[0 0 0|1 0]
[0 0 0|0 1]

subs(*args, **kwds)
Substitute values to the variables in that matrix.

All the arguments are transmitted unchanged to the method subs of the coefficients.

EXAMPLES:

sage: # needs sage.symbolic
sage: var(�a,b,d,e�)
(a, b, d, e)
sage: m = matrix([[a,b], [d,e]])
sage: m.substitute(a=1)
[1 b]
[d e]
sage: m.subs(a=b, b=d)
[b d]
[d e]
sage: m.subs({a: 3, b: 2, d: 1, e: -1})
[ 3 2]
[ 1 -1]

The parent of the newly created matrix might be different from the initial one. It depends on what the method
.subs does on coefficients (see Issue #19045):

sage: x = polygen(ZZ)
sage: m = matrix([[x]])
sage: m2 = m.subs(x=2)
sage: m2.parent()
Full MatrixSpace of 1 by 1 dense matrices over Integer Ring
sage: m1 = m.subs(x=RDF(1))
sage: m1.parent()
Full MatrixSpace of 1 by 1 dense matrices over Real Double Field

However, sparse matrices remain sparse:

sage: m = matrix({(3,2): -x, (59,38): x^2 + 2}, nrows=1000, ncols=1000)
sage: m1 = m.subs(x=1)
sage: m1.is_sparse()
True

symplectic_form()

Find a symplectic form for self if self is an anti-symmetric, alternating matrix defined over a field.

Returns a pair (F, C) such that the rows of C form a symplectic basis for self and F = C \* self \*
C.transpose().

Raises a ValueError if not over a field, or self is not anti-symmetric, or self is not alternating.

Anti-symmetric means that𝑀 = −𝑀 𝑡. Alternating means that the diagonal of𝑀 is identically zero.

A symplectic basis is a basis of the form 𝑒1, . . . , 𝑒𝑗 , 𝑓1, . . . 𝑓𝑗 , 𝑧1, . . . , 𝑧𝑘 such that
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• 𝑧𝑖𝑀𝑣𝑡 = 0 for all vectors 𝑣

• 𝑒𝑖𝑀𝑒𝑗
𝑡 = 0 for all 𝑖, 𝑗

• 𝑓𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖, 𝑗

• 𝑒𝑖𝑀𝑓𝑖
𝑡 = 1 for all 𝑖

• 𝑒𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖 not equal 𝑗.

See the example for a pictorial description of such a basis.

EXAMPLES:

sage: E = matrix(QQ, 8, 8, [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0,␣
→˓2, 5/2, -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2, -1/2, -1/
→˓2, -2, 0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0, 0, 1/2, -2, 2, -5/2, 1, 1/
→˓2, -1, -1/2, 0, -1, -1, 3, 2, 1/2, 1, 2, 1, 0]); E
[ 0 -1/2 -2 1/2 2 0 -2 1]
[ 1/2 0 -1 -3 0 2 5/2 -3]
[ 2 1 0 3/2 -1 0 -1 -2]
[-1/2 3 -3/2 0 1 3/2 -1/2 -1/2]
[ -2 0 1 -1 0 0 1 -1]
[ 0 -2 0 -3/2 0 0 1/2 -2]
[ 2 -5/2 1 1/2 -1 -1/2 0 -1]
[ -1 3 2 1/2 1 2 1 0]
sage: F, C = E.symplectic_form(); F
[ 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 1]
[-1 0 0 0 0 0 0 0]
[ 0 -1 0 0 0 0 0 0]
[ 0 0 -1 0 0 0 0 0]
[ 0 0 0 -1 0 0 0 0]
sage: F == C * E * C.transpose()
True

tensor_product(A, subdivide=True)
Return the tensor product of two matrices.

INPUT:

• A – a matrix

• subdivide – (default: True) whether or not to return natural subdivisions with the matrix

OUTPUT:

Replace each element of self by a copy of A, but first create a scalar multiple of A by the element it replaces.
So if self is an 𝑚 × 𝑛 matrix and A is a 𝑝 × 𝑞 matrix, then the tensor product is an 𝑚𝑝 × 𝑛𝑞 matrix. By
default, the matrix will be subdivided into submatrices of size 𝑝× 𝑞.

EXAMPLES:

sage: M1=Matrix(QQ,[[-1,0],[-1/2,-1]])
sage: M2=Matrix(ZZ,[[1,-1,2],[-2,4,8]])
sage: M1.tensor_product(M2)
[ -1 1 -2| 0 0 0]
[ 2 -4 -8| 0 0 0]
[--------------+--------------]
[-1/2 1/2 -1| -1 1 -2]

(continues on next page)
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[ 1 -2 -4| 2 -4 -8]
sage: M2.tensor_product(M1)
[ -1 0| 1 0| -2 0]
[-1/2 -1| 1/2 1| -1 -2]
[---------+---------+---------]
[ 2 0| -4 0| -8 0]
[ 1 2| -2 -4| -4 -8]

Subdivisions can be optionally suppressed.

sage: M1.tensor_product(M2, subdivide=False)
[ -1 1 -2 0 0 0]
[ 2 -4 -8 0 0 0]
[-1/2 1/2 -1 -1 1 -2]
[ 1 -2 -4 2 -4 -8]

Different base rings are handled sensibly.

sage: A = matrix(ZZ, 2, 3, range(6))
sage: B = matrix(FiniteField(23), 3, 4, range(12))
sage: C = matrix(FiniteField(29), 4, 5, range(20))
sage: D = A.tensor_product(B)
sage: D.parent()
Full MatrixSpace of 6 by 12 dense matrices over Finite Field of size 23
sage: E = C.tensor_product(B)
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *:
�Finite Field of size 29� and
�Full MatrixSpace of 3 by 4 dense matrices over Finite Field of size 23�

The input is checked to be sure it is a matrix.

sage: A = matrix(QQ, 2, 2, range(4))
sage: A.tensor_product(�junk�)
Traceback (most recent call last):
...
TypeError: tensor product requires a second matrix, not junk

trace()

Return the trace of self, which is the sum of the diagonal entries of self.

INPUT:

• self – a square matrix

OUTPUT: element of the base ring of self

EXAMPLES:

sage: a = matrix(3, 3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.trace()
12
sage: a = matrix({(1,1): 10, (2,1): -3, (2,2): 4/3}); a
[ 0 0 0]

(continues on next page)
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[ 0 10 0]
[ 0 -3 4/3]
sage: a.trace()
34/3

trace_of_product(other)
Return the trace of self * other without computing the entire product.

EXAMPLES:

sage: M = random_matrix(ZZ, 10, 20)
sage: N = random_matrix(ZZ, 20, 10)
sage: M.trace_of_product(N) == (M*N).trace()
True

visualize_structure(maxsize=512)

Visualize the nonzero entries.

White pixels are put at positions with zero entries. If ‘maxsize’ is given, then the maximal dimension in either
x or y direction is set to ‘maxsize’ depending on which is bigger. If the image is scaled, the darkness of the
pixel reflects how many of the represented entries are nonzero. So if e.g. one image pixel actually represents
a 2x2 submatrix, the dot is darker the more of the four values are nonzero.

INPUT:

• maxsize – integer (default: 512); maximal dimension in either x or y direction of the resulting image.
If None or a maxsize larger than max(self.nrows(),self.ncols()) is given the image will
have the same pixelsize as the matrix dimensions.

OUTPUT:

Bitmap image as an instance of Image.

EXAMPLES:

sage: # needs sage.rings.real_mpfr
sage: M = random_matrix(CC, 5, 7)
sage: for i in range(5): M[i,i] = 0
sage: M[4, 0] = M[0, 6] = M[4, 6] = 0
sage: img = M.visualize_structure(); img #␣
→˓needs pillow
7x5px 24-bit RGB image

You can use save() to save the resulting image:

sage: # needs pillow sage.rings.real_mpfr
sage: filename = tmp_filename(ext=�.png�)
sage: img.save(filename)
sage: with open(filename, �rb�) as fobj:
....: fobj.read().startswith(b�\x89PNG�)
True

wiedemann(i, t=0)
Application of Wiedemann’s algorithm to the 𝑖-th standard basis vector.

INPUT:

• i – integer
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• t – integer (default: 0); if t is nonzero, use only the first t linear recurrence relations

IMPLEMENTATION: This is a toy implementation.

EXAMPLES:

sage: t = matrix(QQ, 3, 3, range(9)); t
[0 1 2]
[3 4 5]
[6 7 8]
sage: t.wiedemann(0)
x^2 - 12*x - 18
sage: t.charpoly() #␣
→˓needs sage.libs.pari
x^3 - 12*x^2 - 18*x

zigzag_form(subdivide=True, transformation=False)
Find a matrix in ZigZag form that is similar to self.

INPUT:

• self – a square matrix with entries from an exact field

• transformation – (default: False) if True return a change-of-basis matrix relating the matrix
and its ZigZag form

• subdivide – (default: True) if True the ZigZag form matrix is subdivided according to the com-
panion matrices described in the output section below.

OUTPUT:

A matrix in ZigZag form has blocks on the main diagonal that are companion matrices. The first companion
matrix has ones just below the main diagonal. The last column has the negatives of coefficients of a monic
polynomial, but not the leading one. Low degree monomials have their coefficients in the earlier rows. The
second companion matrix is like the first only transposed. The third is like the first. The fourth is like the
second. And so on.

These blocks on the main diagonal define blocks just off the diagonal. To the right of the first companion
matrix, and above the second companion matrix is a block that is totally zero, except the entry of the first row
and first column may be a one. Below the second block and to the left of the third block is a block that is
totally zero, except the entry of the first row and first column may be one. This alternating pattern continues.
It may now be apparent how this form gets its name. Any other entry of the matrix is zero. So this form is
reminiscent of rational canonical form and is a good precursor to that form.

If transformation is True, then the output is a pair of matrices. The first is the form Z and the second
is an invertible matrix U such that U.inverse()*self*U equals Z. In other words, the representation of
self with respect to the columns of U will be Z.

If subdivide is True then the matrix returned as the form is partitioned according to the companion matrices
and these may be manipulated by several different matrix methods.

For output that may be more useful as input to other routines, see the helper method _zigzag_form().

Note

An effort has been made to optimize computation of the form, but no such work has been done for the
computation of the transformation matrix, so for fastest results do not request the transformation matrix.

ALGORITHM:
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ZigZag form, and its computation, are due to Arne Storjohann and are described in [Sto2000] and [Sto1998],
where the former is more representative of the code here.

EXAMPLES:

Two examples that illustrate ZigZag form well. Notice that this is not a canonical form. The two matrices
below are similar, since they have equal Jordan canonical forms, yet their ZigZag forms are quite different. In
other words, while the computation of the form is deterministic, the final result, when viewed as a property
of a linear transformation, is dependent on the basis used for the matrix representation.

sage: A = matrix(QQ, [[-68, 69, -27, -11, -65, 9, -181, -32],
....: [-52, 52, -27, -8, -52, -16, -133, -14],
....: [ 92, -97, 47, 14, 90, 32, 241, 18],
....: [139, -144, 60, 18, 148, -10, 362, 77],
....: [ 40, -41, 12, 6, 45, -24, 105, 42],
....: [-46, 48, -20, -7, -47, 0, -122, -22],
....: [-26, 27, -13, -4, -29, -6, -66, -14],
....: [-33, 34, -13, -5, -35, 7, -87, -23]])
sage: Z, U = A.zigzag_form(transformation=True)
sage: Z
[ 0 0 0 40| 1 0| 0 0]
[ 1 0 0 52| 0 0| 0 0]
[ 0 1 0 18| 0 0| 0 0]
[ 0 0 1 -1| 0 0| 0 0]
[---------------+-------+-------]
[ 0 0 0 0| 0 1| 0 0]
[ 0 0 0 0|-25 10| 0 0]
[---------------+-------+-------]
[ 0 0 0 0| 1 0| 0 -4]
[ 0 0 0 0| 0 0| 1 -4]
sage: U.inverse()*A*U == Z
True

sage: B = matrix(QQ, [[ 16, 69, -13, 2, -52, 143, 90, -3],
....: [ 26, 54, 6, -5, -28, 73, 73, -48],
....: [-16, -79, 12, -10, 64, -142, -115, 41],
....: [ 27, -7, 21, -33, 39, -20, -42, 43],
....: [ 8, -75, 34, -32, 86, -156, -130, 42],
....: [ 2, -17, 7, -8, 20, -33, -31, 16],
....: [-24, -80, 7, -3, 56, -136, -112, 42],
....: [ -6, -19, 0, -1, 13, -28, -27, 15]])
sage: Z, U = B.zigzag_form(transformation=True)
sage: Z
[ 0 0 0 0 0 1000| 0| 0]
[ 1 0 0 0 0 900| 0| 0]
[ 0 1 0 0 0 -30| 0| 0]
[ 0 0 1 0 0 -153| 0| 0]
[ 0 0 0 1 0 3| 0| 0]
[ 0 0 0 0 1 9| 0| 0]
[-----------------------------+----+----]
[ 0 0 0 0 0 0| -2| 0]
[-----------------------------+----+----]
[ 0 0 0 0 0 0| 1| -2]
sage: U.inverse()*B*U == Z
True

sage: A.jordan_form() == B.jordan_form() #␣
→˓needs sage.combinat sage.libs.pari
True
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Two more examples, illustrating the two extremes of the zig-zag nature of this form. The first has a one in
each of the off-diagonal blocks, the second has all zeros in each off-diagonal block. Notice again that the two
matrices are similar, since their Jordan canonical forms are equal.

sage: C = matrix(QQ, [[2, 31, -10, -9, -125, 13, 62, -12],
....: [0, 48, -16, -16, -188, 20, 92, -16],
....: [0, 9, -1, 2, -33, 5, 18, 0],
....: [0, 15, -5, 0, -59, 7, 30, -4],
....: [0, -21, 7, 2, 84, -10, -42, 5],
....: [0, -42, 14, 8, 167, -17, -84, 13],
....: [0, -50, 17, 10, 199, -23, -98, 14],
....: [0, 15, -5, -2, -59, 7, 30, -2]])
sage: Z, U = C.zigzag_form(transformation=True)
sage: Z
[2|1|0|0|0|0|0|0]
[-+-+-+-+-+-+-+-]
[0|2|0|0|0|0|0|0]
[-+-+-+-+-+-+-+-]
[0|1|2|1|0|0|0|0]
[-+-+-+-+-+-+-+-]
[0|0|0|2|0|0|0|0]
[-+-+-+-+-+-+-+-]
[0|0|0|1|2|1|0|0]
[-+-+-+-+-+-+-+-]
[0|0|0|0|0|2|0|0]
[-+-+-+-+-+-+-+-]
[0|0|0|0|0|1|2|1]
[-+-+-+-+-+-+-+-]
[0|0|0|0|0|0|0|2]
sage: U.inverse()*C*U == Z
True

sage: D = matrix(QQ, [[ -4, 3, 7, 2, -4, 5, 7, -3],
....: [ -6, 5, 7, 2, -4, 5, 7, -3],
....: [ 21, -12, 89, 25, 8, 27, 98, -95],
....: [ -9, 5, -44, -11, -3, -13, -48, 47],
....: [ 23, -13, 74, 21, 12, 22, 85, -84],
....: [ 31, -18, 135, 38, 12, 47, 155, -147],
....: [-33, 19, -138, -39, -13, -45, -156, 151],
....: [ -7, 4, -29, -8, -3, -10, -34, 34]])
sage: Z, U = D.zigzag_form(transformation=True)
sage: Z
[ 0 -4| 0 0| 0 0| 0 0]
[ 1 4| 0 0| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 1| 0 0| 0 0]
[ 0 0|-4 4| 0 0| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 -4| 0 0]
[ 0 0| 0 0| 1 4| 0 0]
[-----+-----+-----+-----]
[ 0 0| 0 0| 0 0| 0 1]
[ 0 0| 0 0| 0 0|-4 4]
sage: U.inverse()*D*U == Z
True

sage: C.jordan_form() == D.jordan_form() #␣
→˓needs sage.combinat sage.libs.pari

(continues on next page)
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True

ZigZag form is achieved entirely with the operations of the field, so while the eigenvalues may lie outside the
field, this does not impede the computation of the form.

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF(5^4)
sage: A = matrix(F, [[ a, 0, 0, a + 3],
....: [ 0,a^2 + 1, 0, 0],
....: [ 0, 0,a^3, 0],
....: [a^2 +4 , 0, 0,a + 2]])
sage: A.zigzag_form()
[ 0 a^3 + 2*a^2 + 2*a + 2| 0| ␣
→˓ 0]
[ 1 2*a + 2| 0| ␣
→˓ 0]
[-------------------------------------------+---------------------+-----------
→˓----------]
[ 0 0| a^3| ␣
→˓ 0]
[-------------------------------------------+---------------------+-----------
→˓----------]
[ 0 0| 0| ␣
→˓ a^2 + 1]
sage: A.eigenvalues()
Traceback (most recent call last):
...
TypeError: no canonical coercion from Finite Field in a of size 5^4 to Finite␣
→˓Field in z4 of size 5^4

Subdivisions are optional.

sage: F.<a> = GF(5^4) #␣
→˓needs sage.rings.finite_rings
sage: A = matrix(F, [[ a, 0, 0, a + 3], #␣
→˓needs sage.rings.finite_rings
....: [ 0,a^2 + 1, 0, 0],
....: [ 0, 0,a^3, 0],
....: [a^2 +4 , 0, 0,a + 2]])
sage: A.zigzag_form(subdivide=False) #␣
→˓needs sage.rings.finite_rings
[ 0 a^3 + 2*a^2 + 2*a + 2 0 ␣
→˓ 0]
[ 1 2*a + 2 0 ␣
→˓ 0]
[ 0 0 a^3 ␣
→˓ 0]
[ 0 0 0 ␣
→˓ a^2 + 1]

exception sage.matrix.matrix2.NotFullRankError

Bases: ValueError

An error that indicates that a matrix is not of full rank.

The fact that a square system is rank-deficient sometimes only becomes apparent while attempting to
solve it. The methods Matrix.solve_left() and Matrix.solve_right() defer to Matrix.
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_solve_right_nonsingular_square() for square systems, and that method raises this error if the sys-
tem turns out to be singular.

sage.matrix.matrix2.decomp_seq(v)
This function is used internally be the decompositionmatrixmethod. It takes a list of tuples and produces a sequence
that is correctly sorted and prints with carriage returns.

EXAMPLES:

sage: from sage.matrix.matrix2 import decomp_seq
sage: V = [(QQ^3, 2), (QQ^2, 1)]
sage: decomp_seq(V)
[
(Vector space of dimension 2 over Rational Field, 1),
(Vector space of dimension 3 over Rational Field, 2)
]

sage.matrix.matrix2.ideal_or_fractional(R, *args)

341



Matrices and Spaces of Matrices, Release 10.5.rc0

342 Chapter 8. Base class for matrices, part 2



CHAPTER

NINE

GENERIC ASYMPTOTICALLY FAST STRASSEN ALGORITHMS

This implements asymptotically fast echelon form and matrix multiplication algorithms.

class sage.matrix.strassen.int_range(indices=None, range=None)
Bases: object

Represent a list of integers as a list of integer intervals.

Note

Repetitions are not considered.

Useful class for dealing with pivots in the Strassen echelon, could have much more general application

INPUT:

It can be one of the following:

• indices – integer; start of the unique interval

• range – integer; length of the unique interval

OR

• indices – list of integers, the integers to wrap into intervals

OR

• indices – None (default), shortcut for an empty list

OUTPUT:

An instance of int_range, i.e. a list of pairs (start, length).

EXAMPLES:

From a pair of integers:

sage: from sage.matrix.strassen import int_range
sage: int_range(2, 4)
[(2, 4)]

Default:

sage: int_range()
[]

From a list of integers:
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sage: int_range([1,2,3,4])
[(1, 4)]
sage: int_range([1,2,3,4,6,7,8])
[(1, 4), (6, 3)]
sage: int_range([1,2,3,4,100,101,102])
[(1, 4), (100, 3)]
sage: int_range([1,1000,2,101,3,4,100,102])
[(1, 4), (100, 3), (1000, 1)]

Repetitions are not considered:

sage: int_range([1,2,3])
[(1, 3)]
sage: int_range([1,1,1,1,2,2,2,3])
[(1, 3)]

AUTHORS:

• Robert Bradshaw

intervals()

Return the list of intervals.

OUTPUT: list of pairs of integers

EXAMPLES:

sage: from sage.matrix.strassen import int_range
sage: I = int_range([4,5,6,20,21,22,23])
sage: I.intervals()
[(4, 3), (20, 4)]
sage: type(I.intervals())
<... �list�>

to_list()

Return the (sorted) list of integers represented by this object.

OUTPUT: list of integers

EXAMPLES:

sage: from sage.matrix.strassen import int_range
sage: I = int_range([6,20,21,4,5,22,23])
sage: I.to_list()
[4, 5, 6, 20, 21, 22, 23]

sage: I = int_range(34, 9)
sage: I.to_list()
[34, 35, 36, 37, 38, 39, 40, 41, 42]

Repetitions are not considered:

sage: I = int_range([1,1,1,1,2,2,2,3])
sage: I.to_list()
[1, 2, 3]

sage.matrix.strassen.strassen_echelon(A, cutoff)
Compute echelon form, in place. Internal function, call with M.echelonize(algorithm=’strassen’)
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Based on work of Robert Bradshaw and David Harvey at MSRI workshop in 2006.

INPUT:

• A – matrix window

• cutoff – size at which algorithm reverts to naive Gaussian elimination and multiplication must be at least 1

OUTPUT: the list of pivot columns

EXAMPLES:

sage: A = matrix(QQ, 7, [5, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 3, 1,␣
→˓0, -1, 0, 0, -1, 0, 1, 2, -1, 1, 0, -1, 0, 1, 3, -1, 1, 0, 0, -2, 0, 2, 0, 1, 0,
→˓ 0, -1, 0, 1, 0, 1])
sage: B = A.__copy__(); B._echelon_strassen(1); B
[ 1 0 0 0 0 0 0]
[ 0 1 0 -1 0 1 0]
[ 0 0 1 0 0 0 0]
[ 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 1]
[ 0 0 0 0 0 0 0]
[ 0 0 0 0 0 0 0]
sage: C = A.__copy__(); C._echelon_strassen(2); C == B
True
sage: C = A.__copy__(); C._echelon_strassen(4); C == B
True

sage: n = 32; A = matrix(Integers(389),n,range(n^2))
sage: B = A.__copy__(); B._echelon_in_place_classical()
sage: C = A.__copy__(); C._echelon_strassen(2)
sage: B == C
True

AUTHORS:

• Robert Bradshaw

sage.matrix.strassen.strassen_window_multiply(C, A, B, cutoff)
Multiply the submatrices specified byA and B, places result in C. Assumes that A and B have compatible dimensions
to be multiplied, and that C is the correct size to receive the product, and that they are all defined over the same
ring.

Uses Strassen multiplication at high levels and then uses MatrixWindow methods at low levels.

EXAMPLES: The following matrix dimensions are chosen especially to exercise the eight possible parity com-
binations that could occur while subdividing the matrix in the Strassen recursion. The base case in both cases will
be a (4x5) matrix times a (5x6) matrix.

sage: A = MatrixSpace(Integers(2^65), 64, 83).random_element()
sage: B = MatrixSpace(Integers(2^65), 83, 101).random_element()
sage: A._multiply_classical(B) == A._multiply_strassen(B, 3) #indirect doctest
True

AUTHORS:

• David Harvey

• Simon King (2011-07): Improve memory efficiency; Issue #11610
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sage.matrix.strassen.test(n, m, R, c=2)
Test code for the Strassen algorithm.

INPUT:

• n – integer

• m – integer

• R – ring

• c – integer (default: 2)

EXAMPLES:

sage: from sage.matrix.strassen import test
sage: for n in range(5):
....: print("{} {}".format(n, test(2*n,n,Frac(QQ[�x�]),2)))
0 True
1 True
2 True
3 True
4 True
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TEN

MINIMAL POLYNOMIALS OF LINEAR RECURRENCE SEQUENCES

AUTHORS:

• William Stein

sage.matrix.berlekamp_massey.berlekamp_massey(a)
Use the Berlekamp-Massey algorithm to find the minimal polynomial of a linear recurrence sequence 𝑎.

The minimal polynomial of a linear recurrence {𝑎𝑟} is by definition the unique monic polynomial 𝑔, such that
if {𝑎𝑟} satisfies a linear recurrence 𝑎𝑗+𝑘 + 𝑏𝑗−1𝑎𝑗−1+𝑘 + · · · + 𝑏0𝑎𝑘 = 0 (for all 𝑘 ≥ 0), then 𝑔 divides the
polynomial 𝑥𝑗 +

∑︀𝑗−1
𝑖=0 𝑏𝑖𝑥

𝑖.

INPUT:

• a – list of even length of elements of a field (or domain)

OUTPUT:

the minimal polynomial of the sequence, as a polynomial over the field in which the entries of 𝑎 live

Warning

The result is only guaranteed to be correct on the full sequence if there exists a linear recurrence of length less
than half the length of 𝑎.

EXAMPLES:

sage: from sage.matrix.berlekamp_massey import berlekamp_massey
sage: berlekamp_massey([1,2,1,2,1,2])
x^2 - 1
sage: berlekamp_massey([GF(7)(1), 19, 1, 19])
x^2 + 6
sage: berlekamp_massey([2,2,1,2,1,191,393,132])
x^4 - 36727/11711*x^3 + 34213/5019*x^2 + 7024942/35133*x - 335813/1673
sage: berlekamp_massey(prime_range(2, 38)) #␣
→˓needs sage.libs.pari
x^6 - 14/9*x^5 - 7/9*x^4 + 157/54*x^3 - 25/27*x^2 - 73/18*x + 37/9
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ELEVEN

BASE CLASS FOR DENSE MATRICES

class sage.matrix.matrix_dense.Matrix_dense

Bases: Matrix

antitranspose()

Return the antitranspose of self, without changing self.

EXAMPLES:

sage: A = matrix(2,3,range(6)); A
[0 1 2]
[3 4 5]
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]

sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]

transpose()

Return the transpose of self, without changing self.

EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: M = MatrixSpace(QQ, 2)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: print(B)
[1 3]
[2 4]
sage: print(A)
[1 2]
[3 4]

.T is a convenient shortcut for the transpose:
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sage: A.T
[1 3]
[2 4]

sage: A.subdivide(None, 1); A
[1|2]
[3|4]
sage: A.transpose()
[1 3]
[---]
[2 4]
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TWELVE

BASE CLASS FOR SPARSE MATRICES

class sage.matrix.matrix_sparse.Matrix_sparse

Bases: Matrix

antitranspose()

Return the antitranspose of self, without changing self.

This is the mirror image along the other diagonal.

EXAMPLES:

sage: M = MatrixSpace(QQ, 2, sparse=True)
sage: A = M([1,2,3,4]); A
[1 2]
[3 4]
sage: A.antitranspose()
[4 2]
[3 1]

See also

transpose()

apply_map(phi, R=None, sparse=True)
Apply the given map phi (an arbitrary Python function or callable object) to this matrix.

If R is not given, automatically determine the base ring of the resulting matrix.

INPUT:

• phi – arbitrary Python function or callable object

• R – (optional) ring

• sparse – boolean (default: True); whether to return a sparse or a dense matrix

OUTPUT: a matrix over R

EXAMPLES:

sage: m = matrix(ZZ, 10000, {(1,2): 17}, sparse=True)

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(9)
sage: f = lambda x: k(x)
sage: n = m.apply_map(f)

(continues on next page)
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sage: n.parent()
Full MatrixSpace of 10000 by 10000 sparse matrices
over Finite Field in a of size 3^2

sage: n[1, 2]
2

An example where the codomain is explicitly specified.

sage: n = m.apply_map(lambda x: x%3, GF(3))
sage: n.parent()
Full MatrixSpace of 10000 by 10000 sparse matrices
over Finite Field of size 3

sage: n[1, 2]
2

If we did not specify the codomain, the resulting matrix in the above case ends up over Z again:

sage: n = m.apply_map(lambda x: x%3)
sage: n.parent()
Full MatrixSpace of 10000 by 10000 sparse matrices over Integer Ring
sage: n[1, 2]
2

If self is subdivided, the result will be as well:

sage: m = matrix(2, 2, [0, 0, 3, 0])
sage: m.subdivide(None, 1); m
[0|0]
[3|0]
sage: m.apply_map(lambda x: x*x)
[0|0]
[9|0]

If the map sends zero to a nonzero value, then it may be useful to get the result as a dense matrix.

sage: m = matrix(ZZ, 3, 3, [0] * 7 + [1,2], sparse=True); m
[0 0 0]
[0 0 0]
[0 1 2]
sage: parent(m)
Full MatrixSpace of 3 by 3 sparse matrices over Integer Ring
sage: n = m.apply_map(lambda x: x+polygen(QQ), sparse=False); n
[ x x x]
[ x x x]
[ x x + 1 x + 2]
sage: parent(n)
Full MatrixSpace of 3 by 3 dense matrices over Univariate Polynomial Ring in␣
→˓x over Rational Field

apply_morphism(phi)
Apply the morphism phi to the coefficients of this sparse matrix.

The resulting matrix is over the codomain of phi.

INPUT:

• phi – a morphism, so phi is callable and
phi.domain() and phi.codomain() are defined. The codomain must be a ring.
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OUTPUT: a matrix over the codomain of phi

EXAMPLES:

sage: m = matrix(ZZ, 3, range(9), sparse=True)
sage: phi = ZZ.hom(GF(5))
sage: m.apply_morphism(phi)
[0 1 2]
[3 4 0]
[1 2 3]
sage: m.apply_morphism(phi).parent()
Full MatrixSpace of 3 by 3 sparse matrices
over Finite Field of size 5

augment(right, subdivide=False)
Return the augmented matrix of the form:

[self | right].

EXAMPLES:

sage: M = MatrixSpace(QQ, 2, 2, sparse=True)
sage: A = M([1,2, 3,4])
sage: A
[1 2]
[3 4]
sage: N = MatrixSpace(QQ, 2, 1, sparse=True)
sage: B = N([9,8])
sage: B
[9]
[8]
sage: A.augment(B)
[1 2 9]
[3 4 8]
sage: B.augment(A)
[9 1 2]
[8 3 4]

A vector may be augmented to a matrix.

sage: A = matrix(QQ, 3, 4, range(12), sparse=True)
sage: v = vector(QQ, 3, range(3), sparse=True)
sage: A.augment(v)
[ 0 1 2 3 0]
[ 4 5 6 7 1]
[ 8 9 10 11 2]

The subdivide option will add a natural subdivision between self and right. For more details about
how subdivisions aremanagedwhen augmenting, seesage.matrix.matrix1.Matrix.augment().

sage: A = matrix(QQ, 3, 5, range(15), sparse=True)
sage: B = matrix(QQ, 3, 3, range(9), sparse=True)
sage: A.augment(B, subdivide=True)
[ 0 1 2 3 4| 0 1 2]
[ 5 6 7 8 9| 3 4 5]
[10 11 12 13 14| 6 7 8]

change_ring(ring)
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Return the matrix obtained by coercing the entries of this matrix into the given ring.

Always returns a copy (unless self is immutable, in which case returns self).

EXAMPLES:

sage: x = polygen(ZZ, �x�)
sage: A = matrix(QQ[�x,y�], 2, [0,-1,2*x,-2], sparse=True); A
[ 0 -1]
[2*x -2]
sage: A.change_ring(QQ[�x,y,z�])
[ 0 -1]
[2*x -2]

Subdivisions are preserved when changing rings:

sage: A.subdivide([2],[]); A
[ 0 -1]
[2*x -2]
[-------]
sage: A.change_ring(RR[�x,y�])
[ 0 -1.00000000000000]
[2.00000000000000*x -2.00000000000000]
[-------------------------------------]

charpoly(var='x', **kwds)
Return the characteristic polynomial of this matrix.

Note

the generic sparse charpoly implementation in Sage is to just compute the charpoly of the corresponding
dense matrix, so this could use a lot of memory. In particular, for this matrix, the charpoly will be
computed using a dense algorithm.

EXAMPLES:

sage: A = matrix(ZZ, 4, range(16), sparse=True)
sage: A.charpoly()
x^4 - 30*x^3 - 80*x^2
sage: A.charpoly(�y�)
y^4 - 30*y^3 - 80*y^2
sage: A.charpoly()
x^4 - 30*x^3 - 80*x^2

density()

Return the density of the matrix.

By density we understand the ratio of the number of nonzero positions and the number self.nrows() *
self.ncols(), i.e. the number of possible nonzero positions.

EXAMPLES:

sage: a = matrix([[],[],[],[]], sparse=True); a.density()
0
sage: a = matrix(5000,5000,{(1,2): 1}); a.density()
1/25000000
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determinant(**kwds)
Return the determinant of this matrix.

Note

the generic sparse determinant implementation in Sage is to just compute the determinant of the corre-
sponding dense matrix, so this could use a lot of memory. In particular, for this matrix, the determinant
will be computed using a dense algorithm.

EXAMPLES:

sage: A = matrix(ZZ, 4, range(16), sparse=True)
sage: B = A + identity_matrix(ZZ, 4, sparse=True)
sage: B.det()
-49

matrix_from_rows_and_columns(rows, columns)
Return the matrix constructed from self from the given rows and columns.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3, sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]

Note that row and column indices can be reordered or repeated:

sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times.

sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]

We can efficiently extract large submatrices:

sage: A = random_matrix(ZZ, 100000, density=.00005, sparse=True) # long time␣
→˓(4s on sage.math, 2012)
sage: B = A[50000:,:50000] # long time
sage: count = 0
sage: for i, j in A.nonzero_positions(): # long time
....: if i >= 50000 and j < 50000:
....: assert B[i-50000, j] == A[i, j]
....: count += 1

(continues on next page)
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sage: count == sum(1 for _ in B.nonzero_positions()) # long time
True

We must pass in a list of indices:

sage: A = random_matrix(ZZ,100,density=.02,sparse=True)
sage: A.matrix_from_rows_and_columns(1,[2,3])
Traceback (most recent call last):
...
TypeError: �sage.rings.integer.Integer� object is not iterable

sage: A.matrix_from_rows_and_columns([1,2],3)
Traceback (most recent call last):
...
TypeError: �sage.rings.integer.Integer� object is not iterable

AUTHORS:

• Jaap Spies (2006-02-18)

• Didier Deshommes: some Pyrex speedups implemented

• Jason Grout: sparse matrix optimizations

transpose()

Return the transpose of self, without changing self.

EXAMPLES: We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: M = MatrixSpace(QQ, 2, sparse=True)
sage: A = M([1,2,3,4]); A
[1 2]
[3 4]
sage: B = A.transpose(); B
[1 3]
[2 4]

.T is a convenient shortcut for the transpose:

sage: A.T
[1 3]
[2 4]

See also

antitranspose()
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THIRTEEN

DENSE MATRICES OVER A GENERAL RING

class sage.matrix.matrix_generic_dense.Matrix_generic_dense

Bases: Matrix_dense

The Matrix_generic_dense class derives from Matrix, and defines functionality for dense matrices over
any base ring. Matrices are represented by a list of elements in the base ring, and element access operations are
implemented in this class.

EXAMPLES:

sage: A = random_matrix(Integers(25)[�x�], 2)
sage: type(A)
<class �sage.matrix.matrix_generic_dense.Matrix_generic_dense�>
sage: TestSuite(A).run(skip=�_test_minpoly�)

Test comparisons:

sage: A = random_matrix(Integers(25)[�x�], 2)
sage: A == A
True
sage: A < A + 1 or A[0, 0].coefficients()[0] == 24
True
sage: A+1 < A and A[0, 0].coefficients()[0] != 24
False

Test hashing:

sage: A = random_matrix(Integers(25)[�x�], 2)
sage: hash(A)
Traceback (most recent call last):
...
TypeError: mutable matrices are unhashable
sage: A.set_immutable()
sage: H = hash(A)
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CHAPTER

FOURTEEN

SPARSE MATRICES OVER A GENERAL RING

EXAMPLES:

sage: R.<x> = PolynomialRing(QQ)
sage: M = MatrixSpace(QQ[�x�], 2, 3, sparse=True); M
Full MatrixSpace of 2 by 3 sparse matrices over
Univariate Polynomial Ring in x over Rational Field

sage: a = M(range(6)); a
[0 1 2]
[3 4 5]
sage: b = M([x^n for n in range(6)]); b
[ 1 x x^2]
[x^3 x^4 x^5]
sage: a * b.transpose()
[ 2*x^2 + x 2*x^5 + x^4]
[ 5*x^2 + 4*x + 3 5*x^5 + 4*x^4 + 3*x^3]
sage: pari(a)*pari(b.transpose()) #␣
→˓needs sage.libs.pari
[2*x^2 + x, 2*x^5 + x^4; 5*x^2 + 4*x + 3, 5*x^5 + 4*x^4 + 3*x^3]
sage: c = copy(b); c
[ 1 x x^2]
[x^3 x^4 x^5]
sage: c[0,0] = 5; c
[ 5 x x^2]
[x^3 x^4 x^5]
sage: b[0,0]
1
sage: c.dict()
{(0, 0): 5, (0, 1): x, (0, 2): x^2, (1, 0): x^3, (1, 1): x^4, (1, 2): x^5}
sage: c.list()
[5, x, x^2, x^3, x^4, x^5]
sage: c.rows()
[(5, x, x^2), (x^3, x^4, x^5)]
sage: TestSuite(c).run()
sage: d = c.change_ring(CC[�x�]); d
[5.00000000000000 x x^2]
[ x^3 x^4 x^5]
sage: latex(c)
\left(\begin{array}{rrr}
5 & x & x^{2} \\
x^{3} & x^{4} & x^{5}
\end{array}\right)
sage: c.sparse_rows()
[(5, x, x^2), (x^3, x^4, x^5)]
sage: d = c.dense_matrix(); d

(continues on next page)

359



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

[ 5 x x^2]
[x^3 x^4 x^5]
sage: parent(d)
Full MatrixSpace of 2 by 3 dense matrices
over Univariate Polynomial Ring in x over Rational Field

sage: c.sparse_matrix() is c
True
sage: c.is_sparse()
True

class sage.matrix.matrix_generic_sparse.Matrix_generic_sparse

Bases: Matrix_sparse

Generic sparse matrix.

The Matrix_generic_sparse class derives from Matrix_sparse, and defines functionality for sparse
matrices over any base ring. A generic sparse matrix is represented using a dictionary whose keys are pairs of
integers (𝑖, 𝑗) and values in the base ring. The values of the dictionary must never be zero.

EXAMPLES:

sage: R.<a,b> = PolynomialRing(ZZ,�a,b�)
sage: M = MatrixSpace(R,5,5,sparse=True)
sage: M({(0,0):5*a+2*b, (3,4): -a})
[5*a + 2*b 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 -a]
[ 0 0 0 0 0]
sage: M(3)
[3 0 0 0 0]
[0 3 0 0 0]
[0 0 3 0 0]
[0 0 0 3 0]
[0 0 0 0 3]
sage: V = FreeModule(ZZ, 5,sparse=True)
sage: m = M([V({0:3}), V({2:2, 4:-1}), V(0), V(0), V({1:2})])
sage: m
[ 3 0 0 0 0]
[ 0 0 2 0 -1]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 2 0 0 0]

Note

The datastructure can potentially be optimized. Firstly, as noticed in Issue #17663, we lose time in using
2-tuples to store indices. Secondly, there is no fast way to access nonzero elements in a given row/column.

sage.matrix.matrix_generic_sparse.Matrix_sparse_from_rows(X)
INPUT:

• X – nonempty list of SparseVector rows

OUTPUT: Sparse_matrix with those rows

EXAMPLES:
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sage: V = VectorSpace(QQ,20,sparse=True)
sage: v = V(0)
sage: v[9] = 4
sage: from sage.matrix.matrix_generic_sparse import Matrix_sparse_from_rows
sage: Matrix_sparse_from_rows([v])
[0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0]
sage: Matrix_sparse_from_rows([v, v, v, V(0)])
[0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
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CHAPTER

FIFTEEN

DENSE MATRICES OVER THE INTEGER RING

AUTHORS:

• William Stein

• Robert Bradshaw

• Marc Masdeu (August 2014). Implemented using FLINT, see Issue #16803.

• Jeroen Demeyer (October 2014): lots of fixes, see Issue #17090 and Issue #17094.

• Vincent Delecroix (February 2015): make it faster, see Issue #17822.

• Vincent Delecroix (May 2017): removed duplication of entries and cleaner linbox interface

EXAMPLES:

sage: a = matrix(ZZ, 3,3, range(9)); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: a.det()
0
sage: a[0,0] = 10; a.det()
-30
sage: a.charpoly()
x^3 - 22*x^2 + 102*x + 30
sage: b = -3*a
sage: a == b
False
sage: b < a
True

class sage.matrix.matrix_integer_dense.Matrix_integer_dense

Bases: Matrix_dense

Matrix over the integers, implemented using FLINT.

On a 32-bit machine, they can have at most 232 − 1 rows or columns. On a 64-bit machine, matrices can have at
most 264 − 1 rows or columns.

EXAMPLES:

sage: a = MatrixSpace(ZZ,3)(2); a
[2 0 0]
[0 2 0]
[0 0 2]
sage: a = matrix(ZZ,1,3, [1,2,-3]); a

(continues on next page)
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[ 1 2 -3]
sage: a = MatrixSpace(ZZ,2,4)(2); a
Traceback (most recent call last):
...
TypeError: nonzero scalar matrix must be square

BKZ(delta=None, algorithm='fpLLL', fp=None, block_size=10, prune=0, use_givens=False, precision=0,
proof=None, **kwds)
Return the result of running Block Korkin-Zolotarev reduction on self interpreted as a lattice.

INPUT:

• delta – (default: 0.99) LLL parameter

• algorithm – (default: �fpLLL�) �fpLLL� or "NTL"

• fp – floating point number implementation

– None – NTL’s exact reduction or fpLLL’s wrapper (default)

– �fp� – double precision: NTL’s FP or fpLLL’s double

– �ld� – long doubles (fpLLL only)

– �qd� – NTL’s QP

– �qd1� – quad doubles: Uses quad_float precision to compute Gram-Schmidt, but uses double
precision in the search phase of the block reduction algorithm. This seems adequate for most pur-
poses, and is faster than �qd�, which uses quad_float precision uniformly throughout (NTL only).

– �xd� – extended exponent: NTL’s XD or fpLLL’s dpe

– �rr� – arbitrary precision: NTL’RR or fpLLL’s MPFR

• block_size – (default: 10) specifies the size of the blocks in the reduction. High values yield shorter
vectors, but the running time increases double exponentially with block_size. block_size should
be between 2 and the number of rows of self.

• proof – (default: same as proof.linear_algebra()) Insist on full BKZ reduction. If disabled
and fplll is called, reduction is much faster but the result is not fully BKZ reduced.

NTL SPECIFIC INPUT:

• prune – (default: 0) the optional parameter prune can be set to any positive number to invoke the
Volume Heuristic from [SH1995]. This can significantly reduce the running time, and hence allow
much bigger block size, but the quality of the reduction is of course not as good in general. Higher
values of prune mean better quality, and slower running time. When prune is 0, pruning is disabled.
Recommended usage: for block_size==30, set 10 <= prune <=15.

• use_givens – use Givens orthogonalization. Only applies to approximate reduction using NTL. This
is a bit slower, but generally much more stable, and is really the preferred orthogonalization strategy. For
a nice description of this, see Chapter 5 of [GL1996].

fpLLL SPECIFIC INPUT:

• precision – (default: 0 for automatic choice) bit precision to use if fp=�rr� is set

• **kwds – keywords to be passed to fpylll; see fpylll.BKZ.Param for details

Also, if the verbose level is at least 2, some output is printed during the computation.

EXAMPLES:
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sage: A = Matrix(ZZ,3,3,range(1,10))
sage: A.BKZ()
[ 0 0 0]
[ 2 1 0]
[-1 1 3]

sage: A = Matrix(ZZ,3,3,range(1,10))
sage: A.BKZ(use_givens=True)
[ 0 0 0]
[ 2 1 0]
[-1 1 3]

sage: A = Matrix(ZZ,3,3,range(1,10))
sage: A.BKZ(fp=�fp�)
[ 0 0 0]
[ 2 1 0]
[-1 1 3]

ALGORITHM:

Calls either NTL or fpLLL.

LLL(delta=None, eta=None, algorithm='fpLLL:wrapper', fp=None, prec=0, early_red=False, use_givens=False,
use_siegel=False, transformation=False, **kwds)
Return LLL-reduced or approximated LLL reduced matrix 𝑅 of the lattice generated by the rows of self.

A set of vectors (𝑏1, 𝑏2, ..., 𝑏𝑑) is (𝛿, 𝜂)-LLL-reduced if the two following conditions hold:

• For any 𝑖 > 𝑗, we have |𝜇𝑖,𝑗 | ≤ 𝜂.

• For any 𝑖 < 𝑑, we have 𝛿|𝑏*𝑖 |2 ≤ |𝑏*𝑖+1 + 𝜇𝑖+1,𝑖𝑏
*
𝑖 |2,

where 𝜇𝑖,𝑗 = ⟨𝑏𝑖, 𝑏*𝑗 ⟩/⟨𝑏*𝑗 , 𝑏*𝑗 ⟩ and 𝑏*𝑖 is the 𝑖-th vector of the Gram-Schmidt orthogonalisation of
(𝑏1, 𝑏2, ..., 𝑏𝑑).

The default reduction parameters are 𝛿 = 0.99 and 𝜂 = 0.501. The parameters 𝛿 and 𝜂 must satisfy 0.25 <
𝛿 ≤ 1.0 and 0.5 ≤ 𝜂 <

√
𝛿. Polynomial time complexity is only guaranteed for 𝛿 < 1. Not every algorithm

admits the case 𝛿 = 1.

If the matrix has a nonzero kernel, the LLL-reduced matrix will contain zero rows, so that the output has the
same dimensions as the input. The transformation matrix is always invertible over the integers.

Also the rank of self is cached if it is computed during the reduction. Note that in general this only happens
when self.rank() == self.ncols() and the exact algorithm is used.

INPUT:

• delta – (default: 0.99) 𝛿 parameter as described above, ignored by pari

• eta – (default: 0.501) 𝜂 parameter as described above, ignored by NTL and pari

• algorithm – string; one of the algorithms listed below (default: �fpLLL:wrapper�)

• fp – floating point number implementation, ignored by pari:

– None – NTL’s exact reduction or fpLLL’s wrapper

– �fp� – double precision: NTL’s FP or fpLLL’s double

– �ld� – long doubles (fpLLL only)

– �qd� – NTL’s QP

– �xd� – extended exponent: NTL’s XD or fpLLL’s dpe
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– �rr� – arbitrary precision: NTL’s RR or fpLLL’s MPFR

• prec – (default: auto choose) precision, ignored by NTL and pari

• early_red – boolean (default: False); perform early reduction, ignored by NTL and pari

• use_givens – boolean (default: False); use Givens orthogonalization. Only applies to approximate
reduction using NTL. This is slower but generally more stable.

• use_siegel – boolean (default: False); use Siegel’s condition instead of Lovász’s condition, ignored
by NTL and pari

• transformation – boolean (default: False); also return transformation matrix

• **kwds – keywords to be passed to fpylll; see fpylll.LLL.reduction() for details

Also, if the verbose level is at least 2, some output is printed during the computation.

AVAILABLE ALGORITHMS:

• �NTL:LLL� – NTL’s LLL + choice of fp

• �fpLLL:heuristic� – fpLLL’s heuristic + choice of fp

• �fpLLL:fast� – fpLLL’s fast + choice of fp

• �fpLLL:proved� – fpLLL’s proved + choice of fp

• �fpLLL:wrapper� – fpLLL’s automatic choice (default)

• �pari� – pari’s qflll

OUTPUT: a matrix over the integers

EXAMPLES:

sage: A = Matrix(ZZ,3,3,range(1,10))
sage: A.LLL()
[ 0 0 0]
[ 2 1 0]
[-1 1 3]

We compute the extended GCD of a list of integers using LLL, this example is from the Magma handbook:

sage: Q = [ 67015143, 248934363018, 109210, 25590011055, 74631449,
....: 10230248, 709487, 68965012139, 972065, 864972271 ]
sage: n = len(Q)
sage: S = 100
sage: X = Matrix(ZZ, n, n + 1)
sage: for i in range(n):
....: X[i, i + 1] = 1
sage: for i in range(n):
....: X[i, 0] = S * Q[i]
sage: L = X.LLL()
sage: M = L.row(n-1).list()[1:]
sage: M
[-3, -1, 13, -1, -4, 2, 3, 4, 5, -1]
sage: add(Q[i]*M[i] for i in range(n))
-1

The case 𝛿 = 1 is not always supported:
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sage: L = X.LLL(delta=2)
Traceback (most recent call last):
...
TypeError: delta must be <= 1
sage: L = X.LLL(delta=1) # not tested, will eat lots of ram
Traceback (most recent call last):
...
RuntimeError: infinite loop in LLL
sage: L = X.LLL(delta=1, algorithm=�NTL:LLL�)
sage: L[-1]
(-100, -3, -1, 13, -1, -4, 2, 3, 4, 5, -1)

We return the transformation matrix:

sage: A = random_matrix(ZZ, 10, 20)
sage: R, U = A.LLL(transformation=True)
sage: U * A == R
True

sage: R, U = A.LLL(algorithm=�NTL:LLL�, transformation=True)
sage: U * A == R
True

sage: R, U = A.LLL(algorithm=�pari�, transformation=True)
sage: U * A == R
True

Example with a nonzero kernel:

sage: M = matrix(4,3,[1,2,3,2,4,6,7,0,1,-1,-2,-3])
sage: M.LLL()[0:2]
[0 0 0]
[0 0 0]

sage: M.LLL(algorithm="NTL:LLL")[0:2]
[0 0 0]
[0 0 0]

sage: M.LLL(algorithm=�pari�)[0:2]
[0 0 0]
[0 0 0]

Note

See sage.libs.ntl.ntl_mat_ZZ.ntl_mat_ZZ.LLL and fpylll.fplll.lll for details
on the algorithms used.

Although LLL is a deterministic algorithm, the output for different implementations and CPUs (32-bit
vs. 64-bit) may vary, while still being correct.

antitranspose()

Return the antitranspose of self, without changing self.

EXAMPLES:
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sage: A = matrix(2,3,range(6))
sage: type(A)
<class �sage.matrix.matrix_integer_dense.Matrix_integer_dense�>
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
sage: A
[0 1 2]
[3 4 5]

sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]

augment(right, subdivide=False)
Return a new matrix formed by appending the matrix (or vector) right on the right side of self.

INPUT:

• right – a matrix, vector or free module element, whose dimensions are compatible with self

• subdivide – (default: False) request the resulting matrix to have a new subdivision, separating
self from right

OUTPUT:

A newmatrix formed by appending right onto the right side of self. If right is a vector (or free module
element) then in this context it is appropriate to consider it as a column vector. (The code first converts a vector
to a 1-column matrix.)

EXAMPLES:

sage: A = matrix(ZZ, 4, 5, range(20))
sage: B = matrix(ZZ, 4, 3, range(12))
sage: A.augment(B)
[ 0 1 2 3 4 0 1 2]
[ 5 6 7 8 9 3 4 5]
[10 11 12 13 14 6 7 8]
[15 16 17 18 19 9 10 11]

A vector may be augmented to a matrix.

sage: A = matrix(ZZ, 3, 5, range(15))
sage: v = vector(ZZ, 3, range(3))
sage: A.augment(v)
[ 0 1 2 3 4 0]
[ 5 6 7 8 9 1]
[10 11 12 13 14 2]

The subdivide option will add a natural subdivision between self and right. For more details about
how subdivisions aremanagedwhen augmenting, seesage.matrix.matrix1.Matrix.augment().
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sage: A = matrix(ZZ, 3, 5, range(15))
sage: B = matrix(ZZ, 3, 3, range(9))
sage: A.augment(B, subdivide=True)
[ 0 1 2 3 4| 0 1 2]
[ 5 6 7 8 9| 3 4 5]
[10 11 12 13 14| 6 7 8]

Errors are raised if the sizes are incompatible.

sage: A = matrix(ZZ, [[1, 2],[3, 4]])
sage: B = matrix(ZZ, [[10, 20], [30, 40], [50, 60]])
sage: A.augment(B)
Traceback (most recent call last):
...
TypeError: number of rows must be the same, not 2 != 3

charpoly(var='x', algorithm=None)

Note

The characteristic polynomial is defined as det(𝑥𝐼 −𝐴).

INPUT:

• var – a variable name

• algorithm – (default: �linbox�) either �generic�, �flint� or �linbox�

EXAMPLES:

sage: A = matrix(ZZ,6, range(36))
sage: f = A.charpoly(); f
x^6 - 105*x^5 - 630*x^4
sage: f(A) == 0
True
sage: g = A.charpoly(algorithm=�flint�)
sage: f == g
True
sage: n=20; A = Mat(ZZ,n)(range(n^2))
sage: A.charpoly()
x^20 - 3990*x^19 - 266000*x^18
sage: A.minpoly()
x^3 - 3990*x^2 - 266000*x

On non square matrices, this method raises an ArithmeticError:

sage: matrix(ZZ, 2, 1).charpoly()
Traceback (most recent call last):
...
ArithmeticError: only valid for square matrix

column(i, from_list=False)
Return the 𝑖-th column of this matrix as a dense vector.

INPUT:

• i – integer
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• from_list – ignored

EXAMPLES:

sage: m = matrix(ZZ, 3, 2, [1, -2, 3, 4, -1, 0])
sage: m.column(1)
(-2, 4, 0)
sage: m.column(1, from_list=True)
(-2, 4, 0)
sage: m.column(-1)
(-2, 4, 0)
sage: m.column(-2)
(1, 3, -1)

sage: m.column(2)
Traceback (most recent call last):
...
IndexError: column index out of range
sage: m.column(-3)
Traceback (most recent call last):
...
IndexError: column index out of range

decomposition(**kwds)
Return the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x
goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be
sorted in the same way as the corresponding factors of the characteristic polynomial, and are saturated as ZZ
modules.

INPUT:

• self – a matrix over the integers

• **kwds – these are passed onto to the decomposition over QQ command

EXAMPLES:

sage: t = ModularSymbols(11,sign=1).hecke_matrix(2)
sage: w = t.change_ring(ZZ)
sage: w
[ 3 -2]
[ 0 -2]
sage: w.charpoly().factor()
(x - 3) * (x + 2)
sage: w.decomposition()
[
(Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[ 5 -2], True),
(Free module of degree 2 and rank 1 over Integer Ring
Echelon basis matrix:
[0 1], True)
]

determinant(algorithm='default', proof=None, stabilize=2)
Return the determinant of this matrix.

INPUT:

• algorithm
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– �default� – use flint

– �flint� – let flint do the determinant

– �padic� – uses a 𝑝-adic / multimodular algorithm that relies on code in IML and linbox

– �linbox� – calls linbox det (you must set proof=False to use this!)

– �ntl� – calls NTL’s det function

– �pari� – uses PARI

• proof – boolean or None; if None use proof.linear_algebra(); only relevant for the padic algorithm

Note

It would be VERY VERY hard for det to fail even with proof=False.

• stabilize – if proof is False, require det to be the same for this many CRT primes in a row.
Ignored if proof is True.

ALGORITHM: The 𝑝-adic algorithm works by first finding a random vector v, then solving 𝐴𝑥 = 𝑣 and
taking the denominator 𝑑. This gives a divisor of the determinant. Then we compute det(𝐴)/𝑑 using a
multimodular algorithm and the Hadamard bound, skipping primes that divide 𝑑.

EXAMPLES:

sage: A = matrix(ZZ,8,8,[3..66])
sage: A.determinant()
0

sage: A = random_matrix(ZZ,20,20)
sage: D1 = A.determinant()
sage: A._clear_cache()
sage: D2 = A.determinant(algorithm=�ntl�)
sage: D1 == D2
True

We have a special-case algorithm for 4 x 4 determinants:

sage: A = matrix(ZZ,4,[1,2,3,4,4,3,2,1,0,5,0,1,9,1,2,3])
sage: A.determinant()
270

Next we try the Linbox det. Note that we must have proof=False.

sage: A = matrix(ZZ,5,[1,2,3,4,5,4,6,3,2,1,7,9,7,5,2,1,4,6,7,8,3,2,4,6,7])
sage: A.determinant(algorithm=�linbox�)
Traceback (most recent call last):
...
RuntimeError: you must pass the proof=False option to the determinant command␣
→˓to use LinBox�s det algorithm
sage: A.determinant(algorithm=�linbox�, proof=False)
-21
sage: A._clear_cache()
sage: A.determinant()
-21

Try the other algorithms on the same example:
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sage: A._clear_cache(); A.determinant(algorithm=�padic�)
-21
sage: A._clear_cache(); A.determinant(algorithm=�pari�)
-21
sage: A._clear_cache(); A.determinant(algorithm=�ntl�)
-21
sage: A._clear_cache(); A.determinant(algorithm=�padic�)
-21

A bigger example:

sage: A = random_matrix(ZZ,30)
sage: d = A.determinant()
sage: A._clear_cache()
sage: A.determinant(algorithm=�linbox�,proof=False) == d
True

echelon_form(algorithm='default', proof=None, include_zero_rows=True, transformation=False, D=None)
Return the echelon form of this matrix over the integers, also known as the hermite normal form (HNF).

INPUT:

• algorithm – string; the algorithm to use. Valid options are:

– �default� – let Sage pick an algorithm (default). Up to 75 rows or columns with no transforma-
tion matrix, use pari with flag 0; otherwise, use flint.

– �flint� – use flint

– �ntl� – use NTL (only works for square matrices of full rank!)

– �padic� – an asymptotically fast 𝑝-adic modular algorithm, If your matrix has large coefficients
and is small, you may also want to try this.

– �pari� – use PARI with flag 1

– �pari0� – use PARI with flag 0

– �pari1� – use PARI with flag 1

– �pari4� – use PARI with flag 4 (use heuristic LLL)

• proof – (default: True) if proof=False certain determinants are computed using a randomized hy-
brid 𝑝-adic multimodular strategy until it stabilizes twice (instead of up to the Hadamard bound). It is
incredibly unlikely that one would ever get an incorrect result with proof=False.

• include_zero_rows – boolean (default: True); if False, don’t include zero rows

• transformation – if given, also compute transformation matrix; only valid for flint and padic al-
gorithm

• D – (default: None) if given and the algorithm is �ntl�, then D must be a multiple of the determinant
and this function will use that fact

OUTPUT:

The Hermite normal form (=echelon form over Z) of self as an immutable matrix.

EXAMPLES:

sage: A = MatrixSpace(ZZ,2)([1,2,3,4])
sage: A.echelon_form()
[1 0]

(continues on next page)
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(continued from previous page)

[0 2]
sage: A = MatrixSpace(ZZ,5)(range(25))
sage: A.echelon_form()
[ 5 0 -5 -10 -15]
[ 0 1 2 3 4]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]

Getting a transformation matrix in the nonsquare case:

sage: A = matrix(ZZ,5,3,[1..15])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: H
[1 2 3]
[0 3 6]
sage: U
[ 0 0 0 4 -3]
[ 0 0 0 13 -10]
sage: U*A == H
True

Note

If ‘ntl’ is chosen for a non square matrix this function raises a ValueError.

Special cases: 0 or 1 rows:

sage: a = matrix(ZZ, 1,2,[0,-1])
sage: a.hermite_form()
[0 1]
sage: a.pivots()
(1,)
sage: a = matrix(ZZ, 1,2,[0,0])
sage: a.hermite_form()
[0 0]
sage: a.pivots()
()
sage: a = matrix(ZZ,1,3); a
[0 0 0]
sage: a.echelon_form(include_zero_rows=False)
[]
sage: a.echelon_form(include_zero_rows=True)
[0 0 0]

Illustrate using various algorithms.:

sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari0�)
[1 2 3]
[0 3 6]
[0 0 0]

(continues on next page)
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(continued from previous page)

sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari4�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�padic�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�default�)
[1 2 3]
[0 3 6]
[0 0 0]

The ‘ntl’ algorithm doesn’t work on matrices that do not have full rank.:

sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�ntl�)
Traceback (most recent call last):
...
ValueError: ntl only computes HNF for square matrices of full rank.
sage: matrix(ZZ,3,[0] +[2..9]).hermite_form(algorithm=�ntl�)
[1 0 0]
[0 1 0]
[0 0 3]

elementary_divisors(algorithm='pari')
Return the elementary divisors of self, in order.

Warning

This is MUCH faster than the smith_form() function.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of left multiplication
of this matrix. They are ordered in reverse by divisibility.

INPUT:

• self – matrix

• algorithm – (default: �pari�)

– �pari� – works robustly, but is slower.

– �linbox� – use linbox (currently off, broken)

OUTPUT: list of integers

Note

These are the invariants of the cokernel of left multiplication:
sage: M = Matrix([[3,0,1],[0,1,0]])
sage: M
[3 0 1]
[0 1 0]
sage: M.elementary_divisors()
[1, 1]
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sage: M.transpose().elementary_divisors()
[1, 1, 0]

EXAMPLES:

sage: matrix(3, range(9)).elementary_divisors()
[1, 3, 0]
sage: matrix(3, range(9)).elementary_divisors(algorithm=�pari�)
[1, 3, 0]
sage: C = MatrixSpace(ZZ,4)([3,4,5,6,7,3,8,10,14,5,6,7,2,2,10,9])
sage: C.elementary_divisors()
[1, 1, 1, 687]

sage: M = matrix(ZZ, 3, [1,5,7, 3,6,9, 0,1,2])
sage: M.elementary_divisors()
[1, 1, 6]

This returns a copy, which is safe to change:

sage: edivs = M.elementary_divisors()
sage: edivs.pop()
6
sage: M.elementary_divisors()
[1, 1, 6]

See also

smith_form()

frobenius(*args, **kwds)
Deprecated: Use frobenius_form() instead. See Issue #36396 for details.

frobenius_form(flag=0, var='x')
Return the Frobenius form (rational canonical form) of this matrix.

INPUT:

• flag – 0 (default), 1 or 2 as follows:

– 0 – (default) return the Frobenius form of this
matrix

– 1 – return only the elementary divisor
polynomials, as polynomials in var

– 2 – return a two-components vector [F,B] where F
is the Frobenius form and B is the basis change so that𝑀 = 𝐵−1𝐹𝐵

• var – string (default: �x�)

ALGORITHM: uses PARI’s pari:matfrobenius

EXAMPLES:

sage: A = MatrixSpace(ZZ, 3)(range(9))
sage: A.frobenius_form(0)

(continues on next page)
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(continued from previous page)

[ 0 0 0]
[ 1 0 18]
[ 0 1 12]
sage: A.frobenius_form(1)
[x^3 - 12*x^2 - 18*x]
sage: A.frobenius_form(1, var=�y�)
[y^3 - 12*y^2 - 18*y]
sage: F, B = A.frobenius_form(2)
sage: A == B^(-1)*F*B
True
sage: a=matrix([])
sage: a.frobenius_form(2)
([], [])
sage: a.frobenius_form(0)
[]
sage: a.frobenius_form(1)
[]
sage: B = random_matrix(ZZ,2,3)
sage: B.frobenius_form()
Traceback (most recent call last):
...
ArithmeticError: frobenius matrix of non-square matrix not defined.

AUTHORS:

• Martin Albrecht (2006-04-02)

TODO: - move this to work for more general matrices than just over Z. This will require fixing how PARI
polynomials are coerced to Sage polynomials.

gcd()

Return the gcd of all entries of self; very fast.

EXAMPLES:

sage: a = matrix(ZZ,2, [6,15,-6,150])
sage: a.gcd()
3

height()

Return the height of this matrix, i.e., the max absolute value of the entries of the matrix.

OUTPUT: nonnegative integer

EXAMPLES:

sage: a = Mat(ZZ,3)(range(9))
sage: a.height()
8
sage: a = Mat(ZZ,2,3)([-17,3,-389,15,-1,0]); a
[ -17 3 -389]
[ 15 -1 0]
sage: a.height()
389

hermite_form(algorithm='default', proof=None, include_zero_rows=True, transformation=False, D=None)
Return the echelon form of this matrix over the integers, also known as the hermite normal form (HNF).

INPUT:
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• algorithm – string; the algorithm to use. Valid options are:

– �default� – let Sage pick an algorithm (default). Up to 75 rows or columns with no transforma-
tion matrix, use pari with flag 0; otherwise, use flint.

– �flint� – use flint

– �ntl� – use NTL (only works for square matrices of full rank!)

– �padic� – an asymptotically fast 𝑝-adic modular algorithm, If your matrix has large coefficients
and is small, you may also want to try this.

– �pari� – use PARI with flag 1

– �pari0� – use PARI with flag 0

– �pari1� – use PARI with flag 1

– �pari4� – use PARI with flag 4 (use heuristic LLL)

• proof – (default: True) if proof=False certain determinants are computed using a randomized hy-
brid 𝑝-adic multimodular strategy until it stabilizes twice (instead of up to the Hadamard bound). It is
incredibly unlikely that one would ever get an incorrect result with proof=False.

• include_zero_rows – boolean (default: True); if False, don’t include zero rows

• transformation – if given, also compute transformation matrix; only valid for flint and padic al-
gorithm

• D – (default: None) if given and the algorithm is �ntl�, then D must be a multiple of the determinant
and this function will use that fact

OUTPUT:

The Hermite normal form (=echelon form over Z) of self as an immutable matrix.

EXAMPLES:

sage: A = MatrixSpace(ZZ,2)([1,2,3,4])
sage: A.echelon_form()
[1 0]
[0 2]
sage: A = MatrixSpace(ZZ,5)(range(25))
sage: A.echelon_form()
[ 5 0 -5 -10 -15]
[ 0 1 2 3 4]
[ 0 0 0 0 0]
[ 0 0 0 0 0]
[ 0 0 0 0 0]

Getting a transformation matrix in the nonsquare case:

sage: A = matrix(ZZ,5,3,[1..15])
sage: H, U = A.hermite_form(transformation=True, include_zero_rows=False)
sage: H
[1 2 3]
[0 3 6]
sage: U
[ 0 0 0 4 -3]
[ 0 0 0 13 -10]
sage: U*A == H
True
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Note

If ‘ntl’ is chosen for a non square matrix this function raises a ValueError.

Special cases: 0 or 1 rows:

sage: a = matrix(ZZ, 1,2,[0,-1])
sage: a.hermite_form()
[0 1]
sage: a.pivots()
(1,)
sage: a = matrix(ZZ, 1,2,[0,0])
sage: a.hermite_form()
[0 0]
sage: a.pivots()
()
sage: a = matrix(ZZ,1,3); a
[0 0 0]
sage: a.echelon_form(include_zero_rows=False)
[]
sage: a.echelon_form(include_zero_rows=True)
[0 0 0]

Illustrate using various algorithms.:

sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari0�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�pari4�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�padic�)
[1 2 3]
[0 3 6]
[0 0 0]
sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�default�)
[1 2 3]
[0 3 6]
[0 0 0]

The ‘ntl’ algorithm doesn’t work on matrices that do not have full rank.:

sage: matrix(ZZ,3,[1..9]).hermite_form(algorithm=�ntl�)
Traceback (most recent call last):
...
ValueError: ntl only computes HNF for square matrices of full rank.
sage: matrix(ZZ,3,[0] +[2..9]).hermite_form(algorithm=�ntl�)
[1 0 0]
[0 1 0]
[0 0 3]
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index_in_saturation(proof=None)
Return the index of self in its saturation.

INPUT:

• proof – (default: use proof.linear_algebra()); if False, the determinant calculations are done with
proof=False

OUTPUT: positive integer; the index of the row span of this matrix in its saturation

ALGORITHM:

Use Hermite normal form twice to find an invertible matrix whose inverse transforms a matrix with the same
row span as self to its saturation, then compute the determinant of that matrix.

EXAMPLES:

sage: A = matrix(ZZ, 2,3, [1..6]); A
[1 2 3]
[4 5 6]
sage: A.index_in_saturation()
3
sage: A.saturation()
[1 2 3]
[1 1 1]

insert_row(index, row)
Create a new matrix from self with.

INPUT:

• index – integer

• row – a vector

EXAMPLES:

sage: X = matrix(ZZ,3,range(9)); X
[0 1 2]
[3 4 5]
[6 7 8]
sage: X.insert_row(1, [1,5,-10])
[ 0 1 2]
[ 1 5 -10]
[ 3 4 5]
[ 6 7 8]
sage: X.insert_row(0, [1,5,-10])
[ 1 5 -10]
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
sage: X.insert_row(3, [1,5,-10])
[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 1 5 -10]

integer_valued_polynomials_generators()

Determine the generators of the ring of integer valued polynomials on this matrix.

OUTPUT:
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A pair (mu_B, P) where P is a list of polynomials in 2[𝑋] such that

{𝑓 ∈ 2[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(Z)} = 𝜇𝐵2[𝑋] +
∑︁
𝑔∈𝑃

𝑔Z[𝑋]

where 𝐵 is this matrix.

EXAMPLES:

sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])

See also

compute_J_ideal, integer_valued_polynomials_generators()

inverse_of_unit()

If self is a matrix with determinant 1 or −1 return the inverse of self as a matrix over 𝑍𝑍.

EXAMPLES:

sage: m = matrix(ZZ, 2, [2,1,1,1]).inverse_of_unit()
sage: m
[ 1 -1]
[-1 2]
sage: parent(m)
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

sage: matrix(2, [2,1,0,1]).inverse_of_unit()
Traceback (most recent call last):
...
ArithmeticError: non-invertible matrix

is_LLL_reduced(delta=None, eta=None, algorithm='fpLLL')
Return True if this lattice is (𝛿, 𝜂)-LLL reduced. See self.LLL for a definition of LLL reduction.

INPUT:

• delta – (default: 0.99) parameter 𝛿 as described above

• eta – (default: 0.501) parameter 𝜂 as described above

• algorithm – either �fpLLL� (default) or �sage�

EXAMPLES:

sage: A = random_matrix(ZZ, 10, 10)
sage: L = A.LLL()
sage: A.is_LLL_reduced()
False
sage: L.is_LLL_reduced()
True

The �sage� algorithm currently does not work for matrices with linearly dependent rows:
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sage: A = matrix(ZZ, [[1, 2, 3], [2, 4, 6]])
sage: A.is_LLL_reduced(algorithm=�sage�)
Traceback (most recent call last):
...
ValueError: linearly dependent input for module version of Gram-Schmidt

is_one()

Test whether self is the identity matrix.

EXAMPLES:

sage: matrix(2, [1,0,0,1]).is_one()
True
sage: matrix(2, [1,1,0,1]).is_one()
False
sage: matrix(2, 3, [1,0,0,0,1,0]).is_one()
False

is_primitive()

Test whether the matrix is primitive.

An integral matrix 𝐴 is primitive if all its entries are nonnegative and for some positive integer 𝑛 the matrix
𝐴𝑛 has all its entries positive.

EXAMPLES:

sage: m = matrix(3, [1,1,0,0,0,1,1,0,0])
sage: m.is_primitive()
True
sage: m**4
[3 2 1]
[1 1 1]
[2 1 1]

sage: m = matrix(4, [[1,1,0,0],[0,0,1,0],[0,0,0,1],[1,0,0,0]])
sage: m.is_primitive()
True
sage: m**6
[4 3 2 1]
[1 1 1 1]
[2 1 1 1]
[3 2 1 1]

sage: m = matrix(4, [[0,1,0,1],[1,0,1,0],[0,1,0,1],[1,0,1,0]])
sage: m.is_primitive()
False

Testing extremal matrices:

sage: def matrix1(d):
....: m = matrix(d)
....: m[0,0] = 1
....: for i in range(d-1):
....: m[i,i+1] = m[i+1,i] = 1
....: return m
sage: all(matrix1(d).is_primitive() for d in range(2,20))
True

(continues on next page)
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sage: def matrix2(d):
....: m = matrix(d)
....: for i in range(d-1):
....: m[i,i+1] = 1
....: m[d-1,0] = m[d-1,1] = 1
....: return m
sage: all(matrix2(d).is_primitive() for d in range(2,20))
True

Non-primitive families:

sage: def matrix3(d):
....: m = matrix(d)
....: m[0,0] = 1
....: for i in range(d-1):
....: m[i,i+1] = 1
....: return m
sage: any(matrix3(d).is_primitive() for d in range(2,20))
False

minpoly(var='x', algorithm=None)
INPUT:

• var – a variable name

• algorithm – either �linbox� (default) or �generic�

EXAMPLES:

sage: A = matrix(ZZ, 6, range(36))
sage: A.minpoly()
x^3 - 105*x^2 - 630*x

sage: A = Mat(ZZ, 6)([k^2 for k in range(36)])
sage: A.minpoly(algorithm=�linbox�)
x^4 - 2695*x^3 - 257964*x^2 + 1693440*x
sage: A.minpoly(algorithm=�generic�)
x^4 - 2695*x^3 - 257964*x^2 + 1693440*x

On non square matrices, this method raises an ArithmeticError:

sage: matrix(ZZ, 2, 1).minpoly()
Traceback (most recent call last):
...
ArithmeticError: only valid for square matrix

null_ideal(b=0)
Return the (𝑏)-ideal of this matrix.

Let 𝐵 be a 𝑛× 𝑛 matrix. The null ideal modulo 𝑏, or (𝑏)-ideal, is

𝑁(𝑏)(𝐵) = {𝑓 ∈ Z[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(𝑏Z)}.

INPUT:

• b – an element of Z (default: 0)

OUTPUT: an ideal in Z[𝑋]

EXAMPLES:
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sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.null_ideal()
Principal ideal (x^3 + x^2 - 12*x - 20) of

Univariate Polynomial Ring in x over Integer Ring
sage: B.null_ideal(8)
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of

Univariate Polynomial Ring in x over Integer Ring
sage: B.null_ideal(6)
Ideal (6, 2*x^3 + 2*x^2 - 24*x - 40, 3*x^2 + 3*x) of

Univariate Polynomial Ring in x over Integer Ring

See also

compute_J_ideal, null_ideal()

p_minimal_polynomials(p, s_max=None)
Compute (𝑝𝑠)-minimal polynomials 𝜈𝑠 of this matrix.

For 𝑠 ≥ 0, a (𝑝𝑠)-minimal polynomial of a matrix 𝐵 is a monic polynomial 𝑓 ∈ Z[𝑋] of minimal degree
such that all entries of 𝑓(𝐵) are divisible by 𝑝𝑠.

Compute a finite subset 𝒮 of the positive integers and (𝑝𝑠)-minimal polynomials 𝜈𝑠 for 𝑠 ∈ 𝒮 .

For 0 < 𝑡 ≤ max𝒮 , a (𝑝𝑡)-minimal polynomial is given by 𝜈𝑠 where 𝑠 = min{𝑟 ∈ 𝒮 | 𝑟 ≥ 𝑡}. For
𝑡 > max𝒮 , the minimal polynomial of 𝐵 is also a (𝑝𝑡)-minimal polynomial.

INPUT:

• p – a prime in Z

• s_max – positive integer (default: None); if set, only (𝑝𝑠)-minimal polynomials for s <= s_max are
computed (see below for details)

OUTPUT:

A dictionary. Keys are the finite set 𝒮, the values are the associated (𝑝𝑠)-minimal polynomials 𝜈𝑠, 𝑠 ∈ 𝒮 .

Setting s_max only affects the output if s_max is at most max𝒮 where 𝒮 denotes the full set. In that case,
only those 𝜈𝑠 with s <= s_max are returned where s_max is always included even if it is not included in
the full set 𝒮.

EXAMPLES:

sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: B.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}

See also

compute_J_ideal, p_minimal_polynomials()

pivots()

Return the pivot column positions of this matrix.

OUTPUT: a tuple of Python integers: the position of the first nonzero entry in each row of the echelon form.

EXAMPLES:
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sage: n = 3; A = matrix(ZZ,n,range(n^2)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.pivots()
(0, 1)
sage: A.echelon_form()
[ 3 0 -3]
[ 0 1 2]
[ 0 0 0]

prod_of_row_sums(cols)
Return the product of the sums of the entries in the submatrix of self with given columns.

INPUT:

• cols – list (or set) of integers representing columns of self

OUTPUT: integer

EXAMPLES:

sage: a = matrix(ZZ,2,3,[1..6]); a
[1 2 3]
[4 5 6]
sage: a.prod_of_row_sums([0,2])
40
sage: (1+3)*(4+6)
40
sage: a.prod_of_row_sums(set([0,2]))
40

randomize(density=1, x=None, y=None, distribution=None, nonzero=False)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

The parameters are the same as the ones for the integer ring’s random_element function.

If x and y are given, randomized entries of this matrix have to be between x and y and have density 1.

INPUT:

• self – a mutable matrix over ZZ

• density – a float between 0 and 1

• x, y – if not None, these are passed to the
ZZ.random_element function as the upper and lower endpoints in the uniform distribution

• distribution – would also be passed into ZZ.random_element if given

• nonzero – boolean (default: False); whether the new entries are guaranteed to be zero

OUTPUT: None, the matrix is modified in-place

EXAMPLES:

sage: A = matrix(ZZ, 2,3, [1..6])
sage: ranks = [True, True, True]
sage: while any(ranks):
....: A.randomize()
....: ranks[A.rank()] = False

(continues on next page)
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sage: mini = 0
sage: maxi = 0
sage: while mini != -30 and maxi != 30:
....: A.randomize(x=-30, y=30)
....: mini = min(min(A.list()), mini)
....: maxi = min(min(A.list()), maxi)

rank(algorithm='modp')

Return the rank of this matrix.

INPUT:

• algorithm – either �modp� (default) or �flint� or �linbox�

OUTPUT: nonnegative integer – the rank

Note

The rank is cached.

ALGORITHM:

If set to �modp�, first check if the matrix has maximum possible rank by working modulo one random
prime. If not, call LinBox’s rank function.

EXAMPLES:

sage: a = matrix(ZZ,2,3,[1..6]); a
[1 2 3]
[4 5 6]
sage: a.rank()
2
sage: a = matrix(ZZ,3,3,[1..9]); a
[1 2 3]
[4 5 6]
[7 8 9]
sage: a.rank()
2

Here is a bigger example - the rank is of course still 2:

sage: a = matrix(ZZ,100,[1..100^2]); a.rank()
2

rational_reconstruction(N)
Use rational reconstruction to lift self to a matrix over the rational numbers (if possible), where we view
self as a matrix modulo N.

INPUT:

• N – integer

OUTPUT: matrix over 2 or raise a ValueError

EXAMPLES: We create a random 4x4 matrix over ZZ.

sage: A = matrix(ZZ, 4, [4, -4, 7, 1, -1, 1, -1, -12, -1, -1, 1, -1, -3, 1, 5,
→˓ -1])
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There isn’t a unique rational reconstruction of it:

sage: A.rational_reconstruction(11)
Traceback (most recent call last):
...
ValueError: rational reconstruction does not exist

We throw in a denominator and reduce the matrix modulo 389 - it does rationally reconstruct.

sage: B = (A/3 % 389).change_ring(ZZ)
sage: B.rational_reconstruction(389) == A/3
True

row(i, from_list=False)
Return the 𝑖-th row of this matrix as a dense vector.

INPUT:

• i – integer

• from_list – ignored

EXAMPLES:

sage: m = matrix(ZZ, 2, [1, -2, 3, 4])
sage: m.row(0)
(1, -2)
sage: m.row(1)
(3, 4)
sage: m.row(1, from_list=True)
(3, 4)
sage: m.row(-2)
(1, -2)

sage: m.row(2)
Traceback (most recent call last):
...
IndexError: row index out of range
sage: m.row(-3)
Traceback (most recent call last):
...
IndexError: row index out of range

saturation(p=0, proof=None, max_dets=5)
Return a saturation matrix of self, which is a matrix whose rows span the saturation of the row span of self.
This is not unique.

The saturation of a Z module𝑀 embedded in Z𝑛 is a module 𝑆 that contains𝑀 with finite index such that
Z𝑛/𝑆 is torsion free. This function takes the row span𝑀 of self, and finds another matrix of full rank with
row span the saturation of𝑀 .

INPUT:

• p – (default: 0) if nonzero given, saturate only at the prime 𝑝, i.e., return a matrix whose row span is a
Z-module 𝑆 that contains self and such that the index of 𝑆 in its saturation is coprime to 𝑝. If 𝑝 is
None, return full saturation of self.

• proof – (default: use proof.linear_algebra()); if False, the determinant calculations are done with
proof=False
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• max_dets – (default: 5) technical parameter - max number of determinant to compute when bounding
prime divisor of self in its saturation.

OUTPUT: matrix over ZZ

Note

The result is not cached.

ALGORITHM: 1. Replace input by a matrix of full rank got from a subset of the rows. 2. Divide out
any common factors from rows. 3. Check max_dets random dets of submatrices to see if their GCD (with
p) is 1 - if so matrix is saturated and we’re done. 4. Finally, use that if A is a matrix of full rank, then
ℎ𝑛𝑓(𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒(𝐴))−1 *𝐴 is a saturation of A.

EXAMPLES:

sage: A = matrix(ZZ, 3, 5, [-51, -1509, -71, -109, -593, -19, -341, 4, 86, 98,
→˓ 0, -246, -11, 65, 217])
sage: A.echelon_form()
[ 1 5 2262 20364 56576]
[ 0 6 35653 320873 891313]
[ 0 0 42993 386937 1074825]
sage: S = A.saturation(); S
[ -51 -1509 -71 -109 -593]
[ -19 -341 4 86 98]
[ 35 994 43 51 347]

Notice that the saturation spans a different module than A.

sage: S.echelon_form()
[ 1 2 0 8 32]
[ 0 3 0 -2 -6]
[ 0 0 1 9 25]
sage: V = A.row_space(); W = S.row_space()
sage: V.is_submodule(W)
True
sage: V.index_in(W)
85986
sage: V.index_in_saturation()
85986

We illustrate each option:

sage: S = A.saturation(p=2)
sage: S = A.saturation(proof=False)
sage: S = A.saturation(max_dets=2)

smith_form(transformation=True, integral=None)
Return the smith normal form of this matrix, that is the diagonal matrix 𝑆 with diagonal entries the ordered
elementary divisors of this matrix.

INPUT:

• transformation – boolean (default: True); whether to return the transformation matrices 𝑈 and
𝑉 such that 𝑆 = 𝑈 · 𝑠𝑒𝑙𝑓 · 𝑉

• integral – a subring of the base ring or True (default: None); ignored for matrices with integer
entries
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Note

The elementary_divisors() function, which returns the diagonal entries of 𝑆, is VASTLY faster
than this function.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of this matrix. They
are ordered in reverse by divisibility.

EXAMPLES:

sage: A = MatrixSpace(IntegerRing(), 3)(range(9))
sage: D, U, V = A.smith_form()
sage: D
[1 0 0]
[0 3 0]
[0 0 0]
sage: U
[ 0 2 -1]
[ 0 -1 1]
[ 1 -2 1]
sage: V
[ 0 0 1]
[-1 2 -2]
[ 1 -1 1]
sage: U*A*V
[1 0 0]
[0 3 0]
[0 0 0]

It also makes sense for nonsquare matrices:

sage: A = Matrix(ZZ,3,2,range(6))
sage: D, U, V = A.smith_form()
sage: D
[1 0]
[0 2]
[0 0]
sage: U
[ 0 2 -1]
[ 0 -1 1]
[ 1 -2 1]
sage: V
[-1 1]
[ 1 0]
sage: U * A * V
[1 0]
[0 2]
[0 0]

Empty matrices are handled sensibly (see Issue #3068):

sage: m = MatrixSpace(ZZ, 2,0)(0); d,u,v = m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(ZZ, 0,2)(0); d,u,v = m.smith_form(); u*m*v == d
True
sage: m = MatrixSpace(ZZ, 0,0)(0); d,u,v = m.smith_form(); u*m*v == d
True
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See also

elementary_divisors()

symplectic_form()

Find a symplectic basis for self if self is an anti-symmetric, alternating matrix.

Return a pair (F, C) such that the rows of C form a symplectic basis for self and F = C * self *
C.transpose().

Raise a ValueError if self is not anti-symmetric, or self is not alternating.

Anti-symmetric means that𝑀 = −𝑀 𝑡. Alternating means that the diagonal of𝑀 is identically zero.

A symplectic basis is a basis of the form 𝑒1, . . . , 𝑒𝑗 , 𝑓1, . . . 𝑓𝑗 , 𝑧1, . . . , 𝑧𝑘 such that

• 𝑧𝑖𝑀𝑣𝑡 = 0 for all vectors 𝑣

• 𝑒𝑖𝑀𝑒𝑗
𝑡 = 0 for all 𝑖, 𝑗

• 𝑓𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖, 𝑗

• 𝑒𝑖𝑀𝑓𝑖
𝑡 = 1 for all 𝑖

• 𝑒𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖 not equal

𝑗.

The ordering for the factors 𝑑𝑖|𝑑𝑖+1 and for the placement of zeroes was chosen to agree with the output of
smith_form().

See the example for a pictorial description of such a basis.

EXAMPLES:

sage: E = matrix(ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0,␣
→˓0, 8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
[ 0 14 0 -8 -2]
[-14 0 -3 -11 4]
[ 0 3 0 0 0]
[ 8 11 0 0 8]
[ 2 -4 0 -8 0]
sage: F, C = E.symplectic_form()
sage: F
[ 0 0 1 0 0]
[ 0 0 0 2 0]
[-1 0 0 0 0]
[ 0 -2 0 0 0]
[ 0 0 0 0 0]
sage: F == C * E * C.transpose()
True
sage: E.smith_form()[0]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 2 0 0]
[0 0 0 2 0]
[0 0 0 0 0]

transpose()

Return the transpose of self, without changing self.

EXAMPLES:
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We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: A = matrix(ZZ, 2, 3, range(6))
sage: type(A)
<class �sage.matrix.matrix_integer_dense.Matrix_integer_dense�>
sage: B = A.transpose()
sage: print(B)
[0 3]
[1 4]
[2 5]
sage: print(A)
[0 1 2]
[3 4 5]

.T is a convenient shortcut for the transpose:

sage: A.T
[0 3]
[1 4]
[2 5]

sage: A.subdivide(None, 1); A
[0|1 2]
[3|4 5]
sage: A.transpose()
[0 3]
[---]
[1 4]
[2 5]
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class sage.matrix.matrix_integer_sparse.Matrix_integer_sparse

Bases: Matrix_sparse

Create a sparse matrix over the integers.

INPUT:

• parent – a matrix space over ZZ

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries are of type Integer

charpoly(var='x', algorithm=None)
Return the characteristic polynomial of this matrix.

INPUT:

• var – (default: �x�) the name of the variable of the polynomial

• algorithm – (default: None) one of None, �linbox�, or an algorithm accepted by sage.
matrix.matrix_sparse.Matrix_sparse.charpoly()

EXAMPLES:

sage: M = MatrixSpace(ZZ, 4, sparse=True)
sage: m = M()
sage: m[0,0] = m[1,2] = m[2,3] = m[3,3] = 1
sage: m[0,2] = m[1,3] = m[2,0] = m[3,0] = -3
sage: m[1,1] = 2
sage: m
[ 1 0 -3 0]
[ 0 2 1 -3]
[-3 0 0 1]
[-3 0 0 1]
sage: m.charpoly()
x^4 - 4*x^3 - 4*x^2 + 16*x
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elementary_divisors(algorithm='pari')
Return the elementary divisors of self, in order.

The elementary divisors are the invariants of the finite abelian group that is the cokernel of left multiplication
by this matrix. They are ordered in reverse by divisibility.

INPUT:

• self – matrix

• algorithm – (default: �pari�)

– ‘pari’: works robustly, but is slower

– ‘linbox’ – use linbox (currently off, broken)

OUTPUT: list of integers

EXAMPLES:

sage: matrix(3, range(9),sparse=True).elementary_divisors()
[1, 3, 0]
sage: M = matrix(ZZ, 3, [1,5,7, 3,6,9, 0,1,2], sparse=True)
sage: M.elementary_divisors()
[1, 1, 6]

This returns a copy, which is safe to change:

sage: edivs = M.elementary_divisors()
sage: edivs.pop()
6
sage: M.elementary_divisors()
[1, 1, 6]

See also

smith_form()

hermite_form(algorithm='default', cutoff=0, **kwds)
Return the echelon form of self.

Note

This row reduction does not use division if the matrix is not over a field (e.g., if the matrix is over the
integers). If you want to calculate the echelon form using division, then use rref(), which assumes that
the matrix entries are in a field (specifically, the field of fractions of the base ring of the matrix).

INPUT:

• algorithm – string. Which algorithm to use. Choices are

– �default�: Let Sage choose an algorithm (default).

– �classical�: Gauss elimination.

– �partial_pivoting�: Gauss elimination, using partial pivoting (if base ring has absolute
value)
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– �scaled_partial_pivoting� – Gauss elimination, using scaled partial pivoting (if base
ring has absolute value)

– �scaled_partial_pivoting_valuation�: Gauss elimination, using scaled partial piv-
oting (if base ring has valuation)

– �strassen�: use a Strassen divide and conquer algorithm (if available)

• cutoff – integer; only used if the Strassen algorithm is selected

• transformation – boolean; whether to also return the transformation matrix. Some matrix back-
ends do not provide this information, in which case this option is ignored.

OUTPUT:

The reduced row echelon form of self, as an immutable matrix. Note that self is not changed by this
command. Use echelonize() to change self in place.

If the optional parameter transformation=True is specified, the output consists of a pair (𝐸, 𝑇 ) of
matrices where 𝐸 is the echelon form of self and 𝑇 is the transformation matrix.

EXAMPLES:

sage: MS = MatrixSpace(GF(19), 2, 3)
sage: C = MS.matrix([1,2,3,4,5,6])
sage: C.rank()
2
sage: C.nullity()
0
sage: C.echelon_form()
[ 1 0 18]
[ 0 1 2]

The matrix library used for Z/𝑝-matrices does not return the transformation matrix, so the transforma-
tion option is ignored:

sage: C.echelon_form(transformation=True)
[ 1 0 18]
[ 0 1 2]

sage: D = matrix(ZZ, 2, 3, [1,2,3,4,5,6])
sage: D.echelon_form(transformation=True)
(
[1 2 3] [ 1 0]
[0 3 6], [ 4 -1]
)
sage: E, T = D.echelon_form(transformation=True)
sage: T*D == E
True

minpoly(var='x', algorithm=None)
Return the minimal polynomial of this matrix.

INPUT:

• var – (default: �x�) the name of the variable of the polynomial

• algorithm – (default: None) one of None, �linbox�, or an algorithm accepted by sage.
matrix.matrix_sparse.Matrix_sparse.minpoly()

EXAMPLES:
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sage: M = MatrixSpace(ZZ, 4, sparse=True)
sage: m = M({(0, 0):2, (1, 1):1, (2, 1):-8, (2, 2):2, (2, 3):-1, (3, 3):1})
sage: m
[ 2 0 0 0]
[ 0 1 0 0]
[ 0 -8 2 -1]
[ 0 0 0 1]
sage: m.minpoly()
x^2 - 3*x + 2

rank(algorithm=None)
Compute the rank of this matrix.

INPUT:

• algorithm – (optional) one of None, �linbox� or �generic�

EXAMPLES:

sage: M = MatrixSpace(ZZ, 3, 2, sparse=True)
sage: m = M([1, 0, 2, 3, -1, 0])
sage: m.rank()
2

rational_reconstruction(N)
Use rational reconstruction to lift self to a matrix over the rational numbers (if possible), where we view
self as a matrix modulo 𝑁 .

EXAMPLES:

sage: A = matrix(ZZ, 3, 4, [(1/3)%500, 2, 3, (-4)%500,
....: 7, 2, 2, 3,
....: 4, 3, 4, (5/7)%500], sparse=True)
sage: A.rational_reconstruction(500)
[1/3 2 3 -4]
[ 7 2 2 3]
[ 4 3 4 5/7]

smith_form(transformation=True, integral=None)
Return the smith normal form of this matrix, that is the diagonal matrix 𝑆 with diagonal entries the ordered
elementary divisors of this matrix.

INPUT:

• transformation – boolean (default: True); whether to return the transformation matrices 𝑈 and
𝑉 such that 𝑆 = 𝑈 · 𝑠𝑒𝑙𝑓 · 𝑉

• integral – a subring of the base ring or True (default: None); ignored for matrices with integer
entries

This version is for sparse matrices and simply makes the matrix dense and calls the version for dense integer
matrices.

Note

The elementary_divisors() function, which returns the diagonal entries of S, is VASTLY faster
than this function.
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The elementary divisors are the invariants of the finite abelian group that is the cokernel of this matrix. They
are ordered in reverse by divisibility.

EXAMPLES:

sage: A = MatrixSpace(IntegerRing(), 3, sparse=True)(range(9))
sage: D, U, V = A.smith_form()
sage: D
[1 0 0]
[0 3 0]
[0 0 0]
sage: U
[ 0 2 -1]
[ 0 -1 1]
[ 1 -2 1]
sage: V
[ 0 0 1]
[-1 2 -2]
[ 1 -1 1]
sage: U*A*V
[1 0 0]
[0 3 0]
[0 0 0]

It also makes sense for nonsquare matrices:

sage: A = Matrix(ZZ,3,2,range(6), sparse=True)
sage: D, U, V = A.smith_form()
sage: D
[1 0]
[0 2]
[0 0]
sage: U
[ 0 2 -1]
[ 0 -1 1]
[ 1 -2 1]
sage: V
[-1 1]
[ 1 0]
sage: U * A * V
[1 0]
[0 2]
[0 0]

The examples above show that Issue #10626 has been implemented.

See also

elementary_divisors()
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CHAPTER

SEVENTEEN

MODULAR ALGORITHM TO COMPUTE HERMITE NORMAL FORMS
OF INTEGER MATRICES

AUTHORS:

• Clement Pernet and William Stein (2008-02-07): initial version

sage.matrix.matrix_integer_dense_hnf.add_column(B, H_B, a, proof)
The add column procedure.

INPUT:

• B – a square matrix (may be singular)

• H_B – the Hermite normal form of B

• a – an n x 1 matrix, where B has n rows

• proof – boolean; whether to prove result correct, in case we use fallback method

OUTPUT:

• x – a vector such that H’ = H_B.augment(x) is the HNF of A = B.augment(a)

EXAMPLES:

sage: B = matrix(ZZ, 3, 3, [1,2,5, 0,-5,3, 1,1,2])
sage: H_B = B.echelon_form()
sage: a = matrix(ZZ, 3, 1, [1,8,-2])
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: x = hnf.add_column(B, H_B, a, True); x
[18]
[ 3]
[23]
sage: H_B.augment(x)
[ 1 0 17 18]
[ 0 1 3 3]
[ 0 0 18 23]
sage: B.augment(a).echelon_form()
[ 1 0 17 18]
[ 0 1 3 3]
[ 0 0 18 23]

sage.matrix.matrix_integer_dense_hnf.add_column_fallback(B, a, proof)
Simplistic version of add_column, in case the powerful clever one fails (e.g., B is singular).

INPUT:

• B – a square matrix (may be singular)
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• a – an n x 1 matrix, where B has n rows

• proof – boolean; whether to prove result correct

OUTPUT: x; a vector such that H� = H_B.augment(x) is the HNF of A = B.augment(a)

EXAMPLES:

sage: B = matrix(ZZ,3, [-1, -1, 1, -3, 8, -2, -1, -1, -1])
sage: a = matrix(ZZ,3,1, [1,2,3])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.add_column_fallback(B, a, True)
[-3]
[-7]
[-2]
sage: matrix_integer_dense_hnf.add_column_fallback(B, a, False)
[-3]
[-7]
[-2]
sage: B.augment(a).hermite_form()
[ 1 1 1 -3]
[ 0 11 1 -7]
[ 0 0 2 -2]

sage.matrix.matrix_integer_dense_hnf.add_row(A, b, pivots, include_zero_rows)
The add row procedure.

INPUT:

• A – a matrix in Hermite normal form with n column

• b – an n x 1 row matrix

• pivots – sorted list of integers; the pivot positions of A

OUTPUT:

• H – the Hermite normal form of A.stack(b)

• new_pivots – the pivot columns of H

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 2, 3, [-21, -7, 5, 1,20,-7])
sage: b = matrix(ZZ, 1,3, [-1,1,-1])
sage: hnf.add_row(A, b, A.pivots(), True)
(
[ 1 6 29]
[ 0 7 28]
[ 0 0 46], [0, 1, 2]
)
sage: A.stack(b).echelon_form()
[ 1 6 29]
[ 0 7 28]
[ 0 0 46]

sage.matrix.matrix_integer_dense_hnf.benchmark_hnf(nrange, bits=4)
Run benchmark program.

EXAMPLES:
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sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_hnf([10,25],32)
(�sage�, 10, 32, ...),
(�sage�, 25, 32, ...),

sage.matrix.matrix_integer_dense_hnf.benchmark_magma_hnf(nrange, bits=4)
EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.benchmark_magma_hnf([50,100],32) # optional - magma
(�magma�, 50, 32, ...),
(�magma�, 100, 32, ...),

sage.matrix.matrix_integer_dense_hnf.det_from_modp_and_divisor(A, d, p, z_mod,
moduli, z_so_far=1,
N_so_far=1)

This is used for internal purposes for computing determinants quickly (with the hybrid 𝑝-adic / multimodular
algorithm).

INPUT:

• A – a square matrix

• d – a divisor of the determinant of A

• p – a prime

• z_mod – values of det/d (mod …)

• moduli – the moduli so far

• z_so_far – for a modulus p in the list moduli, (z_so_far mod p) is the determinant of A modulo p

• N_so_far – N_so_far is the product over the primes in the list moduli

OUTPUT:

• A triple (det bound, new z_so_far, new N_so_far).

EXAMPLES:

sage: a = matrix(ZZ, 3, [6, 1, 2, -56, -2, -1, -11, 2, -3])
sage: factor(a.det())
-1 * 13 * 29
sage: d = 13
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.det_from_modp_and_divisor(a, d, 97, [], [])
(-377, -29, 97)
sage: a.det()
-377

sage.matrix.matrix_integer_dense_hnf.det_given_divisor(A, d, proof=True, stabilize=2)
Given a divisor d of the determinant of A, compute the determinant of A.

INPUT:

• A – square integer matrix

• d – nonzero integer that is assumed to divide the determinant of A
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• proof – boolean (default: True); compute det modulo enough primes so that the determinant is computed
provably correctly (via the Hadamard bound). It would be VERY hard for det() to fail even when proof
is False.

• stabilize – integer (default: 2); if proof = False, then compute the determinant modulo 𝑝 until stabi-
lize successive modulo determinant computations stabilize.

OUTPUT: integer; determinant

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2])
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False)
-30
sage: matrix_integer_dense_hnf.det_given_divisor(a, 3, proof=False, stabilize=1)
-30
sage: a.det()
-30

Here we illustrate proof=False giving a wrong answer:

sage: p = matrix_integer_dense_hnf.max_det_prime(2)
sage: q = previous_prime(p)
sage: a = matrix(ZZ, 2, [p, 0, 0, q])
sage: p * q
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=2)
0

This still works, because we do not work modulo primes that divide the determinant bound, which is found using
a 𝑝-adic algorithm:

sage: a.det(proof=False, stabilize=2)
70368442188091

3 primes is enough:

sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=3)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=False, stabilize=5)
70368442188091
sage: matrix_integer_dense_hnf.det_given_divisor(a, 1, proof=True)
70368442188091

sage.matrix.matrix_integer_dense_hnf.det_padic(A, proof=True, stabilize=2)
Return the determinant of A, computed using a 𝑝-adic/multimodular algorithm.

INPUT:

• A – a square matrix

• proof – boolean

• stabilize – (default: 2) if proof False, number of successive primes so that CRT det must stabilize

EXAMPLES:

400 Chapter 17. Modular algorithm to compute Hermite normal forms of integer matrices



Matrices and Spaces of Matrices, Release 10.5.rc0

sage: import sage.matrix.matrix_integer_dense_hnf as h
sage: a = matrix(ZZ, 3, [1..9])
sage: h.det_padic(a)
0
sage: a = matrix(ZZ, 3, [1,2,5,-7,8,10,192,5,18])
sage: h.det_padic(a)
-3669
sage: a.determinant(algorithm=�ntl�)
-3669

sage.matrix.matrix_integer_dense_hnf.double_det(A, b, c, proof)
Compute the determinants of the stacked integer matrices A.stack(b) and A.stack(c).

INPUT:

• A – an (n-1) x n matrix

• b – a 1 x n matrix

• c – a 1 x n matrix

• proof – whether or not to compute the det modulo enough times to provably compute the determinant

OUTPUT: a pair of two integers

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import double_det
sage: A = matrix(ZZ, 2, 3, [1,2,3, 4,-2,5])
sage: b = matrix(ZZ, 1, 3, [1,-2,5])
sage: c = matrix(ZZ, 1, 3, [8,2,10])
sage: A.stack(b).det()
-48
sage: A.stack(c).det()
42
sage: double_det(A, b, c, False)
(-48, 42)

sage.matrix.matrix_integer_dense_hnf.extract_ones_data(H , pivots)
Compute ones data and corresponding submatrices of H.

This is used to optimized the add_row() function.

INPUT:

• H – a matrix in HNF

• pivots – list of all pivot column positions of H

OUTPUT:

C, D, E, onecol, onerow, non_onecol, non_onerow where onecol, onerow, non_onecol, non_onerow are as for the
ones function, and C, D, E are matrices:

• C – submatrix of all non-onecol columns and onecol rows

• D – all non-onecol columns and other rows

• E – inverse of D

If D is not invertible or there are 0 or more than 2 non onecols, then C, D, and E are set to None.

EXAMPLES:
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sage: H = matrix(ZZ, 3, 4, [1, 0, 0, 7, 0, 1, 5, 2, 0, 0, 6, 6])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,2])
(
[0]
[5], [6], [1/6], [0, 1], [0, 1], [2], [2]
)

Here we get None’s since the (2,2) position submatrix is not invertible.
sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -145]); H [ 1 0 0 45 -36] [ 0 1 0
131 -107] [ 0 0 0 178 -145] sage: import sage.matrix.matrix_integer_dense_hnf asmatrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.extract_ones_data(H, [0,1,3]) (None, None, None, [0, 1], [0, 1], [2], [2])

sage.matrix.matrix_integer_dense_hnf.hnf(A, include_zero_rows=True, proof=True)
Return the Hermite Normal Form of a general integer matrix A, along with the pivot columns.

INPUT:

• A – an n x m matrix A over the integers

• include_zero_rows – boolean (default: True); whether or not to include zero rows in the output matrix

• proof – whether or not to prove the result correct

OUTPUT: tuple of:

• matrix – the Hermite normal form of A

• pivots – the pivot column positions of A

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,5,[-2, -6, -3, -17, -1, 2, -1, -1, -2, -1, -2, -2, -6, 9,␣
→˓2])
sage: matrix_integer_dense_hnf.hnf(a)
(
[ 2 0 26 -75 -10]
[ 0 1 27 -73 -9]
[ 0 0 37 -106 -13], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.hnf(a.transpose())
(
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0]
[0 0 0], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.hnf(a.transpose(), include_zero_rows=False)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)

sage.matrix.matrix_integer_dense_hnf.hnf_square(A, proof)
INPUT:

• A – a nonsingular n x n matrix over the integers

402 Chapter 17. Modular algorithm to compute Hermite normal forms of integer matrices



Matrices and Spaces of Matrices, Release 10.5.rc0

OUTPUT: the Hermite normal form of A

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: A = matrix(ZZ, 3, [-21, -7, 5, 1,20,-7, -1,1,-1])
sage: hnf.hnf_square(A, False)
[ 1 6 29]
[ 0 7 28]
[ 0 0 46]
sage: A.echelon_form()
[ 1 6 29]
[ 0 7 28]
[ 0 0 46]

sage.matrix.matrix_integer_dense_hnf.hnf_with_transformation(A, proof=True)
Compute the HNF H of A along with a transformation matrix U such that U*A = H.

INPUT:

• A – an n x m matrix A over the integers

• proof – whether or not to prove the result correct

OUTPUT: tuple of:

• matrix – the Hermite normal form H of A

• U – a unimodular matrix such that U * A = H

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: A = matrix(ZZ, 2, [1, -5, -10, 1, 3, 197]); A
[ 1 -5 -10]
[ 1 3 197]
sage: H, U = matrix_integer_dense_hnf.hnf_with_transformation(A)
sage: H
[ 1 3 197]
[ 0 8 207]
sage: U
[ 0 1]
[-1 1]
sage: U*A
[ 1 3 197]
[ 0 8 207]

sage.matrix.matrix_integer_dense_hnf.hnf_with_transformation_tests(n=10, m=5,
trials=10)

Use this to randomly test that hnf with transformation matrix is working.

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import hnf_with_transformation_
→˓tests
sage: hnf_with_transformation_tests(n=15, m=10, trials=10)
0 1 2 3 4 5 6 7 8 9

sage.matrix.matrix_integer_dense_hnf.interleave_matrices(A, B, cols1, cols2)
INPUT:
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• A, B – matrices with the same number of rows

• cols1, cols2 – disjoint lists of integers

OUTPUT:

construct a new matrix C by sticking the columns of A at the positions specified by cols1 and the columns of B at
the positions specified by cols2.

EXAMPLES:

sage: A = matrix(ZZ, 2, [1,2,3,4]); B = matrix(ZZ, 2, [-1,5,2,3])
sage: A
[1 2]
[3 4]
sage: B
[-1 5]
[ 2 3]
sage: import sage.matrix.matrix_integer_dense_hnf as hnf
sage: hnf.interleave_matrices(A, B, [1,3], [0,2])
[-1 1 5 2]
[ 2 3 3 4]

sage.matrix.matrix_integer_dense_hnf.is_in_hnf_form(H , pivots)
Return whether the matrix H is in Hermite normal form with given pivot columns.

INPUT:

• H – matrix

• pivots – sorted list of integers

OUTPUT: boolean

EXAMPLES:

sage: a = matrix(ZZ,3,5,[-2, -6, -3, -17, -1, 2, -1, -1, -2, -1, -2, -2, -6, 9,␣
→˓2])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.is_in_hnf_form(a,range(3))
False
sage: e = a.hermite_form(); p = a.pivots()
sage: matrix_integer_dense_hnf.is_in_hnf_form(e, p)
True

sage.matrix.matrix_integer_dense_hnf.max_det_prime(n)
Return the largest prime so that it is reasonably efficient to compute modulo that prime with n x n matrices in
LinBox.

INPUT:

• n – positive integer

OUTPUT: a prime number

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import max_det_prime
sage: max_det_prime(10000)
8388593
sage: max_det_prime(1000)
8388593

(continues on next page)
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(continued from previous page)

sage: max_det_prime(10)
8388593

sage.matrix.matrix_integer_dense_hnf.ones(H , pivots)
Find all 1 pivot columns of the matrix H in Hermite form, along with the corresponding rows, and also the non 1
pivot columns and non-pivot rows. Here a 1 pivot column is a pivot column so that the leading bottom entry is 1.

INPUT:

• H – matrix in Hermite form

• pivots – list of integers (all pivot positions of H)

OUTPUT:

4-tuple of integer lists: onecol, onerow, non_oneol, non_onerow

EXAMPLES:

sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -
→˓145]); H
[ 1 0 0 45 -36]
[ 0 1 0 131 -107]
[ 0 0 0 178 -145]
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.ones(H, [0,1,3])
([0, 1], [0, 1], [2], [2])

sage.matrix.matrix_integer_dense_hnf.pad_zeros(A, nrows)
Add zeros to the bottom of A so that the resulting matrix has nrows.

INPUT:

• A – a matrix

• nrows – integer that is at least as big as the number of rows of A

OUTPUT: a matrix with nrows rows

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ, 2, 4, [1, 0, 0, 7, 0, 1, 5, 2])
sage: matrix_integer_dense_hnf.pad_zeros(a, 4)
[1 0 0 7]
[0 1 5 2]
[0 0 0 0]
[0 0 0 0]
sage: matrix_integer_dense_hnf.pad_zeros(a, 2)
[1 0 0 7]
[0 1 5 2]

sage.matrix.matrix_integer_dense_hnf.pivots_of_hnf_matrix(H)
Return the pivot columns of a matrix H assumed to be in HNF.

INPUT:

• H – a matrix that must be HNF

OUTPUT: list of pivots

EXAMPLES:
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sage: H = matrix(ZZ, 3, 5, [1, 0, 0, 45, -36, 0, 1, 0, 131, -107, 0, 0, 0, 178, -
→˓145]); H
[ 1 0 0 45 -36]
[ 0 1 0 131 -107]
[ 0 0 0 178 -145]
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.pivots_of_hnf_matrix(H)
[0, 1, 3]

sage.matrix.matrix_integer_dense_hnf.probable_hnf(A, include_zero_rows, proof)
Return the HNF of A or raise an exception if something involving the randomized nature of the algorithm goes
wrong along the way.

Calling this function again a few times should result it in it working, at least if proof=True.

INPUT:

• A – a matrix

• include_zero_rows – boolean

• proof – boolean

OUTPUT:

the Hermite normal form of A. cols – pivot columns

EXAMPLES:

sage: a = matrix(ZZ,4,3,[-1, -1, -1, -20, 4, 1, -1, 1, 2,1,2,3])
sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.probable_hnf(a, True, True)
(
[1 0 0]
[0 1 0]
[0 0 1]
[0 0 0], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, True)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)
sage: matrix_integer_dense_hnf.probable_hnf(a, False, False)
(
[1 0 0]
[0 1 0]
[0 0 1], [0, 1, 2]
)

sage.matrix.matrix_integer_dense_hnf.probable_pivot_columns(A)

INPUT:

• A – a matrix

OUTPUT: a tuple of integers

EXAMPLES:
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sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[ 0 -1 -1]
[ 0 -20 1]
[ 0 1 2]
sage: matrix_integer_dense_hnf.probable_pivot_columns(a)
(1, 2)

sage.matrix.matrix_integer_dense_hnf.probable_pivot_rows(A)
Return rows of A that are very likely to be pivots.

This really finds the pivots of A modulo a random prime.

INPUT:

• A – a matrix

OUTPUT: a tuple of integers

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: a = matrix(ZZ,3,[0, -1, -1, 0, -20, 1, 0, 1, 2])
sage: a
[ 0 -1 -1]
[ 0 -20 1]
[ 0 1 2]
sage: matrix_integer_dense_hnf.probable_pivot_rows(a)
(0, 1)

sage.matrix.matrix_integer_dense_hnf.sanity_checks(times=50, n=8, m=5, proof=True,
stabilize=2, check_using_magma=True)

Run random sanity checks on the modular 𝑝-adic HNF with tall and wide matrices both dense and sparse.

INPUT:

• times – number of times to randomly try matrices with each shape

• n – number of rows

• m – number of columns

• proof – test with proof true

• stabilize – parameter to pass to hnf algorithm when proof is False

• check_using_magma – if True use Magma instead of PARI to check correctness of computed HNF’s.
Since PARI’s HNF is buggy and slow (as of 2008-02-16 non-pivot entries sometimes are not normalized to
be nonnegative) the default is Magma.

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_hnf as matrix_integer_dense_hnf
sage: matrix_integer_dense_hnf.sanity_checks(times=5, check_using_magma=False)
small 8 x 5
0 1 2 3 4 (done)
big 8 x 5
0 1 2 3 4 (done)
small 5 x 8
0 1 2 3 4 (done)

(continues on next page)
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(continued from previous page)

big 5 x 8
0 1 2 3 4 (done)
sparse 8 x 5
0 1 2 3 4 (done)
sparse 5 x 8
0 1 2 3 4 (done)
ill conditioned -- 1000*A -- 8 x 5
0 1 2 3 4 (done)
ill conditioned -- 1000*A but one row -- 8 x 5
0 1 2 3 4 (done)

sage.matrix.matrix_integer_dense_hnf.solve_system_with_difficult_last_row(B, a)
Solve B*x = a when the last row of 𝐵 contains huge entries using a clever trick that reduces the problem to
solve C*x = a where 𝐶 is 𝐵 but with the last row replaced by something small, along with one easy null space
computation. The latter are both solved 𝑝-adically.

INPUT:

• B – a square n x n nonsingular matrix with painful big bottom row

• a – an n x 1 column matrix

OUTPUT: the unique solution to B*x = a

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_hnf import solve_system_with_
→˓difficult_last_row
sage: B = matrix(ZZ, 3, [1,2,4, 3,-4,7, 939082,2930982,132902384098234])
sage: a = matrix(ZZ,3,1, [1,2,5])
sage: z = solve_system_with_difficult_last_row(B, a)
sage: z
[ 106321906985474/132902379815497]
[132902385037291/1329023798154970]
[ -5221794/664511899077485]
sage: B*z
[1]
[2]
[5]
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CHAPTER

EIGHTEEN

SATURATION OVER ZZ

sage.matrix.matrix_integer_dense_saturation.index_in_saturation(A, proof=True)
The index of A in its saturation.

INPUT:

• A – matrix over Z

• proof – boolean (True or False)

OUTPUT: integer

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_saturation import index_in_saturation
sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6]); C = A*B;
→˓ C
[11 16 21]
[19 26 33]
sage: index_in_saturation(C)
18
sage: W = C.row_space()
sage: S = W.saturation()
sage: W.index_in(S)
18

For any zero matrix the index in its saturation is 1 (see Issue #13034):

sage: m = matrix(ZZ, 3)
sage: m
[0 0 0]
[0 0 0]
[0 0 0]
sage: m.index_in_saturation()
1
sage: m = matrix(ZZ, 2, 3)
sage: m
[0 0 0]
[0 0 0]
sage: m.index_in_saturation()
1

sage.matrix.matrix_integer_dense_saturation.p_saturation(A, p, proof=True)
INPUT:

• A – a matrix over ZZ
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• p – a prime

• proof – boolean (default: True)

OUTPUT:

The p-saturation of the matrix A, i.e., a new matrix in Hermite form whose row span a ZZ-module that is
p-saturated.

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_saturation import p_saturation
sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6])
sage: A.det()
6
sage: C = A*B; C
[11 16 21]
[19 26 33]
sage: C2 = p_saturation(C, 2); C2
[ 1 8 15]
[ 0 9 18]
sage: C2.index_in_saturation()
9
sage: C3 = p_saturation(C, 3); C3
[ 1 0 -1]
[ 0 2 4]
sage: C3.index_in_saturation()
2

sage.matrix.matrix_integer_dense_saturation.random_sublist_of_size(k, n)
INPUT:

• k – integer

• n – integer

OUTPUT: a randomly chosen sublist of range(k) of size 𝑛

EXAMPLES:

sage: import sage.matrix.matrix_integer_dense_saturation as s
sage: l = s.random_sublist_of_size(10, 3)
sage: len(l)
3
sage: l_check = [-1] + l + [10]
sage: all(l_check[i] < l_check[i+1] for i in range(4))
True
sage: l = s.random_sublist_of_size(10, 7)
sage: len(l)
7
sage: l_check = [-1] + l + [10]
sage: all(l_check[i] < l_check[i+1] for i in range(8))
True

sage.matrix.matrix_integer_dense_saturation.saturation(A, proof=True, p=0, max_dets=5)
Compute a saturation matrix of 𝐴.

INPUT:

• A – a matrix over Z

• proof – boolean (default: True)
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• p – integer (default: 0); if not 0 only guarantees that output is 𝑝-saturated

• max_dets – integer (default: 4); max number of dets of submatrices to compute

OUTPUT: matrix; saturation of the matrix 𝐴

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_saturation import saturation
sage: A = matrix(ZZ, 2, 2, [3,2,3,4]); B = matrix(ZZ, 2,3,[1,2,3,4,5,6]); C = A*B
sage: C
[11 16 21]
[19 26 33]
sage: C.index_in_saturation()
18
sage: S = saturation(C); S
[11 16 21]
[-2 -3 -4]
sage: S.index_in_saturation()
1
sage: saturation(C, proof=False)
[11 16 21]
[-2 -3 -4]
sage: saturation(C, p=2)
[11 16 21]
[-2 -3 -4]
sage: saturation(C, p=2, max_dets=1)
[11 16 21]
[-2 -3 -4]

sage.matrix.matrix_integer_dense_saturation.solve_system_with_difficult_last_row(B,
A)

Solve the matrix equation B*Z = A when the last row of 𝐵 contains huge entries.

INPUT:

• B – a square n x n nonsingular matrix with painful big bottom row

• A – an n x k matrix

OUTPUT: the unique solution to B*Z = As

EXAMPLES:

sage: from sage.matrix.matrix_integer_dense_saturation import solve_system_with_
→˓difficult_last_row
sage: B = matrix(ZZ, 3, [1,2,3, 3,-1,2,939239082,39202803080,2939028038402834]);␣
→˓A = matrix(ZZ,3,2,[1,2,4,3,-1,0])
sage: X = solve_system_with_difficult_last_row(B, A); X
[ 290668794698843/226075992027744 468068726971/409557956572]
[-226078357385539/1582531944194208 1228691305937/2866905696004]
[ 2365357795/1582531944194208 -17436221/2866905696004]
sage: B*X == A
True
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CHAPTER

NINETEEN

DENSE MATRICES OVER THE RATIONAL FIELD

EXAMPLES:

We create a 3x3 matrix with rational entries and do some operations with it.

sage: a = matrix(QQ, 3,3, [1,2/3, -4/5, 1,1,1, 8,2, -3/19]); a
[ 1 2/3 -4/5]
[ 1 1 1]
[ 8 2 -3/19]
sage: a.det()
2303/285
sage: a.charpoly()
x^3 - 35/19*x^2 + 1259/285*x - 2303/285
sage: b = a^(-1); b
[ -615/2303 -426/2303 418/2303]
[ 2325/2303 1779/2303 -513/2303]
[-1710/2303 950/2303 95/2303]
sage: b.det()
285/2303
sage: a == b
False
sage: a < b
False
sage: b < a
True
sage: a > b
True
sage: a*b
[1 0 0]
[0 1 0]
[0 0 1]

class sage.matrix.matrix_rational_dense.MatrixWindow

Bases: object

class sage.matrix.matrix_rational_dense.Matrix_rational_dense

Bases: Matrix_dense

INPUT:

• parent – a matrix space over QQ

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries are of type Rational
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BKZ(*args, **kwargs)
Return the result of running Block Korkin-Zolotarev reduction on self interpreted as a lattice.

The arguments *args and **kwargs are passed onto sage.matrix.matrix_integer_dense.
Matrix_integer_dense.BKZ(), see there for more details.

EXAMPLES:

sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)])
sage: A.BKZ()
[ 1/28 -1/40 -1/18]
[ 1/28 -1/40 1/18]
[-1/14 -1/40 0]

sage: A = random_matrix(QQ, 10, 10)
sage: d = lcm(a.denom() for a in A.list())
sage: A.BKZ() == (A * d).change_ring(ZZ).BKZ() / d
True

LLL(*args, **kwargs)
Return an LLL reduced or approximated LLL reduced lattice for self interpreted as a lattice.

The arguments *args and **kwargs are passed onto sage.matrix.matrix_integer_dense.
Matrix_integer_dense.LLL(), see there for more details.

EXAMPLES:

sage: A = Matrix(QQ, 3, 3, [1/n for n in range(1, 10)])
sage: A.LLL()
[ 1/28 -1/40 -1/18]
[ 1/28 -1/40 1/18]
[ 0 -3/40 0]
sage: L, U = A.LLL(transformation=True)
sage: U * A == L
True

sage: A = random_matrix(QQ, 10, 10)
sage: d = lcm(a.denom() for a in A.list())
sage: A.LLL() == (A * d).change_ring(ZZ).LLL() / d
True

add_to_entry(i, j, elt)
Add elt to the entry at position (i,j).

EXAMPLES:

sage: m = matrix(QQ, 2, 2)
sage: m.add_to_entry(0, 0, -1/3)
sage: m
[-1/3 0]
[ 0 0]

antitranspose()

Return the antitranspose of self, without changing self.

EXAMPLES:
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sage: A = matrix(QQ,2,3,range(6))
sage: type(A)
<class �sage.matrix.matrix_rational_dense.Matrix_rational_dense�>
sage: A.antitranspose()
[5 2]
[4 1]
[3 0]
sage: A
[0 1 2]
[3 4 5]

sage: A.subdivide(1,2); A
[0 1|2]
[---+-]
[3 4|5]
sage: A.antitranspose()
[5|2]
[-+-]
[4|1]
[3|0]

change_ring(R)
Create the matrix over R with entries the entries of self coerced into R.

EXAMPLES:

sage: a = matrix(QQ,2,[1/2,-1,2,3])
sage: a.change_ring(GF(3))
[2 2]
[2 0]
sage: a.change_ring(ZZ)
Traceback (most recent call last):
...
TypeError: matrix has denominators so can...t change to ZZ
sage: b = a.change_ring(QQ[�x�]); b
[1/2 -1]
[ 2 3]
sage: b.parent()
Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial Ring in␣
→˓x over Rational Field

charpoly(var='x', algorithm=None)
Return the characteristic polynomial of this matrix.

Note

The characteristic polynomial is defined as det(𝑥𝐼 −𝐴).

INPUT:

• var – (optional) name of the variable as a string

• algorithm – an optional specification of an algorithm. It can be one of:

– None: (default) will use flint for small dimensions and linbox otherwise

– �flint�: uses flint library
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– �linbox�: uses linbox library

– �generic�: uses Sage generic implementation

OUTPUT: a polynomial over the rational numbers

EXAMPLES:

sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4])
sage: f = a.charpoly(); f
x^3 - 7/12*x^2 - 149/40*x + 97/30
sage: f(a)
[0 0 0]
[0 0 0]
[0 0 0]

column(i, from_list=False)
Return the 𝑖-th column of this matrix as a dense vector.

INPUT:

• i – integer

• from_list – ignored

EXAMPLES:

sage: m = matrix(QQ, 3, 2, [1/5,-2/3,3/4,4/9,-1,0])
sage: m.column(1)
(-2/3, 4/9, 0)
sage: m.column(1,from_list=True)
(-2/3, 4/9, 0)
sage: m.column(-1)
(-2/3, 4/9, 0)
sage: m.column(-2)
(1/5, 3/4, -1)

sage: m.column(2)
Traceback (most recent call last):
...
IndexError: column index out of range
sage: m.column(-3)
Traceback (most recent call last):
...
IndexError: column index out of range

decomposition(is_diagonalizable=False, dual=False, algorithm=None, height_guess=None, proof=None)
Return the decomposition of the free module on which this matrix A acts from the right (i.e., the action is x
goes to x A), along with whether this matrix acts irreducibly on each factor. The factors are guaranteed to be
sorted in the same way as the corresponding factors of the characteristic polynomial.

Let A be the matrix acting from the on the vector space V of column vectors. Assume that A is square.
This function computes maximal subspaces W_1, …, W_n corresponding to Galois conjugacy classes of
eigenvalues of A. More precisely, let f(X) be the characteristic polynomial of A. This function computes the
subspace 𝑊𝑖 = 𝑘𝑒𝑟(𝑔(𝐴)𝑛), where g_i(X) is an irreducible factor of f(X) and g_i(X) exactly divides f(X).
If the optional parameter is_diagonalizable is True, then we let W_i = ker(g(A)), since then we know that
ker(g(A)) = 𝑘𝑒𝑟(𝑔(𝐴)𝑛).

If dual is True, also returns the corresponding decomposition of V under the action of the transpose of A.
The factors are guaranteed to correspond.
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INPUT:

• is_diagonalizable – ignored

• dual – whether to also return decompositions for the dual

• algorithm – an optional specification of an algorithm

– None – (default) use default algorithm for computing Echelon forms

– ‘multimodular’: much better if the answers factors have small height

• height_guess – positive integer; only used by the multimodular algorithm

• proof – boolean or None (default: None, see proof.linear_algebra or sage.structure.proof); only used
by the multimodular algorithm. Note that the Sage global default is proof=True.

Note

IMPORTANT: If you expect that the subspaces in the answer are spanned by vectors with small
height coordinates, use algorithm=’multimodular’ and height_guess=1; this is potentially much faster
than the default. If you know for a fact the answer will be very small, use algorithm=’multimodular’,
height_guess=bound on height, proof=False.

You can get very very fast decomposition with proof=False.

EXAMPLES:

sage: a = matrix(QQ,3,[1..9])
sage: a.decomposition()
[
(Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2 1], True),
(Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 -1]
[ 0 1 2], True)
]

denominator()

Return the denominator of this matrix.

OUTPUT: a Sage Integer

EXAMPLES:

sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b
[-5007/293 1 2]
[ 3 4 5]
sage: b.denominator()
293

sage: matrix(QQ, 2, [1/2, 1/3, 1/4, 1/5]).denominator()
60

determinant(algorithm=None, proof=None)
Return the determinant of this matrix.

INPUT:
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• algorithm – an optional specification of an algorithm. It can be one of

– None: (default) uses flint

– �flint�: uses flint library

– �pari�: uses PARI library

– �integer�: removes denominator and call determinant on the corresponding
integer matrix

– �generic�: calls the generic Sage implementation

• proof – boolean or None; if None use proof.linear_algebra(); only relevant for the padic algorithm

Note

It would be VERY VERY hard for det to fail even with proof=False.

EXAMPLES:

sage: m = matrix(QQ,3,[1,2/3,4/5, 2,2,2, 5,3,2/5])
sage: m.determinant()
-34/15
sage: m.charpoly()
x^3 - 17/5*x^2 - 122/15*x + 34/15

sage: m = matrix(QQ, 3, [(1/i)**j for i in range(2,5) for j in range(3)])
sage: m.determinant(algorithm=�flint�)
-1/288

sage: m = matrix(QQ, 4, [(-1)**n/n for n in range(1,17)])
sage: m.determinant(algorithm=�pari�)
2/70945875

sage: m = matrix(QQ, 5, [1/(i+j+1) for i in range(5) for j in range(5)])
sage: m.determinant(algorithm=�integer�)
1/266716800000

On non-square matrices, the method raises a ValueError:

sage: matrix(QQ, 2, 3).determinant(algorithm=�flint�)
Traceback (most recent call last):
...
ValueError: non square matrix
sage: matrix(QQ, 2, 3).determinant(algorithm=�pari�)
Traceback (most recent call last):
...
ValueError: non square matrix
sage: matrix(QQ, 2, 3).determinant(algorithm=�integer�)
Traceback (most recent call last):
...
ValueError: non square matrix
sage: matrix(QQ, 2, 3).determinant(algorithm=�generic�)
Traceback (most recent call last):
...
ValueError: non square matrix
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echelon_form(algorithm=None, height_guess=None, proof=None, **kwds)
Return the echelon form of this matrix.

The (row) echelon form of a matrix, see Wikipedia article Row_echelon_form, is the matrix obtained by
performing Gauss elimination on the rows of the matrix.

INPUT: See echelonize() for the options.

EXAMPLES:

sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a
[1/19 1/5 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 12 13 14 15]
sage: a.echelon_form()
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]
sage: a.echelon_form(algorithm=�multimodular�)
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]

The result is an immutable matrix, so if you want to modify the result then you need to make a copy. This
checks that Issue #10543 is fixed.:

sage: A = matrix(QQ, 2, range(6))
sage: E = A.echelon_form()
sage: E.is_mutable()
False
sage: F = copy(E)
sage: F[0,0] = 50
sage: F
[50 0 -1]
[ 0 1 2]

echelonize(algorithm=None, height_guess=None, proof=None, **kwds)
Transform the matrix self into reduced row echelon form in place.

INPUT:

• algorithm – an optional specification of an algorithm. One of

– None: (default) uses flint for small dimension and multimodular otherwise

– �flint�: use the flint library,

– �padic�: an algorithm based on the IML 𝑝-adic solver,

– �multimodular�: uses a multimodular algorithm the uses linbox modulo many primes (likely
to be faster when coefficients are huge),

– �classical�: just clear each column using Gauss elimination.

• height_guess, **kwds – all passed to the multimodular algorithm; ignored by other algorithms

• proof – boolean or None (default: None, see proof.linear_algebra or sage.structure.proof). Passed to
the multimodular algorithm. Note that the Sage global default is proof=True.
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EXAMPLES:

sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5; a
[1/19 1/5 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 12 13 14 15]
sage: a.echelonize()
sage: a
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]

sage: a = matrix(QQ, 4, range(16)); a[0,0] = 1/19; a[0,1] = 1/5
sage: a.echelonize(algorithm=�multimodular�)
sage: a
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]

height()

Return the height of this matrix, which is the maximum of the absolute values of all numerators and denom-
inators of entries in this matrix.

OUTPUT: integer

EXAMPLES:

sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b
[-5007/293 1 2]
[ 3 4 5]
sage: b.height()
5007

inverse(algorithm=None, check_invertible=True)
Return the inverse of this matrix.

INPUT:

• algorithm – an optional specification of an algorithm. It can be one of

– None: (default) uses flint

– �flint�: uses flint library

– �pari�: uses PARI library

– �iml�: uses IML library

• check_invertible – only used whenalgorithm=iml; whether to check that matrix is invertible

EXAMPLES:

sage: a = matrix(QQ,3,[1,2,5,3,2,1,1,1,1,])
sage: a.inverse()
[1/2 3/2 -4]
[ -1 -2 7]
[1/2 1/2 -2]

(continues on next page)
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sage: a = matrix(QQ, 2, [1, 5, 17, 3])
sage: a.inverse(algorithm=�flint�)
[-3/82 5/82]
[17/82 -1/82]
sage: a.inverse(algorithm=�flint�) * a
[1 0]
[0 1]

sage: a = matrix(QQ, 2, [-1, 5, 12, -3])
sage: a.inverse(algorithm=�iml�)
[1/19 5/57]
[4/19 1/57]
sage: a.inverse(algorithm=�iml�) * a
[1 0]
[0 1]

sage: a = matrix(QQ, 4, primes_first_n(16))
sage: a.inverse(algorithm=�pari�)
[ 3/11 -12/55 -1/5 2/11]
[ -5/11 -2/55 3/10 -3/22]
[ -13/22 307/440 -1/10 -9/88]
[ 15/22 -37/88 0 7/88]

On singular matrices this method raises a ZeroDivisionError:

sage: a = matrix(QQ, 2)
sage: a.inverse(algorithm=�flint�)
Traceback (most recent call last):
...
ZeroDivisionError: input matrix must be nonsingular
sage: a.inverse(algorithm=�iml�)
Traceback (most recent call last):
...
ZeroDivisionError: input matrix must be nonsingular
sage: a.inverse(algorithm=�pari�)
Traceback (most recent call last):
...
ZeroDivisionError: input matrix must be nonsingular

is_LLL_reduced(delta=None, eta=None)
Return True if this lattice is (𝛿, 𝜂)-LLL reduced. For a definition of LLL reduction, see sage.matrix.
matrix_integer_dense.Matrix_integer_dense.LLL().

EXAMPLES:

sage: A = random_matrix(QQ, 10, 10)
sage: L = A.LLL()
sage: A.is_LLL_reduced()
False
sage: L.is_LLL_reduced()
True

matrix_from_columns(columns)
Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:
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sage: A = matrix(QQ, 3, range(9))
sage: A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[8 7]
sage: A.matrix_from_columns((2,1,0,2))
[2 1 0 2]
[5 4 3 5]
[8 7 6 8]

minpoly(var='x', algorithm=None)
Return the minimal polynomial of this matrix.

INPUT:

• var – (optional) the variable name as a string (default: �x�)

• algorithm – an optional specification of an algorithm. It can be one of

– None: (default) will use linbox

– �linbox�: uses the linbox library

– �generic�: uses the generic Sage implementation

OUTPUT: a polynomial over the rationals

EXAMPLES:

sage: a = matrix(QQ, 3, [4/3, 2/5, 1/5, 4, -3/2, 0, 0, -2/3, 3/4])
sage: f = a.minpoly(); f
x^3 - 7/12*x^2 - 149/40*x + 97/30
sage: a = Mat(ZZ,4)(range(16))
sage: f = a.minpoly(); f.factor()
x * (x^2 - 30*x - 80)
sage: f(a) == 0
True

sage: a = matrix(QQ, 4, [1..4^2])
sage: factor(a.minpoly())
x * (x^2 - 34*x - 80)
sage: factor(a.minpoly(�y�))
y * (y^2 - 34*y - 80)
sage: factor(a.charpoly())
x^2 * (x^2 - 34*x - 80)
sage: b = matrix(QQ, 4, [-1, 2, 2, 0, 0, 4, 2, 2, 0, 0, -1, -2, 0, -4, 0, 4])
sage: a = matrix(QQ, 4, [1, 1, 0,0, 0,1,0,0, 0,0,5,0, 0,0,0,5])
sage: c = b^(-1)*a*b
sage: factor(c.minpoly())
(x - 5) * (x - 1)^2
sage: factor(c.charpoly())
(x - 5)^2 * (x - 1)^2

Check consistency:
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sage: for _ in range(100):
....: dim = randint(0, 10)
....: m = random_matrix(QQ, dim, num_bound=8, den_bound=8)
....: p_linbox = m.charpoly(algorithm=�linbox�); m._clear_cache()
....: p_generic = m.charpoly(algorithm=�generic�)
....: assert p_linbox == p_generic

prod_of_row_sums(cols)

randomize(density=1, num_bound=2, den_bound=2, distribution=None, nonzero=False)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

If x and y are given, randomized entries of this matrix have numerators and denominators bounded by x and
y and have density 1.

INPUT:

• density – number between 0 and 1 (default: 1)

• num_bound – numerator bound (default: 2)

• den_bound – denominator bound (default: 2)

• distribution –None or ‘1/n’ (default: None); if ‘1/n’ thennum_bound, den_bound are ignored
and numbers are chosen using the GMP function mpq_randomize_entry_recip_uniform

OUTPUT: none; the matrix is modified in-space

EXAMPLES:

The default distribution:

sage: from collections import defaultdict
sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: def add_samples(distribution=None):
....: global dic, total_count
....: for _ in range(100):
....: A = Matrix(QQ, 2, 4, 0)
....: A.randomize(distribution=distribution)
....: for a in A.list():
....: dic[a] += 1
....: total_count += 1.0

sage: expected = {-2: 1/9, -1: 3/18, -1/2: 1/18, 0: 3/9,
....: 1/2: 1/18, 1: 3/18, 2: 1/9}
sage: add_samples()
sage: while not all(abs(dic[a]/total_count - expected[a]) < 0.001 for a in␣
→˓dic):
....: add_samples()

The distribution �1/n�:

sage: def mpq_randomize_entry_recip_uniform():
....: r = 2*random() - 1
....: if r == 0: r = 1
....: num = int(4/(5*r))
....: r = random()
....: if r == 0: r = 1
....: den = int(1/random())

(continues on next page)
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....: return Integer(num)/Integer(den)

sage: total_count = 0
sage: dic = defaultdict(Integer)
sage: dic2 = defaultdict(Integer)
sage: add_samples(�1/n�)
sage: for _ in range(8):
....: dic2[mpq_randomize_entry_recip_uniform()] += 1
sage: while not all(abs(dic[a] - dic2[a])/total_count < 0.005 for a in dic):
....: add_samples(�1/n�)
....: for _ in range(800):
....: dic2[mpq_randomize_entry_recip_uniform()] += 1

The default can be used to obtain matrices of different rank:

sage: ranks = [False]*11
sage: while not all(ranks):
....: for dens in (0.05, 0.1, 0.2, 0.5):
....: A = Matrix(QQ, 10, 10, 0)
....: A.randomize(dens)
....: ranks[A.rank()] = True

The default density is 6/9:

sage: def add_sample(density, num_rows, num_cols):
....: global density_sum, total_count
....: total_count += 1.0
....: A = Matrix(QQ, num_rows, num_cols, 0)
....: A.randomize(density)
....: density_sum += float(A.density())

sage: density_sum = 0.0
sage: total_count = 0.0
sage: expected_density = 6/9
sage: add_sample(1.0, 100, 100)
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(1.0, 100, 100)

The modified density depends on the number of columns:

sage: density_sum = 0.0
sage: total_count = 0.0
sage: expected_density = 6/9*0.5
sage: add_sample(0.5, 100, 2)
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5, 100, 2)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: expected_density = 6/9*(1.0 - (99/100)^50)
sage: expected_density
0.263...

sage: add_sample(0.5, 100, 100)
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5, 100, 100)
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Modifying the bounds for numerator and denominator:

sage: num_dic = defaultdict(Integer)
sage: den_dic = defaultdict(Integer)
sage: while not (all(num_dic[i] for i in range(-200, 201))
....: and all(den_dic[i] for i in range(1, 101))):
....: a = matrix(QQ, 2, 4)
....: a.randomize(num_bound=200, den_bound=100)
....: for q in a.list():
....: num_dic[q.numerator()] += 1
....: den_dic[q.denominator()] += 1
sage: len(num_dic)
401
sage: len(den_dic)
100

rank(algorithm=None)

Return the rank of this matrix.

INPUT:

• algorithm – an optional specification of an algorithm. One of

– None – (default) will use flint

– �flint� – uses the flint library

– �pari� – uses the PARI library

– �integer� – eliminate denominators and calls the rank function on the corresponding integer
matrix

EXAMPLES:

sage: matrix(QQ,3,[1..9]).rank()
2
sage: matrix(QQ,100,[1..100^2]).rank()
2

row(i, from_list=False)
Return the 𝑖-th row of this matrix as a dense vector.

INPUT:

• i – integer

• from_list – ignored

EXAMPLES:

sage: m = matrix(QQ, 2, [1/5, -2/3, 3/4, 4/9])
sage: m.row(0)
(1/5, -2/3)
sage: m.row(1)
(3/4, 4/9)
sage: m.row(1, from_list=True)
(3/4, 4/9)
sage: m.row(-2)
(1/5, -2/3)

sage: m.row(2)

(continues on next page)

425



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

Traceback (most recent call last):
...
IndexError: row index out of range
sage: m.row(-3)
Traceback (most recent call last):
...
IndexError: row index out of range

set_row_to_multiple_of_row(i, j, s)
Set row i equal to s times row j.

EXAMPLES:

sage: a = matrix(QQ,2,3,range(6)); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 0 -3 -6]

transpose()

Return the transpose of self, without changing self.

EXAMPLES:

We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: A = matrix(QQ, 2, 3, range(6))
sage: type(A)
<class �sage.matrix.matrix_rational_dense.Matrix_rational_dense�>
sage: B = A.transpose()
sage: print(B)
[0 3]
[1 4]
[2 5]
sage: print(A)
[0 1 2]
[3 4 5]

.T is a convenient shortcut for the transpose:

sage: print(A.T)
[0 3]
[1 4]
[2 5]

sage: A.subdivide(None, 1); A
[0|1 2]
[3|4 5]
sage: A.transpose()
[0 3]
[---]
[1 4]
[2 5]
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SPARSE RATIONAL MATRICES

AUTHORS:

• William Stein (2007-02-21)

• Soroosh Yazdani (2007-02-21)

class sage.matrix.matrix_rational_sparse.Matrix_rational_sparse

Bases: Matrix_sparse

Create a sparse matrix over the rational numbers.

INPUT:

• parent – a matrix space over 2

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries are of type Rational

add_to_entry(i, j, elt)
Add elt to the entry at position (i, j).

EXAMPLES:

sage: m = matrix(QQ, 2, 2, sparse=True)
sage: m.add_to_entry(0, 0, -1/3)
sage: m
[-1/3 0]
[ 0 0]
sage: m.add_to_entry(0, 0, 1/3)
sage: m
[0 0]
[0 0]
sage: m.nonzero_positions()
[]

denominator()

Return the denominator of this matrix.

OUTPUT: Sage Integer

EXAMPLES:

sage: b = matrix(QQ,2,range(6)); b[0,0]=-5007/293; b
[-5007/293 1 2]
[ 3 4 5]

(continues on next page)
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sage: b.denominator()
293

dense_matrix()

Return dense version of this matrix.

EXAMPLES:

sage: a = matrix(QQ,2,[1..4],sparse=True); type(a)
<class �sage.matrix.matrix_rational_sparse.Matrix_rational_sparse�>
sage: type(a.dense_matrix())
<class �sage.matrix.matrix_rational_dense.Matrix_rational_dense�>
sage: a.dense_matrix()
[1 2]
[3 4]

Check that subdivisions are preserved when converting between dense and sparse matrices:

sage: a.subdivide([1,1], [2])
sage: b = a.dense_matrix().sparse_matrix().dense_matrix()
sage: b.subdivisions() == a.subdivisions()
True

echelon_form(algorithm='default', height_guess=None, proof=True, **kwds)
INPUT:

• height_guess, proof, **kwds – all passed to the multimodular algorithm; ignored by the 𝑝-adic
algorithm

OUTPUT: self is no in reduced row echelon form

EXAMPLES:

sage: a = matrix(QQ, 4, range(16), sparse=True); a[0,0] = 1/19; a[0,1] = 1/5;␣
→˓a
[1/19 1/5 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 12 13 14 15]
sage: a.echelon_form()
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]

echelonize(height_guess=None, proof=True, **kwds)
Transform the matrix self into reduced row echelon form in place.

INPUT:

• height_guess, proof, **kwds – all passed to the multimodular algorithm; ignored by the 𝑝-adic
algorithm

OUTPUT:

Nothing. The matrix self is transformed into reduced row echelon form in place.

ALGORITHM: a multimodular algorithm.

EXAMPLES:
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sage: a = matrix(QQ, 4, range(16), sparse=True); a[0,0] = 1/19; a[0,1] = 1/5;␣
→˓a
[1/19 1/5 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[ 12 13 14 15]
sage: a.echelonize(); a
[ 1 0 0 -76/157]
[ 0 1 0 -5/157]
[ 0 0 1 238/157]
[ 0 0 0 0]

Issue #10319 has been fixed:

sage: m = Matrix(QQ, [1], sparse=True); m.echelonize()
sage: m = Matrix(QQ, [1], sparse=True); m.echelonize(); m
[1]

height()

Return the height of this matrix, which is the least common multiple of all numerators and denominators of
elements of this matrix.

OUTPUT: integer

EXAMPLES:

sage: b = matrix(QQ,2,range(6), sparse=True); b[0,0]=-5007/293; b
[-5007/293 1 2]
[ 3 4 5]
sage: b.height()
5007

set_row_to_multiple_of_row(i, j, s)
Set row i equal to s times row j.

EXAMPLES:

sage: a = matrix(QQ,2,3,range(6), sparse=True); a
[0 1 2]
[3 4 5]
sage: a.set_row_to_multiple_of_row(1,0,-3)
sage: a
[ 0 1 2]
[ 0 -3 -6]
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DENSE MATRICES USING A NUMPY BACKEND

This serves as a base class for dense matrices over Real Double Field and Complex Double Field.

AUTHORS:

• Jason Grout, Sep 2008: switch to NumPy backend, factored out the Matrix_double_dense class

• Josh Kantor

• William Stein: many bug fixes and touch ups.

EXAMPLES:

sage: b = Mat(RDF,2,3).basis()
sage: b[0,0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]

We deal with the case of zero rows or zero columns:

sage: m = MatrixSpace(RDF,0,3)
sage: m.zero_matrix()
[]

class sage.matrix.matrix_double_dense.Matrix_double_dense

Bases: Matrix_numpy_dense

Base class for matrices over the Real Double Field and the Complex Double Field. These are supposed to be fast
matrix operations using C doubles. Most operations are implemented using numpy which will call the underlying
BLAS on the system.

This class cannot be instantiated on its own. The numpy matrix creation depends on several variables that are set
in the subclasses.

EXAMPLES:

sage: m = Matrix(RDF, [[1,2],[3,4]])
sage: m**2
[ 7.0 10.0]
[15.0 22.0]
sage: m^(-1) # rel tol 1e-15 #␣
→˓needs scipy
[-1.9999999999999996 0.9999999999999998]
[ 1.4999999999999998 -0.4999999999999999]
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LU()

Return a decomposition of the (row-permuted) matrix as a product of a lower-triangular matrix (“L”) and an
upper-triangular matrix (“U”).

OUTPUT:

For an𝑚× 𝑛 matrix A this method returns a triple of immutable matrices P, L, U such that

• A = P*L*U

• P is a square permutation matrix, of size 𝑚 ×𝑚, so is all zeroes, but with exactly a single one in each
row and each column

• L is lower-triangular, square of size𝑚×𝑚, with every diagonal entry equal to one

• U is upper-triangular with size𝑚× 𝑛, i.e. entries below the “diagonal” are all zero

The computed decomposition is cached and returned on subsequent calls, thus requiring the results to be
immutable.

Effectively, P permutes the rows of A. Then L can be viewed as a sequence of row operations on this ma-
trix, where each operation is adding a multiple of a row to a subsequent row. There is no scaling (thus
1s on the diagonal of L) and no row-swapping (P does that). As a result U is close to being the result of
Gaussian-elimination. However, round-off errors can make it hard to determine the zero entries of U.

Note

The behaviour of LU() has changed in Sage version 9.1. Earlier, LU() returned P,L,U such that
P*A=L*U, where P represents the permutation and is the matrix inverse of the P returned by this method.
The computation of this matrix inverse can be accomplished quickly with just a transpose as the matrix
is orthogonal/unitary.

For details see Issue #18365.

EXAMPLES:

sage: m = matrix(RDF,4,range(16))
sage: P,L,U = m.LU()
sage: P*L*U # rel tol 2e-16
[ 0.0 1.0 2.0 3.0]
[ 4.0 5.0 6.0 7.0]
[ 8.0 9.0 10.0 11.0]
[12.0 13.0 14.0 15.0]

Below example illustrates the change in behaviour of LU().

sage: (m - P*L*U).norm() < 1e-14
True
sage: (P*m - L*U).norm() < 1e-14
False

Issue #10839 made this routine available for rectangular matrices.

sage: A = matrix(RDF, 5, 6, range(30)); A
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 6.0 7.0 8.0 9.0 10.0 11.0]
[12.0 13.0 14.0 15.0 16.0 17.0]
[18.0 19.0 20.0 21.0 22.0 23.0]
[24.0 25.0 26.0 27.0 28.0 29.0]

(continues on next page)
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sage: P, L, U = A.LU()
sage: P
[0.0 1.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 1.0]
[0.0 0.0 1.0 0.0 0.0]
[0.0 0.0 0.0 1.0 0.0]
[1.0 0.0 0.0 0.0 0.0]
sage: L.zero_at(0) # Use zero_at(0) to get rid of signed zeros
[ 1.0 0.0 0.0 0.0 0.0]
[ 0.0 1.0 0.0 0.0 0.0]
[ 0.5 0.5 1.0 0.0 0.0]
[0.75 0.25 0.0 1.0 0.0]
[0.25 0.75 0.0 0.0 1.0]
sage: U.zero_at(0) # Use zero_at(0) to get rid of signed zeros
[24.0 25.0 26.0 27.0 28.0 29.0]
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
[ 0.0 0.0 0.0 0.0 0.0 0.0]
sage: P.transpose()*A-L*U
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0 0.0]
sage: P*L*U
[ 0.0 1.0 2.0 3.0 4.0 5.0]
[ 6.0 7.0 8.0 9.0 10.0 11.0]
[12.0 13.0 14.0 15.0 16.0 17.0]
[18.0 19.0 20.0 21.0 22.0 23.0]
[24.0 25.0 26.0 27.0 28.0 29.0]

Trivial cases return matrices of the right size and characteristics.

sage: A = matrix(RDF, 5, 0)
sage: P, L, U = A.LU()
sage: P.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Double Field
sage: L.parent()
Full MatrixSpace of 5 by 5 dense matrices over Real Double Field
sage: U.parent()
Full MatrixSpace of 5 by 0 dense matrices over Real Double Field
sage: A-P*L*U
[]

The results are immutable since they are cached.

sage: P, L, U = matrix(RDF, 2, 2, range(4)).LU()
sage: L[0,0] = 0
Traceback (most recent call last):

...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣
→˓copy(M) to change a copy of M).
sage: P[0,0] = 0
Traceback (most recent call last):

...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣

(continues on next page)
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→˓copy(M) to change a copy of M).
sage: U[0,0] = 0
Traceback (most recent call last):

...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣
→˓copy(M) to change a copy of M).

LU_valid()

Return True if the LU form of this matrix has already been computed.

EXAMPLES:

sage: A = random_matrix(RDF,3) ; A.LU_valid()
False
sage: P, L, U = A.LU()
sage: A.LU_valid()
True

QR()

Return a factorization into a unitary matrix and an upper-triangular matrix.

Applies to any matrix over RDF or CDF.

OUTPUT:

Q, R – a pair of matrices such that if 𝐴 is the original matrix, then

𝐴 = 𝑄𝑅, 𝑄*𝑄 = 𝐼

where 𝑅 is upper-triangular. 𝑄* is the conjugate-transpose in the complex case, and just the transpose in the
real case. So 𝑄 is a unitary matrix (or rather, orthogonal, in the real case), or equivalently 𝑄 has orthogonal
columns. For a matrix of full rank this factorization is unique up to adjustments via multiples of rows and
columns by multiples with scalars having modulus 1. So in the full-rank case, 𝑅 is unique if the diagonal
entries are required to be positive real numbers.

The resulting decomposition is cached.

ALGORITHM:

Calls scipy.linalg.qr() from SciPy, which is in turn an interface to LAPACK routines.

EXAMPLES:

Over the reals, the inverse of Q is its transpose, since including a conjugate has no effect. In the real case, we
say Q is orthogonal.

sage: A = matrix(RDF, [[-2, 0, -4, -1, -1],
....: [-2, 1, -6, -3, -1],
....: [1, 1, 7, 4, 5],
....: [3, 0, 8, 3, 3],
....: [-1, 1, -6, -6, 5]])
sage: Q, R = A.QR()

At this point, Q is only well-defined up to the signs of its columns, and similarly for R and its rows, so we
normalize them:

sage: Qnorm = Q._normalize_columns()
sage: Rnorm = R._normalize_rows()
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sage: Qnorm.round(6).zero_at(10^-6)
[ 0.458831 0.126051 0.381212 0.394574 0.68744]
[ 0.458831 -0.47269 -0.051983 -0.717294 0.220963]
[-0.229416 -0.661766 0.661923 0.180872 -0.196411]
[-0.688247 -0.189076 -0.204468 -0.09663 0.662889]
[ 0.229416 -0.535715 -0.609939 0.536422 -0.024551]
sage: Rnorm.round(6).zero_at(10^-6)
[ 4.358899 -0.458831 13.076697 6.194225 2.982405]
[ 0.0 1.670172 0.598741 -1.29202 6.207997]
[ 0.0 0.0 5.444402 5.468661 -0.682716]
[ 0.0 0.0 0.0 1.027626 -3.6193]
[ 0.0 0.0 0.0 0.0 0.024551]
sage: (Q*Q.transpose()) # tol 1e-14
[0.9999999999999994 0.0 0.0 0.0 ␣
→˓ 0.0]
[ 0.0 1.0 0.0 0.0 ␣
→˓ 0.0]
[ 0.0 0.0 0.9999999999999999 0.0 ␣
→˓ 0.0]
[ 0.0 0.0 0.0 0.9999999999999998 ␣
→˓ 0.0]
[ 0.0 0.0 0.0 0.0␣
→˓1.0000000000000002]
sage: (Q*R - A).zero_at(10^-14)
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0 0.0]

Now over the complex numbers, demonstrating that the SciPy libraries are (properly) using the Hermitian
inner product, so that Q is a unitary matrix (its inverse is the conjugate-transpose).

sage: A = matrix(CDF, [[-8, 4*I + 1, -I + 2, 2*I + 1],
....: [1, -2*I - 1, -I + 3, -I + 1],
....: [I + 7, 2*I + 1, -2*I + 7, -I + 1],
....: [I + 2, 0, I + 12, -1]])
sage: Q, R = A.QR()
sage: Q._normalize_columns() # tol 1e-6
[ 0.7302967433402214 0.20705664550556482 + 0.
→˓5383472783144685*I 0.24630498099986423 - 0.07644563587232917*I 0.
→˓23816176831943323 - 0.10365960327796941*I]
[ -0.09128709291752768 -0.20705664550556482 - 0.
→˓37787837804765584*I 0.37865595338630315 - 0.19522214955246678*I 0.
→˓7012444502144682 - 0.36437116509865947*I]
[ -0.6390096504226938 - 0.09128709291752768*I 0.17082173254209104 + 0.
→˓6677576817554466*I -0.03411475806452064 + 0.040901987417671426*I 0.
→˓31401710855067644 - 0.08251917187054114*I]
[ -0.18257418583505536 - 0.09128709291752768*I -0.03623491296347384 + 0.
→˓07246982592694771*I 0.8632284069415112 + 0.06322839976356195*I -0.
→˓44996948676115206 - 0.01161191812089182*I]
sage: R._normalize_rows().zero_at(1e-15) # tol 1e-6
[ 10.954451150103322 -1.
→˓9170289512680814*I 5.385938482134133 - 2.1908902300206643*I -0.
→˓2738612787525829 - 2.1908902300206643*I]
[ 0.0 4.
→˓8295962564173 -0.8696379111233719 - 5.864879483945123*I 0.993871898426711␣
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→˓- 0.30540855212070794*I]
[ 0.0 ␣
→˓ 0.0 12.00160760935814 -0.2709533402297273 + 0.
→˓4420629644486325*I]
[ 0.0 ␣
→˓ 0.0 0.0 ␣
→˓1.9429639442589917]
sage: (Q.conjugate().transpose()*Q).zero_at(1e-15) # tol 1e-15
[ 1.0 0.0 0.0 0.0]
[ 0.0 0.9999999999999994 0.0 0.0]
[ 0.0 0.0 1.0000000000000002 0.0]
[ 0.0 0.0 0.0 1.0000000000000004]
sage: (Q*R - A).zero_at(10^-14)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]

An example of a rectangular matrix that is also rank-deficient. If you run this example yourself, you may see
a very small, nonzero entries in the third row, in the third column, even though the exact version of the matrix
has rank 2. The final two columns of Q span the left kernel of A (as evidenced by the two zero rows of R).
Different platforms will compute different bases for this left kernel, so we do not exhibit the actual matrix.

sage: Arat = matrix(QQ, [[2, -3, 3],
....: [-1, 1, -1],
....: [-1, 3, -3],
....: [-5, 1, -1]])
sage: Arat.rank()
2
sage: A = Arat.change_ring(CDF)
sage: Q, R = A.QR()
sage: R._normalize_rows() # abs tol 1e-14
[ 5.567764362830022 -2.6940795304016243 2.6940795304016243]
[ 0.0 3.5695847775155825 -3.5695847775155825]
[ 0.0 0.0 2.4444034681064287e-16]
[ 0.0 0.0 0.0]
sage: (Q.conjugate_transpose()*Q) # abs tol 1e-14
[ 1.0000000000000002 -5.185196889911925e-17 -4.1457180570414476e-17 -2.
→˓909388767229071e-17]
[ -5.185196889911925e-17 1.0000000000000002 -9.286869233696149e-17 -1.
→˓1035822863186828e-16]
[-4.1457180570414476e-17 -9.286869233696149e-17 1.0 4.
→˓4159215672155694e-17]
[ -2.909388767229071e-17 -1.1035822863186828e-16 4.4159215672155694e-17 ␣
→˓ 1.0]

Results are cached, meaning they are immutable matrices. Make a copy if you need to manipulate a result.

sage: A = random_matrix(CDF, 2, 2)
sage: Q, R = A.QR()
sage: Q.is_mutable()
False
sage: R.is_mutable()
False
sage: Q[0,0] = 0
Traceback (most recent call last):
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...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣
→˓copy(M) to change a copy of M).
sage: Qcopy = copy(Q)
sage: Qcopy[0,0] = 679
sage: Qcopy[0,0]
679.0

SVD()

Return the singular value decomposition of this matrix.

The 𝑈 and 𝑉 matrices are not unique and may be returned with different values in the future or on different
systems. The 𝑆 matrix is unique and contains the singular values in descending order.

The computed decomposition is cached and returned on subsequent calls.

INPUT:

• A – a matrix

OUTPUT:

U, S, V – immutable matrices such that A = U*S*V.conj().transpose() where 𝑈 and 𝑉 are
orthogonal and 𝑆 is zero off of the diagonal

Note that if self is m-by-n, then the dimensions of the matrices that this returns are (m,m), (m,n), and (n,
n).

Note

If all you need is the singular values of the matrix, see the more convenient singular_values().

EXAMPLES:

sage: m = matrix(RDF,4,range(1,17))
sage: U,S,V = m.SVD()
sage: U*S*V.transpose() # tol 1e-14
[0.9999999999999993 1.9999999999999987 3.000000000000001 4.000000000000002]
[ 4.999999999999998 5.999999999999998 6.999999999999998 8.0]
[ 8.999999999999998 9.999999999999996 10.999999999999998 12.0]
[12.999999999999998 14.0 15.0 16.0]

A non-square example:

sage: m = matrix(RDF, 2, range(1,7)); m
[1.0 2.0 3.0]
[4.0 5.0 6.0]
sage: U, S, V = m.SVD()
sage: U*S*V.transpose() # tol 1e-14
[0.9999999999999994 1.9999999999999998 2.999999999999999]
[ 4.000000000000001 5.000000000000002 6.000000000000001]

S contains the singular values:

sage: S.round(4)
[ 9.508 0.0 0.0]
[ 0.0 0.7729 0.0]

(continues on next page)
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sage: [N(sqrt(abs(x)), digits=4) for x in (S*S.transpose()).eigenvalues()]
[9.508, 0.7729]

U and V are orthogonal matrices:

sage: U # random, SVD is not unique
[-0.386317703119 -0.922365780077]
[-0.922365780077 0.386317703119]
[-0.274721127897 -0.961523947641]
[-0.961523947641 0.274721127897]
sage: (U*U.transpose()) # tol 1e-15
[ 1.0 0.0]
[ 0.0 1.0000000000000004]
sage: V # random, SVD is not unique
[-0.428667133549 0.805963908589 0.408248290464]
[-0.566306918848 0.112382414097 -0.816496580928]
[-0.703946704147 -0.581199080396 0.408248290464]
sage: (V*V.transpose()) # tol 1e-15
[0.9999999999999999 0.0 0.0]
[ 0.0 1.0 0.0]
[ 0.0 0.0 0.9999999999999999]

cholesky()

Return the Cholesky factorization of a matrix that is real symmetric, or complex Hermitian.

INPUT:

Any square matrix with entries from RDF that is symmetric, or with entries from CDF that is Hermitian. The
matrix must be positive definite for the Cholesky decomposition to exist.

OUTPUT:

For a matrix 𝐴 the routine returns a lower triangular matrix 𝐿 such that,

𝐴 = 𝐿𝐿*

where 𝐿* is the conjugate-transpose in the complex case, and just the transpose in the real case. If the matrix
fails to be positive definite (perhaps because it is not symmetric or Hermitian), then this function raises a
ValueError.

IMPLEMENTATION:

The existence of a Cholesky decomposition and the positive definite property are equivalent. So this method
and the is_positive_definite() method compute and cache both the Cholesky decomposition and
the positive-definiteness. So the is_positive_definite()method or catching a ValueError from
the cholesky()method are equally expensive computationally and if the decomposition exists, it is cached
as a side-effect of either routine.

EXAMPLES:

A real matrix that is symmetric, Hermitian, and positive definite:

sage: M = matrix(RDF,[[ 1, 1, 1, 1, 1],
....: [ 1, 5, 31, 121, 341],
....: [ 1, 31, 341, 1555, 4681],
....: [ 1,121, 1555, 7381, 22621],
....: [ 1,341, 4681, 22621, 69905]])
sage: M.is_symmetric()
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True
sage: M.is_hermitian()
True
sage: L = M.cholesky()
sage: L.round(6).zero_at(10^-10)
[ 1.0 0.0 0.0 0.0 0.0]
[ 1.0 2.0 0.0 0.0 0.0]
[ 1.0 15.0 10.723805 0.0 0.0]
[ 1.0 60.0 60.985814 7.792973 0.0]
[ 1.0 170.0 198.623524 39.366567 1.7231]
sage: (L*L.transpose()).round(6).zero_at(10^-10)
[ 1.0 1.0 1.0 1.0 1.0]
[ 1.0 5.0 31.0 121.0 341.0]
[ 1.0 31.0 341.0 1555.0 4681.0]
[ 1.0 121.0 1555.0 7381.0 22621.0]
[ 1.0 341.0 4681.0 22621.0 69905.0]

A complex matrix that is Hermitian and positive definite.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 23, 17*I + 3, 24*I + 25, 21*I],
....: [ -17*I + 3, 38, -69*I + 89, 7*I + 15],
....: [-24*I + 25, 69*I + 89, 976, 24*I + 6],
....: [ -21*I, -7*I + 15, -24*I + 6, 28]])
sage: A.is_hermitian()
True
sage: L = A.cholesky()
sage: L.round(6).zero_at(10^-10)
[ 4.795832 0.0 0.0 ␣
→˓0.0]
[ 0.625543 - 3.544745*I 5.004346 0.0 ␣
→˓0.0]
[ 5.21286 - 5.004346*I 13.588189 + 10.721116*I 24.984023 ␣
→˓0.0]
[ -4.378803*I -0.104257 - 0.851434*I -0.21486 + 0.371348*I 2.
→˓811799]
sage: (L*L.conjugate_transpose()).round(6).zero_at(10^-10)
[ 23.0 3.0 + 17.0*I 25.0 + 24.0*I 21.0*I]
[ 3.0 - 17.0*I 38.0 89.0 - 69.0*I 15.0 + 7.0*I]
[25.0 - 24.0*I 89.0 + 69.0*I 976.0 6.0 + 24.0*I]
[ -21.0*I 15.0 - 7.0*I 6.0 - 24.0*I 28.0]

This routine will recognize when the input matrix is not positive definite. The negative eigenvalues are an
equivalent indicator. (Eigenvalues of a Hermitian matrix must be real, so there is no loss in ignoring the
imprecise imaginary parts).

sage: A = matrix(RDF, [[ 3, -6, 9, 6, -9],
....: [-6, 11, -16, -11, 17],
....: [ 9, -16, 28, 16, -40],
....: [ 6, -11, 16, 9, -19],
....: [-9, 17, -40, -19, 68]])
sage: A.is_symmetric()
True
sage: A.eigenvalues()
[108.07..., 13.02..., -0.02..., -0.70..., -1.37...]
sage: A.cholesky()
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Traceback (most recent call last):
...
ValueError: matrix is not positive definite

sage: # needs sage.symbolic
sage: B = matrix(CDF, [[ 2, 4 - 2*I, 2 + 2*I],
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: B.is_hermitian()
True
sage: [ev.real() for ev in B.eigenvalues()]
[15.88..., 0.08..., -8.97...]
sage: B.cholesky()
Traceback (most recent call last):
...
ValueError: matrix is not positive definite

condition(p='frob')
Return the condition number of a square nonsingular matrix.

Roughly speaking, this is a measure of how sensitive the matrix is to round-off errors in numerical computa-
tions. The minimum possible value is 1.0, and larger numbers indicate greater sensitivity.

INPUT:

• p – (default: �frob�) controls which norm is used to compute the condition number, allowable val-
ues are ‘frob’ (for the Frobenius norm), integers -2, -1, 1, 2, positive and negative infinity. See output
discussion for specifics.

OUTPUT:

The condition number of a matrix is the product of a norm of the matrix times the norm of the inverse of the
matrix. This requires that the matrix be square and invertible (nonsingular, full rank).

Returned value is a double precision floating point value in RDF, or Infinity. Row and column sums
described below are sums of the absolute values of the entries, where the absolute value of the complex
number 𝑎+ 𝑏𝑖 is

√
𝑎2 + 𝑏2. Singular values are the “diagonal” entries of the “S” matrix in the singular value

decomposition.

• p = �frob�: the default norm employed in computing the condition number, the Frobenius norm,
which for a matrix 𝐴 = (𝑎𝑖𝑗) computes ⎛⎝∑︁

𝑖,𝑗

|𝑎𝑖,𝑗 |2
⎞⎠1/2

• p = �sv�: the quotient of the maximal and minimal singular value.

• p = Infinity or p = oo: the maximum row sum.

• p = -Infinity or p = -oo: the minimum column sum.

• p = 1: the maximum column sum.

• p = -1: the minimum column sum.

• p = 2: the 2-norm, equal to the maximum singular value.

• p = -2: the minimum singular value.
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ALGORITHM:

Computation is performed by the cond() function of the SciPy/NumPy library.

EXAMPLES:

First over the reals.

sage: A = matrix(RDF, 4, [(1/4)*x^3 for x in range(16)]); A
[ 0.0 0.25 2.0 6.75]
[ 16.0 31.25 54.0 85.75]
[ 128.0 182.25 250.0 332.75]
[ 432.0 549.25 686.0 843.75]
sage: A.condition()
9923.88955...
sage: A.condition(p=�frob�)
9923.88955...
sage: A.condition(p=Infinity) # tol 3e-14
22738.50000000045
sage: A.condition(p=-Infinity) # tol 2e-14
17.50000000000028
sage: A.condition(p=1)
12139.21...
sage: A.condition(p=-1) # tol 2e-14
550.0000000000093
sage: A.condition(p=2)
9897.8088...
sage: A.condition(p=-2)
0.000101032462...

And over the complex numbers.

sage: B = matrix(CDF, 3, [x + x^2*I for x in range(9)]); B
[ 0.0 1.0 + 1.0*I 2.0 + 4.0*I]
[ 3.0 + 9.0*I 4.0 + 16.0*I 5.0 + 25.0*I]
[6.0 + 36.0*I 7.0 + 49.0*I 8.0 + 64.0*I]
sage: B.condition()
203.851798...
sage: B.condition(p=�frob�)
203.851798...
sage: B.condition(p=Infinity)
369.55630...
sage: B.condition(p=-Infinity)
5.46112969...
sage: B.condition(p=1)
289.251481...
sage: B.condition(p=-1)
20.4566639...
sage: B.condition(p=2)
202.653543...
sage: B.condition(p=-2)
0.00493453005...

Hilbert matrices are famously ill-conditioned, while an identity matrix can hit the minimum with the right
norm.

sage: A = matrix(RDF, 10, [1/(i+j+1) for i in range(10) for j in range(10)])
sage: A.condition() # tol 2e-4
16332197709146.014
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sage: id = identity_matrix(CDF, 10)
sage: id.condition(p=1)
1.0

Return values are in 𝑅𝐷𝐹 .

sage: A = matrix(CDF, 2, range(1,5))
sage: A.condition() in RDF
True

Rectangular and singular matrices raise errors if p is not ‘sv’.

sage: A = matrix(RDF, 2, 3, range(6))
sage: A.condition()
Traceback (most recent call last):
...
TypeError: matrix must be square if p is not �sv�, not 2 x 3

sage: A.condition(�sv�)
7.34...

sage: A = matrix(QQ, 5, range(25))
sage: A.is_singular()
True
sage: B = A.change_ring(CDF)
sage: B.condition()
+Infinity

Improper values of p are caught.

sage: A = matrix(CDF, 2, range(1,5))
sage: A.condition(p=�bogus�)
Traceback (most recent call last):
...
ValueError: condition number �p� must be +/- infinity, �frob�, �sv� or an␣
→˓integer, not bogus
sage: A.condition(p=632)
Traceback (most recent call last):
...
ValueError: condition number integer values of �p� must be -2, -1, 1 or 2,␣
→˓not 632

conjugate()

Return the conjugate of this matrix, i.e. the matrix whose entries are the conjugates of the entries of self.

EXAMPLES:

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[1+I, 3-I], [0, 2*I]])
sage: A.conjugate()
[1.0 - 1.0*I 3.0 + 1.0*I]
[ 0.0 -2.0*I]

There is a shorthand notation:
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sage: A.conjugate() == A.C #␣
→˓needs sage.symbolic
True

Conjugates work (trivially) for real matrices:

sage: B = matrix.random(RDF, 3)
sage: B == B.conjugate()
True

determinant()

Return the determinant of self.

ALGORITHM:

Uses scipy.linalg.det().

EXAMPLES:

sage: m = matrix(RDF,2,range(4)); m.det()
-2.0
sage: m = matrix(RDF,0,[]); m.det()
1.0
sage: m = matrix(RDF, 2, range(6)); m.det()
Traceback (most recent call last):
...
ValueError: self must be a square matrix

eigenvalues(other=None, algorithm='default', tol=None, homogeneous=False)
Return a list of ordinary or generalized eigenvalues.

INPUT:

• self – a square matrix

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved; if algorithm is �symmetric� or �hermitian�, 𝐵 must be real
symmetric or hermitian positive definite, respectively

• algorithm – (default: �default�)

– �default� – applicable to any matrix with double-precision floating point entries. Uses the
eigvals() function from SciPy.

– �symmetric� – converts the matrix into a real matrix (i.e. with entries from RDF), then ap-
plies the algorithm for Hermitian matrices. This algorithm can be significantly faster than the
�default� algorithm.

– �hermitian� – uses the eigh() function from SciPy, which applies only to real sym-
metric or complex Hermitian matrices. Since Hermitian is defined as a matrix equaling its
conjugate-transpose, for a matrix with real entries this property is equivalent to being symmetric.
This algorithm can be significantly faster than the �default� algorithm.

• �tol� – (default: None) if set to a value other than None, this is interpreted as a small real number
used to aid in grouping eigenvalues that are numerically similar, but is ignored when homogeneous is
set. See the output description for more information.

• homogeneous – boolean (default: False); if True, use homogeneous coordinates for the output
(see eigenvectors_right() for details)
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Warning

When using the �symmetric� or �hermitian� algorithms, no check is made on the input matrix,
and only the entries below, and on, the main diagonal are employed in the computation.

Methods such as is_symmetric() and is_hermitian() could be used to verify this beforehand.

OUTPUT:

Default output for a square matrix of size 𝑛 is a list of 𝑛 eigenvalues from the complex double field, CDF.
If the �symmetric� or �hermitian� algorithms are chosen, the returned eigenvalues are from the real
double field, RDF.

If a tolerance is specified, an attempt is made to group eigenvalues that are numerically similar. The return
is then a list of pairs, where each pair is an eigenvalue followed by its multiplicity. The eigenvalue reported
is the mean of the eigenvalues computed, and these eigenvalues are contained in an interval (or disk) whose
radius is less than 5*tol for 𝑛 < 10, 000 in the worst case.

More precisely, for an 𝑛 × 𝑛 matrix, the diameter of the interval containing similar eigenvalues could be as
large as sum of the reciprocals of the first 𝑛 integers times tol.

Warning

Use caution when using the tol parameter to group eigenvalues. See the examples below to see how this
can go wrong.

EXAMPLES:

sage: m = matrix(RDF, 2, 2, [1,2,3,4])
sage: ev = m.eigenvalues(); ev
[-0.372281323..., 5.37228132...]
sage: ev[0].parent()
Complex Double Field

sage: m = matrix(RDF, 2, 2, [0,1,-1,0])
sage: m.eigenvalues(algorithm=�default�)
[1.0*I, -1.0*I]

sage: m = matrix(CDF, 2, 2, [I,1,-I,0]) #␣
→˓needs sage.symbolic
sage: m.eigenvalues() #␣
→˓needs sage.symbolic
[-0.624810533... + 1.30024259...*I, 0.624810533... - 0.30024259...*I]

The adjacency matrix of a graph will be symmetric, and the eigenvalues will be real.

sage: # needs sage.graphs
sage: A = graphs.PetersenGraph().adjacency_matrix()
sage: A = A.change_ring(RDF)
sage: ev = A.eigenvalues(algorithm=�symmetric�); ev # tol 1e-14
[-2.0, -2.0, -2.0, -2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 3.0]
sage: ev[0].parent()
Real Double Field

The matrix A is “random”, but the construction of C provides a positive-definite Hermitian matrix. Note
that the eigenvalues of a Hermitian matrix are real, and the eigenvalues of a positive-definite matrix will be
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positive.

sage: # needs sage.symbolic
sage: A = matrix([[ 4*I + 5, 8*I + 1, 7*I + 5, 3*I + 5],
....: [ 7*I - 2, -4*I + 7, -2*I + 4, 8*I + 8],
....: [-2*I + 1, 6*I + 6, 5*I + 5, -I - 4],
....: [ 5*I + 1, 6*I + 2, I - 4, -I + 3]])
sage: C = (A*A.conjugate_transpose()).change_ring(CDF)
sage: ev = C.eigenvalues(algorithm=�hermitian�); ev
[2.68144025..., 49.5167998..., 274.086188..., 390.71557...]
sage: ev[0].parent()
Real Double Field

A tolerance can be given to aid in grouping eigenvalues that are similar numerically. However, if the parameter
is too small it might split too finely. Too large, and it can go wrong very badly. Use with care.

sage: # needs sage.graphs
sage: G = graphs.PetersenGraph()
sage: G.spectrum()
[3, 1, 1, 1, 1, 1, -2, -2, -2, -2]
sage: A = G.adjacency_matrix().change_ring(RDF)
sage: A.eigenvalues(algorithm=�symmetric�, tol=1.0e-5) # tol 1e-15
[(-2.0, 4), (1.0, 5), (3.0, 1)]
sage: A.eigenvalues(algorithm=�symmetric�, tol=2.5) # tol 1e-15
[(-2.0, 4), (1.3333333333333333, 6)]

An (extreme) example of properly grouping similar eigenvalues.

sage: # needs sage.graphs
sage: G = graphs.HigmanSimsGraph()
sage: A = G.adjacency_matrix().change_ring(RDF)
sage: A.eigenvalues(algorithm=�symmetric�, tol=1.0e-5) # tol 2e-15
[(-8.0, 22), (2.0, 77), (22.0, 1)]

In this generalized eigenvalue problem, the homogeneous coordinates explain the output obtained for the
eigenvalues:

sage: A = matrix.identity(RDF, 2)
sage: B = matrix(RDF, [[3, 5], [6, 10]])
sage: A.eigenvalues(B) # tol 1e-14
[0.0769230769230769, +infinity]
sage: E = A.eigenvalues(B, homogeneous=True); E # random
[(0.9999999999999999, 13.000000000000002), (0.9999999999999999, 0.0)]
sage: [alpha/beta for alpha, beta in E] # tol 1e-14
[0.0769230769230769, NaN + NaN*I]

See also

eigenvectors_left(), eigenvectors_right(), Matrix.eigenmatrix_left(),
Matrix.eigenmatrix_right().

eigenvectors_left(other=None, homogeneous=False)
Compute the ordinary or generalized left eigenvectors of amatrix of double precision real or complex numbers
(i.e. RDF or CDF).

INPUT:
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• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

• homogeneous – boolean (default: False); if True, use homogeneous coordinates for the eigen-
values in the output

OUTPUT:

A list of triples, each of the form (e,[v],1), where e is the eigenvalue, and v is an associated left eigen-
vector such that

𝑣𝐴 = 𝑒𝑣.

If the matrix 𝐴 is of size 𝑛, then there are 𝑛 triples.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝑣𝐴 = 𝑒𝑣𝐵.

If homogeneous is set, each eigenvalue is returned as a tuple (𝛼, 𝛽) of homogeneous coordinates such that

𝛽𝑣𝐴 = 𝛼𝑣𝐵.

The format of the output is designed to match the format for exact results. However, since matrices here
have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine
if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each
eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the
calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on
different hardware they may vary by a complex sign. So for doctests we have normalized output by forcing
their eigenvectors to have their first nonzero entry equal to one.

ALGORITHM:

Values are computed with the SciPy library using scipy.linalg.eig().

EXAMPLES:

sage: m = matrix(RDF, [[-5, 3, 2, 8],[10, 2, 4, -2],[-1, -10, -10, -17],[-2,␣
→˓7, 6, 13]])
sage: m
[ -5.0 3.0 2.0 8.0]
[ 10.0 2.0 4.0 -2.0]
[ -1.0 -10.0 -10.0 -17.0]
[ -2.0 7.0 6.0 13.0]
sage: spectrum = m.left_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0] = matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.0, [(1.0, 1.0, 1.0, 1.0)], 1)
sage: spectrum[1] # tol 1e-13
(1.0, [(1.0, 0.8, 0.8, 0.6)], 1)
sage: spectrum[2] # tol 1e-13
(-2.0, [(1.0, 0.4, 0.6, 0.2)], 1)
sage: spectrum[3] # tol 1e-13
(-1.0, [(1.0, 1.0, 2.0, 2.0)], 1)

A generalized eigenvalue problem:
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sage: A = matrix(CDF, [[1+I, -2], [3, 4]])
sage: B = matrix(CDF, [[0, 7-I], [2, -3]])
sage: E = A.eigenvectors_left(B)
sage: all((v * A - e * v * B).norm() < 1e-14 for e, [v], _ in E)
True

In a generalized eigenvalue problem with a singular matrix 𝐵, we can check the eigenvector property using
homogeneous coordinates, even though the quotient 𝛼/𝛽 is not always defined:

sage: A = matrix.identity(CDF, 2)
sage: B = matrix(CDF, [[2, 1+I], [4, 2+2*I]])
sage: E = A.eigenvectors_left(B, homogeneous=True)
sage: all((beta * v * A - alpha * v * B).norm() < 1e-14
....: for (alpha, beta), [v], _ in E)
True

See also

eigenvalues(), eigenvectors_right(), Matrix.eigenmatrix_left().

eigenvectors_right(other=None, homogeneous=False)
Compute the ordinary or generalized right eigenvectors of a matrix of double precision real or complex num-
bers (i.e. RDF or CDF).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

• homogeneous – boolean (default: False); if True, use homogeneous coordinates for the eigen-
values in the output

OUTPUT:

A list of triples, each of the form (e,[v],1), where e is the eigenvalue, and v is an associated right
eigenvector such that

𝐴𝑣 = 𝑒𝑣.

If the matrix 𝐴 is of size 𝑛, then there are 𝑛 triples.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝐴𝑣 = 𝑒𝐵𝑣.

If homogeneous is set, each eigenvalue is returned as a tuple (𝛼, 𝛽) of homogeneous coordinates such that

𝛽𝐴𝑣 = 𝛼𝐵𝑣.

The format of the output is designed to match the format for exact results. However, since matrices here
have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine
if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each
eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the
calling routine.
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The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on
different hardware they may vary by a complex sign. So for doctests we have normalized output by forcing
their eigenvectors to have their first nonzero entry equal to one.

ALGORITHM:

Values are computed with the SciPy library using scipy.linalg.eig().

EXAMPLES:

sage: m = matrix(RDF, [[-9, -14, 19, -74],[-1, 2, 4, -11],[-4, -12, 6, -32],
→˓[0, -2, -1, 1]])
sage: m
[ -9.0 -14.0 19.0 -74.0]
[ -1.0 2.0 4.0 -11.0]
[ -4.0 -12.0 6.0 -32.0]
[ 0.0 -2.0 -1.0 1.0]
sage: spectrum = m.right_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0] = matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.0, [(1.0, -2.0, 3.0, 1.0)], 1)
sage: spectrum[1] # tol 1e-13
(1.0, [(1.0, -0.666666666666633, 1.333333333333286, 0.33333333333331555)], 1)
sage: spectrum[2] # tol 1e-13
(-2.0, [(1.0, -0.2, 1.0, 0.2)], 1)
sage: spectrum[3] # tol 1e-12
(-1.0, [(1.0, -0.5, 2.0, 0.5)], 1)

A generalized eigenvalue problem:

sage: A = matrix(CDF, [[1+I, -2], [3, 4]])
sage: B = matrix(CDF, [[0, 7-I], [2, -3]])
sage: E = A.eigenvectors_right(B)
sage: all((A * v - e * B * v).norm() < 1e-14 for e, [v], _ in E)
True

In a generalized eigenvalue problem with a singular matrix 𝐵, we can check the eigenvector property using
homogeneous coordinates, even though the quotient 𝛼/𝛽 is not always defined:

sage: A = matrix.identity(RDF, 2)
sage: B = matrix(RDF, [[3, 5], [6, 10]])
sage: E = A.eigenvectors_right(B, homogeneous=True)
sage: all((beta * A * v - alpha * B * v).norm() < 1e-14
....: for (alpha, beta), [v], _ in E)
True

See also

eigenvalues(), eigenvectors_left(), Matrix.eigenmatrix_right().

exp()

Calculate the exponential of this matrix X, which is the matrix

𝑒𝑋 =

∞∑︁
𝑘=0

𝑋𝑘

𝑘!
.

EXAMPLES:
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sage: A = matrix(RDF, 2, [1,2,3,4]); A
[1.0 2.0]
[3.0 4.0]
sage: A.exp() # tol 5e-14
[51.968956198705044 74.73656456700327]
[112.10484685050491 164.07380304920997]
sage: A = matrix(CDF, 2, [1,2+I,3*I,4]); A #␣
→˓needs sage.symbolic
[ 1.0 2.0 + 1.0*I]
[ 3.0*I 4.0]
sage: A.exp() # tol 3e-14 #␣
→˓needs sage.symbolic
[-19.614602953804912 + 12.517743846762578*I 3.7949636449582176 + 28.
→˓88379930658099*I]
[ -32.383580980922254 + 21.88423595789845*I 2.269633004093535 + 44.
→˓901324827684824*I]

is_hermitian(tol=1e-12, algorithm='naive')
Return True if the matrix is equal to its conjugate-transpose.

INPUT:

• tol – (default: 1e-12) the largest value of the absolute value of the difference between two matrix
entries for which they will still be considered equal.

• algorithm – string (default: �naive�); either �naive� or �orthonormal�

OUTPUT:

True if the matrix is square and equal to the transpose with every entry conjugated, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the is_sym-
metric() method is equivalent and faster.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to
round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply compares corresponding entries on either side of the diagonal (and on the diagonal
itself) to see if they are conjugates, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the schur() method) and checks
that the result is a diagonal matrix with real entries.

So the naive algorithm can finish quickly for a matrix that is not Hermitian, while the orthonormal algorithm
will always compute a Schur decomposition before going through a similar check of thematrix entry-by-entry.

EXAMPLES:

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: A.is_hermitian(algorithm=�orthonormal�)
False
sage: A.is_hermitian(algorithm=�naive�)
False
sage: B = A*A.conjugate_transpose()

(continues on next page)
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sage: B.is_hermitian(algorithm=�orthonormal�)
True
sage: B.is_hermitian(algorithm=�naive�)
True

A matrix that is nearly Hermitian, but for one non-real diagonal entry.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 2, 2-I, 1+4*I],
....: [ 2+I, 3+I, 2-6*I],
....: [1-4*I, 2+6*I, 5]])
sage: A.is_hermitian(algorithm=�orthonormal�)
False
sage: A[1,1] = 132
sage: A.is_hermitian(algorithm=�orthonormal�)
True

We get a unitary matrix from the SVD routine and use this numerical matrix to create a matrix that should
be Hermitian (indeed it should be the identity matrix), but with some imprecision. We use this to illustrate
that if the tolerance is set too small, then we can be too strict about the equality of entries and may achieve
the wrong result (depending on the system):

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: U, _, _ = A.SVD()
sage: B = U*U.conjugate_transpose()
sage: B.is_hermitian(algorithm=�naive�)
True
sage: B.is_hermitian(algorithm=�naive�, tol=1.0e-17) # random
False
sage: B.is_hermitian(algorithm=�naive�, tol=1.0e-15)
True

A square, empty matrix is trivially Hermitian.

sage: A = matrix(RDF, 0, 0)
sage: A.is_hermitian()
True

Rectangular matrices are never Hermitian, no matter which algorithm is requested.

sage: A = matrix(CDF, 3, 4)
sage: A.is_hermitian()
False

AUTHOR:

• Rob Beezer (2011-03-30)

is_normal(tol=1e-12, algorithm='orthonormal')
Return True if the matrix commutes with its conjugate-transpose.

INPUT:

• tol – (default: 1e-12) the largest value of the absolute value of the difference between two matrix
entries for which they will still be considered equal.
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• algorithm – (default: �orthonormal�) set to �orthonormal� for a stable procedure and set
to �naive� for a fast procedure

OUTPUT:

True if the matrix is square and commutes with its conjugate-transpose, and False otherwise.

Normal matrices are precisely those that can be diagonalized by a unitary matrix.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to
round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply compares entries of the two possible products of the matrix with its
conjugate-transpose, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the schur() method) and checks
that the result is a diagonal matrix. An orthonormal diagonalization is equivalent to being normal.

So the naive algorithm can finish fairly quickly for a matrix that is not normal, once the products have been
computed. However, the orthonormal algorithm will compute a Schur decomposition before going through a
similar check of a matrix entry-by-entry.

EXAMPLES:

First over the complexes. B is Hermitian, hence normal.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: B = A*A.conjugate_transpose()
sage: B.is_hermitian()
True
sage: B.is_normal(algorithm=�orthonormal�)
True
sage: B.is_normal(algorithm=�naive�)
True
sage: B[0,0] = I
sage: B.is_normal(algorithm=�orthonormal�)
False
sage: B.is_normal(algorithm=�naive�)
False

Now over the reals. Circulant matrices are normal.

sage: # needs sage.graphs
sage: G = graphs.CirculantGraph(20, [3, 7])
sage: D = digraphs.Circuit(20)
sage: A = 3*D.adjacency_matrix() - 5*G.adjacency_matrix()
sage: A = A.change_ring(RDF)
sage: A.is_normal()
True
sage: A.is_normal(algorithm=�naive�)
True
sage: A[19,0] = 4.0
sage: A.is_normal()
False

(continues on next page)
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sage: A.is_normal(algorithm=�naive�)
False

Skew-Hermitian matrices are normal.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: B = A - A.conjugate_transpose()
sage: B.is_hermitian()
False
sage: B.is_normal()
True
sage: B.is_normal(algorithm=�naive�)
True

A small matrix that does not fit into any of the usual categories of normal matrices.

sage: A = matrix(RDF, [[1, -1],
....: [1, 1]])
sage: A.is_normal()
True
sage: not A.is_hermitian() and not A.is_skew_symmetric()
True

Sage has several fields besides the entire complex numbers where conjugation is non-trivial.

sage: # needs sage.rings.number_field
sage: F.<b> = QuadraticField(-7)
sage: C = matrix(F, [[-2*b - 3, 7*b - 6, -b + 3],
....: [-2*b - 3, -3*b + 2, -2*b],
....: [ b + 1, 0, -2]])
sage: C = C*C.conjugate_transpose()
sage: C.is_normal()
True

A square, empty matrix is trivially normal.

sage: A = matrix(CDF, 0, 0)
sage: A.is_normal()
True

Rectangular matrices are never normal, no matter which algorithm is requested.

sage: A = matrix(CDF, 3, 4)
sage: A.is_normal()
False

AUTHOR:

• Rob Beezer (2011-03-31)

is_positive_definite()

Determines if a matrix is positive definite.

A matrix 𝐴 is positive definite if it is square, is Hermitian (which reduces to symmetric in the real case), and
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for every nonzero vector �⃗�,

�⃗�*𝐴�⃗� > 0

where �⃗�* is the conjugate-transpose in the complex case and just the transpose in the real case. Equivalently,
a positive definite matrix has only positive eigenvalues and only positive determinants of leading principal
submatrices.

Applies to any matrix over RDF or CDF.

OUTPUT:

True if and only if the matrix is square, Hermitian, and meets the condition above on the quadratic form.
The result is cached.

IMPLEMENTATION:

The existence of a Cholesky decomposition and the positive definite property are equivalent. So this
method and the cholesky() method compute and cache both the Cholesky decomposition and the
positive-definiteness. So the is_positive_definite()method or catching a ValueError from the
cholesky()method are equally expensive computationally and if the decomposition exists, it is cached as
a side-effect of either routine.

EXAMPLES:

A matrix over RDF that is positive definite.

sage: M = matrix(RDF,[[ 1, 1, 1, 1, 1],
....: [ 1, 5, 31, 121, 341],
....: [ 1, 31, 341, 1555, 4681],
....: [ 1,121, 1555, 7381, 22621],
....: [ 1,341, 4681, 22621, 69905]])
sage: M.is_symmetric()
True
sage: M.eigenvalues()
[77547.66..., 82.44..., 2.41..., 0.46..., 0.011...]
sage: [round(M[:i,:i].determinant()) for i in range(1, M.nrows()+1)]
[1, 4, 460, 27936, 82944]
sage: M.is_positive_definite()
True

A matrix over CDF that is positive definite.

sage: # needs sage.symbolic
sage: C = matrix(CDF, [[ 23, 17*I + 3, 24*I + 25, 21*I],
....: [ -17*I + 3, 38, -69*I + 89, 7*I + 15],
....: [-24*I + 25, 69*I + 89, 976, 24*I + 6],
....: [ -21*I, -7*I + 15, -24*I + 6, 28]])
sage: C.is_hermitian()
True
sage: [x.real() for x in C.eigenvalues()]
[991.46..., 55.96..., 3.69..., 13.87...]
sage: [round(C[:i,:i].determinant().real()) for i in range(1, C.nrows()+1)]
[23, 576, 359540, 2842600]
sage: C.is_positive_definite()
True

A matrix over RDF that is not positive definite.
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sage: A = matrix(RDF, [[ 3, -6, 9, 6, -9],
....: [-6, 11, -16, -11, 17],
....: [ 9, -16, 28, 16, -40],
....: [ 6, -11, 16, 9, -19],
....: [-9, 17, -40, -19, 68]])
sage: A.is_symmetric()
True
sage: A.eigenvalues()
[108.07..., 13.02..., -0.02..., -0.70..., -1.37...]
sage: [round(A[:i,:i].determinant()) for i in range(1, A.nrows()+1)]
[3, -3, -15, 30, -30]
sage: A.is_positive_definite()
False

A matrix over CDF that is not positive definite.

sage: # needs sage.symbolic
sage: B = matrix(CDF, [[ 2, 4 - 2*I, 2 + 2*I],
....: [4 + 2*I, 8, 10*I],
....: [2 - 2*I, -10*I, -3]])
sage: B.is_hermitian()
True
sage: [ev.real() for ev in B.eigenvalues()]
[15.88..., 0.08..., -8.97...]
sage: [round(B[:i,:i].determinant().real()) for i in range(1, B.nrows()+1)]
[2, -4, -12]
sage: B.is_positive_definite()
False

A large random matrix that is guaranteed by theory to be positive definite.

sage: R = random_matrix(CDF, 200)
sage: H = R.conjugate_transpose()*R
sage: H.is_positive_definite()
True

AUTHOR:

• Rob Beezer (2012-05-28)

is_skew_hermitian(tol=1e-12, algorithm='orthonormal')
Return True if the matrix is equal to the negative of its conjugate transpose.

INPUT:

• tol – (default: 1e-12) the largest value of the absolute value of the difference between two matrix
entries for which they will still be considered equal.

• algorithm – (default: �orthonormal�) set to �orthonormal� for a stable procedure and set
to �naive� for a fast procedure

OUTPUT:

True if the matrix is square and equal to the negative of its conjugate transpose, and False otherwise.

Note that if conjugation has no effect on elements of the base ring (such as for integers), then the
is_skew_symmetric() method is equivalent and faster.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to
round-off and other imprecisions.
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The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply compares corresponding entries on either side of the diagonal (and on the diagonal
itself) to see if they are conjugates, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the schur() method) and checks
that the result is a diagonal matrix with real entries.

So the naive algorithm can finish quickly for a matrix that is not Hermitian, while the orthonormal algorithm
will always compute a Schur decomposition before going through a similar check of thematrix entry-by-entry.

EXAMPLES:

sage: A = matrix(CDF, [[0, -1],
....: [1, 0]])
sage: A.is_skew_hermitian(algorithm=�orthonormal�)
True
sage: A.is_skew_hermitian(algorithm=�naive�)
True

A matrix that is nearly skew-Hermitian, but for a non-real diagonal entry.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ -I, -1, 1-I],
....: [ 1, 1, -1],
....: [-1-I, 1, -I]])
sage: A.is_skew_hermitian()
False
sage: A[1,1] = -I
sage: A.is_skew_hermitian()
True

We get a unitary matrix from the SVD routine and use this numerical matrix to create a matrix that should
be skew-Hermitian (indeed it should be the identity matrix multiplied by 𝐼), but with some imprecision. We
use this to illustrate that if the tolerance is set too small, then we can be too strict about the equality of entries
and may achieve the wrong result (depending on the system):

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 + I, 1 - 6*I, -1 - I],
....: [-3 - I, -4*I, -2],
....: [-1 + I, -2 - 8*I, 2 + I]])
sage: U, _, _ = A.SVD()
sage: B = 1j*U*U.conjugate_transpose()
sage: B.is_skew_hermitian(algorithm=�naive�)
True
sage: B.is_skew_hermitian(algorithm=�naive�, tol=1.0e-17) # random
False
sage: B.is_skew_hermitian(algorithm=�naive�, tol=1.0e-15)
True

A square, empty matrix is trivially Hermitian.

sage: A = matrix(RDF, 0, 0)
sage: A.is_skew_hermitian()
True

Rectangular matrices are never Hermitian, no matter which algorithm is requested.
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sage: A = matrix(CDF, 3, 4)
sage: A.is_skew_hermitian()
False

AUTHOR:

• Rob Beezer (2011-03-30)

is_unitary(tol=1e-12, algorithm='orthonormal')
Return True if the columns of the matrix are an orthonormal basis.

For a matrix with real entries this determines if a matrix is “orthogonal” and for a matrix with complex entries
this determines if the matrix is “unitary.”

INPUT:

• tol – (default: 1e-12) the largest value of the absolute value of the difference between two matrix
entries for which they will still be considered equal

• algorithm – (default: �orthonormal�) set to �orthonormal� for a stable procedure and set
to ‘naive’ for a fast procedure

OUTPUT:

True if the matrix is square and its conjugate-transpose is its inverse, and False otherwise. In other words,
a matrix is orthogonal or unitary if the product of its conjugate-transpose times the matrix is the identity
matrix.

The tolerance parameter is used to allow for numerical values to be equal if there is a slight difference due to
round-off and other imprecisions.

The result is cached, on a per-tolerance and per-algorithm basis.

ALGORITHMS:

The naive algorithm simply computes the product of the conjugate-transpose with the matrix and compares
the entries to the identity matrix, with equality controlled by the tolerance parameter.

The orthonormal algorithm first computes a Schur decomposition (via the schur() method) and checks
that the result is a diagonal matrix with entries of modulus 1, which is equivalent to being unitary.

So the naive algorithm might finish fairly quickly for a matrix that is not unitary, once the product has been
computed. However, the orthonormal algorithm will compute a Schur decomposition before going through a
similar check of a matrix entry-by-entry.

EXAMPLES:

A matrix that is far from unitary.

sage: A = matrix(RDF, 4, range(16))
sage: A.conjugate().transpose()*A
[224.0 248.0 272.0 296.0]
[248.0 276.0 304.0 332.0]
[272.0 304.0 336.0 368.0]
[296.0 332.0 368.0 404.0]
sage: A.is_unitary()
False
sage: A.is_unitary(algorithm=�naive�)
False
sage: A.is_unitary(algorithm=�orthonormal�)
False
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The QR decomposition will produce a unitary matrix as Q and the SVD decomposition will create two unitary
matrices, U and V.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 1 - I, -3*I, -2 + I, 1, -2 + 3*I],
....: [ 1 - I, -2 + I, 1 + 4*I, 0, 2 + I],
....: [ -1, -5 + I, -2 + I, 1 + I, -5 - 4*I],
....: [-2 + 4*I, 2 - I, 8 - 4*I, 1 - 8*I, 3 - 2*I]])
sage: Q, R = A.QR()
sage: Q.is_unitary()
True
sage: U, S, V = A.SVD()
sage: U.is_unitary(algorithm=�naive�)
True
sage: U.is_unitary(algorithm=�orthonormal�)
True
sage: V.is_unitary(algorithm=�naive�)
True

If we make the tolerance too strict we can get misleading results.

sage: A = matrix(RDF, 10, 10, [1/(i+j+1) for i in range(10) for j in␣
→˓range(10)])
sage: Q, R = A.QR()
sage: Q.is_unitary(algorithm=�naive�, tol=1e-16)
False
sage: Q.is_unitary(algorithm=�orthonormal�, tol=1e-17)
False

Rectangular matrices are not unitary/orthogonal, even if their columns form an orthonormal set.

sage: A = matrix(CDF, [[1,0], [0,0], [0,1]])
sage: A.is_unitary()
False

The smallest cases:

sage: P = matrix(CDF, 0, 0)
sage: P.is_unitary(algorithm=�naive�)
True

sage: P = matrix(CDF, 1, 1, [1])
sage: P.is_unitary(algorithm=�orthonormal�)
True

sage: P = matrix(CDF, 0, 0,)
sage: P.is_unitary(algorithm=�orthonormal�)
True

AUTHOR:

• Rob Beezer (2011-05-04)

left_eigenvectors(other=None, homogeneous=False)
Compute the ordinary or generalized left eigenvectors of amatrix of double precision real or complex numbers
(i.e. RDF or CDF).

INPUT:
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• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved

• homogeneous – boolean (default: False); if True, use homogeneous coordinates for the eigen-
values in the output

OUTPUT:

A list of triples, each of the form (e,[v],1), where e is the eigenvalue, and v is an associated left eigen-
vector such that

𝑣𝐴 = 𝑒𝑣.

If the matrix 𝐴 is of size 𝑛, then there are 𝑛 triples.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝑣𝐴 = 𝑒𝑣𝐵.

If homogeneous is set, each eigenvalue is returned as a tuple (𝛼, 𝛽) of homogeneous coordinates such that

𝛽𝑣𝐴 = 𝛼𝑣𝐵.

The format of the output is designed to match the format for exact results. However, since matrices here
have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine
if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each
eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the
calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on
different hardware they may vary by a complex sign. So for doctests we have normalized output by forcing
their eigenvectors to have their first nonzero entry equal to one.

ALGORITHM:

Values are computed with the SciPy library using scipy.linalg.eig().

EXAMPLES:

sage: m = matrix(RDF, [[-5, 3, 2, 8],[10, 2, 4, -2],[-1, -10, -10, -17],[-2,␣
→˓7, 6, 13]])
sage: m
[ -5.0 3.0 2.0 8.0]
[ 10.0 2.0 4.0 -2.0]
[ -1.0 -10.0 -10.0 -17.0]
[ -2.0 7.0 6.0 13.0]
sage: spectrum = m.left_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0] = matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.0, [(1.0, 1.0, 1.0, 1.0)], 1)
sage: spectrum[1] # tol 1e-13
(1.0, [(1.0, 0.8, 0.8, 0.6)], 1)
sage: spectrum[2] # tol 1e-13
(-2.0, [(1.0, 0.4, 0.6, 0.2)], 1)
sage: spectrum[3] # tol 1e-13
(-1.0, [(1.0, 1.0, 2.0, 2.0)], 1)

A generalized eigenvalue problem:
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sage: A = matrix(CDF, [[1+I, -2], [3, 4]])
sage: B = matrix(CDF, [[0, 7-I], [2, -3]])
sage: E = A.eigenvectors_left(B)
sage: all((v * A - e * v * B).norm() < 1e-14 for e, [v], _ in E)
True

In a generalized eigenvalue problem with a singular matrix 𝐵, we can check the eigenvector property using
homogeneous coordinates, even though the quotient 𝛼/𝛽 is not always defined:

sage: A = matrix.identity(CDF, 2)
sage: B = matrix(CDF, [[2, 1+I], [4, 2+2*I]])
sage: E = A.eigenvectors_left(B, homogeneous=True)
sage: all((beta * v * A - alpha * v * B).norm() < 1e-14
....: for (alpha, beta), [v], _ in E)
True

See also

eigenvalues(), eigenvectors_right(), Matrix.eigenmatrix_left().

log_determinant()

Compute the log of the absolute value of the determinant using LU decomposition.

Note

This is useful if the usual determinant overflows.

EXAMPLES:

sage: m = matrix(RDF,2,2,range(4)); m
[0.0 1.0]
[2.0 3.0]
sage: RDF(log(abs(m.determinant())))
0.6931471805599453
sage: m.log_determinant()
0.6931471805599453
sage: m = matrix(RDF,0,0,[]); m
[]
sage: m.log_determinant()
0.0
sage: m = matrix(CDF,2,2,range(4)); m
[0.0 1.0]
[2.0 3.0]
sage: RDF(log(abs(m.determinant())))
0.6931471805599453
sage: m.log_determinant()
0.6931471805599453
sage: m = matrix(CDF,0,0,[]); m
[]
sage: m.log_determinant()
0.0

norm(p=2)

Return the norm of the matrix.
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INPUT:

• p – (default: 2) controls which norm is computed, allowable values are ‘frob’ (for the Frobenius norm),
integers -2, -1, 1, 2, positive and negative infinity. See output discussion for specifics.

OUTPUT:

Returned value is a double precision floating point value in RDF. Row and column sums described below
are sums of the absolute values of the entries, where the absolute value of the complex number 𝑎 + 𝑏𝑖 is√
𝑎2 + 𝑏2. Singular values are the “diagonal” entries of the “S” matrix in the singular value decomposition.

• p = �frob�: the Frobenius norm, which for a matrix 𝐴 = (𝑎𝑖𝑗) computes⎛⎝∑︁
𝑖,𝑗

|𝑎𝑖,𝑗 |2
⎞⎠1/2

• p = Infinity or p = oo: the maximum row sum.

• p = -Infinity or p = -oo: the minimum column sum.

• p = 1: the maximum column sum.

• p = -1: the minimum column sum.

• p = 2: the induced 2-norm, equal to the maximum singular value.

• p = -2: the minimum singular value.

ALGORITHM:

Computation is performed by the norm() function of the SciPy/NumPy library.

EXAMPLES:

First over the reals.

sage: A = matrix(RDF, 3, range(-3, 6)); A
[-3.0 -2.0 -1.0]
[ 0.0 1.0 2.0]
[ 3.0 4.0 5.0]
sage: A.norm()
7.99575670...
sage: A.norm(p=�frob�)
8.30662386...
sage: A.norm(p=Infinity)
12.0
sage: A.norm(p=-Infinity)
3.0
sage: A.norm(p=1)
8.0
sage: A.norm(p=-1)
6.0
sage: A.norm(p=2)
7.99575670...
sage: A.norm(p=-2) < 10^-15
True

And over the complex numbers.
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sage: # needs sage.symbolic
sage: B = matrix(CDF, 2, [[1+I, 2+3*I],[3+4*I,3*I]]); B
[1.0 + 1.0*I 2.0 + 3.0*I]
[3.0 + 4.0*I 3.0*I]
sage: B.norm()
6.66189877...
sage: B.norm(p=�frob�)
7.0
sage: B.norm(p=Infinity)
8.0
sage: B.norm(p=-Infinity)
5.01976483...
sage: B.norm(p=1)
6.60555127...
sage: B.norm(p=-1)
6.41421356...
sage: B.norm(p=2)
6.66189877...
sage: B.norm(p=-2)
2.14921023...

Since it is invariant under unitary multiplication, the Frobenius norm is equal to the square root of the sum
of squares of the singular values.

sage: A = matrix(RDF, 5, range(1,26))
sage: f = A.norm(p=�frob�)
sage: U, S, V = A.SVD()
sage: s = sqrt(sum([S[i,i]^2 for i in range(5)]))
sage: abs(f-s) < 1.0e-12
True

Return values are in 𝑅𝐷𝐹 .

sage: A = matrix(CDF, 2, range(4))
sage: A.norm() in RDF
True

Improper values of p are caught.

sage: A.norm(p=�bogus�)
Traceback (most recent call last):
...
ValueError: matrix norm �p� must be +/- infinity, �frob� or an integer, not␣
→˓bogus
sage: A.norm(p=632)
Traceback (most recent call last):
...
ValueError: matrix norm integer values of �p� must be -2, -1, 1 or 2, not 632

right_eigenvectors(other=None, homogeneous=False)
Compute the ordinary or generalized right eigenvectors of a matrix of double precision real or complex num-
bers (i.e. RDF or CDF).

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved
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• homogeneous – boolean (default: False); if True, use homogeneous coordinates for the eigen-
values in the output

OUTPUT:

A list of triples, each of the form (e,[v],1), where e is the eigenvalue, and v is an associated right
eigenvector such that

𝐴𝑣 = 𝑒𝑣.

If the matrix 𝐴 is of size 𝑛, then there are 𝑛 triples.

If a matrix 𝐵 is passed as optional argument, the output is a solution to the generalized eigenvalue problem
such that

𝐴𝑣 = 𝑒𝐵𝑣.

If homogeneous is set, each eigenvalue is returned as a tuple (𝛼, 𝛽) of homogeneous coordinates such that

𝛽𝐴𝑣 = 𝛼𝐵𝑣.

The format of the output is designed to match the format for exact results. However, since matrices here
have numerical entries, the resulting eigenvalues will also be numerical. No attempt is made to determine
if two eigenvalues are equal, or if eigenvalues might actually be zero. So the algebraic multiplicity of each
eigenvalue is reported as 1. Decisions about equal eigenvalues or zero eigenvalues should be addressed in the
calling routine.

The SciPy routines used for these computations produce eigenvectors normalized to have length 1, but on
different hardware they may vary by a complex sign. So for doctests we have normalized output by forcing
their eigenvectors to have their first nonzero entry equal to one.

ALGORITHM:

Values are computed with the SciPy library using scipy.linalg.eig().

EXAMPLES:

sage: m = matrix(RDF, [[-9, -14, 19, -74],[-1, 2, 4, -11],[-4, -12, 6, -32],
→˓[0, -2, -1, 1]])
sage: m
[ -9.0 -14.0 19.0 -74.0]
[ -1.0 2.0 4.0 -11.0]
[ -4.0 -12.0 6.0 -32.0]
[ 0.0 -2.0 -1.0 1.0]
sage: spectrum = m.right_eigenvectors()
sage: for i in range(len(spectrum)):
....: spectrum[i][1][0] = matrix(RDF, spectrum[i][1]).echelon_form()[0]
sage: spectrum[0] # tol 1e-13
(2.0, [(1.0, -2.0, 3.0, 1.0)], 1)
sage: spectrum[1] # tol 1e-13
(1.0, [(1.0, -0.666666666666633, 1.333333333333286, 0.33333333333331555)], 1)
sage: spectrum[2] # tol 1e-13
(-2.0, [(1.0, -0.2, 1.0, 0.2)], 1)
sage: spectrum[3] # tol 1e-12
(-1.0, [(1.0, -0.5, 2.0, 0.5)], 1)

A generalized eigenvalue problem:
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sage: A = matrix(CDF, [[1+I, -2], [3, 4]])
sage: B = matrix(CDF, [[0, 7-I], [2, -3]])
sage: E = A.eigenvectors_right(B)
sage: all((A * v - e * B * v).norm() < 1e-14 for e, [v], _ in E)
True

In a generalized eigenvalue problem with a singular matrix 𝐵, we can check the eigenvector property using
homogeneous coordinates, even though the quotient 𝛼/𝛽 is not always defined:

sage: A = matrix.identity(RDF, 2)
sage: B = matrix(RDF, [[3, 5], [6, 10]])
sage: E = A.eigenvectors_right(B, homogeneous=True)
sage: all((beta * A * v - alpha * B * v).norm() < 1e-14
....: for (alpha, beta), [v], _ in E)
True

See also

eigenvalues(), eigenvectors_left(), Matrix.eigenmatrix_right().

round(ndigits=0)
Return a copy of the matrix where all entries have been rounded to a given precision in decimal digits (default:
0 digits).

INPUT:

• ndigits – the precision in number of decimal digits

OUTPUT: a modified copy of the matrix

EXAMPLES:

sage: M = matrix(CDF, [[10.234r + 34.2343jr, 34e10r]])
sage: M
[10.234 + 34.2343*I 340000000000.0]
sage: M.round(2)
[10.23 + 34.23*I 340000000000.0]
sage: M.round()
[ 10.0 + 34.0*I 340000000000.0]

schur(base_ring=None)

Return the Schur decomposition of the matrix.

INPUT:

• base_ring – defaults to the base ring of self; use this to request the base ring of the returned
matrices, which will affect the format of the results

OUTPUT:

A pair of immutable matrices. The first is a unitary matrix 𝑄. The second, 𝑇 , is upper-triangular when
returned over the complex numbers, while it is almost upper-triangular over the reals. In the latter case, there
can be some 2× 2 blocks on the diagonal which represent a pair of conjugate complex eigenvalues of self.

If self is the matrix 𝐴, then

𝐴 = 𝑄𝑇 (𝑄)𝑡
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where the latter matrix is the conjugate-transpose of Q, which is also the inverse of Q, since Q is unitary.

Note that in the case of a normal matrix (Hermitian, symmetric, and others), the upper-triangular matrix is a
diagonal matrix with eigenvalues of self on the diagonal, and the unitary matrix has columns that form an
orthonormal basis composed of eigenvectors of self. This is known as “orthonormal diagonalization”.

Warning

The Schur decomposition is not unique, as there may be numerous choices for the vectors of the orthonor-
mal basis, and consequently different possibilities for the upper-triangular matrix. However, the diagonal
of the upper-triangular matrix will always contain the eigenvalues of the matrix (in the complex version),
or 2× 2 block matrices in the real version representing pairs of conjugate complex eigenvalues.

In particular, results may vary across systems and processors.

EXAMPLES:

First over the complexes. The similar matrix is always upper-triangular in this case.

sage: # needs sage.symbolic
sage: A = matrix(CDF, 4, 4, range(16)) + matrix(CDF, 4, 4,
....: [x^3*I for x in range(0, 16)])
sage: Q, T = A.schur()
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[ 0.999999999999999 0.0 0.0 0.0]
[ 0.0 0.9999999999999996 0.0 0.0]
[ 0.0 0.0 0.9999999999999992 0.0]
[ 0.0 0.0 0.0 0.9999999999999999]
sage: all(T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i))
True
sage: (Q*T*Q.conjugate().transpose() - A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
sage: eigenvalues = [T[i,i] for i in range(4)]; eigenvalues
[30.733... + 4648.541...*I, -0.184... - 159.057...*I, -0.523... + 11.158...*I,
→˓ -0.025... - 0.642...*I]
sage: A.eigenvalues()
[30.733... + 4648.541...*I, -0.184... - 159.057...*I, -0.523... + 11.158...*I,
→˓ -0.025... - 0.642...*I]
sage: abs(A.norm()-T.norm()) < 1e-10
True

We begin with a real matrix but ask for a decomposition over the complexes. The result will yield an
upper-triangular matrix over the complex numbers for T.

sage: A = matrix(RDF, 4, 4, [x^3 for x in range(16)])
sage: Q, T = A.schur(base_ring=CDF)
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[0.9999999999999987 0.0 0.0 0.0]
[ 0.0 0.9999999999999999 0.0 0.0]
[ 0.0 0.0 1.0000000000000013 0.0]
[ 0.0 0.0 0.0 1.0000000000000007]
sage: T.parent()
Full MatrixSpace of 4 by 4 dense matrices over Complex Double Field
sage: all(T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i))

(continues on next page)
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(continued from previous page)

True
sage: (Q*T*Q.conjugate().transpose() - A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]

Now totally over the reals. But with complex eigenvalues, the similar matrix may not be upper-triangular.
But “at worst” there may be some 2× 2 blocks on the diagonal which represent a pair of conjugate complex
eigenvalues. These blocks will then just interrupt the zeros below the main diagonal. This example has a pair
of these of the blocks.

sage: A = matrix(RDF, 4, 4, [[1, 0, -3, -1],
....: [4, -16, -7, 0],
....: [1, 21, 1, -2],
....: [26, -1, -2, 1]])
sage: Q, T = A.schur()
sage: (Q*Q.conjugate().transpose()) # tol 1e-12
[0.9999999999999994 0.0 0.0 0.0]
[ 0.0 1.0000000000000013 0.0 0.0]
[ 0.0 0.0 1.0000000000000004 0.0]
[ 0.0 0.0 0.0 1.0000000000000016]
sage: all(T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i))
False
sage: all(T.zero_at(1.0e-12)[i,j] == 0 for i in range(4) for j in range(i-1))
True
sage: (Q*T*Q.conjugate().transpose() - A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
sage: sorted(T[0:2,0:2].eigenvalues() + T[2:4,2:4].eigenvalues())
[-5.710... - 8.382...*I, -5.710... + 8.382...*I, -0.789... - 2.336...*I, -0.
→˓789... + 2.336...*I]
sage: sorted(A.eigenvalues())
[-5.710... - 8.382...*I, -5.710... + 8.382...*I, -0.789... - 2.336...*I, -0.
→˓789... + 2.336...*I]
sage: abs(A.norm()-T.norm()) < 1e-12
True

Starting with complex numbers and requesting a result over the reals will never happen.

sage: # needs sage.symbolic
sage: A = matrix(CDF, 2, 2, [[2+I, -1+3*I], [5-4*I, 2-7*I]])
sage: A.schur(base_ring=RDF)
Traceback (most recent call last):
...
TypeError: unable to convert input matrix over CDF to a matrix over RDF

If theory predicts your matrix is real, but it contains some very small imaginary parts, you can specify the
cutoff for “small” imaginary parts, then request the output as real matrices, and let the routine do the rest.

sage: A = matrix(RDF, 2, 2, [1, 1, -1, 0]) + matrix(CDF, 2, 2, [1.0e-14*I]*4)
sage: B = A.zero_at(1.0e-12)
sage: B.parent()
Full MatrixSpace of 2 by 2 dense matrices over Complex Double Field

(continues on next page)
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sage: Q, T = B.schur(RDF)
sage: Q.parent()
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field
sage: T.parent()
Full MatrixSpace of 2 by 2 dense matrices over Real Double Field
sage: Q.round(6)
[ 0.707107 0.707107]
[-0.707107 0.707107]
sage: T.round(6)
[ 0.5 1.5]
[-0.5 0.5]
sage: (Q*T*Q.conjugate().transpose() - B).zero_at(1.0e-11)
[0.0 0.0]
[0.0 0.0]

A Hermitian matrix has real eigenvalues, so the similar matrix will be upper-triangular. Furthermore, a
Hermitian matrix is diagonalizable with respect to an orthonormal basis, composed of eigenvectors of the
matrix. Here that basis is the set of columns of the unitary matrix.

sage: # needs sage.symbolic
sage: A = matrix(CDF, [[ 52, -9*I - 8, 6*I - 187, -188*I + 2],
....: [ 9*I - 8, 12, -58*I + 59, 30*I + 42],
....: [-6*I - 187, 58*I + 59, 2677, 2264*I + 65],
....: [ 188*I + 2, -30*I + 42, -2264*I + 65, 2080]])
sage: Q, T = A.schur()
sage: T = T.zero_at(1.0e-12).change_ring(RDF)
sage: T.round(6)
[4680.13301 0.0 0.0 0.0]
[ 0.0 102.715967 0.0 0.0]
[ 0.0 0.0 35.039344 0.0]
[ 0.0 0.0 0.0 3.11168]
sage: (Q*Q.conjugate().transpose()).zero_at(1e-12) # tol 1e-12
[1.0000000000000004 0.0 0.0 0.0]
[ 0.0 0.9999999999999989 0.0 0.0]
[ 0.0 0.0 1.0000000000000002 0.0]
[ 0.0 0.0 0.0 0.9999999999999992]
sage: (Q*T*Q.conjugate().transpose() - A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]

Similarly, a real symmetric matrix has only real eigenvalues, and there is an orthonormal basis composed of
eigenvectors of the matrix.

sage: A = matrix(RDF, [[ 1, -2, 5, -3],
....: [-2, 9, 1, 5],
....: [ 5, 1, 3 , 7],
....: [-3, 5, 7, -8]])
sage: Q, T = A.schur()
sage: Q.round(4)
[-0.3027 -0.751 0.576 -0.1121]
[ 0.139 -0.3892 -0.2648 0.8713]
[ 0.4361 0.359 0.7599 0.3217]
[ -0.836 0.3945 0.1438 0.3533]
sage: T = T.zero_at(10^-12)

(continues on next page)
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sage: all(abs(e) < 10^-4
....: for e in (T - diagonal_matrix(RDF, [-13.5698, -0.8508, 7.7664, 11.
→˓6542])).list())
True
sage: (Q*Q.transpose()) # tol 1e-12
[0.9999999999999998 0.0 0.0 0.0]
[ 0.0 1.0 0.0 0.0]
[ 0.0 0.0 0.9999999999999998 0.0]
[ 0.0 0.0 0.0 0.9999999999999996]
sage: (Q*T*Q.transpose() - A).zero_at(1.0e-11)
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]
[0.0 0.0 0.0 0.0]

The results are cached, both as a real factorization and also as a complex factorization. This means the returned
matrices are immutable.

sage: A = matrix(RDF, 2, 2, [[0, -1], [1, 0]])
sage: Qr, Tr = A.schur(base_ring=RDF)
sage: Qc, Tc = A.schur(base_ring=CDF)
sage: all(M.is_immutable() for M in [Qr, Tr, Qc, Tc])
True
sage: Tr.round(6) != Tc.round(6)
True

AUTHOR:

• Rob Beezer (2011-03-31)

singular_values(eps=None)
Return a sorted list of the singular values of the matrix.

INPUT:

• eps – (default: None) the largest number which will be considered to be zero. May also be set to the
string ‘auto’. See the discussion below.

OUTPUT:

A sorted list of the singular values of the matrix, which are the diagonal entries of the “S” matrix in the SVD
decomposition. As such, the values are real and are returned as elements of RDF. The list is sorted with
larger values first, and since theory predicts these values are always positive, for a rank-deficient matrix the
list should end in zeros (but in practice may not). The length of the list is the minimum of the row count and
column count for the matrix.

The number of nonzero singular values will be the rank of the matrix. However, as a numerical matrix, it
is impossible to control the difference between zero entries and very small nonzero entries. As an informed
consumer it is up to you to use the output responsibly. We will do our best, and give you the tools to work
with the output, but we cannot give you a guarantee.

With eps set to None you will get the raw singular values and can manage them as you see fit. You may
also set eps to any positive floating point value you wish. If you set eps to ‘auto’ this routine will compute
a reasonable cutoff value, based on the size of the matrix, the largest singular value and the smallest nonzero
value representable by the 53-bit precision values used. See the discussion at page 268 of [Wat2010].

See the examples for a way to use the “verbose” facility to easily watch the zero cutoffs in action.

ALGORITHM:
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The singular values come from the SVD decomposition computed by SciPy/NumPy using scipy.
linalg.svd().

EXAMPLES:

Singular values close to zero have trailing digits that may vary on different hardware. For exact matrices, the
number of nonzero singular values will equal the rank of the matrix. So for some of the doctests we round
the small singular values that ideally would be zero, to control the variability across hardware.

This matrix has a determinant of one. A chain of two or three theorems implies the product of the singular
values must also be one.

sage: A = matrix(QQ, [[ 1, 0, 0, 0, 0, 1, 3],
....: [-2, 1, 1, -2, 0, -4, 0],
....: [ 1, 0, 1, -4, -6, -3, 7],
....: [-2, 2, 1, 1, 7, 1, -1],
....: [-1, 0, -1, 5, 8, 4, -6],
....: [ 4, -2, -2, 1, -3, 0, 8],
....: [-2, 1, 0, 2, 7, 3, -4]])
sage: A.determinant()
1
sage: B = A.change_ring(RDF)
sage: sv = B.singular_values(); sv # tol 1e-12
[20.523980658874265, 8.486837028536643, 5.86168134845073, 2.4429165899286978,␣
→˓0.5831970144724045, 0.26933287286576313, 0.0025524488076110402]
sage: prod(sv) # tol 1e-12
0.9999999999999525

An exact matrix that is obviously not of full rank, and then a computation of the singular values after conver-
sion to an approximate matrix.

sage: A = matrix(QQ, [[1/3, 2/3, 11/3],
....: [2/3, 1/3, 7/3],
....: [2/3, 5/3, 27/3]])
sage: A.rank()
2
sage: B = A.change_ring(CDF)
sage: sv = B.singular_values()
sage: sv[0:2]
[10.1973039..., 0.487045871...]
sage: sv[2] < 1e-14
True

A matrix of rank 3 over the complex numbers.

sage: A = matrix(CDF, [[46*I - 28, -47*I - 50, 21*I + 51, -62*I - 782, 13*I +␣
→˓22],
....: [35*I - 20, -32*I - 46, 18*I + 43, -57*I - 670, 7*I +␣
→˓3],
....: [22*I - 13, -23*I - 23, 9*I + 24, -26*I - 347, 7*I +␣
→˓13],
....: [-44*I + 23, 41*I + 57, -19*I - 54, 60*I + 757, -11*I -
→˓ 9],
....: [30*I - 18, -30*I - 34, 14*I + 34, -42*I - 522, 8*I +␣
→˓12]])
sage: sv = A.singular_values()
sage: sv[0:3] # tol 1e-14
[1440.7336659952966, 18.404403413369227, 6.839707797136151]
sage: (sv[3] < 10^-13) or sv[3]

(continues on next page)
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True
sage: (sv[4] < 10^-14) or sv[4]
True

A full-rank matrix that is ill-conditioned. We use this to illustrate ways of using the various possibilities
for eps, including one that is ill-advised. Notice that the automatically computed cutoff gets this (difficult)
example slightly wrong. This illustrates the impossibility of any automated process always getting this right.
Use with caution and judgement.

sage: entries = [1/(i+j+1) for i in range(12) for j in range(12)]
sage: B = matrix(QQ, 12, 12, entries)
sage: B.rank()
12
sage: A = B.change_ring(RDF)
sage: A.condition() > 1.59e16 or A.condition()
True

sage: A.singular_values(eps=None) # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
→˓0037223122378911614, 0.0002330890890217751, 1.116335748323284e-05, 4.
→˓082376110397296e-07, 1.1228610675717613e-08, 2.2519645713496478e-10, 3.
→˓1113486853814003e-12, 2.6500422260778388e-14, 9.87312834948426e-17]
sage: A.singular_values(eps=�auto�) # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
→˓0037223122378911614, 0.0002330890890217751, 1.116335748323284e-05, 4.
→˓082376110397296e-07, 1.1228610675717613e-08, 2.2519645713496478e-10, 3.
→˓1113486853814003e-12, 2.6500422260778388e-14, 0.0]
sage: A.singular_values(eps=1e-4) # abs tol 7e-16
[1.7953720595619975, 0.38027524595503703, 0.04473854875218107, 0.
→˓0037223122378911614, 0.0002330890890217751, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
→˓0]

With Sage’s “verbose” facility, you can compactly see the cutoff at work. In any application of this routine,
or those that build upon it, it would be a good idea to conduct this exercise on samples. We also test here that
all the values are returned in 𝑅𝐷𝐹 since singular values are always real.

sage: A = matrix(CDF, 4, range(16))
sage: from sage.misc.verbose import set_verbose
sage: set_verbose(1)
sage: sv = A.singular_values(eps=�auto�); sv
verbose 1 (<module>) singular values,
smallest-non-zero:cutoff:largest-zero,
2.2766...:6.2421...e-14:...
[35.13996365902..., 2.27661020871472..., 0.0, 0.0]
sage: set_verbose(0)

sage: all(s in RDF for s in sv)
True

AUTHOR:

• Rob Beezer - (2011-02-18)

zero_at(eps)

Return a copy of the matrix where elements smaller than or equal to eps are replaced with zeroes. For
complex matrices, the real and imaginary parts are considered individually.
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This is useful for modifying output from algorithms which have large relative errors when producing zero
elements, e.g. to create reliable doctests.

INPUT:

• eps – cutoff value

OUTPUT: a modified copy of the matrix

EXAMPLES:

sage: # needs sage.symbolic
sage: a = matrix(CDF, [[1, 1e-4r, 1+1e-100jr], [1e-8+3j, 0, 1e-58r]])
sage: a
[ 1.0 0.0001 1.0 + 1e-100*I]
[ 1e-08 + 3.0*I 0.0 1e-58]
sage: a.zero_at(1e-50)
[ 1.0 0.0001 1.0]
[1e-08 + 3.0*I 0.0 0.0]
sage: a.zero_at(1e-4)
[ 1.0 0.0 1.0]
[3.0*I 0.0 0.0]
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CHAPTER

TWENTYTWO

DENSE MATRICES OVER THE REAL DOUBLE FIELD USING NUMPY

EXAMPLES:

sage: b = Mat(RDF,2,3).basis()
sage: b[0,0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]

We deal with the case of zero rows or zero columns:

sage: m = MatrixSpace(RDF,0,3)
sage: m.zero_matrix()
[]

AUTHORS:

• Jason Grout (2008-09): switch to NumPy backend, factored out the Matrix_double_dense class

• Josh Kantor

• William Stein: many bug fixes and touch ups.

class sage.matrix.matrix_real_double_dense.Matrix_real_double_dense

Bases: Matrix_double_dense

Class that implements matrices over the real double field. These are supposed to be fast matrix operations using C
doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.

EXAMPLES:

sage: m = Matrix(RDF, [[1,2],[3,4]])
sage: m**2
[ 7.0 10.0]
[15.0 22.0]
sage: n = m^(-1); n # rel tol 1e-15 #␣
→˓needs scipy
[-1.9999999999999996 0.9999999999999998]
[ 1.4999999999999998 -0.4999999999999999]

To compute eigenvalues, use the method left_eigenvectors() or right_eigenvectors().

sage: p,e = m.right_eigenvectors() #␣
→˓needs scipy

The result is a pair (p,e), where p is a diagonal matrix of eigenvalues and e is a matrix whose columns are the
eigenvectors.

To solve a linear system 𝐴𝑥 = 𝑏 where A = [[1,2],[3,4]] and 𝑏 = [5, 6]:
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sage: b = vector(RDF,[5,6])
sage: m.solve_right(b) # rel tol 1e-15 #␣
→˓needs scipy
(-3.9999999999999987, 4.499999999999999)

See the methods QR(), LU(), and SVD() for QR, LU, and singular value decomposition.
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TWENTYTHREE

DENSE MATRICES OVER GF(2) USING THE M4RI LIBRARY

AUTHOR: Martin Albrecht <malb@informatik.uni-bremen.de>

EXAMPLES:

sage: a = matrix(GF(2),3,range(9),sparse=False); a
[0 1 0]
[1 0 1]
[0 1 0]
sage: a.rank()
2
sage: type(a)
<class �sage.matrix.matrix_mod2_dense.Matrix_mod2_dense�>
sage: a[0,0] = 1
sage: a.rank()
3
sage: parent(a)
Full MatrixSpace of 3 by 3 dense matrices over Finite Field of size 2

sage: a^2
[0 1 1]
[1 0 0]
[1 0 1]
sage: a+a
[0 0 0]
[0 0 0]
[0 0 0]

sage: b = a.new_matrix(2,3,range(6)); b
[0 1 0]
[1 0 1]

sage: a*b
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: �Full MatrixSpace of 3 by 3 dense␣
→˓matrices over Finite Field of size 2� and �Full MatrixSpace of 2 by 3 dense␣
→˓matrices over Finite Field of size 2�
sage: b*a
[1 0 1]
[1 0 0]

sage: TestSuite(a).run()
sage: TestSuite(b).run()

(continues on next page)
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sage: a.echelonize(); a
[1 0 0]
[0 1 0]
[0 0 1]
sage: b.echelonize(); b
[1 0 1]
[0 1 0]

Todo

• make LinBox frontend and use it

– charpoly ?

– minpoly ?

• make Matrix_modn_frontend and use it (?)

class sage.matrix.matrix_mod2_dense.Matrix_mod2_dense

Bases: Matrix_dense

Dense matrix over GF(2).

augment(right, subdivide=False)
Augments self with right.

EXAMPLES:

sage: MS = MatrixSpace(GF(2),3,3)
sage: A = MS([0, 1, 0, 1, 1, 0, 1, 1, 1]); A
[0 1 0]
[1 1 0]
[1 1 1]
sage: B = A.augment(MS(1)); B
[0 1 0 1 0 0]
[1 1 0 0 1 0]
[1 1 1 0 0 1]
sage: B.echelonize(); B
[1 0 0 1 1 0]
[0 1 0 1 0 0]
[0 0 1 0 1 1]
sage: C = B.matrix_from_columns([3,4,5]); C
[1 1 0]
[1 0 0]
[0 1 1]
sage: C == ~A
True
sage: C*A == MS(1)
True

A vector may be augmented to a matrix.

sage: A = matrix(GF(2), 3, 4, range(12))
sage: v = vector(GF(2), 3, range(3))
sage: A.augment(v)
[0 1 0 1 0]

(continues on next page)

474 Chapter 23. Dense matrices over GF(2) using the M4RI library



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

[0 1 0 1 1]
[0 1 0 1 0]

The subdivide option will add a natural subdivision between self and right. For more details about
how subdivisions aremanagedwhen augmenting, seesage.matrix.matrix1.Matrix.augment().

sage: A = matrix(GF(2), 3, 5, range(15))
sage: B = matrix(GF(2), 3, 3, range(9))
sage: A.augment(B, subdivide=True)
[0 1 0 1 0|0 1 0]
[1 0 1 0 1|1 0 1]
[0 1 0 1 0|0 1 0]

columns(copy=True)

Return list of the columns of self.

INPUT:

• copy – (default: True) if True, return a copy so you can modify it safely

EXAMPLES:

An example with a small 3x3 matrix:

sage: M2 = Matrix(GF(2), [[1, 0, 0], [0, 1, 0], [0, 1, 1]])
sage: M2.columns()
[(1, 0, 0), (0, 1, 1), (0, 0, 1)]

density(approx=False)
Return the density of this matrix.

By density we understand the ratio of the number of nonzero positions and the self.nrows() * self.ncols(), i.e.
the number of possible nonzero positions.

INPUT:

• approx – return floating point approximation (default: False)

EXAMPLES:

sage: A = random_matrix(GF(2), 1000, 1000)
sage: d = A.density()
sage: float(d) == A.density(approx=True)
True
sage: len(A.nonzero_positions())/1000^2 == d
True

sage: total = 1.0
sage: density_sum = A.density()
sage: while abs(density_sum/total - 0.5) > 0.001:
....: A = random_matrix(GF(2), 1000, 1000)
....: total += 1
....: density_sum += A.density()

determinant()

Return the determinant of this matrix over GF(2).

EXAMPLES:
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sage: matrix(GF(2),2,[1,1,0,1]).determinant()
1
sage: matrix(GF(2),2,[1,1,1,1]).determinant()
0

echelonize(algorithm='heuristic', cutoff=0, reduced=True, **kwds)
Puts self in (reduced) row echelon form.

INPUT:

• self – a mutable matrix

• algorithm – string; one of

– �heuristic� – uses M4RI and PLUQ (default)

– �m4ri� – uses M4RI

– �pluq� – uses PLUQ factorization

– �classical� – uses classical Gaussian elimination

• k – the parameter ‘k’ of the M4RI algorithm. It MUST be between 1 and 16 (inclusive). If it is not
specified it will be calculated as 3/4 * log_2( min(nrows, ncols) ) as suggested in the M4RI paper.

• reduced – return reduced row echelon form (default: True)

EXAMPLES:

sage: A = random_matrix(GF(2), 10, 10)
sage: B = A.__copy__(); B.echelonize() # fastest
sage: C = A.__copy__(); C.echelonize(k=2) # force k
sage: E = A.__copy__(); E.echelonize(algorithm=�classical�) # force Gaussian␣
→˓elimination
sage: B == C == E
True

ALGORITHM:

Uses M4RI library

REFERENCES:

• [Bar2006]

randomize(density=1, nonzero=False)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

• density – float; proportion (roughly) to be considered for changes

• nonzero – boolean (default: False); whether the new entries are forced to be nonzero

OUTPUT: None, the matrix is modified in-space

EXAMPLES:

sage: A = matrix(GF(2), 5, 5, 0)
sage: A.randomize(0.5)
sage: A.density() < 0.5
True
sage: expected = 0.5

(continues on next page)
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sage: A = matrix(GF(2), 5, 5, 0)
sage: A.randomize()
sage: density_sum = float(A.density())
sage: total = 1
sage: while abs(density_sum/total - expected) > 0.001:
....: A = matrix(GF(2), 5, 5, 0)
....: A.randomize()
....: density_sum += float(A.density())
....: total += 1

rank(algorithm='ple')
Return the rank of this matrix.

On average ‘ple’ should be faster than ‘m4ri’ and hence it is the default choice. However, for small - i.e. quite
few thousand rows & columns - and sparse matrices ‘m4ri’ might be a better choice.

INPUT:

• algorithm – either “ple” or “m4ri”

EXAMPLES:

sage: while random_matrix(GF(2), 1000, 1000).rank() != 999:
....: pass

sage: A = matrix(GF(2),10, 0)
sage: A.rank()
0

row(i, from_list=False)
Return the i-th row of this matrix as a vector.

This row is a dense vector if and only if the matrix is a dense matrix.

INPUT:

• i – integer

• from_list – boolean (default: False); if True, returns the i-th element of self.rows() (see
rows()), which may be faster, but requires building a list of all rows the first time it is called after an
entry of the matrix is changed.

EXAMPLES:

sage: l = [GF(2).random_element() for _ in range(100)]
sage: A = matrix(GF(2), 10, 10 , l)
sage: list(A.row(0)) == l[:10]
True
sage: list(A.row(-1)) == l[-10:]
True

sage: list(A.row(2, from_list=True)) == l[20:30]
True

sage: A = Matrix(GF(2),1,0)
sage: A.row(0)
()

str(rep_mapping=None, zero=None, plus_one=None, minus_one=None, unicode=False, shape=None,
character_art=False, left_border=None, right_border=None, top_border=None, bottom_border=None)
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Return a nice string representation of the matrix.

INPUT:

• rep_mapping – dictionary or callable used to override the usual representation of elements. For a
dictionary, keys should be elements of the base ring and values the desired string representation.

• zero – string (default: None); if not None use the value of zero as the representation of the zero
element.

• plus_one – string (default: None); if not None use the value of plus_one as the representation of
the one element.

• minus_one – ignored. Only for compatibility with generic matrices.

• unicode – boolean (default: False); whether to use Unicode symbols instead of ASCII symbols for
brackets and subdivision lines

• shape – one of �square� or �round� (default: None). Switches between round and square brack-
ets. The default depends on the setting of the unicode keyword argument. For Unicode symbols, the
default is round brackets in accordance with the TeX rendering, while the ASCII rendering defaults to
square brackets.

• character_art – boolean (default: False); if True, the result will be of type AsciiArt or
UnicodeArt which support line breaking of wide matrices that exceed the window width

• left_border, right_border – sequence (default: None); if not None, call str() on the el-
ements and use the results as labels for the rows of the matrix. The labels appear outside of the paren-
theses.

• top_border, bottom_border – sequence (default: None); if not None, call str() on the el-
ements and use the results as labels for the columns of the matrix. The labels appear outside of the
parentheses.

EXAMPLES:

sage: B = matrix(GF(2), 3, 3, [0, 1, 0, 0, 1, 1, 0, 0, 0])
sage: B # indirect doctest
[0 1 0]
[0 1 1]
[0 0 0]
sage: block_matrix([[B, 1], [0, B]])
[0 1 0|1 0 0]
[0 1 1|0 1 0]
[0 0 0|0 0 1]
[-----+-----]
[0 0 0|0 1 0]
[0 0 0|0 1 1]
[0 0 0|0 0 0]
sage: B.str(zero=�.�)
�[. 1 .]\n[. 1 1]\n[. . .]�

sage: M = matrix.identity(GF(2), 3)
sage: M.subdivide(None, 2)
sage: print(M.str(unicode=True, shape=�square�))
⎡1 0│0⎤
⎢0 1│0⎥
⎣0 0│1⎦
sage: print(unicode_art(M)) # indirect doctest
⎛1 0│0⎞

(continues on next page)
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⎜0 1│0⎟
⎝0 0│1⎠

submatrix(row=0, col=0, nrows=-1, ncols=-1)
Return submatrix from the index row, col (inclusive) with dimension nrows x ncols.

INPUT:

• row – index of start row

• col – index of start column

• nrows – number of rows of submatrix

• ncols – number of columns of submatrix

EXAMPLES:

sage: A = random_matrix(GF(2),200,200)
sage: A[0:2,0:2] == A.submatrix(0,0,2,2)
True
sage: A[0:100,0:100] == A.submatrix(0,0,100,100)
True
sage: A == A.submatrix(0,0,200,200)
True

sage: A[1:3,1:3] == A.submatrix(1,1,2,2)
True
sage: A[1:100,1:100] == A.submatrix(1,1,99,99)
True
sage: A[1:200,1:200] == A.submatrix(1,1,199,199)
True

TESTS for handling of default arguments (Issue #18761):

sage: A.submatrix(17,15) == A.submatrix(17,15,183,185)
True
sage: A.submatrix(row=100,col=37,nrows=1,ncols=3) == A.submatrix(100,37,1,3)
True

transpose()

Return transpose of self and leaves self untouched.

EXAMPLES:

sage: A = Matrix(GF(2),3,5,[1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0])
sage: A
[1 0 1 0 0]
[0 1 1 0 0]
[1 1 0 1 0]
sage: B = A.transpose(); B
[1 0 1]
[0 1 1]
[1 1 0]
[0 0 1]
[0 0 0]
sage: B.transpose() == A
True
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.T is a convenient shortcut for the transpose:

sage: A.T
[1 0 1]
[0 1 1]
[1 1 0]
[0 0 1]
[0 0 0]

sage.matrix.matrix_mod2_dense.from_png(filename)
Return a dense matrix over GF(2) from a 1-bit PNG image read from filename. No attempt is made to verify
that the filename string actually points to a PNG image.

INPUT:

• filename – string

EXAMPLES:

sage: from sage.matrix.matrix_mod2_dense import from_png, to_png
sage: A = random_matrix(GF(2),10,10)
sage: fn = tmp_filename()
sage: to_png(A, fn)
sage: B = from_png(fn)
sage: A == B
True

sage.matrix.matrix_mod2_dense.parity(a)
Return the parity of the number of bits in a.

EXAMPLES:

sage: from sage.matrix.matrix_mod2_dense import parity
sage: parity(1)
1
sage: parity(3)
0
sage: parity(0x10000101011)
1

sage.matrix.matrix_mod2_dense.ple(A, algorithm='standard', param=0)
Return PLE factorization of A.

INPUT:

• A – matrix

• algorithm – string; one of

– �standard� asymptotically fast (default)

– �russian�M4RI inspired

– �naive� naive cubic

• param – either k for ‘mmpf’ is chosen or matrix multiplication cutoff for ‘standard’ (default: 0)

EXAMPLES:
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sage: from sage.matrix.matrix_mod2_dense import ple

sage: A = matrix(GF(2), 4, 4, [0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0])
sage: A
[0 1 0 1]
[0 1 1 1]
[0 0 0 1]
[0 1 1 0]

sage: LU, P, Q = ple(A)
sage: LU
[1 0 0 1]
[1 1 0 0]
[0 0 1 0]
[1 1 1 0]

sage: P
[0, 1, 2, 3]

sage: Q
[1, 2, 3, 3]

sage: A = random_matrix(GF(2),1000,1000)
sage: ple(A) == ple(A,�russian�) == ple(A,�naive�)
True

sage.matrix.matrix_mod2_dense.pluq(A, algorithm='standard', param=0)
Return PLUQ factorization of A.

INPUT:

• A – matrix

• algorithm – string; one of

– �standard� asymptotically fast (default)

– �mmpf�M4RI inspired

– �naive� naive cubic

• param – either k for ‘mmpf’ is chosen or matrix multiplication cutoff for �standard� (default: 0)

EXAMPLES:

sage: from sage.matrix.matrix_mod2_dense import pluq
sage: A = matrix(GF(2), 4, 4, [0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0])
sage: A
[0 1 0 1]
[0 1 1 1]
[0 0 0 1]
[0 1 1 0]
sage: LU, P, Q = pluq(A)
sage: LU
[1 0 1 0]
[1 1 0 0]
[0 0 1 0]
[1 1 1 0]

sage: P

(continues on next page)
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[0, 1, 2, 3]

sage: Q
[1, 2, 3, 3]

sage.matrix.matrix_mod2_dense.to_png(A, filename)
Save the matrix A to filename as a 1-bit PNG image.

INPUT:

• A – a matrix over GF(2)

• filename – string for a file in a writable position

EXAMPLES:

sage: from sage.matrix.matrix_mod2_dense import from_png, to_png
sage: A = random_matrix(GF(2),10,10)
sage: fn = tmp_filename()
sage: to_png(A, fn)
sage: B = from_png(fn)
sage: A == B
True

sage.matrix.matrix_mod2_dense.unpickle_matrix_mod2_dense_v2(r, c, data, size,
immutable=False)

Deserialize a matrix encoded in the string s.

INPUT:

• r – number of rows of matrix

• c – number of columns of matrix

• s – string

• size – length of the string s

• immutable – boolean (default: False); whether the matrix is immutable or not

EXAMPLES:

sage: A = random_matrix(GF(2),100,101)
sage: _, (r,c,s,s2,i) = A.__reduce__()
sage: from sage.matrix.matrix_mod2_dense import unpickle_matrix_mod2_dense_v2
sage: unpickle_matrix_mod2_dense_v2(r,c,s,s2,i) == A
True
sage: loads(dumps(A)) == A
True
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CHAPTER

TWENTYFOUR

DENSE MATRICES OVER F2𝐸 FOR 2 ≤ 𝐸 ≤ 16 USING THE M4RIE
LIBRARY

The M4RIE library offers two matrix representations:

1) mzed_t

m x n matrices over F2𝑒 are internally represented roughly as m x (en) matrices over F2. Several elements
are packed into words such that each element is filled with zeroes until the next power of two. Thus, for
example, elements of F23 are represented as [0xxx|0xxx|0xxx|0xxx|...]. This representation is
wrapped as Matrix_gf2e_dense in Sage.

Multiplication and elimination both use “Newton-John” tables. These tables are simply all possible multi-
ples of a given row in a matrix such that a scale+add operation is reduced to a table lookup + add. On top
of Newton-John multiplication M4RIE implements asymptotically fast Strassen-Winograd multiplication.
Elimination uses simple Gaussian elimination which requires 𝑂(𝑛3) additions but only 𝑂(𝑛2 * 2𝑒)multipli-
cations.

2) mzd_slice_t

m x n matrices over F2𝑒 are internally represented as slices of m x n matrices over F2. This representation
allows for very fast matrix times matrix products using Karatsuba’s polynomial multiplication for polynomials
over matrices. However, it is not feature complete yet and hence not wrapped in Sage for now.

See http://m4ri.sagemath.org for more details on the M4RIE library.

EXAMPLES:

sage: K.<a> = GF(2^8)
sage: A = random_matrix(K, 3,4)
sage: E = A.echelon_form()
sage: A.row_space() == E.row_space()
True
sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r)
True

AUTHOR:

• Martin Albrecht <martinralbrecht@googlemail.com>

Todo

Wrap mzd_slice_t.

REFERENCES:

• [BB2009]
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class sage.matrix.matrix_gf2e_dense.M4RIE_finite_field

Bases: object

A thin wrapper around the M4RIE finite field class such that we can put it in a hash table. This class is not meant
for public consumption.

class sage.matrix.matrix_gf2e_dense.Matrix_gf2e_dense

Bases: Matrix_dense

Create new matrix over 𝐺𝐹 (2𝑒) for 2 ≤ 𝑒 ≤ 16.

INPUT:

• parent – a matrix space over GF(2^e)

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries lie in the base ring

EXAMPLES:

sage: K.<a> = GF(2^4)
sage: l = [K.random_element() for _ in range(3*4)]

sage: A = Matrix(K, 3, 4, l)
sage: l == A.list()
True

sage: l[0] == A[0,0]
True

sage: A = Matrix(K, 3, 3, a); A
[a 0 0]
[0 a 0]
[0 0 a]

augment(right)
Augments self with right.

INPUT:

• right – a matrix

EXAMPLES:

sage: K.<a> = GF(2^4)
sage: MS = MatrixSpace(K,3,3)
sage: A = random_matrix(K,3,3)
sage: B = A.augment(MS(1))
sage: B.echelonize()
sage: C = B.matrix_from_columns([3,4,5])
sage: A.rank() < 3 or C == ~A
True
sage: A.rank() < 3 or C*A == MS(1)
True

cling(*C)
Pack the matrices over F2 into this matrix over F2𝑒 .

484 Chapter 24. Dense matrices over F2𝑒 for 2 ≤ 𝑒 ≤ 16 using the M4RIE library



Matrices and Spaces of Matrices, Release 10.5.rc0

Elements in F2𝑒 can be represented as
∑︀

𝑐𝑖𝑎
𝑖 where 𝑎 is a root the minimal polynomial. If this matrix is 𝐴

then this function writes 𝑐𝑖𝑎𝑖 to the entry 𝐴[𝑥, 𝑦] where 𝑐𝑖 is the entry 𝐶𝑖[𝑥, 𝑦].

INPUT:

• C – list of matrices over GF(2)

EXAMPLES:

sage: K.<a> = GF(2^2)
sage: A = matrix(K, 5, 5)
sage: A0 = random_matrix(GF(2), 5, 5)
sage: A1 = random_matrix(GF(2), 5, 5)
sage: A.cling(A0, A1)
sage: all(A.list()[i] == A0.list()[i] + a*A1.list()[i] for i in range(25))
True

Slicing and clinging are inverse operations:

sage: B0, B1 = A.slice()
sage: B0 == A0 and B1 == A1
True

echelonize(algorithm='heuristic', reduced=True, **kwds)
Compute the row echelon form of self in place.

INPUT:

• algorithm – one of the following - heuristic – let M4RIE decide (default) - newton_john
– use newton_john table based algorithm - ple – use PLE decomposition - naive – use naive cubic
Gaussian elimination (M4RIE implementation) -builtin – use naive cubic Gaussian elimination (Sage
implementation)

• reduced – if True return reduced echelon form. No guarantee is given that the matrix is not reduced
if False (default: True)

EXAMPLES:

sage: K.<a> = GF(2^4)
sage: m,n = 3, 5
sage: A = random_matrix(K, 3, 5)
sage: R = A.row_space()
sage: A.echelonize()
sage: all(r[r.nonzero_positions()[0]] == 1 for r in A.rows() if r)
True
sage: A.row_space() == R
True

sage: K.<a> = GF(2^3)
sage: m,n = 3, 5
sage: MS = MatrixSpace(K,m,n)
sage: A = random_matrix(K, 3, 5)
sage: B = copy(A).echelon_form(�newton_john�)
sage: C = copy(A).echelon_form(�naive�)
sage: D = copy(A).echelon_form(�builtin�)
sage: B == C == D
True
sage: all(r[r.nonzero_positions()[0]] == 1 for r in B.rows() if r)
True
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randomize(density=1, nonzero=False, *args, **kwds)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

• density – float; proportion (roughly) to be considered for changes

• nonzero – boolean (default: False); whether the new entries are forced to be nonzero

OUTPUT: none, the matrix is modified in-place

EXAMPLES:

sage: K.<a> = GF(2^4)
sage: total_count = 0
sage: from collections import defaultdict
sage: dic = defaultdict(Integer)
sage: def add_samples():
....: global dic, total_count
....: for _ in range(100):
....: A = Matrix(K,3,3)
....: A.randomize()
....: for a in A.list():
....: dic[a] += 1
....: total_count += 1.0
sage: add_samples()
sage: while not all(abs(dic[a]/total_count - 1/16) < 0.01 for a in dic):
....: add_samples()

sage: def add_sample(density):
....: global density_sum, total_count
....: total_count += 1.0
....: density_sum += random_matrix(K, 1000, 1000, density=density).
→˓density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.1)
sage: while abs(density_sum/total_count - 0.1) > 0.001:
....: add_sample(0.1)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(1.0)
sage: while abs(density_sum/total_count - 1.0) > 0.001:
....: add_sample(1.0)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5)
sage: while abs(density_sum/total_count - 0.5) > 0.001:
....: add_sample(0.5)

Note, that the matrix is updated and not zero-ed out before being randomized:

sage: def add_sample(density, nonzero):
....: global density_sum, total_count
....: total_count += 1.0
....: A = matrix(K, 1000, 1000)

(continues on next page)
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....: A.randomize(nonzero=nonzero, density=density)

....: A.randomize(nonzero=nonzero, density=density)

....: density_sum += A.density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.1, True)
sage: while abs(density_sum/total_count - (1 - 0.9^2)) > 0.001:
....: add_sample(0.1, True)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.1, False)
sage: while abs(density_sum/total_count - (1 - 0.9^2)*15/16) > 0.001:
....: add_sample(0.1, False)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.05, True)
sage: while abs(density_sum/total_count - (1 - 0.95^2)) > 0.001:
....: add_sample(0.05, True)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5, True)
sage: while abs(density_sum/total_count - (1 - 0.5^2)) > 0.001:
....: add_sample(0.5, True)

rank()

Return the rank of this matrix (cached).

EXAMPLES:

sage: K.<a> = GF(2^4)
sage: A = random_matrix(K, 10, 10, algorithm=�unimodular�)
sage: A.rank()
10
sage: A = matrix(K, 10, 0)
sage: A.rank()
0

slice()

Unpack this matrix into matrices over F2.

Elements in F2𝑒 can be represented as
∑︀

𝑐𝑖𝑎
𝑖 where 𝑎 is a root the minimal polynomial. This function returns

a tuple of matrices 𝐶 whose entry 𝐶𝑖[𝑥, 𝑦] is the coefficient of 𝑐𝑖 in 𝐴[𝑥, 𝑦] if this matrix is 𝐴.

EXAMPLES:

sage: K.<a> = GF(2^2)
sage: A = random_matrix(K, 5, 5)
sage: A0, A1 = A.slice()
sage: all(A.list()[i] == A0.list()[i] + a*A1.list()[i] for i in range(25))
True

sage: K.<a> = GF(2^3)
sage: A = random_matrix(K, 5, 5)

(continues on next page)
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sage: A0, A1, A2 = A.slice()
sage: all(A.list()[i] == A0.list()[i] + a*A1.list()[i] + a^2*A2.list()[i] for␣
→˓i in range(25))
True

Slicing and clinging are inverse operations:

sage: B = matrix(K, 5, 5)
sage: B.cling(A0, A1, A2)
sage: B == A
True

submatrix(row=0, col=0, nrows=-1, ncols=-1)
Return submatrix from the index row,col (inclusive) with dimension nrows x ncols.

INPUT:

• row – index of start row

• col – index of start column

• nrows – number of rows of submatrix

• ncols – number of columns of submatrix

EXAMPLES:

sage: K.<a> = GF(2^10)
sage: A = random_matrix(K,200,200)
sage: A[0:2,0:2] == A.submatrix(0,0,2,2)
True
sage: A[0:100,0:100] == A.submatrix(0,0,100,100)
True
sage: A == A.submatrix(0,0,200,200)
True

sage: A[1:3,1:3] == A.submatrix(1,1,2,2)
True
sage: A[1:100,1:100] == A.submatrix(1,1,99,99)
True
sage: A[1:200,1:200] == A.submatrix(1,1,199,199)
True

TESTS for handling of default arguments (Issue #18761):

sage: A.submatrix(17,15) == A.submatrix(17,15,183,185)
True
sage: A.submatrix(row=100,col=37,nrows=1,ncols=3) == A.submatrix(100,37,1,3)
True

sage.matrix.matrix_gf2e_dense.unpickle_matrix_gf2e_dense_v0(a, base_ring, nrows, ncols)
EXAMPLES:

sage: K.<a> = GF(2^2)
sage: A = random_matrix(K,10,10)
sage: f, s= A.__reduce__()
sage: from sage.matrix.matrix_gf2e_dense import unpickle_matrix_gf2e_dense_v0
sage: f == unpickle_matrix_gf2e_dense_v0

(continues on next page)
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True
sage: f(*s) == A
True

We can still unpickle pickles from before Issue #19240:

sage: old_pickle = b�x\x9c\x85RKo\xd3@\x10\xae\xdd$$\xdb&\xe5U\x1e-\x8f\xc2\xc9\
→˓x12RD#$\xce\xa0\xb4\x80\x07\xa2\xca\xc2\x07\x0e\xd5\xe2:\x1b\xdb\x8acg\x1c\xa7J\
→˓x85*!\xa4\x90\xe6\x07p\xe0\xc4\x01q\xe5\xc4\x19\xf5\xd0?\xc1\x81\xdf\x80\xb8q\
→˓x0b\xb3\x8eMS\xa1\x82V;;\xb3\xdf\xce\xf7\xcd\x8e\xe6\xb5j\xf7,GT;V\x1cy\x83\xf4\
→˓xe0\x9d\xb0Y\x13\xbc)\x82\x9eA\xfd\xa0\xeb\xd9m_\xf0\xbf1\xbe{\x97\xa1\xa2\x9d\
→˓xc6\xf0\x0f\x82,\x7f\x9d\xa1\xaa\x81\n\xb9m\x9c\xd7\xf4\xf1d2\x81-h\xc0#(\x03\
→˓x83\x15\xdas\xc9*\xc3\x13x\x0cu0\xd28\x97\x9e*(0\x9f\xfa\x1b\xd0\xd2\x7fH\x82\
→˓xb5\xf4\xa2@TO\xe19\x01I\xac\x136\x991\x9f\xa4\xf9&\xcd\x07i\xbe\xcb\xd4ib\t\
→˓xba\xa4\xf6\x02zIT\xd1\x8f2(u\x15\xfd\x9d<\xee@\x05V\xd3\x94E*\xb0\x0e\x0fH\xad\
→˓xa8\xbf\x97\xa0\r\x03\xfd\xf0\xb8\x1aU\xff\x92\x90\xe8?\xa5\xd6\x814_\xa5\xf9(\
→˓xcd\xafc\xe99\xe2\xd9\xa0\x06\xd4\xf5\xcf\xf2\xf2!\xbc\xd4\xdf\x90#\xc0\x8f\r\
→˓xccM\x1b\xdd\x8b\xa3\xbe\x1d\xf7#QmYv\x1cF{\xcc\x11\x81\x88<\x9b\xa71\xcf:\xce0\
→˓xaf\x9d\x96\xe3\x87a\xbb\xdf\xe5\x8e\x1f\xeeX>\xc3\x82\xb9\xb0\xe9\x05^,6=\xe17\
→˓xf1\xcc\xd0\xc0"u\xb0d\xe6wDl\xdd\x1fa)e\x8a\xbc\xc0\xe9U\xbd \x16\x8e\x88X\
→˓xc7j\x0b\x9e\x05\xc8L\xe5\x1e%.\x98\x8a5\xc4\xc5\xd9\xf7\xdd\xd0\xdf\x0b\xc2\
→˓x8eg\xf93.wZ\xb5\xc1\x94B\xf8\xa2#\x82\x98a\xf9\xffY\x12\xe3v\x18L\xff\x14Fl\
→˓xeb\x0ff\x10\xc4\xb0\xa2\xb9y\xcd-\xba%\xcd\xa5\x8ajT\xd1\x92\xa9\x0c\x86x\xb6a\
→˓xe6h\xf8\x02<g\xaa\xaf\xf6\xdd%\x89\xae\x13z\xfe \xc6\x0b\xfb1^4p\x99\x1e6\xc6\
→˓xd4\xebK\xdbx\xf9\xc4\x8f[Iw\xf8\x89\xef\xcbQf\xcfh\xe3\x95\x8c\xebj&\xb9\xe2.\
→˓x8f\x0c\\ui\x89\xf1x\xf4\xd6\xc0kf\xc1\xf1v\xad(\xc4\xeb\x89~\xfa\xf0\x06\xa8\
→˓xa4\x7f\x93\xf4\xd7\x0c\xbcE#\xad\x92\xfc\xed\xeao\xefX\\\x03�
sage: loads(old_pickle)
[ 0 a]
[a + 1 1]
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CHAPTER

TWENTYFIVE

DENSE MATRICES OVER Z/𝑁Z FOR 𝑁 < 94906266 USING LINBOX’S
MODULAR<DOUBLE>

AUTHORS:

• Burcin Erocal

• Martin Albrecht

class sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double

Bases: Matrix_modn_dense_template

Dense matrices over Z/𝑛Z for 𝑛 < 94906266 using LinBox’s Modular<double>.

These are matrices with integer entries mod n represented as floating-point numbers in a 64-bit word for use with
LinBox routines. This allows for n up to 94906266. By default, the analogous Matrix_modn_dense_float
class is used for smaller moduli, specifically for n up to 28.

Routines here are for the most basic access, see the matrix_modn_dense_template.pxi file for
higher-level routines.

class sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_template

Bases: Matrix_dense

Create a new matrix.

INPUT:

• parent – a matrix space

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – perform modular reduction first?

EXAMPLES:

sage: A = random_matrix(GF(3),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: A = random_matrix(Integers(10),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: A = random_matrix(Integers(2^16),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double�>
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charpoly(var='x', algorithm='linbox')
Return the characteristic polynomial of self.

INPUT:

• var – a variable name

• algorithm – ‘generic’, ‘linbox’ or ‘all’ (default: linbox)

EXAMPLES:

sage: A = random_matrix(GF(19), 10, 10)
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial()
sage: char_p(A) == 0
True
sage: B == A # A is not modified
True

sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p.divides(char_p)
True

sage: A = random_matrix(GF(2916337), 7, 7) #␣
→˓needs sage.rings.finite_rings
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial()
sage: char_p(A) == 0
True
sage: B == A # A is not modified
True

sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p.divides(char_p)
True

sage: A = Mat(Integers(6),3,3)(range(9))
sage: A.charpoly()
x^3

ALGORITHM: Uses LinBox if self.base_ring() is a field, otherwise use Hessenberg form algorithm.

determinant()

Return the determinant of this matrix.

EXAMPLES:

sage: s = set()
sage: while s != set(GF(7)):
....: A = random_matrix(GF(7), 10, 10)
....: s.add(A.determinant())

sage: A = random_matrix(GF(7), 100, 100)
sage: A.determinant() == A.transpose().determinant()
True

sage: B = random_matrix(GF(7), 100, 100)
sage: (A*B).determinant() == A.determinant() * B.determinant()
True
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sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 10, 10)
sage: A.determinant().parent() is GF(16007)
True

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 100, 100)
sage: A.determinant().parent() is GF(16007)
True
sage: A.determinant() == A.transpose().determinant()
True
sage: B = random_matrix(GF(16007), 100, 100)
sage: (A*B).determinant() == A.determinant() * B.determinant()
True

Parallel computation:

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(65521),200)
sage: B = copy(A)
sage: Parallelism().set(�linbox�, nproc=2)
sage: d = A.determinant()
sage: Parallelism().set(�linbox�, nproc=1) # switch off parallelization
sage: e = B.determinant()
sage: d==e
True

echelonize(algorithm='linbox_noefd', **kwds)
Put self in reduced row echelon form.

INPUT:

• self – a mutable matrix

• algorithm

– linbox – uses the LinBox library (wrapping fflas-ffpack)

– linbox_noefd – uses the FFPACK directly, less memory and faster (default)

– gauss – uses a custom slower 𝑂(𝑛3) Gauss elimination implemented in Sage

– all – compute using both algorithms and verify that the results are the same

• **kwds – these are all ignored

OUTPUT: self is put in reduced row echelon form

• the rank of self is computed and cached

• the pivot columns of self are computed and cached

• the fact that self is now in echelon form is recorded and cached so future calls to echelonize return
immediately

EXAMPLES:

sage: A = random_matrix(GF(7), 10, 20)
sage: E = A.echelon_form()
sage: A.row_space() == E.row_space()
True

(continues on next page)
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sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r)
True

sage: A = random_matrix(GF(13), 10, 10)
sage: while A.rank() != 10:
....: A = random_matrix(GF(13), 10, 10)
sage: MS = parent(A)
sage: B = A.augment(MS(1))
sage: B.echelonize()
sage: A.rank()
10
sage: C = B.submatrix(0,10,10,10)
sage: ~A == C
True

sage: A = random_matrix(Integers(10), 10, 20)
sage: A.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 10�.

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 10, 20)
sage: E = A.echelon_form()
sage: A.row_space() == E.row_space()
True
sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r)
True

sage: A = random_matrix(Integers(10000), 10, 20)
sage: A.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 10000�.

Parallel computation:

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(65521),100,200)
sage: Parallelism().set(�linbox�, nproc=2)
sage: E = A.echelon_form()
sage: Parallelism().set(�linbox�, nproc=1) # switch off parallelization
sage: F = A.echelon_form()
sage: E==F
True

hessenbergize()

Transform self in place to its Hessenberg form.

EXAMPLES:

sage: A = random_matrix(GF(17), 10, 10, density=0.1)
sage: B = copy(A)

(continues on next page)
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sage: A.hessenbergize()
sage: all(A[i,j] == 0 for j in range(10) for i in range(j+2, 10))
True
sage: A.charpoly() == B.charpoly()
True

lift()

Return the lift of this matrix to the integers.

EXAMPLES:

sage: A = matrix(GF(7),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: # needs sage.rings.finite_rings
sage: A = matrix(GF(16007),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

Subdivisions are preserved when lifting:

sage: A.subdivide([], [1,1]); A
[1||2 3]
[4||5 6]
sage: A.lift()
[1||2 3]
[4||5 6]

matrix_from_columns(columns)
Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[0 7]

matrix_from_rows(rows)
Return the matrix constructed from self using rows with indices in the rows list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A

(continues on next page)
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[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows([2,1])
[6 7 0]
[3 4 5]

matrix_from_rows_and_columns(rows, columns)
Return the matrix constructed from self from the given rows and columns.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]

Note that row and column indices can be reordered or repeated:

sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times:

sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]

AUTHORS:

• Jaap Spies (2006-02-18)

• Didier Deshommes: some Pyrex speedups implemented

minpoly(var='x', algorithm='linbox', proof=None)
Return the minimal polynomial of self.

INPUT:

• var – a variable name

• algorithm – generic or linbox (default: linbox)

• proof – (default: True) whether to provably return the true minimal polynomial; if False, we only
guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the com-
puted results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of
it).
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Warning

If proof=True, minpoly is insanely slow compared to proof=False. This matters since
proof=True is the default, unless you first type proof.linear_algebra(False).

EXAMPLES:

sage: A = random_matrix(GF(17), 10, 10)
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p(A) == 0
True
sage: B == A
True

sage: char_p = A.characteristic_polynomial()
sage: min_p.divides(char_p)
True

sage: A = random_matrix(GF(1214471), 10, 10) #␣
→˓needs sage.rings.finite_rings
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p(A) == 0
True
sage: B == A
True

sage: char_p = A.characteristic_polynomial()
sage: min_p.divides(char_p)
True

EXAMPLES:

sage: R.<x>=GF(3)[]
sage: A = matrix(GF(3),2,[0,0,1,2])
sage: A.minpoly()
x^2 + x

sage: A.minpoly(proof=False) in [x, x+1, x^2+x]
True

randomize(density=1, nonzero=False)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

• density – integer; proportion (roughly) to be considered for changes

• nonzero – boolean (default: False); whether the new entries are forced to be nonzero

OUTPUT: none, the matrix is modified in-space

EXAMPLES:

sage: A = matrix(GF(5), 5, 5, 0)
sage: total_count = 0

(continues on next page)
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sage: from collections import defaultdict
sage: dic = defaultdict(Integer)
sage: def add_samples(density):
....: global dic, total_count
....: for _ in range(100):
....: A = Matrix(GF(5), 5, 5, 0)
....: A.randomize(density)
....: for a in A.list():
....: dic[a] += 1
....: total_count += 1.0

sage: add_samples(1.0)
sage: while not all(abs(dic[a]/total_count - 1/5) < 0.01 for a in dic):
....: add_samples(1.0)

sage: def add_sample(density):
....: global density_sum, total_count
....: total_count += 1.0
....: density_sum += random_matrix(GF(5), 1000, 1000, density=density).
→˓density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5)
sage: expected_density = 1.0 - (999/1000)^500
sage: expected_density
0.3936...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5)

The matrix is updated instead of overwritten:

sage: def add_sample(density):
....: global density_sum, total_count
....: total_count += 1.0
....: A = random_matrix(GF(5), 1000, 1000, density=density)
....: A.randomize(density=density, nonzero=True)
....: density_sum += A.density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5)
sage: expected_density = 1.0 - (999/1000)^1000
sage: expected_density
0.6323...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.1)
sage: expected_density = 1.0 - (999/1000)^200
sage: expected_density
0.1813...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.1)

rank()
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Return the rank of this matrix.

EXAMPLES:

sage: A = random_matrix(GF(3), 100, 100)
sage: B = copy(A)
sage: _ = A.rank()
sage: B == A
True

sage: A = random_matrix(GF(3), 100, 100, density=0.01)
sage: A.transpose().rank() == A.rank()
True

sage: A = matrix(GF(3), 100, 100)
sage: A.rank()
0

Rank is not implemented over the integers modulo a composite yet.:

sage: M = matrix(Integers(4), 2, [2,2,2,2])
sage: M.rank()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 4�.

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 100, 100)
sage: B = copy(A)
sage: A.rank()
100
sage: B == A
True
sage: MS = A.parent()
sage: MS(1) == ~A*A
True

right_kernel_matrix(algorithm='linbox', basis='echelon')
Return a matrix whose rows form a basis for the right kernel of self.

If the base ring is the ring of integers modulo a composite, the keyword arguments are ignored and the
computation is delegated to Matrix_dense.right_kernel_matrix().

INPUT:

• algorithm – (default: �linbox�) a parameter that is passed on to self.echelon_form, if
computation of an echelon form is required; see that routine for allowable values

• basis – (default: �echelon�) a keyword that describes the format of the basis returned, allowable
values are:

– �echelon�: the basis matrix is in echelon form

– �pivot�: the basis matrix is such that the submatrix obtained
by taking the columns that in self contain no pivots, is the identity matrix

– �computed�: no work is done to transform the basis; in
the current implementation the result is the negative of that returned by �pivot�
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OUTPUT:

AmatrixXwhose rows are a basis for the right kernel ofself. Thismeans thatself * X.transpose()
is a zero matrix.

The result is not cached, but the routine benefits when self is known to be in echelon form already.

EXAMPLES:

sage: M = matrix(GF(5),6,6,range(36))
sage: M.right_kernel_matrix(basis=�computed�)
[4 2 4 0 0 0]
[3 3 0 4 0 0]
[2 4 0 0 4 0]
[1 0 0 0 0 4]
sage: M.right_kernel_matrix(basis=�pivot�)
[1 3 1 0 0 0]
[2 2 0 1 0 0]
[3 1 0 0 1 0]
[4 0 0 0 0 1]
sage: M.right_kernel_matrix()
[1 0 0 0 0 4]
[0 1 0 0 1 3]
[0 0 1 0 2 2]
[0 0 0 1 3 1]
sage: M * M.right_kernel_matrix().transpose()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

submatrix(row=0, col=0, nrows=-1, ncols=-1)
Return the matrix constructed from self using the specified range of rows and columns.

INPUT:

• row, col – index of the starting row and column; indices start at zero

• nrows, ncols – (optional) number of rows and columns to take; if not provided, take all rows below
and all columns to the right of the starting entry

See also

The functions matrix_from_rows(), matrix_from_columns(), and ma-
trix_from_rows_and_columns() allow one to select arbitrary subsets of rows and/or
columns.

EXAMPLES:

Take the 3× 3 submatrix starting from entry (1, 1) in a 4× 4 matrix:

sage: m = matrix(GF(17),4, [1..16])
sage: m.submatrix(1, 1)
[ 6 7 8]
[10 11 12]
[14 15 16]
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Same thing, except take only two rows:

sage: m.submatrix(1, 1, 2)
[ 6 7 8]
[10 11 12]

And now take only one column:

sage: m.submatrix(1, 1, 2, 1)
[ 6]
[10]

You can take zero rows or columns if you want:

sage: m.submatrix(0, 0, 0)
[]
sage: parent(m.submatrix(0, 0, 0))
Full MatrixSpace of 0 by 4 dense matrices over Finite Field of size 17

transpose()

Return the transpose of self, without changing self.

EXAMPLES:

We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: M = MatrixSpace(GF(41), 2)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: B
[1 3]
[2 4]
sage: A
[1 2]
[3 4]

.T is a convenient shortcut for the transpose:

sage: A.T
[1 3]
[2 4]

sage: A.subdivide(None, 1); A
[1|2]
[3|4]
sage: A.transpose()
[1 3]
[---]
[2 4]
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TWENTYSIX

DENSE MATRICES OVER Z/𝑁Z FOR 𝑁 < 28 USING LINBOX’S
MODULAR<FLOAT>

AUTHORS: - Burcin Erocal - Martin Albrecht

class sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float

Bases: Matrix_modn_dense_template

Dense matrices over Z/𝑛Z for 𝑛 < 28 using LinBox’s Modular<float>.

These are matrices with integer entries mod n represented as floating-point numbers in a 32-bit word for use with
LinBox routines. This could allow for n up to 211, but for performance reasons this is limited to n up to 28, and
for larger moduli the Matrix_modn_dense_double class is used.

Routines here are for the most basic access, see the matrix_modn_dense_template.pxi file for
higher-level routines.

class sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_template

Bases: Matrix_dense

Create a new matrix.

INPUT:

• parent – a matrix space

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – perform modular reduction first?

EXAMPLES:

sage: A = random_matrix(GF(3),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: A = random_matrix(Integers(10),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_float.Matrix_modn_dense_float�>
sage: A = random_matrix(Integers(2^16),1000,1000)
sage: type(A)
<class �sage.matrix.matrix_modn_dense_double.Matrix_modn_dense_double�>

charpoly(var='x', algorithm='linbox')
Return the characteristic polynomial of self.

INPUT:

• var – a variable name
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• algorithm – ‘generic’, ‘linbox’ or ‘all’ (default: linbox)

EXAMPLES:

sage: A = random_matrix(GF(19), 10, 10)
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial()
sage: char_p(A) == 0
True
sage: B == A # A is not modified
True

sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p.divides(char_p)
True

sage: A = random_matrix(GF(2916337), 7, 7) #␣
→˓needs sage.rings.finite_rings
sage: B = copy(A)
sage: char_p = A.characteristic_polynomial()
sage: char_p(A) == 0
True
sage: B == A # A is not modified
True

sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p.divides(char_p)
True

sage: A = Mat(Integers(6),3,3)(range(9))
sage: A.charpoly()
x^3

ALGORITHM: Uses LinBox if self.base_ring() is a field, otherwise use Hessenberg form algorithm.

determinant()

Return the determinant of this matrix.

EXAMPLES:

sage: s = set()
sage: while s != set(GF(7)):
....: A = random_matrix(GF(7), 10, 10)
....: s.add(A.determinant())

sage: A = random_matrix(GF(7), 100, 100)
sage: A.determinant() == A.transpose().determinant()
True

sage: B = random_matrix(GF(7), 100, 100)
sage: (A*B).determinant() == A.determinant() * B.determinant()
True

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 10, 10)
sage: A.determinant().parent() is GF(16007)
True
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sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 100, 100)
sage: A.determinant().parent() is GF(16007)
True
sage: A.determinant() == A.transpose().determinant()
True
sage: B = random_matrix(GF(16007), 100, 100)
sage: (A*B).determinant() == A.determinant() * B.determinant()
True

Parallel computation:

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(65521),200)
sage: B = copy(A)
sage: Parallelism().set(�linbox�, nproc=2)
sage: d = A.determinant()
sage: Parallelism().set(�linbox�, nproc=1) # switch off parallelization
sage: e = B.determinant()
sage: d==e
True

echelonize(algorithm='linbox_noefd', **kwds)
Put self in reduced row echelon form.

INPUT:

• self – a mutable matrix

• algorithm

– linbox – uses the LinBox library (wrapping fflas-ffpack)

– linbox_noefd – uses the FFPACK directly, less memory and faster (default)

– gauss – uses a custom slower 𝑂(𝑛3) Gauss elimination implemented in Sage

– all – compute using both algorithms and verify that the results are the same

• **kwds – these are all ignored

OUTPUT: self is put in reduced row echelon form

• the rank of self is computed and cached

• the pivot columns of self are computed and cached

• the fact that self is now in echelon form is recorded and cached so future calls to echelonize return
immediately

EXAMPLES:

sage: A = random_matrix(GF(7), 10, 20)
sage: E = A.echelon_form()
sage: A.row_space() == E.row_space()
True
sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r)
True

sage: A = random_matrix(GF(13), 10, 10)
sage: while A.rank() != 10:

(continues on next page)
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....: A = random_matrix(GF(13), 10, 10)
sage: MS = parent(A)
sage: B = A.augment(MS(1))
sage: B.echelonize()
sage: A.rank()
10
sage: C = B.submatrix(0,10,10,10)
sage: ~A == C
True

sage: A = random_matrix(Integers(10), 10, 20)
sage: A.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 10�.

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 10, 20)
sage: E = A.echelon_form()
sage: A.row_space() == E.row_space()
True
sage: all(r[r.nonzero_positions()[0]] == 1 for r in E.rows() if r)
True

sage: A = random_matrix(Integers(10000), 10, 20)
sage: A.echelon_form()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 10000�.

Parallel computation:

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(65521),100,200)
sage: Parallelism().set(�linbox�, nproc=2)
sage: E = A.echelon_form()
sage: Parallelism().set(�linbox�, nproc=1) # switch off parallelization
sage: F = A.echelon_form()
sage: E==F
True

hessenbergize()

Transform self in place to its Hessenberg form.

EXAMPLES:

sage: A = random_matrix(GF(17), 10, 10, density=0.1)
sage: B = copy(A)
sage: A.hessenbergize()
sage: all(A[i,j] == 0 for j in range(10) for i in range(j+2, 10))
True
sage: A.charpoly() == B.charpoly()
True
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lift()

Return the lift of this matrix to the integers.

EXAMPLES:

sage: A = matrix(GF(7),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

sage: # needs sage.rings.finite_rings
sage: A = matrix(GF(16007),2,3,[1..6])
sage: A.lift()
[1 2 3]
[4 5 6]
sage: A.lift().parent()
Full MatrixSpace of 2 by 3 dense matrices over Integer Ring

Subdivisions are preserved when lifting:

sage: A.subdivide([], [1,1]); A
[1||2 3]
[4||5 6]
sage: A.lift()
[1||2 3]
[4||5 6]

matrix_from_columns(columns)
Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[0 7]

matrix_from_rows(rows)
Return the matrix constructed from self using rows with indices in the rows list.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows([2,1])
[6 7 0]
[3 4 5]
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matrix_from_rows_and_columns(rows, columns)
Return the matrix constructed from self from the given rows and columns.

EXAMPLES:

sage: M = MatrixSpace(Integers(8),3,3)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 0]
sage: A.matrix_from_rows_and_columns([1], [0,2])
[3 5]
sage: A.matrix_from_rows_and_columns([1,2], [1,2])
[4 5]
[7 0]

Note that row and column indices can be reordered or repeated:

sage: A.matrix_from_rows_and_columns([2,1], [2,1])
[0 7]
[5 4]

For example here we take from row 1 columns 2 then 0 twice, and do this 3 times:

sage: A.matrix_from_rows_and_columns([1,1,1],[2,0,0])
[5 3 3]
[5 3 3]
[5 3 3]

AUTHORS:

• Jaap Spies (2006-02-18)

• Didier Deshommes: some Pyrex speedups implemented

minpoly(var='x', algorithm='linbox', proof=None)
Return the minimal polynomial of self.

INPUT:

• var – a variable name

• algorithm – generic or linbox (default: linbox)

• proof – (default: True) whether to provably return the true minimal polynomial; if False, we only
guarantee to return a divisor of the minimal polynomial. There are also certainly cases where the com-
puted results is frequently not exactly equal to the minimal polynomial (but is instead merely a divisor of
it).

Warning

If proof=True, minpoly is insanely slow compared to proof=False. This matters since
proof=True is the default, unless you first type proof.linear_algebra(False).

EXAMPLES:
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sage: A = random_matrix(GF(17), 10, 10)
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p(A) == 0
True
sage: B == A
True

sage: char_p = A.characteristic_polynomial()
sage: min_p.divides(char_p)
True

sage: A = random_matrix(GF(1214471), 10, 10) #␣
→˓needs sage.rings.finite_rings
sage: B = copy(A)
sage: min_p = A.minimal_polynomial(proof=True)
sage: min_p(A) == 0
True
sage: B == A
True

sage: char_p = A.characteristic_polynomial()
sage: min_p.divides(char_p)
True

EXAMPLES:

sage: R.<x>=GF(3)[]
sage: A = matrix(GF(3),2,[0,0,1,2])
sage: A.minpoly()
x^2 + x

sage: A.minpoly(proof=False) in [x, x+1, x^2+x]
True

randomize(density=1, nonzero=False)
Randomize density proportion of the entries of this matrix, leaving the rest unchanged.

INPUT:

• density – integer; proportion (roughly) to be considered for changes

• nonzero – boolean (default: False); whether the new entries are forced to be nonzero

OUTPUT: none, the matrix is modified in-space

EXAMPLES:

sage: A = matrix(GF(5), 5, 5, 0)
sage: total_count = 0
sage: from collections import defaultdict
sage: dic = defaultdict(Integer)
sage: def add_samples(density):
....: global dic, total_count
....: for _ in range(100):
....: A = Matrix(GF(5), 5, 5, 0)
....: A.randomize(density)
....: for a in A.list():

(continues on next page)
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....: dic[a] += 1

....: total_count += 1.0

sage: add_samples(1.0)
sage: while not all(abs(dic[a]/total_count - 1/5) < 0.01 for a in dic):
....: add_samples(1.0)

sage: def add_sample(density):
....: global density_sum, total_count
....: total_count += 1.0
....: density_sum += random_matrix(GF(5), 1000, 1000, density=density).
→˓density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5)
sage: expected_density = 1.0 - (999/1000)^500
sage: expected_density
0.3936...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5)

The matrix is updated instead of overwritten:

sage: def add_sample(density):
....: global density_sum, total_count
....: total_count += 1.0
....: A = random_matrix(GF(5), 1000, 1000, density=density)
....: A.randomize(density=density, nonzero=True)
....: density_sum += A.density()

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.5)
sage: expected_density = 1.0 - (999/1000)^1000
sage: expected_density
0.6323...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.5)

sage: density_sum = 0.0
sage: total_count = 0.0
sage: add_sample(0.1)
sage: expected_density = 1.0 - (999/1000)^200
sage: expected_density
0.1813...
sage: while abs(density_sum/total_count - expected_density) > 0.001:
....: add_sample(0.1)

rank()

Return the rank of this matrix.

EXAMPLES:

sage: A = random_matrix(GF(3), 100, 100)
sage: B = copy(A)
sage: _ = A.rank()

(continues on next page)
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sage: B == A
True

sage: A = random_matrix(GF(3), 100, 100, density=0.01)
sage: A.transpose().rank() == A.rank()
True

sage: A = matrix(GF(3), 100, 100)
sage: A.rank()
0

Rank is not implemented over the integers modulo a composite yet.:

sage: M = matrix(Integers(4), 2, [2,2,2,2])
sage: M.rank()
Traceback (most recent call last):
...
NotImplementedError: Echelon form not implemented over �Ring of integers␣
→˓modulo 4�.

sage: # needs sage.rings.finite_rings
sage: A = random_matrix(GF(16007), 100, 100)
sage: B = copy(A)
sage: A.rank()
100
sage: B == A
True
sage: MS = A.parent()
sage: MS(1) == ~A*A
True

right_kernel_matrix(algorithm='linbox', basis='echelon')
Return a matrix whose rows form a basis for the right kernel of self.

If the base ring is the ring of integers modulo a composite, the keyword arguments are ignored and the
computation is delegated to Matrix_dense.right_kernel_matrix().

INPUT:

• algorithm – (default: �linbox�) a parameter that is passed on to self.echelon_form, if
computation of an echelon form is required; see that routine for allowable values

• basis – (default: �echelon�) a keyword that describes the format of the basis returned, allowable
values are:

– �echelon�: the basis matrix is in echelon form

– �pivot�: the basis matrix is such that the submatrix obtained
by taking the columns that in self contain no pivots, is the identity matrix

– �computed�: no work is done to transform the basis; in
the current implementation the result is the negative of that returned by �pivot�

OUTPUT:

AmatrixXwhose rows are a basis for the right kernel ofself. Thismeans thatself * X.transpose()
is a zero matrix.

The result is not cached, but the routine benefits when self is known to be in echelon form already.
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EXAMPLES:

sage: M = matrix(GF(5),6,6,range(36))
sage: M.right_kernel_matrix(basis=�computed�)
[4 2 4 0 0 0]
[3 3 0 4 0 0]
[2 4 0 0 4 0]
[1 0 0 0 0 4]
sage: M.right_kernel_matrix(basis=�pivot�)
[1 3 1 0 0 0]
[2 2 0 1 0 0]
[3 1 0 0 1 0]
[4 0 0 0 0 1]
sage: M.right_kernel_matrix()
[1 0 0 0 0 4]
[0 1 0 0 1 3]
[0 0 1 0 2 2]
[0 0 0 1 3 1]
sage: M * M.right_kernel_matrix().transpose()
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[0 0 0 0]

submatrix(row=0, col=0, nrows=-1, ncols=-1)
Return the matrix constructed from self using the specified range of rows and columns.

INPUT:

• row, col – index of the starting row and column; indices start at zero

• nrows, ncols – (optional) number of rows and columns to take; if not provided, take all rows below
and all columns to the right of the starting entry

See also

The functions matrix_from_rows(), matrix_from_columns(), and ma-
trix_from_rows_and_columns() allow one to select arbitrary subsets of rows and/or
columns.

EXAMPLES:

Take the 3× 3 submatrix starting from entry (1, 1) in a 4× 4 matrix:

sage: m = matrix(GF(17),4, [1..16])
sage: m.submatrix(1, 1)
[ 6 7 8]
[10 11 12]
[14 15 16]

Same thing, except take only two rows:

sage: m.submatrix(1, 1, 2)
[ 6 7 8]
[10 11 12]
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And now take only one column:

sage: m.submatrix(1, 1, 2, 1)
[ 6]
[10]

You can take zero rows or columns if you want:

sage: m.submatrix(0, 0, 0)
[]
sage: parent(m.submatrix(0, 0, 0))
Full MatrixSpace of 0 by 4 dense matrices over Finite Field of size 17

transpose()

Return the transpose of self, without changing self.

EXAMPLES:

We create a matrix, compute its transpose, and note that the original matrix is not changed.

sage: M = MatrixSpace(GF(41), 2)
sage: A = M([1,2,3,4])
sage: B = A.transpose()
sage: B
[1 3]
[2 4]
sage: A
[1 2]
[3 4]

.T is a convenient shortcut for the transpose:

sage: A.T
[1 3]
[2 4]

sage: A.subdivide(None, 1); A
[1|2]
[3|4]
sage: A.transpose()
[1 3]
[---]
[2 4]
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CHAPTER

TWENTYSEVEN

SPARSE MATRICES OVER Z/𝑁Z FOR 𝑁 SMALL

This is a compiled implementation of sparse matrices over Z/𝑛Z for 𝑛 small.

Todo

move vectors into a Cython vector class - add _add_ and _mul_ methods.

EXAMPLES:

sage: a = matrix(Integers(37),3,3,range(9),sparse=True); a
[0 1 2]
[3 4 5]
[6 7 8]
sage: type(a)
<class �sage.matrix.matrix_modn_sparse.Matrix_modn_sparse�>
sage: parent(a)
Full MatrixSpace of 3 by 3 sparse matrices over Ring of integers modulo 37
sage: a^2
[15 18 21]
[ 5 17 29]
[32 16 0]
sage: a+a
[ 0 2 4]
[ 6 8 10]
[12 14 16]
sage: b = a.new_matrix(2,3,range(6)); b
[0 1 2]
[3 4 5]
sage: a*b
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: �Full MatrixSpace of 3 by 3 sparse␣
→˓matrices over Ring of integers modulo 37� and �Full MatrixSpace of 2 by 3 sparse␣
→˓matrices over Ring of integers modulo 37�
sage: b*a
[15 18 21]
[ 5 17 29]

sage: TestSuite(a).run()
sage: TestSuite(b).run()

sage: a.echelonize(); a
[ 1 0 36]

(continues on next page)
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[ 0 1 2]
[ 0 0 0]
sage: b.echelonize(); b
[ 1 0 36]
[ 0 1 2]
sage: a.pivots()
(0, 1)
sage: b.pivots()
(0, 1)
sage: a.rank()
2
sage: b.rank()
2
sage: a[2,2] = 5
sage: a.rank()
3

class sage.matrix.matrix_modn_sparse.Matrix_modn_sparse

Bases: Matrix_sparse

Create a sparse matrix over the integers modulo n.

INPUT:

• parent – a matrix space over the integers modulo n

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries lie in the base ring

density()

Return the density of self, i.e., the ratio of the number of nonzero entries of self to the total size of
self.

EXAMPLES:

sage: A = matrix(QQ,3,3,[0,1,2,3,0,0,6,7,8],sparse=True)
sage: A.density()
2/3

Notice that the density parameter does not ensure the density of a matrix; it is only an upper bound.

sage: A = random_matrix(GF(127), 200, 200, density=0.3, sparse=True)
sage: density_sum = float(A.density())
sage: total = 1
sage: expected_density = 1.0 - (199/200)^60
sage: expected_density
0.2597...
sage: while abs(density_sum/total - expected_density) > 0.001:
....: A = random_matrix(GF(127), 200, 200, density=0.3, sparse=True)
....: density_sum += float(A.density())
....: total += 1

determinant(algorithm=None)

Return the determinant of this matrix.

INPUT:
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• algorithm – either �linbox� (default) or �generic�

EXAMPLES:

sage: A = matrix(GF(3), 4, range(16), sparse=True)
sage: B = identity_matrix(GF(3), 4, sparse=True)
sage: (A + B).det()
2
sage: (A + B).det(algorithm=�linbox�)
2
sage: (A + B).det(algorithm=�generic�)
2
sage: (A + B).det(algorithm=�hey�)
Traceback (most recent call last):
...
ValueError: no algorithm �hey�

sage: matrix(GF(11), 1, 2, sparse=True).det()
Traceback (most recent call last):
...
ValueError: self must be a square matrix

matrix_from_columns(cols)
Return the matrix constructed from self using columns with indices in the columns list.

EXAMPLES:

sage: M = MatrixSpace(GF(127),3,3,sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.matrix_from_columns([2,1])
[2 1]
[5 4]
[8 7]

matrix_from_rows(rows)
Return the matrix constructed from self using rows with indices in the rows list.

INPUT:

• rows – list or tuple of row indices

EXAMPLES:

sage: M = MatrixSpace(GF(127),3,3,sparse=True)
sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: A.matrix_from_rows([2,1])
[6 7 8]
[3 4 5]

p

rank(algorithm=None)

Return the rank of this matrix.
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INPUT:

• algorithm – either �linbox� (only available for matrices over prime fields) or �generic�

EXAMPLES:

sage: A = matrix(GF(127), 2, 2, sparse=True)
sage: A[0,0] = 34
sage: A[0,1] = 102
sage: A[1,0] = 55
sage: A[1,1] = 74
sage: A.rank()
2

sage: A._clear_cache()
sage: A.rank(algorithm=�generic�)
2
sage: A._clear_cache()
sage: A.rank(algorithm=�hey�)
Traceback (most recent call last):
...
ValueError: no algorithm �hey�

REFERENCES:

• Jean-Guillaume Dumas and Gilles Villars. ‘Computing the Rank of Large Sparse Matrices over Finite
Fields’. Proc. CASC’2002, The Fifth International Workshop on Computer Algebra in Scientific Com-
puting, Big Yalta, Crimea, Ukraine, 22-27 sept. 2002, Springer-Verlag, http://perso.ens-lyon.fr/gilles.
villard/BIBLIOGRAPHIE/POSTSCRIPT/rankjgd.ps

Note

For very sparse matrices Gaussian elimination is faster because it barely has anything to do. If the fill in
needs to be considered, ‘Symbolic Reordering’ is usually much faster.

swap_rows(r1, r2)

transpose()

Return the transpose of self.

EXAMPLES:

sage: A = matrix(GF(127),3,3,[0,1,0,2,0,0,3,0,0],sparse=True)
sage: A
[0 1 0]
[2 0 0]
[3 0 0]
sage: A.transpose()
[0 2 3]
[1 0 0]
[0 0 0]

.T is a convenient shortcut for the transpose:

sage: A.T
[0 2 3]
[1 0 0]
[0 0 0]
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CHAPTER

TWENTYEIGHT

SYMBOLIC DENSE MATRICES

EXAMPLES:

sage: matrix(SR, 2, 2, range(4))
[0 1]
[2 3]
sage: matrix(SR, 2, 2, var(�t�))
[t 0]
[0 t]

Arithmetic:

sage: -matrix(SR, 2, range(4))
[ 0 -1]
[-2 -3]
sage: m = matrix(SR, 2, [1..4]); sqrt(2)*m
[ sqrt(2) 2*sqrt(2)]
[3*sqrt(2) 4*sqrt(2)]
sage: m = matrix(SR, 4, [1..4^2])
sage: m * m
[ 90 100 110 120]
[202 228 254 280]
[314 356 398 440]
[426 484 542 600]

sage: m = matrix(SR, 3, [1, 2, 3]); m
[1]
[2]
[3]
sage: m.transpose() * m
[14]

Computing inverses:

sage: M = matrix(SR, 2, var(�a,b,c,d�))
sage: ~M
[1/a - b*c/(a^2*(b*c/a - d)) b/(a*(b*c/a - d))]
[ c/(a*(b*c/a - d)) -1/(b*c/a - d)]
sage: (~M*M).simplify_rational()
[1 0]
[0 1]
sage: M = matrix(SR, 3, 3, range(9)) - var(�t�)
sage: (~M * M).simplify_rational()
[1 0 0]
[0 1 0]

(continues on next page)
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[0 0 1]

sage: matrix(SR, 1, 1, 1).inverse()
[1]
sage: matrix(SR, 0, 0).inverse()
[]
sage: matrix(SR, 3, 0).inverse()
Traceback (most recent call last):
...
ArithmeticError: self must be a square matrix

Transposition:

sage: m = matrix(SR, 2, [sqrt(2), -1, pi, e^2])
sage: m.transpose()
[sqrt(2) pi]
[ -1 e^2]

.T is a convenient shortcut for the transpose:

sage: m.T
[sqrt(2) pi]
[ -1 e^2]

Test pickling:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e]); m
[sqrt(2) 3]
[ pi e]
sage: TestSuite(m).run()

Comparison:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m == m
True
sage: m != 3
True
sage: m = matrix(SR,2,[1..4]); n = m^2
sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test
True

Determinant:

sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.determinant()
4*x - 6
sage: M = matrix(SR, 3,3,range(9))
sage: M.det()
0
sage: t = var(�t�)
sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)])
sage: M.det()
cos(t)^2 + sin(t)^2
sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]])
sage: det(M)
sqrt(x)
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Permanents:

sage: M = matrix(SR, 2, 2, [x,2,3,4])
sage: M.permanent()
4*x + 6

Rank:

sage: M = matrix(SR, 5, 5, range(25))
sage: M.rank()
2
sage: M = matrix(SR, 5, 5, range(25)) - var(�t�)
sage: M.rank()
5

.. warning::

:meth:ArankA may return the wrong answer if it cannot determine that a
matrix element that is equivalent to zero is indeed so.

Copying symbolic matrices:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: n = copy(m)
sage: n[0,0] = sin(1)
sage: m
[sqrt(2) 3]
[ pi e]
sage: n
[sin(1) 3]
[ pi e]

Conversion to Maxima:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e])
sage: m._maxima_()
matrix([sqrt(2),3],[%pi,%e])

class sage.matrix.matrix_symbolic_dense.Matrix_symbolic_dense

Bases: Matrix_generic_dense

arguments()

Return a tuple of the arguments that self can take.

EXAMPLES:

sage: var(�x,y,z�)
(x, y, z)
sage: M = MatrixSpace(SR,2,2)
sage: M(x).arguments()
(x,)
sage: M(x+sin(x)).arguments()
(x,)

canonicalize_radical()

Choose a canonical branch of each entry of self by calling Expression.
canonicalize_radical() componentwise.

EXAMPLES:
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sage: var(�x�,�y�)
(x, y)
sage: l1 = [sqrt(2)*sqrt(3)*sqrt(6) , log(x*y)]
sage: l2 = [sin(x/(x^2 + x)) , 1]
sage: m = matrix([l1, l2])
sage: m
[sqrt(6)*sqrt(3)*sqrt(2) log(x*y)]
[ sin(x/(x^2 + x)) 1]
sage: m.canonicalize_radical()
[ 6 log(x) + log(y)]
[ sin(1/(x + 1)) 1]

charpoly(var='x', algorithm=None)
Compute the characteristic polynomial of self, using maxima.

Note

The characteristic polynomial is defined as det(𝑥𝐼 −𝐴).

INPUT:

• var – (default: �x�) name of variable of charpoly

EXAMPLES:

sage: M = matrix(SR, 2, 2, var(�a,b,c,d�))
sage: M.charpoly(�t�)
t^2 + (-a - d)*t - b*c + a*d
sage: matrix(SR, 5, [1..5^2]).charpoly()
x^5 - 65*x^4 - 250*x^3

echelonize(**kwds)
Echelonize using the classical algorithm.

eigenvalues(extend=True)
Compute the eigenvalues by solving the characteristic polynomial in maxima.

The argument extend is ignored but kept for compatibility with other matrix classes.

EXAMPLES:

sage: a=matrix(SR,[[1,2],[3,4]])
sage: a.eigenvalues()
[-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2]

eigenvectors_left(other=None)
Compute the left eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvec-
tors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

EXAMPLES:
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sage: A = matrix(SR,3,3,range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(-3*sqrt(6) + 6, [(1, -1/5*sqrt(6) + 4/5, -2/5*sqrt(6) + 3/5)], 1),
(3*sqrt(6) + 6, [(1, 1/5*sqrt(6) + 4/5, 2/5*sqrt(6) + 3/5)], 1),
(0, [(1, -2, 1)], 1)]

sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: abs(abs(delta)) < 1e-10
3/5*sqrt(((2*sqrt(6) - 3)*(sqrt(6) - 2) + 7*sqrt(6) - 18)^2 + ((sqrt(6) -␣
→˓2)*(sqrt(6) - 4) + 6*sqrt(6) - 14)^2) < (1.00000000000000e-10)
sage: abs(abs(delta)).n() < 1e-10
True

sage: A = matrix(SR, 2, 2, var(�a,b,c,d�))
sage: A.eigenvectors_left()
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d +␣
→˓sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 +␣
→˓4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/
→˓c)], 1)]
sage: es = A.eigenvectors_left(); es
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d +␣
→˓sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 +␣
→˓4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/
→˓c)], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: delta.apply_map(lambda x: x.full_simplify())
(0, 0)

This routine calls Maxima and can struggle with even small matrices with a few variables, such as a 3 × 3
matrix with three variables. However, if the entries are integers or rationals it can produce exact values in
a reasonable time. These examples create 0-1 matrices from the adjacency matrices of graphs and illustrate
how the format and type of the results differ when the base ring changes. First for matrices over the rational
numbers, then the same matrix but viewed as a symbolic matrix.

sage: G=graphs.CycleGraph(5)
sage: am = G.adjacency_matrix()
sage: spectrum = am.eigenvectors_left()
sage: qqbar_evalue = spectrum[2][0]
sage: type(qqbar_evalue)
<class �sage.rings.qqbar.AlgebraicNumber�>
sage: qqbar_evalue
0.618033988749895?

sage: am = G.adjacency_matrix().change_ring(SR)
sage: spectrum = am.eigenvectors_left()
sage: symbolic_evalue = spectrum[2][0]
sage: type(symbolic_evalue)
<class �sage.symbolic.expression.Expression�>
sage: symbolic_evalue
1/2*sqrt(5) - 1/2

sage: bool(qqbar_evalue == symbolic_evalue)
True
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A slightly larger matrix with a “nice” spectrum.

sage: G = graphs.CycleGraph(6)
sage: am = G.adjacency_matrix().change_ring(SR)
sage: am.eigenvectors_left()
[(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, 0,
→˓ 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, [(1,␣
→˓1, 1, 1, 1, 1)], 1)]

eigenvectors_right(other=None)
Compute the right eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigen-
vectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the
eigenvalue.

EXAMPLES:

sage: A = matrix(SR,2,2,range(4)); A
[0 1]
[2 3]
sage: right = A.eigenvectors_right(); right
[(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2,␣
→˓[(1, 1/2*sqrt(17) + 3/2)], 1)]

The right eigenvectors are nothing but the left eigenvectors of the transpose matrix:

sage: left = A.transpose().eigenvectors_left(); left
[(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2,␣
→˓[(1, 1/2*sqrt(17) + 3/2)], 1)]
sage: right[0][1] == left[0][1]
True

exp()

Return the matrix exponential of this matrix 𝑋 , which is the matrix

𝑒𝑋 =

∞∑︁
𝑘=0

𝑋𝑘

𝑘!
.

This function depends on maxima’s matrix exponentiation function, which does not deal well with floating
point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational num-
bers during the computation.

EXAMPLES:

sage: m = matrix(SR,2, [0,x,x,0]); m
[0 x]
[x 0]
sage: m.exp()
[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
sage: exp(m)

(continues on next page)
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[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]

Exponentiation works on 0x0 and 1x1 matrices, but the 1x1 example requires a patched version of maxima
(Issue #32898) for now:

sage: m = matrix(SR,0,[]); m
[]
sage: m.exp()
[]
sage: m = matrix(SR,1,[2]); m
[2]
sage: m.exp() # not tested, requires patched maxima
[e^2]

Commuting matrices𝑚,𝑛 have the property that 𝑒𝑚+𝑛 = 𝑒𝑚𝑒𝑛 (but non-commuting matrices need not):

sage: m = matrix(SR,2,[1..4]); n = m^2
sage: m*n
[ 37 54]
[ 81 118]
sage: n*m
[ 37 54]
[ 81 118]

sage: a = exp(m+n) - exp(m)*exp(n)
sage: a.simplify_rational() == 0
True

The input matrix must be square:

sage: m = matrix(SR,2,3,[1..6]); exp(m)
Traceback (most recent call last):
...
ValueError: exp only defined on square matrices

In this example we take the symbolic answer and make it numerical at the end:

sage: exp(matrix(SR, [[1.2, 5.6], [3,4]])).change_ring(RDF) # rel tol 1e-15
[ 346.5574872980695 661.7345909344504]
[354.50067371488416 677.4247827652946]

Another example involving the reversed identity matrix, which we clumsily create:

sage: m = identity_matrix(SR,4); m = matrix(list(reversed(m.rows()))) * x
sage: exp(m)
[1/2*(e^(2*x) + 1)*e^(-x) 0 0 1/
→˓2*(e^(2*x) - 1)*e^(-x)]
[ 0 1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x) ␣
→˓ 0]
[ 0 1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x) ␣
→˓ 0]
[1/2*(e^(2*x) - 1)*e^(-x) 0 0 1/
→˓2*(e^(2*x) + 1)*e^(-x)]

expand()

Operate point-wise on each element.
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EXAMPLES:

sage: M = matrix(2, 2, range(4)) - var(�x�)
sage: M*M
[ x^2 + 2 -2*x + 3]
[ -4*x + 6 (x - 3)^2 + 2]
sage: (M*M).expand()
[ x^2 + 2 -2*x + 3]
[ -4*x + 6 x^2 - 6*x + 11]

factor()

Operate point-wise on each element.

EXAMPLES:

sage: M = matrix(SR, 2, 2, x^2 - 2*x + 1); M
[x^2 - 2*x + 1 0]
[ 0 x^2 - 2*x + 1]
sage: M.factor()
[(x - 1)^2 0]
[ 0 (x - 1)^2]

fcp(var='x')
Return the factorization of the characteristic polynomial of self.

INPUT:

• var – (default: �x�) name of variable of charpoly

EXAMPLES:

sage: a = matrix(SR,[[1,2],[3,4]])
sage: a.fcp()
x^2 - 5*x - 2
sage: [i for i in a.fcp()]
[(x^2 - 5*x - 2, 1)]
sage: a = matrix(SR,[[1,0],[0,2]])
sage: a.fcp()
(x - 2) * (x - 1)
sage: [i for i in a.fcp()]
[(x - 2, 1), (x - 1, 1)]
sage: a = matrix(SR, 5, [1..5^2])
sage: a.fcp()
(x^2 - 65*x - 250) * x^3
sage: list(a.fcp())
[(x^2 - 65*x - 250, 1), (x, 3)]

function(*args)
Return a matrix over a callable symbolic expression ring.

EXAMPLES:

sage: x, y = var(�x,y�)
sage: v = matrix([[x,y],[x*sin(y), 0]])
sage: w = v.function([x,y]); w
[ (x, y) |--> x (x, y) |--> y]
[(x, y) |--> x*sin(y) (x, y) |--> 0]
sage: w.parent()

(continues on next page)

526 Chapter 28. Symbolic dense matrices



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

Full MatrixSpace of 2 by 2 dense matrices over Callable function ring with␣
→˓arguments (x, y)

jordan_form(subdivide=True, transformation=False)
Return a Jordan normal form of self.

INPUT:

• self – a square matrix

• subdivide – boolean (default: True)

• transformation – boolean (default: False)

OUTPUT:

Iftransformation isFalse, only a Jordan normal form (unique up to the ordering of the Jordan blocks)
is returned. Otherwise, a pair (J, P) is returned, where J is a Jordan normal form and P is an invertible
matrix such that self equals P * J * P^(-1).

If subdivide is True, the Jordan blocks in the returned matrix J are indicated by a subdivision in the
sense of subdivide().

EXAMPLES:

We start with some examples of diagonalisable matrices:

sage: a,b,c,d = var(�a,b,c,d�)
sage: matrix([a]).jordan_form()
[a]
sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=True)
[d|0]
[-+-]
[0|a]
sage: matrix([[a, 0], [1, d]]).jordan_form(subdivide=False)
[d 0]
[0 a]
sage: matrix([[a, x, x], [0, b, x], [0, 0, c]]).jordan_form()
[c|0|0]
[-+-+-]
[0|b|0]
[-+-+-]
[0|0|a]

In the following examples, we compute Jordan forms of some non-diagonalisable matrices:

sage: matrix([[a, a], [0, a]]).jordan_form()
[a 1]
[0 a]
sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]]).jordan_form()
[c|0 0]
[-+---]
[0|a 1]
[0|0 a]

The following examples illustrate the transformation flag. Note that symbolic expressions may need to
be simplified to make consistency checks succeed:
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sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c]])
sage: J, P = A.jordan_form(transformation=True)
sage: J, P
(
[x 1] [-a*c 1]
[0 x], [-c^2 0]
)
sage: A1 = P * J * ~P; A1
[ -a*c + x (a*c - x)*a/c + a*x/c]
[ -c^2 a*c + x]
sage: A1.simplify_rational() == A
True

sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]])
sage: J, T = B.jordan_form(transformation=True)
sage: J, T
(
[a 1 0] [b*d c 0]
[0 a 1] [ 0 d 0]
[0 0 a], [ 0 0 1]
)
sage: (B * T).simplify_rational() == T * J
True

Finally, some examples involving square roots:

sage: matrix([[a, -b], [b, a]]).jordan_form()
[a - I*b| 0]
[-------+-------]
[ 0|a + I*b]
sage: matrix([[a, b], [c, d]]).jordan_form(subdivide=False)
[1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2) ␣
→˓ 0]
[ 0 1/2*a + 1/2*d + 1/
→˓2*sqrt(a^2 + 4*b*c - 2*a*d + d^2)]

minpoly(var='x')
Return the minimal polynomial of self.

EXAMPLES:

sage: M = Matrix.identity(SR, 2)
sage: M.minpoly()
x - 1

sage: t = var(�t�)
sage: m = matrix(2, [1, 2, 4, t])
sage: m.minimal_polynomial()
x^2 + (-t - 1)*x + t - 8

number_of_arguments()

Return the number of arguments that self can take.

EXAMPLES:

sage: var(�a,b,c,x,y�)
(a, b, c, x, y)

(continues on next page)
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sage: m = matrix([[a, (x+y)/(x+y)], [x^2, y^2+2]]); m
[ a 1]
[ x^2 y^2 + 2]
sage: m.number_of_arguments()
3

simplify()

Simplify self.

EXAMPLES:

sage: var(�x,y,z�)
(x, y, z)
sage: m = matrix([[z, (x+y)/(x+y)], [x^2, y^2+2]]); m
[ z 1]
[ x^2 y^2 + 2]
sage: m.simplify()
[ z 1]
[ x^2 y^2 + 2]

simplify_full()

Simplify a symbolic matrix by calling Expression.simplify_full() componentwise.

INPUT:

• self – the matrix whose entries we should simplify

OUTPUT: a copy of self with all of its entries simplified

EXAMPLES:

Symbolic matrices will have their entries simplified:

sage: a,n,k = SR.var(�a,n,k�)
sage: f1 = sin(x)^2 + cos(x)^2
sage: f2 = sin(x/(x^2 + x))
sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
sage: f4 = x*sin(2)/(x^a)
sage: A = matrix(SR, [[f1,f2],[f3,f4]])
sage: A.simplify_full()
[ 1 sin(1/(x + 1))]
[ factorial(n) x^(-a + 1)*sin(2)]

simplify_rational()

EXAMPLES:

sage: M = matrix(SR, 3, 3, range(9)) - var(�t�)
sage: (~M*M)[0,0]
t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t
- 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t +
3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t -
(6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t +
(6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t -
4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t)
sage: expand((~M*M)[0,0])
1
sage: (~M * M).simplify_rational()
[1 0 0]

(continues on next page)
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[0 1 0]
[0 0 1]

simplify_trig()

EXAMPLES:

sage: theta = var(�theta�)
sage: M = matrix(SR, 2, 2, [cos(theta), sin(theta), -sin(theta), cos(theta)])
sage: ~M
[1/cos(theta) - sin(theta)^2/((sin(theta)^2/cos(theta) +␣
→˓cos(theta))*cos(theta)^2) -sin(theta)/((sin(theta)^2/
→˓cos(theta) + cos(theta))*cos(theta))]
[ sin(theta)/((sin(theta)^2/cos(theta) +␣
→˓cos(theta))*cos(theta)) 1/
→˓(sin(theta)^2/cos(theta) + cos(theta))]
sage: (~M).simplify_trig()
[ cos(theta) -sin(theta)]
[ sin(theta) cos(theta)]

variables()

Return the variables of self.

EXAMPLES:

sage: var(�a,b,c,x,y�)
(a, b, c, x, y)
sage: m = matrix([[x, x+2], [x^2, x^2+2]]); m
[ x x + 2]
[ x^2 x^2 + 2]
sage: m.variables()
(x,)
sage: m = matrix([[a, b+c], [x^2, y^2+2]]); m
[ a b + c]
[ x^2 y^2 + 2]
sage: m.variables()
(a, b, c, x, y)
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TWENTYNINE

SYMBOLIC SPARSE MATRICES

EXAMPLES:

sage: matrix(SR, 2, 2, range(4), sparse=True)
[0 1]
[2 3]
sage: matrix(SR, 2, 2, var(�t�), sparse=True)
[t 0]
[0 t]

Arithmetic:

sage: -matrix(SR, 2, range(4), sparse=True)
[ 0 -1]
[-2 -3]
sage: m = matrix(SR, 2, [1..4], sparse=True); sqrt(2)*m
[ sqrt(2) 2*sqrt(2)]
[3*sqrt(2) 4*sqrt(2)]
sage: m = matrix(SR, 4, [1..4^2], sparse=True)
sage: m * m
[ 90 100 110 120]
[202 228 254 280]
[314 356 398 440]
[426 484 542 600]

sage: m = matrix(SR, 3, [1, 2, 3], sparse=True); m
[1]
[2]
[3]
sage: m.transpose() * m
[14]

Computing inverses:

sage: M = matrix(SR, 2, var(�a,b,c,d�), sparse=True)
sage: ~M
[1/a - b*c/(a^2*(b*c/a - d)) b/(a*(b*c/a - d))]
[ c/(a*(b*c/a - d)) -1/(b*c/a - d)]
sage: (~M*M).simplify_rational()
[1 0]
[0 1]
sage: M = matrix(SR, 3, 3, range(9), sparse=True) - var(�t�)
sage: (~M * M).simplify_rational()
[1 0 0]
[0 1 0]

(continues on next page)
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[0 0 1]

sage: matrix(SR, 1, 1, 1, sparse=True).inverse()
[1]
sage: matrix(SR, 0, 0, sparse=True).inverse()
[]
sage: matrix(SR, 3, 0, sparse=True).inverse()
Traceback (most recent call last):
...
ArithmeticError: self must be a square matrix

Transposition:

sage: m = matrix(SR, 2, [sqrt(2), -1, pi, e^2], sparse=True)
sage: m.transpose()
[sqrt(2) pi]
[ -1 e^2]

.T is a convenient shortcut for the transpose:

sage: m.T
[sqrt(2) pi]
[ -1 e^2]

Test pickling:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True); m
[sqrt(2) 3]
[ pi e]
sage: TestSuite(m).run()

Comparison:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
sage: m == m
True
sage: m != 3
True
sage: m = matrix(SR,2,[1..4], sparse=True); n = m^2
sage: (exp(m+n) - exp(m)*exp(n)).simplify_rational() == 0 # indirect test
True

Determinant:

sage: M = matrix(SR, 2, 2, [x,2,3,4], sparse=True)
sage: M.determinant()
4*x - 6
sage: M = matrix(SR, 3,3,range(9), sparse=True)
sage: M.det()
0
sage: t = var(�t�)
sage: M = matrix(SR, 2, 2, [cos(t), sin(t), -sin(t), cos(t)], sparse=True)
sage: M.det()
cos(t)^2 + sin(t)^2
sage: M = matrix([[sqrt(x),0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]], sparse=True)
sage: det(M)
sqrt(x)
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Permanents:

sage: M = matrix(SR, 2, 2, [x,2,3,4], sparse=True)
sage: M.permanent()
4*x + 6

Rank:

sage: M = matrix(SR, 5, 5, range(25), sparse=True)
sage: M.rank()
2
sage: M = matrix(SR, 5, 5, range(25), sparse=True) - var(�t�)
sage: M.rank()
5

.. warning::

:meth:ArankA may return the wrong answer if it cannot determine that a
matrix element that is equivalent to zero is indeed so.

Copying symbolic matrices:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
sage: n = copy(m)
sage: n[0,0] = sin(1)
sage: m
[sqrt(2) 3]
[ pi e]
sage: n
[sin(1) 3]
[ pi e]

Conversion to Maxima:

sage: m = matrix(SR, 2, [sqrt(2), 3, pi, e], sparse=True)
sage: m._maxima_()
matrix([sqrt(2),3],[%pi,%e])

class sage.matrix.matrix_symbolic_sparse.Matrix_symbolic_sparse

Bases: Matrix_generic_sparse

arguments()

Return a tuple of the arguments that self can take.

EXAMPLES:

sage: var(�x,y,z�)
(x, y, z)
sage: M = MatrixSpace(SR,2,2, sparse=True)
sage: M(x).arguments()
(x,)
sage: M(x+sin(x)).arguments()
(x,)

canonicalize_radical()

Choose a canonical branch of each entry of self by calling Expression.
canonicalize_radical() componentwise.

EXAMPLES:
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sage: var(�x�,�y�)
(x, y)
sage: l1 = [sqrt(2)*sqrt(3)*sqrt(6) , log(x*y)]
sage: l2 = [sin(x/(x^2 + x)) , 1]
sage: m = matrix([l1, l2], sparse=True)
sage: m
[sqrt(6)*sqrt(3)*sqrt(2) log(x*y)]
[ sin(x/(x^2 + x)) 1]
sage: m.canonicalize_radical()
[ 6 log(x) + log(y)]
[ sin(1/(x + 1)) 1]

charpoly(var='x', algorithm=None)
Compute the characteristic polynomial of self, using maxima.

Note

The characteristic polynomial is defined as det(𝑥𝐼 −𝐴).

INPUT:

• var – (default: �x�) name of variable of charpoly

EXAMPLES:

sage: M = matrix(SR, 2, 2, var(�a,b,c,d�), sparse=True)
sage: M.charpoly(�t�)
t^2 + (-a - d)*t - b*c + a*d
sage: matrix(SR, 5, [1..5^2], sparse=True).charpoly()
x^5 - 65*x^4 - 250*x^3

echelonize(**kwds)
Echelonize using the classical algorithm.

eigenvalues(extend=True)
Compute the eigenvalues by solving the characteristic polynomial in maxima.

The argument extend is ignored but kept for compatibility with other matrix classes.

EXAMPLES:

sage: a=matrix(SR,[[1,2],[3,4]], sparse=True)
sage: a.eigenvalues()
[-1/2*sqrt(33) + 5/2, 1/2*sqrt(33) + 5/2]

eigenvectors_left(other=None)
Compute the left eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigenvec-
tors forming a basis for the corresponding left eigenspace, and n is the algebraic multiplicity of the eigenvalue.

EXAMPLES:
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sage: A = matrix(SR,3,3,range(9), sparse=True); A
[0 1 2]
[3 4 5]
[6 7 8]
sage: es = A.eigenvectors_left(); es
[(-3*sqrt(6) + 6, [(1, -1/5*sqrt(6) + 4/5, -2/5*sqrt(6) + 3/5)], 1),
(3*sqrt(6) + 6, [(1, 1/5*sqrt(6) + 4/5, 2/5*sqrt(6) + 3/5)], 1),
(0, [(1, -2, 1)], 1)]

sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: abs(abs(delta)) < 1e-10
3/5*sqrt(((2*sqrt(6) - 3)*(sqrt(6) - 2) + 7*sqrt(6) - 18)^2 + ((sqrt(6) -␣
→˓2)*(sqrt(6) - 4) + 6*sqrt(6) - 14)^2) < (1.00000000000000e-10)
sage: abs(abs(delta)).n() < 1e-10
True

sage: A = matrix(SR, 2, 2, var(�a,b,c,d�), sparse=True)
sage: A.eigenvectors_left()
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d +␣
→˓sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 +␣
→˓4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/
→˓c)], 1)]
sage: es = A.eigenvectors_left(); es
[(1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d +␣
→˓sqrt(a^2 + 4*b*c - 2*a*d + d^2))/c)], 1), (1/2*a + 1/2*d + 1/2*sqrt(a^2 +␣
→˓4*b*c - 2*a*d + d^2), [(1, -1/2*(a - d - sqrt(a^2 + 4*b*c - 2*a*d + d^2))/
→˓c)], 1)]
sage: eval, [evec], mult = es[0]
sage: delta = eval*evec - evec*A
sage: delta.apply_map(lambda x: x.full_simplify())
(0, 0)

This routine calls Maxima and can struggle with even small matrices with a few variables, such as a 3 × 3
matrix with three variables. However, if the entries are integers or rationals it can produce exact values in
a reasonable time. These examples create 0-1 matrices from the adjacency matrices of graphs and illustrate
how the format and type of the results differ when the base ring changes. First for matrices over the rational
numbers, then the same matrix but viewed as a symbolic matrix.

sage: G=graphs.CycleGraph(5)
sage: am = G.adjacency_matrix(sparse=True)
sage: spectrum = am.eigenvectors_left()
sage: qqbar_evalue = spectrum[2][0]
sage: type(qqbar_evalue)
<class �sage.rings.qqbar.AlgebraicNumber�>
sage: qqbar_evalue
0.618033988749895?

sage: am = G.adjacency_matrix(sparse=True).change_ring(SR)
sage: spectrum = am.eigenvectors_left()
sage: symbolic_evalue = spectrum[2][0]
sage: type(symbolic_evalue)
<class �sage.symbolic.expression.Expression�>
sage: symbolic_evalue
1/2*sqrt(5) - 1/2

sage: bool(qqbar_evalue == symbolic_evalue)
True
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A slightly larger matrix with a “nice” spectrum.

sage: G = graphs.CycleGraph(6)
sage: am = G.adjacency_matrix(sparse=True).change_ring(SR)
sage: am.eigenvectors_left()
[(-1, [(1, 0, -1, 1, 0, -1), (0, 1, -1, 0, 1, -1)], 2), (1, [(1, 0, -1, -1, 0,
→˓ 1), (0, 1, 1, 0, -1, -1)], 2), (-2, [(1, -1, 1, -1, 1, -1)], 1), (2, [(1,␣
→˓1, 1, 1, 1, 1)], 1)]

eigenvectors_right(other=None)
Compute the right eigenvectors of a matrix.

INPUT:

• other – a square matrix 𝐵 (default: None) in a generalized eigenvalue problem; if None, an ordinary
eigenvalue problem is solved (currently supported only if the base ring of self is RDF or CDF)

OUTPUT:

For each distinct eigenvalue, returns a list of the form (e,V,n) where e is the eigenvalue, V is a list of eigen-
vectors forming a basis for the corresponding right eigenspace, and n is the algebraic multiplicity of the
eigenvalue.

EXAMPLES:

sage: A = matrix(SR,2,2,range(4), sparse=True); A
[0 1]
[2 3]
sage: right = A.eigenvectors_right(); right
[(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2,␣
→˓[(1, 1/2*sqrt(17) + 3/2)], 1)]

The right eigenvectors are nothing but the left eigenvectors of the transpose matrix:

sage: left = A.transpose().eigenvectors_left(); left
[(-1/2*sqrt(17) + 3/2, [(1, -1/2*sqrt(17) + 3/2)], 1), (1/2*sqrt(17) + 3/2,␣
→˓[(1, 1/2*sqrt(17) + 3/2)], 1)]
sage: right[0][1] == left[0][1]
True

exp()

Return the matrix exponential of this matrix 𝑋 , which is the matrix

𝑒𝑋 =

∞∑︁
𝑘=0

𝑋𝑘

𝑘!
.

This function depends on maxima’s matrix exponentiation function, which does not deal well with floating
point numbers. If the matrix has floating point numbers, they will be rounded automatically to rational num-
bers during the computation.

EXAMPLES:

sage: m = matrix(SR,2, [0,x,x,0], sparse=True); m
[0 x]
[x 0]
sage: m.exp()
[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]
sage: exp(m)

(continues on next page)
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[1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x)]
[1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x)]

Exponentiation works on 0x0 and 1x1 matrices, but the 1x1 example requires a patched version of maxima
(Issue #32898) for now:

sage: m = matrix(SR,0,[], sparse=True); m
[]
sage: m.exp()
[]
sage: m = matrix(SR,1,[2], sparse=True); m
[2]
sage: m.exp() # not tested, requires patched maxima
[e^2]

Commuting matrices𝑚,𝑛 have the property that 𝑒𝑚+𝑛 = 𝑒𝑚𝑒𝑛 (but non-commuting matrices need not):

sage: m = matrix(SR,2,[1..4], sparse=True); n = m^2
sage: m*n
[ 37 54]
[ 81 118]
sage: n*m
[ 37 54]
[ 81 118]

sage: a = exp(m+n) - exp(m)*exp(n)
sage: a.simplify_rational() == 0
True

The input matrix must be square:

sage: m = matrix(SR,2,3,[1..6], sparse=True); exp(m)
Traceback (most recent call last):
...
ValueError: exp only defined on square matrices

In this example we take the symbolic answer and make it numerical at the end:

sage: exp(matrix(SR, [[1.2, 5.6], [3,4]], sparse=True)).change_ring(RDF) #␣
→˓rel tol 1e-15
[ 346.5574872980695 661.7345909344504]
[354.50067371488416 677.4247827652946]

Another example involving the reversed identity matrix, which we clumsily create:

sage: m = identity_matrix(SR,4, sparse=True)
sage: m = matrix(list(reversed(m.rows())), sparse=True) * x
sage: exp(m)
[1/2*(e^(2*x) + 1)*e^(-x) 0 0 1/
→˓2*(e^(2*x) - 1)*e^(-x)]
[ 0 1/2*(e^(2*x) + 1)*e^(-x) 1/2*(e^(2*x) - 1)*e^(-x) ␣
→˓ 0]
[ 0 1/2*(e^(2*x) - 1)*e^(-x) 1/2*(e^(2*x) + 1)*e^(-x) ␣
→˓ 0]
[1/2*(e^(2*x) - 1)*e^(-x) 0 0 1/
→˓2*(e^(2*x) + 1)*e^(-x)]

537

https://github.com/sagemath/sage/issues/32898


Matrices and Spaces of Matrices, Release 10.5.rc0

expand()

Operate point-wise on each element.

EXAMPLES:

sage: M = matrix(2, 2, range(4)) - var(�x�)
sage: M*M
[ x^2 + 2 -2*x + 3]
[ -4*x + 6 (x - 3)^2 + 2]
sage: (M*M).expand()
[ x^2 + 2 -2*x + 3]
[ -4*x + 6 x^2 - 6*x + 11]

factor()

Operate point-wise on each element.

EXAMPLES:

sage: M = matrix(SR, 2, 2, x^2 - 2*x + 1, sparse=True); M
[x^2 - 2*x + 1 0]
[ 0 x^2 - 2*x + 1]
sage: M.factor()
[(x - 1)^2 0]
[ 0 (x - 1)^2]

fcp(var='x')
Return the factorization of the characteristic polynomial of self.

INPUT:

• var – (default: �x�) name of variable of charpoly

EXAMPLES:

sage: a = matrix(SR,[[1,2],[3,4]], sparse=True)
sage: a.fcp()
x^2 - 5*x - 2
sage: [i for i in a.fcp()]
[(x^2 - 5*x - 2, 1)]
sage: a = matrix(SR,[[1,0],[0,2]], sparse=True)
sage: a.fcp()
(x - 2) * (x - 1)
sage: [i for i in a.fcp()]
[(x - 2, 1), (x - 1, 1)]
sage: a = matrix(SR, 5, [1..5^2], sparse=True)
sage: a.fcp()
(x^2 - 65*x - 250) * x^3
sage: list(a.fcp())
[(x^2 - 65*x - 250, 1), (x, 3)]

function(*args)
Return a matrix over a callable symbolic expression ring.

EXAMPLES:

sage: x, y = var(�x,y�)
sage: v = matrix([[x,y],[x*sin(y), 0]], sparse=True)
sage: w = v.function([x,y]); w
[ (x, y) |--> x (x, y) |--> y]

(continues on next page)
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[(x, y) |--> x*sin(y) (x, y) |--> 0]
sage: w.parent()
Full MatrixSpace of 2 by 2 sparse matrices over Callable function ring with␣
→˓arguments (x, y)

jordan_form(subdivide=True, transformation=False)
Return a Jordan normal form of self.

INPUT:

• self – a square matrix

• subdivide – boolean (default: True)

• transformation – boolean (default: False)

OUTPUT:

Iftransformation isFalse, only a Jordan normal form (unique up to the ordering of the Jordan blocks)
is returned. Otherwise, a pair (J, P) is returned, where J is a Jordan normal form and P is an invertible
matrix such that self equals P * J * P^(-1).

If subdivide is True, the Jordan blocks in the returned matrix J are indicated by a subdivision in the
sense of subdivide().

EXAMPLES:

We start with some examples of diagonalisable matrices:

sage: a,b,c,d = var(�a,b,c,d�)
sage: matrix([a], sparse=True).jordan_form()
[a]
sage: matrix([[a, 0], [1, d]], sparse=True).jordan_form(subdivide=True)
[d|0]
[-+-]
[0|a]
sage: matrix([[a, 0], [1, d]], sparse=True).jordan_form(subdivide=False)
[d 0]
[0 a]
sage: matrix([[a, x, x], [0, b, x], [0, 0, c]], sparse=True).jordan_form()
[c|0|0]
[-+-+-]
[0|b|0]
[-+-+-]
[0|0|a]

In the following examples, we compute Jordan forms of some non-diagonalisable matrices:

sage: matrix([[a, a], [0, a]], sparse=True).jordan_form()
[a 1]
[0 a]
sage: matrix([[a, 0, b], [0, c, 0], [0, 0, a]], sparse=True).jordan_form()
[c|0 0]
[-+---]
[0|a 1]
[0|0 a]

The following examples illustrate the transformation flag. Note that symbolic expressions may need to
be simplified to make consistency checks succeed:
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sage: A = matrix([[x - a*c, a^2], [-c^2, x + a*c]], sparse=True)
sage: J, P = A.jordan_form(transformation=True)
sage: J, P
(
[x 1] [-a*c 1]
[0 x], [-c^2 0]
)
sage: A1 = P * J * ~P; A1
[ -a*c + x (a*c - x)*a/c + a*x/c]
[ -c^2 a*c + x]
sage: A1.simplify_rational() == A
True

sage: B = matrix([[a, b, c], [0, a, d], [0, 0, a]], sparse=True)
sage: J, T = B.jordan_form(transformation=True)
sage: J, T
(
[a 1 0] [b*d c 0]
[0 a 1] [ 0 d 0]
[0 0 a], [ 0 0 1]
)
sage: (B * T).simplify_rational() == T * J
True

Finally, some examples involving square roots:

sage: matrix([[a, -b], [b, a]], sparse=True).jordan_form()
[a - I*b| 0]
[-------+-------]
[ 0|a + I*b]
sage: matrix([[a, b], [c, d]], sparse=True).jordan_form(subdivide=False)
[1/2*a + 1/2*d - 1/2*sqrt(a^2 + 4*b*c - 2*a*d + d^2) ␣
→˓ 0]
[ 0 1/2*a + 1/2*d + 1/
→˓2*sqrt(a^2 + 4*b*c - 2*a*d + d^2)]

minpoly(var='x')
Return the minimal polynomial of self.

EXAMPLES:

sage: M = Matrix.identity(SR, 2, sparse=True)
sage: M.minpoly()
x - 1

sage: t = var(�t�)
sage: m = matrix(2, [1, 2, 4, t], sparse=True)
sage: m.minimal_polynomial()
x^2 + (-t - 1)*x + t - 8

number_of_arguments()

Return the number of arguments that self can take.

EXAMPLES:

sage: var(�a,b,c,x,y�)
(a, b, c, x, y)

(continues on next page)
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sage: m = matrix([[a, (x+y)/(x+y)], [x^2, y^2+2]], sparse=True); m
[ a 1]
[ x^2 y^2 + 2]
sage: m.number_of_arguments()
3

simplify()

Simplify self.

EXAMPLES:

sage: var(�x,y,z�)
(x, y, z)
sage: m = matrix([[z, (x+y)/(x+y)], [x^2, y^2+2]], sparse=True); m
[ z 1]
[ x^2 y^2 + 2]
sage: m.simplify()
[ z 1]
[ x^2 y^2 + 2]

simplify_full()

Simplify a symbolic matrix by calling Expression.simplify_full() componentwise.

INPUT:

• self – the matrix whose entries we should simplify

OUTPUT: a copy of self with all of its entries simplified

EXAMPLES:

Symbolic matrices will have their entries simplified:

sage: a,n,k = SR.var(�a,n,k�)
sage: f1 = sin(x)^2 + cos(x)^2
sage: f2 = sin(x/(x^2 + x))
sage: f3 = binomial(n,k)*factorial(k)*factorial(n-k)
sage: f4 = x*sin(2)/(x^a)
sage: A = matrix(SR, [[f1,f2],[f3,f4]], sparse=True)
sage: A.simplify_full()
[ 1 sin(1/(x + 1))]
[ factorial(n) x^(-a + 1)*sin(2)]

simplify_rational()

EXAMPLES:

sage: M = matrix(SR, 3, 3, range(9), sparse=True) - var(�t�)
sage: (~M*M)[0,0]
t*(3*(2/t + (6/t + 7)/((t - 3/t - 4)*t))*(2/t + (6/t + 5)/((t - 3/t
- 4)*t))/(t - (6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) + 1/t +
3/((t - 3/t - 4)*t^2)) - 6*(2/t + (6/t + 5)/((t - 3/t - 4)*t))/(t -
(6/t + 7)*(6/t + 5)/(t - 3/t - 4) - 12/t - 8) - 3*(6/t + 7)*(2/t +
(6/t + 5)/((t - 3/t - 4)*t))/((t - (6/t + 7)*(6/t + 5)/(t - 3/t -
4) - 12/t - 8)*(t - 3/t - 4)) - 3/((t - 3/t - 4)*t)
sage: expand((~M*M)[0,0])
1
sage: (~M * M).simplify_rational()
[1 0 0]

(continues on next page)
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[0 1 0]
[0 0 1]

simplify_trig()

EXAMPLES:

sage: theta = var(�theta�)
sage: M = matrix(SR, 2, 2, [cos(theta), sin(theta), -sin(theta), cos(theta)],␣
→˓sparse=True)
sage: ~M
[1/cos(theta) - sin(theta)^2/((sin(theta)^2/cos(theta) +␣
→˓cos(theta))*cos(theta)^2) -sin(theta)/((sin(theta)^2/
→˓cos(theta) + cos(theta))*cos(theta))]
[ sin(theta)/((sin(theta)^2/cos(theta) +␣
→˓cos(theta))*cos(theta)) 1/
→˓(sin(theta)^2/cos(theta) + cos(theta))]
sage: (~M).simplify_trig()
[ cos(theta) -sin(theta)]
[ sin(theta) cos(theta)]

variables()

Return the variables of self.

EXAMPLES:

sage: var(�a,b,c,x,y�)
(a, b, c, x, y)
sage: m = matrix([[x, x+2], [x^2, x^2+2]], sparse=True); m
[ x x + 2]
[ x^2 x^2 + 2]
sage: m.variables()
(x,)
sage: m = matrix([[a, b+c], [x^2, y^2+2]], sparse=True); m
[ a b + c]
[ x^2 y^2 + 2]
sage: m.variables()
(a, b, c, x, y)
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THIRTY

DENSE MATRICES OVER THE COMPLEX DOUBLE FIELD USING
NUMPY

EXAMPLES:

sage: b = Mat(CDF,2,3).basis()
sage: b[0,0]
[1.0 0.0 0.0]
[0.0 0.0 0.0]

We deal with the case of zero rows or zero columns:

sage: m = MatrixSpace(CDF,0,3)
sage: m.zero_matrix()
[]

AUTHORS:

• Jason Grout (2008-09): switch to NumPy backend

• Josh Kantor

• William Stein: many bug fixes and touch ups.

class sage.matrix.matrix_complex_double_dense.Matrix_complex_double_dense

Bases: Matrix_double_dense

Class that implements matrices over the real double field. These are supposed to be fast matrix operations using C
doubles. Most operations are implemented using numpy which will call the underlying BLAS on the system.

EXAMPLES:

sage: # needs sage.symbolic
sage: m = Matrix(CDF, [[1,2*I],[3+I,4]])
sage: m**2
[-1.0 + 6.0*I 10.0*I]
[15.0 + 5.0*I 14.0 + 6.0*I]
sage: n= m^(-1); n # abs tol 1e-15
[ 0.3333333333333333 + 0.3333333333333333*I 0.16666666666666669 - 0.
→˓16666666666666666*I]
[-0.16666666666666666 - 0.3333333333333333*I 0.08333333333333331 + 0.
→˓08333333333333333*I]

To compute eigenvalues, use the methods left_eigenvectors() or right_eigenvectors():

sage: p,e = m.right_eigenvectors() #␣
→˓needs sage.symbolic

543



Matrices and Spaces of Matrices, Release 10.5.rc0

The result is a pair (p,e), where p is a diagonal matrix of eigenvalues and e is a matrix whose columns are the
eigenvectors.

To solve a linear system 𝐴𝑥 = 𝑏 where A = [[1,2*I],[3+I,4]] and b = [5,6]:

sage: b = vector(CDF,[5,6]) #␣
→˓needs sage.symbolic
sage: m.solve_right(b) # abs tol 1e-14 #␣
→˓needs sage.symbolic
(2.6666666666666665 + 0.6666666666666669*I, -0.3333333333333333 - 1.
→˓1666666666666667*I)

See the methods QR(), LU(), and SVD() for QR, LU, and singular value decomposition.
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THIRTYONE

ARBITRARY PRECISION COMPLEX BALL MATRICES

AUTHORS:

• Clemens Heuberger (2014-10-25): Initial version.

This is an incomplete interface to the acb_mat module of FLINT; it may be useful to refer to its documentation for more
details.

class sage.matrix.matrix_complex_ball_dense.Matrix_complex_ball_dense

Bases: Matrix_dense

Matrix over a complex ball field. Implemented using the acb_mat type of the FLINT library.

EXAMPLES:

sage: MatrixSpace(CBF, 3)(2)
[2.000000000000000 0 0]
[ 0 2.000000000000000 0]
[ 0 0 2.000000000000000]
sage: matrix(CBF, 1, 3, [1, 2, -3])
[ 1.000000000000000 2.000000000000000 -3.000000000000000]

charpoly(var='x', algorithm=None)
Compute the characteristic polynomial of this matrix.

EXAMPLES:

sage: from sage.matrix.benchmark import hilbert_matrix
sage: mat = hilbert_matrix(5).change_ring(ComplexBallField(10))
sage: mat.charpoly()
x^5 + ([-1.8 +/- 0.0258])*x^4 + ([0.3 +/- 0.05...)*x^3 +
([+/- 0.0...])*x^2 + ([+/- 0.0...])*x + [+/- 0.0...]

contains(other)
Test if the set of complex matrices represented by self is contained in that represented by other.

EXAMPLES:

sage: b = CBF(0, RBF(0, rad=.1r)); b
[+/- 0.101]*I
sage: matrix(CBF, [0, b]).contains(matrix(CBF, [0, 0]))
True
sage: matrix(CBF, [0, b]).contains(matrix(CBF, [b, 0]))
False
sage: matrix(CBF, [b, b]).contains(matrix(CBF, [b, 0]))
True
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determinant()

Compute the determinant of this matrix.

EXAMPLES:

sage: matrix(CBF, [[1/2, 1/3], [1, 1]]).determinant()
[0.1666666666666667 +/- ...e-17]
sage: matrix(CBF, [[1/2, 1/3], [1, 1]]).det()
[0.1666666666666667 +/- ...e-17]
sage: matrix(CBF, [[1/2, 1/3]]).determinant()
Traceback (most recent call last):
...
ValueError: self must be a square matrix

eigenvalues(other=None, extend=None)
(Experimental.) Compute rigorous enclosures of the eigenvalues of this matrix.

INPUT:

• self – an 𝑛× 𝑛 matrix

• other – unsupported (generalized eigenvalue problem), should be None

• extend – ignored

OUTPUT:

A Sequence of complex balls of length equal to the size of the matrix.

Each element represents one eigenvalue with the correct multiplicities in case of overlap. The output intervals
are either disjoint or identical, and identical intervals are guaranteed to be grouped consecutively. Each
complete run of 𝑘 identical balls thus represents a cluster of exactly 𝑘 eigenvalues which could not be separated
from each other at the current precision, but which could be isolated from the other eigenvalues.

There is currently no guarantee that the algorithm converges as the working precision is increased.

See the FLINT documentation for more information.

EXAMPLES:

sage: from sage.matrix.benchmark import hilbert_matrix
sage: mat = hilbert_matrix(5).change_ring(CBF)
sage: mat.eigenvalues()
doctest:...: FutureWarning: This class/method/function is marked as␣
→˓experimental.
...
[[1.567050691098...] + [+/- ...]*I, [0.208534218611...] + [+/- ...]*I,
[3.287928...e-6...] + [+/- ...]*I, [0.000305898040...] + [+/- ...]*I,
[0.011407491623...] + [+/- ...]*I]

sage: mat = Permutation([2, 1, 4, 5, 3]).to_matrix().dense_matrix().change_
→˓ring(CBF)
sage: mat.eigenvalues()
Traceback (most recent call last):
...
ValueError: unable to certify the eigenvalues
sage: precond = matrix(ZZ, [[-1, -2, 2, 2, -2], [2, -2, -2, -2, 2],
....: [-2, 2, -1, 2, 1], [2, 1, -1, 0, 2], [-2, 0, 1, -1, 1]])
sage: (~precond*mat*precond).eigenvalues()
[[-0.5000000000000...] + [-0.8660254037844...]*I, [-1.000000000000...] + [+/-␣
→˓...]*I,

(continues on next page)
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[-0.5000000000000...] + [0.8660254037844...]*I,
[1.000000000000...] + [+/- ...]*I, [1.000000000000...] + [+/- ...]*I]

See also

eigenvectors_right()

eigenvectors_left(other=None, extend=True)
(Experimental.) Compute rigorous enclosures of the eigenvalues and left eigenvectors of this matrix.

INPUT:

• self – an 𝑛× 𝑛 matrix

• other – unsupported (generalized eigenvalue problem), should be None

• extend – ignored

OUTPUT:

A list of triples of the form (eigenvalue, [eigenvector], 1).

Unlike eigenvalues() and eigenvectors_left_approx(), this method currently fails in the
presence of multiple eigenvalues.

Additionally, there is currently no guarantee that the algorithm converges as the working precision is increased.

See the FLINT documentation for more information.

EXAMPLES:

sage: mat = matrix(CBF, 3, [2, 3, 5, 7, 11, 13, 17, 19, 23])
sage: eigval, eigvec, _ = mat.eigenvectors_left()[0]
sage: eigval
[1.1052996349...] + [+/- ...]*I
sage: eigvec[0]
([0.69817246751...] + [+/- ...]*I, [-0.67419514369...] + [+/- ...]*I, [0.
→˓240865343781...] + [+/- ...]*I)
sage: eigvec[0] * (mat - eigval)
([+/- ...] + [+/- ...]*I, [+/- ...] + [+/- ...]*I, [+/- ...] + [+/- ...]*I)

See also

eigenvectors_right(), eigenvalues(), eigenvectors_left_approx()

eigenvectors_left_approx(other=None, extend=None)
(Experimental.) Compute non-rigorous approximations of the left eigenvalues and eigenvectors of this matrix.

INPUT:

• self – an 𝑛× 𝑛 matrix

• other – unsupported (generalized eigenvalue problem), should be None

• extend – ignored

OUTPUT:
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A list of triples of the form (eigenvalue, [eigenvector], 1). The eigenvalue and the entries of
the eigenvector are complex balls with zero radius.

No guarantees are made about the accuracy of the output.

See the FLINT documentation for more information.

EXAMPLES:

sage: mat = matrix(CBF, 3, [2, 3, 5, 7, 11, 13, 17, 19, 23])
sage: eigval, eigvec, _ = mat.eigenvectors_left_approx()[0]
sage: eigval
[1.1052996349... +/- ...]
sage: eigvec[0]
([0.69817246751...], [-0.67419514369...], [0.240865343781...])
sage: eigvec[0] * (mat - eigval)
([+/- ...], [+/- ...], [+/- ...])

See also

eigenvectors_left()

eigenvectors_right(other=None, extend=None)
(Experimental.) Compute rigorous enclosures of the eigenvalues and eigenvectors of this matrix.

INPUT:

• self – an 𝑛× 𝑛 matrix

• other – unsupported (generalized eigenvalue problem), should be None

• extend – ignored

OUTPUT:

A list of triples of the form (eigenvalue, [eigenvector], 1).

Unlike eigenvalues() and eigenvectors_right_approx(), this method currently fails in the
presence of multiple eigenvalues.

Additionally, there is currently no guarantee that the algorithm converges as the working precision is increased.

See the FLINT documentation for more information.

EXAMPLES:

sage: from sage.matrix.benchmark import hilbert_matrix
sage: mat = hilbert_matrix(3).change_ring(CBF)
sage: eigval, eigvec, _ = mat.eigenvectors_right()[0]
doctest:...: FutureWarning: This class/method/function is marked as␣
→˓experimental.
...
sage: eigval
[1.40831892712...] + [+/- ...]*I
sage: eigvec
[([0.82704492697...] + [+/- ...]*I, [0.45986390436...] + [+/- ...]*I, [0.
→˓32329843524...] + [+/- ...]*I)]
sage: (mat - eigval)*eigvec[0]
([+/- ...] + [+/- ...]*I, [+/- ...] + [+/- ...]*I, [+/- ...] + [+/- ...]*I)
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See also

eigenvectors_right_approx(), eigenvalues()

eigenvectors_right_approx(other=None, extend=None)
(Experimental.) Compute non-rigorous approximations of the eigenvalues and eigenvectors of this matrix.

INPUT:

• self – an 𝑛× 𝑛 matrix

• other – unsupported (generalized eigenvalue problem), should be None

• extend – ignored

OUTPUT:

A list of triples of the form (eigenvalue, [eigenvector], 1). The eigenvalue and the entries of
the eigenvector are complex balls with zero radius.

No guarantees are made about the accuracy of the output.

See the FLINT documentation for more information.

EXAMPLES:

sage: from sage.matrix.benchmark import hilbert_matrix
sage: mat = hilbert_matrix(3).change_ring(CBF)
sage: eigval, eigvec, _ = mat.eigenvectors_right_approx()[0]
doctest:...: FutureWarning: This class/method/function is marked as␣
→˓experimental.
...
sage: eigval
[1.40831892712...]
sage: eigval.rad()
0.00000000
sage: eigvec
[([0.8270449269720...], [0.4598639043655...], [0.3232984352444...])]
sage: (mat - eigval)*eigvec[0]
([1e-15 +/- ...], [2e-15 +/- ...], [+/- ...])

See also

eigenvectors_right()

exp()

Compute the exponential of this matrix.

EXAMPLES:

sage: matrix(CBF, [[i*pi, 1], [0, i*pi]]).exp() #␣
→˓needs sage.symbolic
[[-1.00000000000000 +/- ...e-16] + [+/- ...e-16]*I [-1.00000000000000 +/- ...
→˓e-16] + [+/- ...e-16]*I]
[ 0 [-1.00000000000000 +/- ...
→˓e-16] + [+/- ...e-16]*I]
sage: matrix(CBF, [[1/2, 1/3]]).exp()
Traceback (most recent call last):

(continues on next page)
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...
ValueError: self must be a square matrix

identical(other)

Test if the corresponding entries of two complex ball matrices represent the same balls.

EXAMPLES:

sage: a = matrix(CBF, [[1/3,2],[3,4]])
sage: b = matrix(CBF, [[1/3,2],[3,4]])
sage: a == b
False
sage: a.identical(b)
True

overlaps(other)

Test if two matrices with complex ball entries represent overlapping sets of complex matrices.

EXAMPLES:

sage: b = CBF(0, RBF(0, rad=0.1r)); b
[+/- 0.101]*I
sage: matrix(CBF, [0, b]).overlaps(matrix(CBF, [b, 0]))
True
sage: matrix(CBF, [1, 0]).overlaps(matrix(CBF, [b, 0]))
False

trace()

Compute the trace of this matrix.

EXAMPLES:

sage: matrix(CBF, [[1/3, 1/3], [1, 1]]).trace()
[1.333333333333333 +/- ...e-16]
sage: matrix(CBF, [[1/2, 1/3]]).trace()
Traceback (most recent call last):
...
ValueError: self must be a square matrix

transpose()

Return the transpose of self.

EXAMPLES:

sage: m = matrix(CBF, 2, 3, [1, 2, 3, 4, 5, 6])
sage: m.transpose()
[1.000000000000000 4.000000000000000]
[2.000000000000000 5.000000000000000]
[3.000000000000000 6.000000000000000]
sage: m.transpose().parent()
Full MatrixSpace of 3 by 2 dense matrices over Complex ball field with 53␣
→˓bits of precision
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THIRTYTWO

DENSE MATRICES OVER UNIVARIATE POLYNOMIALS OVER
FIELDS

The implementation inherits from Matrix_generic_dense but some algorithms are optimized for polynomial matrices.

AUTHORS:

• Kwankyu Lee (2016-12-15): initial version with code moved from other files.

• Johan Rosenkilde (2017-02-07): added weak_popov_form()

• Vincent Neiger (2018-06-13): added basic functions (row/column degrees, leading positions, leadingmatrix, testing
reduced and canonical forms)

• Vincent Neiger (2018-09-29): added functions for computing and for verifying minimal approximant bases

• Vincent Neiger (2020-04-01): added functions for computing and for verifying minimal kernel bases

• Vincent Neiger (2021-03-11): added matrix-wise basic functions for univariate polynomials (shifts, reverse, trun-
cate, get coefficient of specified degree)

• Vincent Neiger (2021-07-29): added popov_form(). Added more options to weak_popov_form() (column-wise,
ordered, zero rows).

• Vincent Neiger (2021-08-07): added inverse_series_trunc(), solve_{left/right}_series_trunc(),
{left/right}_quo_rem(), reduce().

• Vincent Neiger (2024-02-13): added basis_completion(), _is_basis_completion(), _basis_completion_via_re-
versed_approx().

class sage.matrix.matrix_polynomial_dense.Matrix_polynomial_dense

Bases: Matrix_generic_dense

Dense matrix over a univariate polynomial ring over a field.

For a field ,, we consider matrices over the univariate polynomial ring ,[𝑥].

They are often used to represent bases of some,[𝑥]-modules. In this context, there are two possible representations
which are both commonly used in the literature.

• Working column-wise: each column of the matrix is a vector in the basis; then, a ,[𝑥]-submodule of ,[𝑥]𝑚
of rank 𝑛 is represented by an𝑚×𝑛matrix, whose columns span the module (via,[𝑥]-linear combinations).
This matrix has full rank, and 𝑛 ≤ 𝑚.

• Working row-wise: each row of the matrix is a vector in the basis; then, a ,[𝑥]-submodule of ,[𝑥]𝑛 of rank
𝑚 is represented by an 𝑚 × 𝑛 matrix, whose rows span the module (via ,[𝑥]-linear combinations). This
matrix has full rank, and𝑚 ≤ 𝑛.

For the rest of this class description, we assume that one is working row-wise. For a given such module, all its bases
are equivalent under left-multiplication by a unimodular matrix, that is, a square matrix which has determinant in
, ∖ {0}.
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There are bases which are called reduced or minimal: their rows have the minimal degree possible among all bases
of this module; here the degree of a row is the maximum of the degrees of the entries of the row. An equivalent
condition is that the leading matrix of this basis has full rank (see leading_matrix(), reduced_form(),
is_reduced()). There is a unique minimal basis, called the Popov basis of the module, which satisfies some
additional normalization condition (see popov_form(), is_popov()).

These notions can be extended via a more general degree measure, involving a tuple of integers which is called
shift and acts as column degree shifts in the definition of row degree. Precisely, for given 𝑠1, . . . , 𝑠𝑛 ∈ Z and a
row vector [𝑝1 · · · 𝑝𝑛] ∈ ,[𝑥]1×𝑛, its shifted row degree is the maximum of deg(𝑝𝑗) + 𝑠𝑗 for 1 ≤ 𝑗 ≤ 𝑛 (see
row_degrees()). Then, reduced bases and Popov bases are defined similarly, with respect to this notion of
degree.

Another important canonical basis is the Hermite basis, which is an upper triangular matrix satisfying a normaliza-
tion condition similar to that for the Popov basis. In fact, if 𝑑 is the largest degree appearing in the Hermite basis,
then the Hermite basis coincide with the shifted Popov basis with the shifts ((𝑛− 1)𝑑, . . . , 2𝑑, 𝑑, 0).

basis_completion(row_wise=True, algorithm='approximant')
Return a Smith form-preserving nonsingular completion of a basis of this matrix: row-wise completing a row
basis if row_wise is True; column-wise completing a column basis if it is False.

For a more detailed description, consider the row-wise case (the column-wise case is the same up to matrix
transposition). Let 𝐴 be the input matrix,𝑚× 𝑛 over univariate polynomials ,[𝑥], for some field ,, and let
𝑟 be the rank of 𝐴, which is unknown a priori. This computes a matrix 𝐶 of dimensions (𝑛 − 𝑟) × 𝑛 such
that stacking both matrices one above the other, say [[𝐴], [𝐶]], gives a matrix of maximal rank 𝑛 and with
the same nontrivial Smith factors as 𝐴. In particular, 𝐶 has full row rank, and the rank of the input matrix
may be recovered from the number of rows of 𝐶.

As a consequence, if 𝐵 is a basis of the module generated by the rows of 𝐴 (for example 𝐵 = 𝐴 if 𝐴 has
full row rank), then [[𝐵], [𝐶]] is nonsingular, and its determinant is the product of the nonzero Smith factors
of 𝐴 up to multiplication by a nonzero element of ,.

In particular, for 𝐴 with full row rank: if the rows 𝐴 can be completed into a basis of,[𝑥]𝑛 (or equivalently,
𝐴 has unimodular column bases, or also, if the rows of 𝐴 generate all polynomial vectors in the rational row
space of 𝐴), then 𝐶 provides such a completion. In this case, [[𝐴], [𝐶]] is unimodular: it is invertible over
,[𝑥], and 𝑑𝑒𝑡([[𝐴], [𝐶]]) is a nonzero element of the base field ,.

INPUT:

• row_wise – boolean (default: True); if True then compute a row-wise completion, else compute a
column-wise completion

• algorithm – (default: �approximant�) selects the approach for computing the completion; cur-
rently supported: �approximant� and �smith�

OUTPUT: a matrix over the same base ring as the input matrix, which forms a completion as defined above

ALGORITHM:

• �approximant� – the approximant-based algorithm follows the ideas in [ZL2014] , based on poly-
nomial reversals combined with the computation of a minimal kernel basis and a minimal approximant
basis.

• �smith� – the Smith form-based algorithm computes the Smith form of this matrix along with corre-
sponding unimodular transformations, from which a completion is readily obtained.

EXAMPLES:

Three polynomials whose GCD is 1 can be completed into a unimodular matrix:
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sage: ring.<x> = GF(7)[]
sage: mat = matrix([[x*(x-1)*(x-2), (x-2)*(x-3)*(x-4), (x-4)*(x-5)*(x-6)]])
sage: mat
[ x^3 + 4*x^2 + 2*x x^3 + 5*x^2 + 5*x + 4 x^3 + 6*x^2 + 4*x + 6]
sage: rcomp = mat.basis_completion(); rcomp
[ 5*x^2 + 4*x + 1 5*x^2 + 2*x 5*x^2]
[ 2*x^3 + 4*x^2 2*x^3 + 6*x^2 + 2*x + 1 2*x^3 + x^2 + 3*x]
sage: basis = mat.stack(rcomp); basis
[ x^3 + 4*x^2 + 2*x x^3 + 5*x^2 + 5*x + 4 x^3 + 6*x^2 + 4*x + 6]
[ 5*x^2 + 4*x + 1 5*x^2 + 2*x 5*x^2]
[ 2*x^3 + 4*x^2 2*x^3 + 6*x^2 + 2*x + 1 2*x^3 + x^2 + 3*x]
sage: basis.determinant()
6

The following matrix has rank 2 and trivial Smith form. It can be completed row-wise into a 3×3 unimodular
matrix (column-wise, there is nothing to complete):

sage: mat = matrix(ring, 2, 3, \
[[x^2 + 5*x + 5, 3*x^2 + x + 3, 4*x^2 + 5*x + 4], \
[5*x^2 + 4*x, 3*x^2 + 4*x + 5, 5*x^2 + 5*x + 3]])

sage: rcomp = mat.basis_completion(); rcomp
[ 2*x^2 + 1 4*x^2 + 3*x 2*x^2 + 3*x]
sage: mat.stack(rcomp).determinant()
3
sage: mat.basis_completion(row_wise=False)
[]

The following matrix has rank 1 and its nonzero Smith factor is 𝑥 + 3. A row-wise completion has a single
nonzero row, whereas a column-wise completion has two columns; in both cases, the Smith form is preserved:

sage: mat = matrix(ring, 3, 2, \
[[ x^3 + x^2 + 5*x + 5, 2*x^3 + 2*x + 4], \
[ 3*x^3 + 2*x^2 + x + 3, 6*x^3 + 5*x^2 + x + 1], \
[2*x^3 + 5*x^2 + 3*x + 4, 4*x^3 + 6*x^2 + 5*x + 6]])

sage: mat.smith_form(transformation=False)
[x + 3 0]
[ 0 0]
[ 0 0]
sage: rcomp = mat.basis_completion(); rcomp
[x + 1 2*x]
sage: ccomp = mat.basis_completion(row_wise=False); ccomp
[3*x + 1 4*x + 4]
[ 2*x 5*x + 1]
[ 6*x x]
sage: rcomp.stack(mat).smith_form(transformation=False)
[ 1 0]
[ 0 x + 3]
[ 0 0]
[ 0 0]
sage: ccomp.augment(mat).smith_form(transformation=False)
[ 1 0 0 0]
[ 0 1 0 0]
[ 0 0 x + 3 0]

Here are a few more examples, similar to the above but over fields other than GF(7):

sage: ring.<x> = QQ[]

(continues on next page)
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sage: mat = matrix([[x*(x-1)*(x-2), (x-2)*(x-3)*(x-4), (x-4)*(x-5)*(x-6)]])
sage: mat
[ x^3 - 3*x^2 + 2*x x^3 - 9*x^2 + 26*x - 24 x^3 - 15*x^2 + 74*x -␣
→˓120]
sage: rcomp = mat.basis_completion(algorithm=�smith�); rcomp
[ -1/12*x - 1/12 -1/12*x + 5/12 0]
[ 1/12 1/12 1/24*x^2 - 13/24*x + 2]
sage: mat.stack(rcomp).determinant()
1

sage: mat = matrix([[x*(x-1), x*(x-2)], \
[x*(x-2), x*(x-3)], \
[(x-1)*(x-2), (x-1)*(x-3)]])

sage: mat.smith_form(transformation=False)
[1 0]
[0 x]
[0 0]
sage: ccomp = mat.basis_completion(row_wise=False, algorithm=�smith�)
sage: ccomp
[1/2*x - 1/2]
[ 1/2*x - 1]
[1/2*x - 3/2]
sage: ccomp.augment(mat).smith_form(transformation=False)
[ 1 0 0]
[ 0 1 0]
[ 0 0 1/2*x]

sage: field.<a> = NumberField(x**2 - 2)
sage: ring.<y> = field[]
sage: mat = matrix([[3*a*y - 1, (-8*a - 1)*y - 2*a + 1]])
sage: rcomp = mat.basis_completion(algorithm=�smith�); rcomp
[ 39/119*a - 30/119 -99/119*a + 67/119]
sage: mat.stack(rcomp).determinant()
1

coefficient_matrix(d, row_wise=True)
Return the constant matrix which is obtained from this matrix by taking the coefficient of its entries with
degree specified by 𝑑.

• if 𝑑 is an integer, this selects the coefficient of 𝑑 for all entries;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑚) and row_wise is True, this selects the coefficient of degree 𝑑𝑖 for all entries
of the 𝑖-th row for each 𝑖;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑛) and row_wise is False, this selects the coefficient of degree 𝑑𝑖 for all entries
of the 𝑗-th column for each 𝑗.

INPUT:

• d – list of integers, or an integer,

• row_wise – boolean (default: True); if True (resp. False) then 𝑑 should be a list of length equal
to the row (resp. column) dimension of this matrix

OUTPUT: a matrix over the base field

EXAMPLES:
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sage: pR.<x> = GF(7)[]

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.coefficient_matrix(2)
[5 0 0 0]
[6 0 0 0]
[4 0 2 1]
sage: M.coefficient_matrix(0) == M.constant_matrix()
True

Row-wise and column-wise coefficient extraction are available:

sage: M.coefficient_matrix([3,2,1])
[1 0 0 0]
[6 0 0 0]
[6 5 5 5]

sage: M.coefficient_matrix([2,0,1,3], row_wise=False)
[5 5 6 0]
[6 1 0 0]
[4 1 5 0]

Negative degrees give zero coefficients:

sage: M.coefficient_matrix([-1,0,1,3], row_wise=False)
[0 5 6 0]
[0 1 0 0]
[0 1 5 0]

Length of list of degrees is checked:

sage: M.coefficient_matrix([2,1,1,2])
Traceback (most recent call last):
...
ValueError: length of input degree list should be the row
dimension of the input matrix

sage: M.coefficient_matrix([3,2,1], row_wise=False)
Traceback (most recent call last):
...
ValueError: length of input degree list should be the column
dimension of the input matrix

column_degrees(shifts=None)
Return the (shifted) column degrees of this matrix.

For a given polynomial matrix 𝑀 = (𝑀𝑖,𝑗)𝑖,𝑗 with 𝑚 rows and 𝑛 columns, its column degrees is the tuple
(𝑑1, . . . , 𝑑𝑛) where 𝑑𝑗 = max𝑖(deg(𝑀𝑖,𝑗)) for 1 ≤ 𝑗 ≤ 𝑛. Thus, 𝑑𝑗 = −1 if the 𝑗-th column of𝑀 is zero,
and 𝑑𝑗 ≥ 0 otherwise.

For given shifts 𝑠1, . . . , 𝑠𝑚 ∈ Z, the shifted column degrees of 𝑀 is (𝑑1, . . . , 𝑑𝑛) where 𝑑𝑗 =
max𝑖(deg(𝑀𝑖,𝑗)+ 𝑠𝑖). Here, if the 𝑗-th column of𝑀 is zero then 𝑑𝑗 = min(𝑠1, . . . , 𝑠𝑚)− 1; otherwise 𝑑𝑗
is larger than this value.

INPUT:
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• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

OUTPUT: list of integers

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.column_degrees()
[3, -1, 0]

sage: M.column_degrees(shifts=[0,2])
[5, -1, 0]

A zero column in a polynomial matrix can be identified in the (shifted) column degrees as the entries equal
to min(shifts)-1:

sage: M.column_degrees(shifts=[-2,1])
[4, -3, -2]

The column degrees of an empty matrix (0× 𝑛 or𝑚× 0) is not defined:

sage: M = Matrix(pR, 0, 3)
sage: M.column_degrees()
Traceback (most recent call last):
...
ValueError: empty matrix does not have column degrees

sage: M = Matrix(pR, 3, 0)
sage: M.column_degrees()
Traceback (most recent call last):
...
ValueError: empty matrix does not have column degrees

See also

The documentation of row_degrees().

constant_matrix()

Return the constant coefficient of this matrix seen as a polynomial with matrix coefficients; this is also this
matrix evaluated at zero.

OUTPUT: a matrix over the base field

EXAMPLES:

sage: pR.<x> = GF(7)[]

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.constant_matrix()
[1 5 4 0]
[1 1 2 0]
[4 1 5 6]
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degree()

Return the degree of this matrix.

For a given polynomial matrix, its degree is the maximum of the degrees of all its entries. If the matrix is
nonzero, this is a nonnegative integer; here, the degree of the zero matrix is -1.

OUTPUT: integer

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.degree()
3

The zero matrix has degree -1:

sage: M = Matrix(pR, 2, 3)
sage: M.degree()
-1

For an empty matrix, the degree is not defined:

sage: M = Matrix(pR, 3, 0)
sage: M.degree()
Traceback (most recent call last):
...
ValueError: empty matrix does not have a degree

degree_matrix(shifts=None, row_wise=True)
Return the matrix of the (shifted) degrees in this matrix.

For a given polynomial matrix𝑀 = (𝑀𝑖,𝑗)𝑖,𝑗 , its degree matrix is the matrix (deg(𝑀𝑖,𝑗))𝑖,𝑗 formed by the
degrees of its entries. Here, the degree of the zero polynomial is −1.

For given shifts 𝑠1, . . . , 𝑠𝑚 ∈ Z, the shifted degree matrix of 𝑀 is either (deg(𝑀𝑖,𝑗) + 𝑠𝑗)𝑖,𝑗 if working
row-wise, or (deg(𝑀𝑖,𝑗) + 𝑠𝑖)𝑖,𝑗 if working column-wise. In the former case, 𝑚 has to be the number of
columns of𝑀 ; in the latter case, the number of its rows. Here, if𝑀𝑖,𝑗 = 0 then the corresponding entry in the
shifted degree matrix is min(𝑠1, . . . , 𝑠𝑚)−1. For more on shifts and working row-wise versus column-wise,
see the class documentation.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); if True then shifts apply to the columns of the matrix and
otherwise to its rows (see the class description for more details)

OUTPUT: integer matrix

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.degree_matrix()
[ 1 -1 0]
[ 3 -1 -1]

sage: M.degree_matrix(shifts=[0,1,2])
[ 1 -1 2]
[ 3 -1 -1]

557



Matrices and Spaces of Matrices, Release 10.5.rc0

The zero entries in the polynomial matrix can be identified in the (shifted) degree matrix as the entries equal
to min(shifts)-1:

sage: M.degree_matrix(shifts=[-2,1,2])
[-1 -3 2]
[ 1 -3 -3]

Using row_wise=False, the function supports shifts applied to the rows of the matrix (which, in terms
of modules, means that we are working column-wise, see the class documentation):

sage: M.degree_matrix(shifts=[-1,2], row_wise=False)
[ 0 -2 -1]
[ 5 -2 -2]

hermite_form(include_zero_rows=True, transformation=False)
Return the Hermite form of this matrix.

See is_hermite() for a definition of Hermite forms. If the input is a matrix 𝐴, then its Hermite form is
the unique matrix 𝐻 in Hermite form such that 𝑈𝐴 = 𝐻 for some unimodular matrix 𝑈 .

INPUT:

• include_zero_rows – boolean (default: True); if False, the zero rows in the output matrix are
deleted

• transformation – boolean (default: False); if True, return the transformation matrix

OUTPUT:

• the Hermite normal form 𝐻 of this matrix 𝐴 .

• (optional) transformation matrix 𝑈 such that 𝑈𝐴 = 𝐻 .

EXAMPLES:

sage: M.<x> = GF(7)[]
sage: A = matrix(M, 2, 3, [x, 1, 2*x, x, 1+x, 2])
sage: A.hermite_form()
[ x 1 2*x]
[ 0 x 5*x + 2]
sage: A.hermite_form(transformation=True)
(
[ x 1 2*x] [1 0]
[ 0 x 5*x + 2], [6 1]
)
sage: A = matrix(M, 2, 3, [x, 1, 2*x, 2*x, 2, 4*x])
sage: A.hermite_form(transformation=True, include_zero_rows=False)
([ x 1 2*x], [0 4])
sage: H, U = A.hermite_form(transformation=True,
....: include_zero_rows=True); H, U
(
[ x 1 2*x] [0 4]
[ 0 0 0], [5 1]
)
sage: U * A == H
True
sage: H, U = A.hermite_form(transformation=True,
....: include_zero_rows=False)
sage: U * A
[ x 1 2*x]

(continues on next page)
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(continued from previous page)

sage: U * A == H
True

See also

is_hermite() , popov_form() .

inverse_series_trunc(d)
Return a matrix polynomial approximation of precision d of the inverse series of this matrix polynomial.

Here matrix polynomial means that self is seen as a univariate polynomial with matrix coefficients, meaning
that this method has the same output as if one: 1) converts this matrix to a univariate polynomial with matrix
coefficients, 2) calls

sage.rings.polynomial.polynomial_element.Polynomial.
inverse_series_trunc()

on that univariate polynomial, and 3) converts back to a matrix of polynomials.

Raises aZeroDivisionError if the constant matrix ofself is not invertible (i.e. has zero determinant);
raises an ArithmeticError if self is nonsquare; and raises a ValueError if the precision d is not
positive.

INPUT:

• d – positive integer

OUTPUT: the unique polynomial matrix𝐵 of degree less than 𝑑 such that𝐴𝐵 and𝐵𝐴 are the identity matrix
modulo 𝑥𝑑, where 𝐴 is self.

ALGORITHM: This uses Newton iteration, performing about log(𝑑) polynomial matrix multiplications in
size𝑚×𝑚 and in degree less than 2𝑑, where𝑚 is the row dimension of self.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: A = Matrix(pR, 3, 3,
....: [[4*x+5, 5*x^2 + x + 1, 4*x^2 + 4],
....: [6*x^2 + 6*x + 6, 4*x^2 + 5*x, 4*x^2 + x + 3],
....: [3*x^2 + 2, 4*x + 1, x^2 + 3*x]])
sage: B = A.inverse_series_trunc(4); B
[ x^3 + 5*x^2 + x + 4 x^3 + 5*x^2 + 6*x + 4 6*x^2 + 5*x + 3]
[ 4*x^2 + 5*x + 6 6*x^3 + x^2 + x + 6 3*x^3 + 2*x^2 + 2]
[5*x^3 + 5*x^2 + 6*x + 6 4*x^3 + 2*x^2 + 6*x + 4 6*x^3 + x^2 + 6*x + 1]
sage: (B*A).truncate(4) == 1
True

sage: A.inverse_series_trunc(0)
Traceback (most recent call last):
...
ValueError: the precision must be positive

sage: A[:2,:].inverse_series_trunc(4)
Traceback (most recent call last):
...
ArithmeticError: the input matrix must be square

(continues on next page)
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(continued from previous page)

sage: A[0,:] = A[0,:] - A[0,:](0) + A[1,:](0) + A[2,:](0)
sage: A.inverse_series_trunc(4)
Traceback (most recent call last):
...
ZeroDivisionError: the constant matrix term self(0) must be invertible

See also

sage.rings.polynomial.polynomial_element.Polynomial.
inverse_series_trunc() .

Todo

in the current state of polynomial matrix multiplication (July 2021), it would be highly beneficial to use
conversions and rely on polynomials with matrix coefficients when the matrix size is “large” and the degree
“small”, see Issue #31472#comment:5.

is_constant()

Return whether this polynomial matrix is constant, that is, all its entries are constant.

OUTPUT: boolean

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.is_constant()
False
sage: M = Matrix(pR, [[1,5,2], [3,1,5]]); M.is_constant()
True
sage: M = Matrix.zero(pR, 3, 5); M.is_constant()
True

See also

sage.rings.polynomial.polynomial_element.Polynomial.is_constant()

is_hermite(row_wise=True, lower_echelon=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in Hermite form.

If working row-wise, a polynomial matrix is said to be in Hermite form if it is in row echelon form with
all pivot entries monic and such that all entries above a pivot have degree less than this pivot. Being in row
echelon form means that all zero rows are gathered at the bottom of the matrix, and in each nonzero row the
pivot (leftmost nonzero entry) is strictly to the right of the pivot of the row just above this row.

Note that, for any integer 𝑑 strictly greater than all degrees appearing in the Hermite form, then the Hermite
form coincides with the shifted Popov form with the shifts ((𝑛 − 1)𝑑, . . . , 2𝑑, 𝑑, 0), where 𝑛 is the column
dimension.
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If working column-wise, a polynomial matrix is said to be in Hermite form if it is in column echelon form
with all pivot entries monic and such that all entries to the left of a pivot have degree less than this pivot.
Being in column echelon form means that all zero columns are gathered at the right-hand side of the matrix,
and in each nonzero column the pivot (topmost nonzero entry) is strictly below the pivot of the column just
to the left of this row.

Optional arguments provide support of alternative definitions, concerning the choice of upper or lower echelon
forms and concerning whether zero rows (resp. columns) are allowed.

INPUT:

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• lower_echelon – boolean (default: False); False if working with upper triangular Hermite
forms, True if working with lower triangular Hermite forms.

• include_zero_vectors – boolean (default: True); False if one does not allow zero rows (resp.
zero columns) in Hermite forms

OUTPUT: boolean

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[x^4+6*x^3+4*x+4, 3*x+6, 3 ],
....: [0, x^2+5*x+5, 2 ],
....: [0, 0, x+5]])

sage: M.is_hermite()
True
sage: M.is_hermite(row_wise=False)
True
sage: M.is_hermite(row_wise=False, lower_echelon=True)
False

sage: N = Matrix(pR, [[x+5, 0, 0 ],
....: [2, x^4+6*x^3+4*x+4, 0 ],
....: [3, 3*x^3+6, x^2+5*x+5]])
sage: N.is_hermite()
False
sage: N.is_hermite(lower_echelon=True)
True
sage: N.is_hermite(row_wise=False)
False
sage: N.is_hermite(row_wise=False, lower_echelon=True)
False

Rectangular matrices with zero rows are supported. Zero rows (resp. columns) can be forbidden, and other-
wise they should be at the bottom (resp. the right-hand side) of the matrix:

sage: N[:,1:].is_hermite(lower_echelon=True)
False
sage: N[[1,2,0],1:].is_hermite(lower_echelon=True)
True
sage: N[:2,:].is_hermite(row_wise=False, lower_echelon=True)
True
sage: N[:2,:].is_hermite(row_wise=False,
....: lower_echelon=True,
....: include_zero_vectors=False)
False
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See also

hermite_form() .

is_minimal_approximant_basis(pmat, order, shifts=None, row_wise=True, normal_form=False)
Return whether this matrix is an approximant basis in shifts-ordered weak Popov form for the polynomial
matrix pmat at order order.

If normal_form is True, then the polynomial matrix must furthermore be in shifts-Popov form. An
error is raised if the input dimensions are not sound. If a single integer is provided for order, then it is
interpreted as a list of repeated integers with this value. (See minimal_approximant_basis() for
definitions and more details.)

INPUT:

• pmat – a polynomial matrix

• order – list of positive integers, or a positive integer

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); if True then the basis considered row-wise and operates on the
left of pmat. Otherwise it is column-wise and operates on the right of pmat.

• normal_form – boolean (default: False); if True then checks for a basis in shifts-Popov form

OUTPUT: boolean

ALGORITHM:

Verification that the matrix is formed by approximants is done via a truncated matrix product; verification
that the matrix is square, nonsingular and in shifted weak Popov form is done via is_weak_popov();
verification that the matrix generates the module of approximants is done via the characterization in Theorem
2.1 of [GN2018] .

EXAMPLES:

sage: pR.<x> = GF(97)[]

We consider the following example from [Arne Storjohann, Notes on computing minimal approximant bases,
2006]:

sage: order = 8; shifts = [1,1,0,0,0]
sage: pmat = Matrix(pR, 5, 1, [
....: pR([35, 0, 41, 87, 3, 42, 22, 90]),
....: pR([80, 15, 62, 87, 14, 93, 24, 0]),
....: pR([42, 57, 90, 87, 22, 80, 71, 53]),
....: pR([37, 72, 74, 6, 5, 75, 23, 47]),
....: pR([36, 10, 74, 1, 29, 44, 87, 74])])
sage: appbas = Matrix(pR, [
....: [x+47, 57, 58*x+44, 9*x+23, 93*x+76],
....: [ 15, x+18, 52*x+23, 15*x+58, 93*x+88],
....: [ 17, 86, x^2+77*x+16, 76*x+29, 90*x+78],
....: [ 44, 36, 3*x+42, x^2+50*x+26, 85*x+44],
....: [ 2, 22, 54*x+94, 73*x+24, x^2+2*x+25]])
sage: appbas.is_minimal_approximant_basis( #␣
→˓needs sage.libs.pari
....: pmat, order, shifts, row_wise=True, normal_form=True)
True
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The matrix 𝑥8Id5 is square, nonsingular, in Popov form, and its rows are approximants for pmat at order
8. However, it is not an approximant basis since its rows generate a module strictly contained in the set of
approximants for pmat at order 8:

sage: M = x^8 * Matrix.identity(pR, 5)
sage: M.is_minimal_approximant_basis(pmat, 8) #␣
→˓needs sage.libs.pari
False

Since pmat is a single column, with nonzero constant coefficient, its column-wise approximant bases at order
8 are all 1× 1 matrices [𝑐𝑥8] for some nonzero field element 𝑐:

sage: M = Matrix(pR, [x^8])
sage: M.is_minimal_approximant_basis(
....: pmat, 8, row_wise=False, normal_form=True)
True

Exceptions are raised if input dimensions are not sound:

sage: appbas.is_minimal_approximant_basis(pmat, [8,8], shifts)
Traceback (most recent call last):
...
ValueError: order length should be the column dimension

of the input matrix

sage: appbas.is_minimal_approximant_basis(
....: pmat, order, shifts, row_wise=False)
Traceback (most recent call last):
...
ValueError: shifts length should be the column dimension

of the input matrix

sage: Matrix(pR, [x^8]).is_minimal_approximant_basis(pmat, 8)
Traceback (most recent call last):
...
ValueError: column dimension should be the row dimension of the
input matrix

See also

minimal_approximant_basis() .

is_minimal_kernel_basis(pmat, shifts=None, row_wise=True, normal_form=False)
Return whether this matrix is a left kernel basis in shifts-ordered weak Popov form for the polynomial
matrix pmat.

If normal_form is True, then the kernel basis must furthermore be in shifts-Popov form. An error is
raised if the input dimensions are not sound.

INPUT:

• pmat – a polynomial matrix

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); if True then the basis is considered row-wise and operates on
the left of pmat. Otherwise it is column-wise and operates on the right of pmat.
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• normal_form – boolean (default: False); if True then checks for a basis in shifts-Popov form

OUTPUT: boolean

ALGORITHM:

Verification that the matrix has full rank and is in shifted weak Popov form is done via is_weak_popov();
verification that the matrix is a left kernel basis is done by checking that the rank is correct, that the product
is indeed zero, and that the matrix is saturated, i.e. it has unimodular column bases (see Lemma 6.10 of
https://arxiv.org/pdf/1807.01272.pdf for details).

EXAMPLES:

sage: pR.<x> = GF(97)[]
sage: pmat = Matrix(pR, [[1], [x], [x**2]])

sage: kerbas = Matrix(pR, [[x,-1,0], [0,x,-1]])
sage: kerbas.is_minimal_kernel_basis(pmat)
True

A matrix in Popov form which has the right rank, all rows in the kernel, but does not generate the kernel:

sage: kerbas = Matrix(pR, [[x**2,0,-1], [0,x,-1]])
sage: kerbas.is_minimal_kernel_basis(pmat)
False

Shifts and right kernel bases are supported (with row_wise), and one can test whether the kernel basis is
normalized in shifted-Popov form (with normal_form):

sage: kerbas = Matrix(pR, [[-x,-x**2], [1,0], [0,1]])
sage: kerbas.is_minimal_kernel_basis(
....: pmat.transpose(), row_wise=False,
....: normal_form=True, shifts=[0,1,2])
True

is_popov(shifts=None, row_wise=True, up_to_permutation=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in (shifted) Popov form.

If working row-wise (resp. column-wise), a polynomial matrix is said to be in Popov form if it has no zero
row above a nonzero row (resp. no zero column to the left of a nonzero column), the leading positions of its
nonzero rows (resp. columns) are strictly increasing, and for each row (resp. column) the pivot entry is monic
and has degree strictly larger than the other entries in its column (resp. row).

Since other conventions concerning the ordering of the rows (resp. columns) are sometimes useful, an optional
argument allows one to test whether the matrix is in Popov form up to row (resp. column) permutation. For
example, there is an alternative definition which replaces “leading positions strictly increasing” by “row (resp.
column) degree nondecreasing, and for rows (resp. columns) of same degree, leading positions increasing”.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• up_to_permutation – (option, default: False) boolean, True if testing Popov form up to row
permutation (if working row-wise).

• include_zero_vectors – boolean (default: True); False if one does not allow zero rows (resp.
zero columns) in Popov forms

OUTPUT: boolean
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REFERENCES:

For the square case, without shifts: [Pop1972] and [Kai1980] (Section 6.7.2). For the general case:
[BLV2006] .

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[x^4+6*x^3+4*x+4, 3*x+6, 3 ],
....: [x^2+6*x+6, x^2+5*x+5, 2 ],
....: [3*x, 6*x+5, x+5]])
sage: M.is_popov()
True

sage: M.is_popov(shifts=[0,1,2])
True

sage: M[:,:2].is_popov()
False

sage: M[:2,:].is_popov(shifts=[0,1,2])
True

sage: M = Matrix(pR, [[x^4+3*x^3+x^2+2*x+6, x^3+5*x^2+5*x+1],
....: [6*x+1, x^2+4*x+1 ],
....: [6, 6 ]])
sage: M.is_popov(row_wise=False)
False

sage: M.is_popov(shifts=[0,2,3], row_wise=False)
True

One can forbid zero rows (or columns if not working row-wise):

sage: N = Matrix(pR, [[x^4+3*x^3+x^2+2*x+6, 6*x+1 ],
....: [5*x^2+5*x+1, x^2+4*x+1 ],
....: [0, 0 ]])

sage: N.is_popov()
True

sage: N.is_popov(include_zero_vectors=False)
False

One can verify Popov form up to row permutation (or column permutation if not working row-wise):

sage: M.swap_columns(0, 1)
sage: M.is_popov(shifts=[0,2,3], row_wise=False)
False

sage: M.is_popov(shifts=[0,2,3], row_wise=False,
....: up_to_permutation=True)
True

sage: N.swap_rows(0, 2)

sage: N.is_popov()
False

(continues on next page)
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sage: N.is_popov(up_to_permutation=True)
True

is_reduced(shifts=None, row_wise=True, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in (shifted) reduced form.

An 𝑚 × 𝑛 univariate polynomial matrix 𝑀 is said to be in shifted row reduced form if it has 𝑘 nonzero
rows with 𝑘 ≤ 𝑛 and its shifted leading matrix has rank 𝑘. Equivalently, when considering all the matrices
obtained by left-multiplying𝑀 by a unimodular matrix, then the shifted row degrees of𝑀 – once sorted in
nondecreasing order – is lexicographically minimal.

Similarly, 𝑀 is said to be in shifted column reduced form if it has 𝑘 nonzero columns with 𝑘 ≤ 𝑚 and its
shifted leading matrix has rank 𝑘.

Sometimes, one forbids𝑀 to have zero rows (resp. columns) in the above definitions; an optional parameter
allows one to adopt this more restrictive setting.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• include_zero_vectors – boolean (default: True); False if one does not allow zero rows in
row reduced forms (resp. zero columns in column reduced forms)

OUTPUT: boolean

REFERENCES:

[Wol1974] (Section 2.5, without shifts) and [VBB1992] (Section 3).

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.is_reduced()
False

sage: M.is_reduced(shifts=[0,1,2])
True

sage: M.is_reduced(shifts=[2,0], row_wise=False)
True

sage: M.is_reduced(shifts=[2,0], row_wise=False,
....: include_zero_vectors=False)
False

sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0], [0, 1, 0]])
sage: M.is_reduced(shifts=[2,0,0], row_wise=False)
True

See also

leading_matrix() , reduced_form() .
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is_weak_popov(shifts=None, row_wise=True, ordered=False, include_zero_vectors=True)
Return a boolean indicating whether this matrix is in (shifted) (ordered) weak Popov form.

If working row-wise (resp. column-wise), a polynomial matrix is said to be in weak Popov form if the leading
positions of its nonzero rows (resp. columns) are pairwise distinct. For the ordered weak Popov form, these
positions must be strictly increasing, except for the possibly repeated -1 entries which are at the end. For the
shifted variants, see the class description for an introduction to shifts.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• ordered – boolean (default: False); True if checking for an ordered weak Popov form

• include_zero_vectors – boolean (default: True); False if one does not allow zero rows (resp.
zero columns) in (ordered) weak Popov forms

OUTPUT: boolean

REFERENCES:

[Kai1980] (Section 6.7.2, square case without shifts), [MS2003] (without shifts), [BLV1999] .

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix([ [x^3+3*x^2+6*x+6, 3*x^2+3*x+6, 4*x^2+x+3],
....: [5, 1, 0 ],
....: [2*x^2+2, 2*x+5, x^2+4*x+6] ])
sage: M.is_weak_popov()
True

One can check whether the leading positions, in addition to being pairwise distinct, are actually in increasing
order:

sage: M.is_weak_popov(ordered=True)
True

sage: N = M.with_swapped_rows(1, 2)
sage: N.is_weak_popov()
True
sage: N.is_weak_popov(ordered=True)
False

Shifts and orientation (row-wise or column-wise) are supported:

sage: M.is_weak_popov(shifts=[2,3,1])
False

sage: M.is_weak_popov(shifts=[0,2,0], row_wise=False,
....: ordered=True)
True

Rectangular matrices are supported:

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]

(continues on next page)
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....: ])
sage: M.is_weak_popov(shifts=[0,2,1,3])
True

sage: M.is_weak_popov(shifts=[0,2,1,3], ordered=True)
True

Zero rows (resp. columns) can be forbidden:

sage: M = Matrix([
....: [ 6*x+4, 0, 5*x+1, 0],
....: [ 2, 5*x + 1, 6*x^2+3*x+1, 0],
....: [2*x^2+5*x+5, 1, 2*x^3+4*x^2+6*x+4, 0]
....: ])
sage: M.is_weak_popov(shifts=[2,1,0], row_wise=False,
....: ordered=True)
True

sage: M.is_weak_popov(shifts=[2,1,0], row_wise=False,
....: include_zero_vectors=False)
False

See also

weak_popov_form() .

leading_matrix(shifts=None, row_wise=True)
Return the (shifted) leading matrix of this matrix.

Let 𝑀 be a univariate polynomial matrix in ,[𝑥]𝑚×𝑛. Working row-wise and without shifts, its leading
matrix is the matrix in ,𝑚×𝑛 formed by the leading coefficients of the entries of𝑀 which reach the degree
of the corresponding row.

More precisely, if working row-wise, let 𝑠1, . . . , 𝑠𝑛 ∈ Z be a shift, and let (𝑑1, . . . , 𝑑𝑚) denote the shifted
row degrees of 𝑀 . Then, the shifted leading matrix of 𝑀 is the matrix in ,𝑚×𝑛 whose entry 𝑖, 𝑗 is the
coefficient of degree 𝑑𝑖 − 𝑠𝑗 of the entry 𝑖, 𝑗 of𝑀 .

If working column-wise, let 𝑠1, . . . , 𝑠𝑚 ∈ Z be a shift, and let (𝑑1, . . . , 𝑑𝑛) denote the shifted column degrees
of 𝑀 . Then, the shifted leading matrix of 𝑀 is the matrix in ,𝑚×𝑛 whose entry 𝑖, 𝑗 is the coefficient of
degree 𝑑𝑗 − 𝑠𝑖 of the entry 𝑖, 𝑗 of𝑀 .

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

OUTPUT: a matrix over the base field

REFERENCES:

[Wol1974] (Section 2.5, without shifts) and [VBB1992] (Section 3).

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])

(continues on next page)
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sage: M.leading_matrix()
[3 0 0]
[1 0 0]

sage: M.leading_matrix().base_ring()
Finite Field of size 7

sage: M.leading_matrix(shifts=[0,1,2])
[0 0 1]
[1 0 0]

sage: M.leading_matrix(row_wise=False)
[0 0 1]
[1 0 0]

sage: M.leading_matrix(shifts=[-2,1], row_wise=False)
[0 0 1]
[1 0 0]

sage: M.leading_matrix(shifts=[2,0], row_wise=False)
[3 0 1]
[1 0 0]

leading_positions(shifts=None, row_wise=True, return_degree=False)
Return the (shifted) leading positions (also known as the pivot indices), and optionally the (shifted) pivot
degrees of this matrix.

If working row-wise, for a given shift 𝑠1, . . . , 𝑠𝑛 ∈ Z, taken as (0, . . . , 0) by default, and a row vector of
univariate polynomials [𝑝1, . . . , 𝑝𝑛], the leading position of this vector is the index 𝑗 of the rightmost nonzero
entry 𝑝𝑗 such that deg(𝑝𝑗) + 𝑠𝑗 is equal to the shifted row degree of the vector. Then the pivot degree of the
vector is the degree deg(𝑝𝑗).

For the zero row, both the leading positions and degree are −1. For a𝑚× 𝑛 polynomial matrix, the leading
positions and pivot degrees are the two lists containing the leading positions and the pivot degrees of its rows.

The definition is similar if working column-wise (instead of rightmost nonzero entry, we choose the bottom-
most nonzero entry).

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• return_degree – boolean (default: False); True implies that the pivot degrees are returned

OUTPUT: list of integers if return_degree=False; a pair of lists of integers otherwise

REFERENCES:

[Kai1980] (Section 6.7.2, without shifts).

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.leading_positions()
[0, 0]

sage: M.leading_positions(return_degree=True)
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([0, 0], [1, 3])

sage: M.leading_positions(shifts=[0,5,2], return_degree=True)
([2, 0], [0, 3])

sage: M.leading_positions(row_wise=False, return_degree=True)
([1, -1, 0], [3, -1, 0])

sage: M.leading_positions(shifts=[1,2], row_wise=False,
....: return_degree=True)
([1, -1, 0], [3, -1, 0])

In case several entries in the row (resp. column) reach the shifted row (resp. column) degree, the leading
position is chosen as the rightmost (resp. bottommost) such entry:

sage: M.leading_positions(shifts=[0,5,1], return_degree=True)
([2, 0], [0, 3])

sage: M.leading_positions(shifts=[2,0], row_wise=False,
....: return_degree=True)
([1, -1, 0], [3, -1, 0])

The leading positions and pivot degrees of an empty matrix (0× 𝑛 or𝑚× 0) is not defined:

sage: M = Matrix(pR, 0, 3)
sage: M.leading_positions()
Traceback (most recent call last):
...
ValueError: empty matrix does not have leading positions

sage: M.leading_positions(row_wise=False)
Traceback (most recent call last):
...
ValueError: empty matrix does not have leading positions

sage: M = Matrix(pR, 3, 0)
sage: M.leading_positions(row_wise=False)
Traceback (most recent call last):
...
ValueError: empty matrix does not have leading positions

left_quo_rem(B)
Return, if it exists, the quotient and remainder (𝑄,𝑅) such that self is 𝐵𝑄+𝑅, where 𝑅 has row degrees
less than those of 𝐵 entrywise.

This method directly calls right_quo_rem() on transposed matrices, and transposes the result. See
right_quo_rem() for a complete documentation and more examples.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: A = Matrix(pR, 3, 2,
....: [[ 3*x^3 + 3*x, 2*x^3 + 4],
....: [ 3*x^3 + 6*x + 5, 6*x^3 + 5*x^2 + 1],
....: [ 2*x^3 + 2*x + 6, 3*x^2 + 2*x + 2]])
sage: B = Matrix(pR, 3, 3,
....: [[ 3, x + 3, 6],

(continues on next page)
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....: [3*x^3 + 3*x + 1, 4*x^2 + 3*x, 6*x^3 + x + 4],

....: [ 4*x^2 + x + 4, 3*x^2 + 4*x, 3*x^2 + 3*x + 2]])
sage: Q, R = A.left_quo_rem(B); Q, R
(
[2*x^2 + 4*x + 6 6*x^2 + 4*x + 1] [ 3 1]
[ 3*x^2 + 5*x 2*x^2 + x + 5] [ 6 5*x^2 + 2*x + 3]
[ 6*x^2 + 3*x 4*x^2 + 6*x + 1], [ 2*x + 3 6*x + 3]
)
sage: rdegR = R.row_degrees(); rdegB = B.row_degrees()
sage: A == B*Q+R and all(rdegR[i] < rdegB[i] for i in range(3))
True

sage: A[:2,:].left_quo_rem(B)
Traceback (most recent call last):
...
ValueError: row dimension of self should be the row dimension of
the input matrix

Rectangular or rank-deficient matrices are supported but there may be no quotient and remainder (unless the
matrix has full row rank, see right_quo_rem()):

sage: Q, R = A[:2,:].left_quo_rem(B[:2,:]); Q, R
(
[ 3*x + 3 2*x + 1]
[ 3*x^2 + 5*x 2*x^2 + x + 5] [ 5 0]
[ 0 0], [4*x^2 + x + 2 4*x^2 + x]
)
sage: rdegR = R.row_degrees(); rdegB = B[:2,:].row_degrees()
sage: A[:2,:] == B[:2,:]*Q+R
True
sage: all([rdegR[i] < rdegB[i] for i in range(len(rdegR))])
True

sage: A.left_quo_rem(B[:,:2])
Traceback (most recent call last):
...
ValueError: division of these matrices does not admit a remainder
with the required degree property

See also

right_quo_rem() , reduce() .

minimal_approximant_basis(order, shifts=None, row_wise=True, normal_form=False)
Return an approximant basis in shifts-ordered weak Popov form for this polynomial matrix at order or-
der.

Assuming we work row-wise, if 𝐹 is an𝑚× 𝑛 polynomial matrix and (𝑑0, . . . , 𝑑𝑛−1) are positive integers,
then an approximant basis for 𝐹 at order (𝑑0, . . . , 𝑑𝑛−1) is a polynomial matrix whose rows form a basis
of the module of approximants for 𝐹 at order (𝑑0, . . . , 𝑑𝑛−1). The latter approximants are the polynomial
vectors 𝑝 of size𝑚 such that the column 𝑗 of 𝑝𝐹 has valuation at least 𝑑𝑗 , for all 0 ≤ 𝑗 ≤ 𝑛− 1.

If normal_form is True, then the output basis 𝑃 is furthermore in shifts-Popov form. By default, 𝑃
is considered row-wise, that is, its rows are left-approximants for self; if row_wise is False then its
columns are right-approximants for self. It is guaranteed that the degree of the output basis is at most the

571



Matrices and Spaces of Matrices, Release 10.5.rc0

maximum of the entries of order, independently of shifts.

An error is raised if the input dimensions are not sound: if working row-wise (resp. column-wise), the length
of order must be the number of columns (resp. rows) of self, while the length of shifts must be the
number of rows (resp. columns) of self.

If a single integer is provided for order, then it is converted into a list of repeated integers with this value.

INPUT:

• order – list of positive integers, or a positive integer

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); if True then the output basis is considered row-wise and op-
erates on the left of self. Otherwise it is column-wise and operates on the right of self.

• normal_form – boolean (default: False); if True then the output basis is in shifts-Popov form

OUTPUT: a polynomial matrix

ALGORITHM:

The implementation is inspired from the iterative algorithms described in [VBB1992] and [BL1994] ; for
obtaining the normal form, it relies directly on Lemmas 3.3 and 4.1 in [JNSV2016] .

EXAMPLES:

sage: pR.<x> = GF(7)[]

sage: order = [4, 3]; shifts = [-1, 2, 0]
sage: F = Matrix(pR, [[5*x^3 + 4*x^2 + 4*x + 6, 5*x^2 + 4*x + 1],
....: [ 2*x^2 + 2*x + 3, 6*x^2 + 6*x + 3],
....: [4*x^3 + x + 1, 4*x^2 + 2*x + 3]])
sage: P = F.minimal_approximant_basis(order, shifts)
sage: P.is_minimal_approximant_basis(F, order, shifts)
True

By default, the computed basis is not required to be in normal form (and will not be except in rare special
cases):

sage: P.is_minimal_approximant_basis(F, order, shifts,
....: normal_form=True)
False
sage: P = F.minimal_approximant_basis(order, shifts,
....: normal_form=True)
sage: P.is_minimal_approximant_basis(F, order, shifts,
....: normal_form=True)
True

If shifts are not specified, they are chosen as uniform [0, . . . , 0] by default. Besides, if the orders are all the
same, one can rather give a single integer:

sage: (F.minimal_approximant_basis(3) ==
....: F.minimal_approximant_basis([3,3], shifts=None))
True

One can work column-wise by specifying row_wise=False:

sage: P = F.minimal_approximant_basis([5,2,2], [0,1],
....: row_wise=False)

(continues on next page)
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sage: P.is_minimal_approximant_basis(F, [5,2,2], shifts=[0,1],
....: row_wise=False)
True
sage: (F.minimal_approximant_basis(3, row_wise=True) ==
....: F.transpose().minimal_approximant_basis(
....: 3, row_wise=False).transpose())
True

Errors are raised if the input dimensions are not sound:

sage: P = F.minimal_approximant_basis([4], shifts)
Traceback (most recent call last):
...
ValueError: order length should be the column dimension

sage: P = F.minimal_approximant_basis(order, [0,0,0,0])
Traceback (most recent call last):
...
ValueError: shifts length should be the row dimension

An error is raised if order does not contain only positive integers:

sage: P = F.minimal_approximant_basis([1,0], shifts)
Traceback (most recent call last):
...
ValueError: order should consist of positive integers

minimal_kernel_basis(shifts=None, row_wise=True, normal_form=False)
Return a left kernel basis in shifts-ordered weak Popov form for this polynomial matrix.

Assuming we work row-wise, if𝐹 is an𝑚×𝑛 polynomial matrix, then a left kernel basis for𝐹 is a polynomial
matrix whose rows form a basis of the left kernel of 𝐹 , which is the module of polynomial vectors 𝑝 of size
𝑚 such that 𝑝𝐹 is zero.

If normal_form is True, then the output basis 𝑃 is furthermore in shifts-Popov form. By default, 𝑃
is considered row-wise, that is, its rows are left kernel vectors for self; if row_wise is False then its
columns are right kernel vectors for self.

An error is raised if the input dimensions are not sound: if working row-wise (resp. column-wise), the length
of shifts must be the number of rows (resp. columns) of self.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); if True then the output basis considered row-wise and operates
on the left of self. Otherwise it is column-wise and operates on the right of self.

• normal_form – boolean (default: False); if True then the output basis is in shifts-Popov form

OUTPUT: a polynomial matrix

ALGORITHM: uses minimal approximant basis computation at a sufficiently large order so that the approx-
imant basis contains a kernel basis as a submatrix.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: pmat = Matrix([[(x+1)*(x+3)], [(x+1)*(x+3)+1]])

(continues on next page)
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sage: pmat.minimal_kernel_basis()
[6*x^2 + 3*x + 3 x^2 + 4*x + 3]

sage: pmat = Matrix([[(x+1)*(x+3)], [(x+1)*(x+4)]])
sage: pmat.minimal_kernel_basis()
[6*x + 3 x + 3]

sage: pmat.minimal_kernel_basis(row_wise=False)
[]

sage: pmat = Matrix(pR, [[1, x, x**2]])
sage: pmat.minimal_kernel_basis(row_wise=False, normal_form=True)
[x 0]
[6 x]
[0 6]

sage: pmat.minimal_kernel_basis(row_wise=False, normal_form=True,
....: shifts=[0,1,2])
[ 6*x 6*x^2]
[ 1 0]
[ 0 1]

Some particular cases (matrix is zero, dimension is zero, column is zero):

sage: Matrix(pR, 2, 1).minimal_kernel_basis()
[1 0]
[0 1]

sage: Matrix(pR, 2, 0).minimal_kernel_basis()
[1 0]
[0 1]

sage: Matrix(pR, 0, 2).minimal_kernel_basis()
[]

sage: Matrix(pR, 3, 2, [[1,0],[1,0],[1,0]]).minimal_kernel_basis()
[6 1 0]
[6 0 1]

sage: Matrix(pR, 3, 2, [[x,0],[1,0],[x+1,0]]).minimal_kernel_basis()
[6 x 0]
[6 6 1]

popov_form(transformation=False, shifts=None, row_wise=True, include_zero_vectors=True)
Return the (shifted) Popov form of this matrix.

See is_popov() for a definition of Popov forms. If the input matrix is 𝐴, the (shifted) Popov form of
𝐴 is the unique matrix 𝑃 in (shifted) Popov form and such that 𝑈𝐴 = 𝑃 for some unimodular matrix 𝑈 .
The latter matrix is called the transformation, and the first optional argument allows one to specify whether
to return this transformation. We refer to the description of weak_popov_form() for an explanation of
the option include_zero_vectors .

INPUT:

• transformation – (default: False) if this is True, the transformation matrix 𝑈 will be returned
as well

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]
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• row_wise – boolean (default: True); True if working row-wise (see the class description)

• include_zero_vectors – boolean (default: True); False if zero rows (resp. zero columns)
should be discarded from the Popov forms

OUTPUT:

• A polynomial matrix which is the Popov form of self if transformation is False; otherwise
two polynomial matrices which are the Popov form of self and the corresponding unimodular trans-
formation.

ALGORITHM:

This method implements the Mulders-Storjohann algorithm of [MS2003] for transforming a weak Popov
form into Popov form, straightforwardly extended to the case of shifted forms.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [
....: [ 6*x+4, 5*x^3+5*x, 6*x^2+2*x+2],
....: [4*x^2+5*x+2, x^4+5*x^2+2*x+4, 4*x^3+6*x^2+6*x+5]])

sage: # needs sage.combinat
sage: P, U = M.popov_form(transformation=True)
sage: P
[ 4 x^2 + 4*x + 1 3]
[ 0 4*x + 1 x^2 + 6*x + 1]
sage: U
[ x 2]
[5*x^2 + x + 6 3*x + 2]
sage: P.is_popov() and U.is_invertible() and U*M == P
True

Demonstrating shifts and specific case of Hermite form:

sage: # needs sage.combinat
sage: P = M.popov_form(shifts=[0,2,4]); P
[ 4*x^2 + 3*x + 4 x^4 + 3*x^3 + 5*x^2 + 5*x + 5 ␣
→˓ 0]
[ 6 5*x^2 + 6*x + 5 ␣
→˓ 1]
sage: P.is_popov(shifts=[0,2,4])
True
sage: P == M.popov_form(shifts=[-6,-4,-2])
True
sage: dd = sum(M.row_degrees()) + 1
sage: M.popov_form(shifts=[2*dd,dd,0]) == M.hermite_form()
True

Column-wise form is the row-wise form of the transpose:

sage: M.popov_form() == M.T.popov_form(row_wise=False).T
True

Zero vectors can be discarded:

sage: M.popov_form(row_wise=False)
[x + 2 6 0]
[ 0 1 0]

(continues on next page)
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sage: # needs sage.combinat
sage: P, U = M.popov_form(transformation=True,
....: row_wise=False,
....: include_zero_vectors=False)
sage: P
[x + 2 6]
[ 0 1]
sage: U
[ 3*x^2 + 6*x + 3 5*x^2 + 4*x + 4 3*x^3 + 3*x^2 + 2*x + 4]
[ 3 1 2*x + 1]
[ 5*x + 2 2 6]
sage: M*U[:,:2] == P and (M*U[:,2]).is_zero()
True

See also

is_popov() , reduced_form() , weak_popov_form() , hermite_form() .

reduce(B, shifts=None, row_wise=True, return_quotient=False)
Reduce self, i.e. compute its normal form, modulo the row space of 𝐵 with respect to shifts.

If self is a 𝑘 × 𝑛 polynomial matrix (written 𝐴 below), and the input 𝐵 is an 𝑚 × 𝑛 polynomial matrix,
this computes the normal form 𝑅 of 𝐴 with respect the row space of 𝐵 and the monomial order defined by
shifts (written 𝑠 below). This means that the 𝑖 th row of 𝑅 is equal to the 𝑖 th row of 𝐴 up to addition of
an element in the row space of 𝐵, and if 𝐽 = (𝑗1, . . . , 𝑗𝑟) are the 𝑠-leading positions of the 𝑠-Popov form
𝑃 of 𝐴, then the submatrix 𝑅*,𝐽 (submatrix of 𝑅 formed by its columns in 𝐽) has column degrees smaller
entrywise than the column degrees of 𝑃*,𝐽 .

If the option row_wise is set to False, the same operation is performed, but with everything considered
column-wise: column space of 𝐵, 𝑖 th column of 𝑅 and 𝐴, column-wise 𝑠-leading positions and 𝑠-Popov
form, and submatrices 𝑅𝐽,* and 𝑃𝐽,*.

The operation above can be seen as a matrix generalization of division with remainder for univariate poly-
nomials. If the option return_quotient is set to True, this method returns both the normal form 𝑅
and a quotient matrix 𝑄 such that 𝐴 = 𝑄𝐵 + 𝑅 (or 𝐴 = 𝐵𝑄 + 𝑅 if row_wise is False). Whereas
the remainder is unique, this quotient is not unique unless 𝐵 has a trivial left kernel i.e. has full row rank (or
right kernel, full column rank if row_wise is False).

This method checks whether𝐵 is in 𝑠-Popov form, and if not, computes the 𝑠-Popov form 𝑃 of𝐵, which can
take some time. Therefore, if 𝑃 is already known or is to be re-used, this method should be called directly
with 𝑃 , yielding the same normal form 𝑅 since 𝑃 and 𝐵 have the same row space (or column space, if
row_wise is False).

A ValueError is raised if the dimensions of the shifts and/or of the matrices are not conformal.

INPUT:

• B – polynomial matrix

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• return_quotient – (default: False) if this is True, the quotient will be returned as well

OUTPUT: a polynomial matrix if return_quotient=False, two polynomial matrices otherwise.
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EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: B = Matrix(pR, [
....: [ 6*x+4, 5*x^3+5*x, 6*x^2+2*x+2],
....: [4*x^2+5*x+2, x^4+5*x^2+2*x+4, 4*x^3+6*x^2+6*x+5]])
sage: A = Matrix(pR, 1, 3, [
....: [3*x^4+3*x^3+4*x^2+5*x+1, x^4+x^3+5*x^2+4*x+4, 4*x^4+2*x^3+x]])

sage: Q, R = A.reduce(B,return_quotient=True); R
[3*x^4 + 3*x^3 + 4*x + 3 2*x + 2 2*x + 6]
sage: A == Q*B + R
True
sage: P = B.popov_form(); P.leading_positions(return_degree=True)
([1, 2], [2, 2])
sage: R.degree_matrix()
[4 1 1]
sage: A.reduce(P) == R
True
sage: A.reduce(P[:,:2])
Traceback (most recent call last):
...
ValueError: column dimension of self should be the column
dimension of the input matrix

Demonstrating shifts:

sage: Qs, Rs = A.reduce(B, shifts=[0,2,4], return_quotient=True); Rs
[3*x^4 + 3*x^3 + 6*x + 2 4*x^3 + 5*x 0]
sage: A == Qs*B + Rs
True
sage: Ps = B.popov_form(shifts=[0,2,4])
sage: Ps.leading_positions(shifts=[0,2,4], return_degree=True)
([1, 2], [4, 0])
sage: Rs.degree_matrix()
[ 4 3 -1]
sage: A.reduce(Ps, shifts=[0,2,4]) == Rs
True

If return_quotient is False, only the normal form is returned:

sage: R == A.reduce(B) and Rs == A.reduce(B, shifts=[0,2,4])
True

Demonstrating column-wise normal forms, with a matrix𝐴which has several columns, and a matrix𝐵 which
does not have full column rank (its column-wise Popov form has a zero column):

sage: A = Matrix(pR, 2, 2,
....: [[5*x^3 + 2*x^2 + 4*x + 1, x^3 + 4*x + 4],
....: [2*x^3 + 5*x^2 + 2*x + 4, 2*x^3 + 3*x + 2]])
sage: (Q,R) = A.reduce(B,row_wise=False, return_quotient=True); R
[0 3]
[0 0]
sage: A == B*Q + R
True
sage: P = B.popov_form(row_wise=False); P
[x + 2 6 0]
[ 0 1 0]
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sage: P.leading_positions(row_wise=False, return_degree=True)
([0, 1, -1], [1, 0, -1])
sage: R.degree_matrix()
[-1 0]
[-1 -1]

See also

left_quo_rem() , right_quo_rem() .

reduced_form(transformation=None, shifts=None, row_wise=True, include_zero_vectors=True)
Return a row reduced form of this matrix (resp. a column reduced form if the optional parameter row_wise
is set to False).

An 𝑚 × 𝑛 univariate polynomial matrix 𝑀 is said to be in (shifted) row reduced form if it has 𝑘 nonzero
rows with 𝑘 ≤ 𝑛 and its (shifted) leading matrix has rank 𝑘. See is_reduced() for more information.

Currently, the implementation of this method is a direct call to weak_popov_form().

INPUT:

• transformation – (default: False) if this is True, the transformation matrix 𝑈 will be returned
as well: this is a unimodular matrix over,[𝑥] such that self equals 𝑈𝑅, where𝑅 is the output matrix.

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• include_zero_vectors – boolean (default: True); False if one does not allow zero rows in
row reduced forms (resp. zero columns in column reduced forms)

OUTPUT:

• A polynomial matrix 𝑅 which is a reduced form of self if transformation=False; otherwise
two polynomial matrices 𝑅,𝑈 such that 𝑈𝐴 = 𝑅 and 𝑅 is reduced and 𝑈 is unimodular where 𝐴 is
self.

EXAMPLES:

sage: pR.<x> = GF(3)[]
sage: A = matrix(pR, 3, [x, x^2, x^3,
....: x^2, x^1, 0,
....: x^3, x^3, x^3])
sage: R = A.reduced_form(); R
[ x x^2 x^3]
[ x^2 x 0]
[ x^3 + 2*x x^3 + 2*x^2 0]
sage: R.is_reduced()
True
sage: R2 = A.reduced_form(shifts=[6,3,0]); R2
[ x x^2 x^3]
[ 0 2*x^2 + x 2*x^4 + x^3]
[ 0 0 2*x^5 + x^4 + x^3]
sage: R2.is_reduced(shifts=[6,3,0])
True
sage: R2.is_reduced()
False
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If the matrix is an 𝑛× 1 matrix with at least one nonzero entry, 𝑅 has a single nonzero entry and that entry
is a scalar multiple of the greatest-common-divisor of the entries of the matrix:

sage: A = matrix([[x*(x-1)*(x+1)], [x*(x-2)*(x+2)], [x]])
sage: R = A.reduced_form()
sage: R
[x]
[0]
[0]

A zero matrix is already reduced:

sage: A = matrix(pR, 2, [0,0,0,0])
sage: A.reduced_form()
[0 0]
[0 0]

In the following example, the original matrix is already reduced, but the output is a different matrix: currently
this method is an alias for weak_popov_form(), which is a stronger reduced form:

sage: R.<x> = QQ[�x�]
sage: A = matrix([[x,x,x],[0,0,x]]); A
[x x x]
[0 0 x]
sage: A.is_reduced()
True
sage: W = A.reduced_form(); W
[ x x x]
[-x -x 0]
sage: W.is_weak_popov()
True

The last example shows the usage of the transformation parameter:

sage: # needs sage.rings.finite_rings
sage: Fq.<a> = GF(2^3)
sage: pR.<x> = Fq[]
sage: A = matrix(pR, [[x^2+a, x^4+a],
....: [ x^3, a*x^4]])
sage: W, U = A.reduced_form(transformation=True)
sage: W, U
(
[ x^2 + a x^4 + a] [1 0]
[x^3 + a*x^2 + a^2 a^2], [a 1]
)
sage: W.is_reduced()
True
sage: U*W == A
True
sage: U.is_invertible()
True

See also

is_reduced() , weak_popov_form() , popov_form() , hermite_form() .
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reverse(degree=None, row_wise=True, entry_wise=False)
Return the matrix which is obtained from this matrix after reversing all its entries with respect to the degree
as specified by degree.

Reversing a polynomial with respect to an integer 𝑑 follows the convention for univariate polynomials, in
particular it uses truncation or zero-padding as necessary if 𝑑 differs from the degree of this polynomial.

If entry_wise is True: the input degree and row_wise are ignored, and all entries of the matrix are
reversed with respect to their respective degrees.

If entry_wise is False (the default):

• if degree is an integer, all entries are reversed with respect to it;

• if degree is not provided, then all entries are reversed with respect to the degree of the whole matrix;

• if degree is a list (𝑑1, . . . , 𝑑𝑚) and row_wise is True, all entries of the 𝑖-th row are reversed with
respect to 𝑑𝑖 for each 𝑖;

• if degree is a list (𝑑1, . . . , 𝑑𝑛) and row_wise is False, all entries of the 𝑗-th column are reversed
with respect to 𝑑𝑗 for each 𝑗.

INPUT:

• degree – (default: None) a list of nonnegative integers, or a nonnegative integer

• row_wise – boolean (default: True); if True (resp. False) then degree should be a list of length
equal to the row (resp. column) dimension of this matrix

• entry_wise – boolean (default: False); if True then the input degree and row_wise are
ignored

OUTPUT: a polynomial matrix

EXAMPLES:

sage: pR.<x> = GF(7)[]

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.reverse()
[ x^3 + 5*x^2 + 5*x + 1 5*x^3 4*x^3 +
6*x^2 0]
[ x^3 + 3*x^2 + 6*x x^3
2*x^3 0]
[4*x^3 + 6*x^2 + 4*x + 2 x^3 + 5*x^2 5*x^3 + 5*x^2
+ 2*x 6*x^3 + 5*x^2 + x]

sage: M.reverse(1)
[ x + 5 5*x 4*x + 6 0]
[ x + 3 x 2*x 0]
[4*x + 6 x + 5 5*x + 5 6*x + 5]

sage: M.reverse(0) == M.constant_matrix()
True

Entry-wise reversing with respect to each entry’s degree:
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sage: M.reverse(entry_wise=True)
[ x^3 + 5*x^2 + 5*x + 1 5
4*x + 6 0]
[ x^2 + 3*x + 6 1
2 0]
[4*x^3 + 6*x^2 + 4*x + 2 x + 5 5*x^2 +
5*x + 2 6*x^2 + 5*x + 1]

Row-wise and column-wise degree reversing are available:

sage: M.reverse([2,3,1])
[ x^2 + 5*x + 5 5*x^2 4*x^2 + 6*x
0]
[x^3 + 3*x^2 + 6*x x^3 2*x^3
0]
[ 4*x + 6 x + 5 5*x + 5
6*x + 5]

sage: M.reverse(M.column_degrees(), row_wise=False)
[ x^3 + 5*x^2 + 5*x + 1 5*x 4*x^2
+ 6*x 0]
[ x^3 + 3*x^2 + 6*x x
2*x^2 0]
[4*x^3 + 6*x^2 + 4*x + 2 x + 5 5*x^2 +
5*x + 2 6*x^2 + 5*x + 1]

Wrong length or negativity of input degree raise errors:

sage: M.reverse([1,3,1,4]) Traceback (most recent call last): … ValueError: length of input degree
list should be the row dimension of the input matrix

sage: M.reverse([5,2,1], row_wise=False) Traceback (most recent call last): … ValueError: length
of input degree list should be the column dimension of the input matrix

sage: M.reverse([2,3,-1]) Traceback (most recent call last): … ValueError: degree argument must
be a nonnegative integer, got -1

See also

sage.rings.polynomial.polynomial_element.Polynomial.reverse() .

right_quo_rem(B)

Return, if it exists, the quotient and remainder (𝑄,𝑅) such that self is 𝑄𝐵 + 𝑅, where 𝑅 has column
degrees less than those of 𝐵 entrywise.

If self is a 𝑘 ×𝑚 polynomial matrix (written 𝐴 below), and the input 𝐵 is an 𝑚 ×𝑚 polynomial matrix
in column reduced form, then (𝑄,𝑅) is unique. Both 𝑄 and 𝑅 have dimensions 𝑘 × 𝑚. In this case, this
method implements Newton iteration of a reversed polynomial matrix 𝐵, generalizing to matrices the fast
division of univariate polynomials.

If𝐴 is a 𝑘×𝑛 polynomial matrix, and the input𝐵 is an𝑚×𝑛 polynomial matrix such that𝐵 has full column
rank, or more generally such that the matrix equation 𝐴 = 𝑋𝐵 has a rational solution, then there exists such
a (𝑄,𝑅) but it may not be unique; the algorithm returns one such quotient and remainder. Here 𝑄 is 𝑘 ×𝑚
and 𝑅 is 𝑘 × 𝑛. In this case, this method follows the folklore approach based on solving the matrix equation
𝐴 = 𝑋𝐵 and splitting 𝑋 into its polynomial part and proper fraction part.

Finally, if the matrix equation 𝐴 = 𝑋𝐵 has no rational solution, this method computes the normal form
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𝑅 and quotient 𝑄 of the rows of 𝐴 with respect to the row space of 𝐵 (see reduce()). Doing this for a
well-chosen shift ensures that either 𝑅 does not have column degrees less than those of 𝐵, and then there is
no valid quotient and remainder, or it does satisfy this degree constraint, and then this 𝑅 can be returned as
a remainder along with the quotient 𝑄.

A ValueError is raised if the dimensions of self and𝐵 are not conformal, or if there exists no quotient
and remainder.

EXAMPLES:

Case where 𝐵 is a square, column reduced matrix:

sage: pR.<x> = GF(7)[]
sage: A = Matrix(pR, 2, 3,
....: [[3*x^3 + 3*x, 3*x^3 + 6*x + 5, 2*x^3 + 2*x + 6],
....: [2*x^3 + 4, 6*x^3 + 5*x^2 + 1, 3*x^2 + 2*x + 2]])
sage: B = Matrix(pR, 3, 3,
....: [[4*x^2 + 3*x + 3, 3*x^2 + 3*x + 1, 4*x^2 + x + 4],
....: [6*x^2 + 2*x + 3, 4*x^2 + 3*x, 3*x^2 + 4*x],
....: [5*x^2 + 3*x + 6, 6*x^2 + x + 4, 3*x^2 + 3*x + 2]])
sage: B.is_reduced(row_wise=False)
True
sage: Q, R = A.right_quo_rem(B); Q, R
(
[ 4*x x + 2 6*x + 1] [ x + 2 6*x + 1 5*x + 4]
[4*x + 3 x + 6 3*x + 4], [4*x + 2 2*x + 3 4*x + 3]
)
sage: A == Q*B+R and R.degree() < 2
True
sage: A[:,:2].right_quo_rem(B)
Traceback (most recent call last):
...
ValueError: column dimension of self should be the column dimension
of the input matrix

sage: B = Matrix(pR, 3, 3,
....: [[3, 3*x^3 + 3*x + 1, 4*x^2 + x + 4],
....: [x + 3, 4*x^2 + 3*x, 3*x^2 + 4*x],
....: [6, 6*x^3 + x + 4, 3*x^2 + 3*x + 2]])
sage: B.is_reduced(row_wise=False)
True
sage: Q, R = A.right_quo_rem(B); Q, R
(
[2*x^2 + 4*x + 6 3*x^2 + 5*x 6*x^2 + 3*x]
[6*x^2 + 4*x + 1 2*x^2 + x + 5 4*x^2 + 6*x + 1],

[ 3 6 2*x + 3]
[ 1 5*x^2 + 2*x + 3 6*x + 3]
)
sage: cdegR = R.column_degrees(); cdegB = B.column_degrees()
sage: A == Q*B+R and all([cdegR[i] < cdegB[i] for i in range(3)])
True

With a nonsingular but also non-reduced matrix, there exists a solution, but it might not be unique:

sage: B = Matrix(pR, 3, 3,
....: [[ 5, 0, 2*x + 6],
....: [ 4*x, 3*x^2 + 4*x + 5, x + 1],
....: [3*x^2 + 5*x + 2, 6*x^3 + 4*x + 6, 3]])

(continues on next page)
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sage: B.det() != 0 and (not B.is_reduced(row_wise=False))
True
sage: Q, R = A.right_quo_rem(B); Q, R
(
[ 6*x^2 + 3*x 4*x^2 + 3*x + 1 5*x + 1]
[ x^2 + 5*x + 5 5*x^2 + 3*x + 5 x + 2],

[ 4*x + 5 x^2 + 2*x + 1 2]
[ 6*x + 3 5*x^2 + 6 3]
)
sage: cdegR = R.column_degrees(); cdegB = B.column_degrees()
sage: A == Q*B+R and all(cdegR[i] < cdegB[i] for i in range(3))
True

sage: Q2 = Matrix(pR, 2, 3,
....: [[6*x^2 + 3*x + 1, 4*x^2 + 3*x + 6, 5*x + 1],
....: [ x^2 + 5*x + 3, 5*x^2 + 3*x + 2, x + 2]])
sage: R2 = Matrix(pR, 2, 3,
....: [[ 5*x, 3*x + 4, 5],
....: [4*x + 6, 5*x, 4]])
sage: A == Q2*B + R2
True

The same remark holds more generally for full column rank matrices: there exists a solution, but it might not
be unique. However, for all other cases (rank-deficient matrix 𝐵 or matrix 𝐵 having strictly fewer rows than
columns) there may be no solution:

sage: C = B.stack(B[1,:] + B[2,:]) # 4 x 3, full column rank
sage: Q, R = A.right_quo_rem(C); Q, R
(
[ 6*x^2 + 3*x 4*x^2 + 3*x + 1 5*x + 1 0]
[ x^2 + 5*x + 5 5*x^2 + 3*x + 5 x + 2 0],

[ 4*x + 5 x^2 + 2*x + 1 2]
[ 6*x + 3 5*x^2 + 6 3]
)

sage: A.right_quo_rem(B[:2,:]) # matrix 2 x 3, full row rank #␣
→˓needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: division of these matrices does not admit a remainder
with the required degree property
sage: D = copy(B); D[2,:] = B[0,:]+B[1,:] # square, singular
sage: A.right_quo_rem(D)
Traceback (most recent call last):
...
ValueError: division of these matrices does not admit a remainder
with the required degree property

In the latter case (rank-deficient or strictly fewer rows than columns, with no solution to 𝐴 = 𝑋𝐵), there
might still be a quotient and remainder, in which case this method will find it via normal form computation:

sage: B = Matrix(pR, 1, 2, [[x, x]])
sage: A = Matrix(pR, 1, 2, [[x, x+2]])
sage: A.right_quo_rem(B)

(continues on next page)
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([1], [0 2])
sage: A == 1*B + Matrix([[0,2]])
True

See also

left_quo_rem() , reduce() .

row_degrees(shifts=None)
Return the (shifted) row degrees of this matrix.

For a given polynomial matrix 𝑀 = (𝑀𝑖,𝑗)𝑖,𝑗 with 𝑚 rows and 𝑛 columns, its row degrees is the tuple
(𝑑1, . . . , 𝑑𝑚) where 𝑑𝑖 = max𝑗(deg(𝑀𝑖,𝑗)) for 1 ≤ 𝑖 ≤ 𝑚. Thus, 𝑑𝑖 = −1 if the 𝑖-th row of 𝑀 is zero,
and 𝑑𝑖 ≥ 0 otherwise.

For given shifts 𝑠1, . . . , 𝑠𝑛 ∈ Z, the shifted row degrees of𝑀 is (𝑑1, . . . , 𝑑𝑚)where 𝑑𝑖 = max𝑗(deg(𝑀𝑖,𝑗)+
𝑠𝑗). Here, if the 𝑖-th row of𝑀 is zero then 𝑑𝑖 = min(𝑠1, . . . , 𝑠𝑛)−1; otherwise, 𝑑𝑖 is larger than this value.

INPUT:

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

OUTPUT: list of integers

REFERENCES:

• [Wol1974] (Section 2.5, without shifts), and [VBB1992] (Section 3).

• Up to changes of signs, shifted row degrees coincide with the notion of defect commonly used in the
rational approximation literature (see for example [Bec1992] ).

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0]])
sage: M.row_degrees()
[1, 3]

sage: M.row_degrees(shifts=[0,1,2])
[2, 3]

A zero row in a polynomial matrix can be identified in the (shifted) row degrees as the entries equal to
min(shifts)-1:

sage: M = Matrix(pR, [[3*x+1, 0, 1], [x^3+3, 0, 0], [0, 0, 0]])
sage: M.row_degrees()
[1, 3, -1]

sage: M.row_degrees(shifts=[-2,1,2])
[2, 1, -3]

The row degrees of an empty matrix (0× 𝑛 or𝑚× 0) is not defined:

sage: M = Matrix(pR, 0, 3)
sage: M.row_degrees()
Traceback (most recent call last):
...

(continues on next page)
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ValueError: empty matrix does not have row degrees

sage: M = Matrix(pR, 3, 0)
sage: M.row_degrees()
Traceback (most recent call last):
...
ValueError: empty matrix does not have row degrees

shift(d, row_wise=True)
Return the matrix which is obtained from this matrix after shifting all its entries as specified by 𝑑.

• if 𝑑 is an integer, the shift is by 𝑑 for all entries;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑚) and row_wise is True, all entries of the 𝑖-th row are shifted by 𝑑𝑖 for each
𝑖;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑛) and row_wise is False, all entries of the 𝑗-th column are shifted by 𝑑𝑗 for
each 𝑗.

Shifting by 𝑑 means multiplying by the variable to the power 𝑑; if 𝑑 is negative then terms of negative degree
after shifting are discarded.

INPUT:

• d – list of integers, or an integer,

• row_wise – boolean (default: True); if True (resp. False) then 𝑑 should be a list of length equal
to the row (resp. column) dimension of this matrix

OUTPUT: a polynomial matrix

EXAMPLES:

sage: pR.<x> = GF(7)[]

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.shift(-2)
[ x + 5 0 0 0]
[ 6 0 0 0]
[2*x + 4 0 2 1]

Row-wise and column-wise shifting are available:

sage: M.shift([-1,2,-2])
[ x^2 + 5*x + 5 0 6 ␣
→˓ 0]
[6*x^4 + 3*x^3 + x^2 x^2 2*x^2 ␣
→˓ 0]
[ 2*x + 4 0 2 ␣
→˓ 1]

sage: M.shift([-1,1,0,0], row_wise=False)
[ x^2 + 5*x + 5 5*x 6*x + 4 0]
[ 6*x + 3 x 2 0]
[2*x^2 + 4*x + 6 5*x^2 + x 2*x^2 + 5*x + 5 x^2 + 5*x + 6]

(continues on next page)
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sage: M.shift([-d for d in M.row_degrees()]) == M.leading_matrix()
True

Length of input shift degree list is checked:

sage: M.shift([1,3,1,4])
Traceback (most recent call last):
...
ValueError: length of input shift list should be the row
dimension of the input matrix

sage: M.shift([5,2,-1], row_wise=False)
Traceback (most recent call last):
...
ValueError: length of input shift list should be the column
dimension of the input matrix

See also

sage.rings.polynomial.polynomial_element.Polynomial.shift() .

solve_left_series_trunc(B, d)
Try to find a solution 𝑋 to the equation 𝑋𝐴 = 𝐵, at precision d.

If self is a matrix 𝐴, then this function returns a vector or matrix𝑋 such that𝑋𝐴 = 𝐵 mod 𝑥𝑑. If 𝐵 is a
vector then 𝑋 is a vector, and if 𝐵 is a matrix then 𝑋 is a matrix.

Raises ValueError if d is not strictly positive, or if there is a dimension mismatch between 𝐴 and 𝐵, or
if there is no solution to the given matrix equation at the specified precision.

INPUT:

• B – a polynomial matrix or polynomial vector

• d – positive integer

OUTPUT:

A solution to the matrix equation, returned as polynomial matrix of degree less than d if B is a polynomial
matrix; a polynomial vector of degree less than d if 𝐵 is a polynomial vector.

ALGORITHM:

If 𝐴 is square with invertible constant term, then the unique solution is found by calling inverse_se-
ries_trunc() and using the Dixon & Moenck-Carter iteration. Otherwise, a left minimal approximant
basis of a matrix formed by𝐴 and𝐵 is computed, for an appropriate shift which ensures that this basis reveals
either a solution 𝑋 or the fact that no such solution exists.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: A = Matrix(pR, 3, 3,
....: [[4*x+5, 5*x^2 + x + 1, 4*x^2 + 4],
....: [6*x^2 + 6*x + 6, 4*x^2 + 5*x, 4*x^2 + x + 3],
....: [3*x^2 + 2, 4*x + 1, x^2 + 3*x]])
sage: A.is_square() and A.constant_matrix().is_invertible()

(continues on next page)
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True
sage: B = vector([2*x^2 + 6*x + 6, 0, x + 6])
sage: X = A.solve_left_series_trunc(B, 4); X
(3*x^3 + 3*x^2 + 2*x + 4, 4*x^3 + x^2 + 2*x + 6, 6*x^3 + x + 3)
sage: B == X*A % x**4
True

sage: B = Matrix(pR, 2, 3,
....: [[3*x, x^2 + x + 2, x^2 + 2*x + 3],
....: [ 0, 6*x^2 + 1, 1]])
sage: A.solve_left_series_trunc(B, 3)
[6*x^2 + 2*x + 2 4*x + 3 2*x^2 + 3*x]
[3*x^2 + 4*x + 5 4*x^2 + 3 x^2 + 6*x + 3]
sage: X = A.solve_left_series_trunc(B, 37); B == X*A % x**37
True

Dimensions of input are checked:

sage: A.solve_left_series_trunc(B[:,:2], 3)
Traceback (most recent call last):
...
ValueError: number of columns of self must equal number of columns of right-
→˓hand side

Raises an exception when no solution:

sage: A[2:,:].solve_left_series_trunc(B, 4)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

sage: Ax = x*A; C = vector(pR, [1,1,1])
sage: Ax.solve_left_series_trunc(C, 5)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

Supports rectangular and rank-deficient cases:

sage: A[:,:2].solve_left_series_trunc(B[:,:2], 4)
[5*x^2 + 2*x + 5 5*x + 5 2*x + 4]
[5*x^3 + 2*x + 1 2*x^2 + 2*x + 5 4*x^2]

sage: V = Matrix([[3*x^2 + 4*x + 1, 4*x]])
sage: A[:2,:].solve_left_series_trunc(V*A[:2,:], 4) == V
True

sage: A[1,:] = (x+1) * A[0,:]; A[2,:] = (x+5) * A[0,:]
sage: B = (3*x^3+x^2+2)*A[0,:]
sage: A.solve_left_series_trunc(B, 6)
[4*x^2 + 6*x + 2 3*x^2 + x 0]

See also

solve_right_series_trunc() .
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solve_right_series_trunc(B, d)
Try to find a solution 𝑋 to the equation 𝐴𝑋 = 𝐵, at precision d.

If self is a matrix 𝐴, then this function returns a vector or matrix𝑋 such that 𝐴𝑋 = 𝐵 mod 𝑥𝑑. If 𝐵 is a
vector then 𝑋 is a vector, and if 𝐵 is a matrix then 𝑋 is a matrix.

Raises ValueError if d is not strictly positive, or if there is a dimension mismatch between 𝐴 and 𝐵, or
if there is no solution to the given matrix equation at the specified precision.

INPUT:

• B – a polynomial matrix or polynomial vector

• d – positive integer

OUTPUT:

A solution to the matrix equation, returned as polynomial matrix of degree less than d if B is a polynomial
matrix; a polynomial vector of degree less than d if 𝐵 is a polynomial vector.

ALGORITHM:

If 𝐴 is square with invertible constant term, then the unique solution is found by calling inverse_se-
ries_trunc() and using the Dixon & Moenck-Carter iteration. Otherwise, a right minimal approximant
basis of a matrix formed by𝐴 and𝐵 is computed, for an appropriate shift which ensures that this basis reveals
either a solution 𝑋 or the fact that no such solution exists.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: A = Matrix(pR, 3, 3,
....: [[4*x+5, 5*x^2 + x + 1, 4*x^2 + 4],
....: [6*x^2 + 6*x + 6, 4*x^2 + 5*x, 4*x^2 + x + 3],
....: [3*x^2 + 2, 4*x + 1, x^2 + 3*x]])
sage: A.is_square() and A.constant_matrix().is_invertible()
True
sage: B = vector([2*x^2 + 6*x + 6, 0, x + 6])
sage: X = A.solve_right_series_trunc(B, 4); X
(2*x^3 + x^2, 5*x^3 + x^2 + 5*x + 6, 4*x^3 + 6*x^2 + 4*x)
sage: B == A*X % x**4
True
sage: B = Matrix(pR, 3, 2,
....: [[5*x^2 + 6*x + 3, 4*x^2 + 6*x + 4],
....: [ x^2 + 4*x + 2, 5*x + 2],
....: [ 5*x + 3, 0]])
sage: A.solve_right_series_trunc(B, 3)
[ 3*x^2 + x + 1 5*x^2 + 4*x + 3]
[6*x^2 + 3*x + 1 4*x + 1]
[ 6*x^2 + 1 2*x^2 + x + 4]
sage: X = A.solve_right_series_trunc(B, 37); B == A*X % x**37
True

Dimensions of input are checked:

sage: A.solve_right_series_trunc(B[:2,:], 3)
Traceback (most recent call last):
...
ValueError: number of rows of self must equal number of rows of right-hand␣
→˓side

Raises an exception when no solution:
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sage: A[:,2:].solve_right_series_trunc(B, 4)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

sage: Ax = x*A; C = vector(pR, [1,1,1])
sage: Ax.solve_right_series_trunc(C, 5)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions

Supports rectangular and rank-deficient cases:

sage: A[:2,:].solve_right_series_trunc(B[:2,:],4)
[ 5*x^2 + 4*x x + 4]
[ x^2 + 3*x + 5 3*x^2 + 4*x + 4]
[ 5*x + 3 3*x + 2]

sage: V = Matrix([[2*x^2 + 5*x + 1], [3*x^2+4]])
sage: A[:,:2].solve_right_series_trunc(A[:,:2]*V, 4) == V
True

sage: A[:,1] = (x+1) * A[:,0]; A[:,2] = (x+5) * A[:,0]
sage: B = (3*x^3+x^2+2)*A[:,0]
sage: A.solve_right_series_trunc(B, 6)
[4*x^2 + 6*x + 2]
[ 3*x^2 + x]
[ 0]

See also

solve_left_series_trunc() .

truncate(d, row_wise=True)
Return the matrix which is obtained from this matrix after truncating all its entries according to precisions
specified by 𝑑.

• if 𝑑 is an integer, the truncation is at precision 𝑑 for all entries;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑚) and row_wise is True, all entries of the 𝑖-th row are truncated at precision
𝑑𝑖 for each 𝑖;

• if 𝑑 is a list (𝑑1, . . . , 𝑑𝑛) and row_wise is False, all entries of the 𝑗-th column are truncated at
precision 𝑑𝑗 for each 𝑗.

Here the convention for univariate polynomials is to take zero for the truncation for a negative 𝑑.

INPUT:

• d – list of integers, or an integer,

• row_wise – boolean (default: True); if True (resp. False) then 𝑑 should be a list of length equal
to the row (resp. column) dimension of this matrix

OUTPUT: a polynomial matrix

EXAMPLES:
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sage: pR.<x> = GF(7)[]

sage: M = Matrix([
....: [ x^3+5*x^2+5*x+1, 5, 6*x+4, 0],
....: [ 6*x^2+3*x+1, 1, 2, 0],
....: [2*x^3+4*x^2+6*x+4, 5*x + 1, 2*x^2+5*x+5, x^2+5*x+6]
....: ])
sage: M.truncate(2)
[5*x + 1 5 6*x + 4 0]
[3*x + 1 1 2 0]
[6*x + 4 5*x + 1 5*x + 5 5*x + 6]
sage: M.truncate(1) == M.constant_matrix()
True

Row-wise and column-wise truncation are available:

sage: M.truncate([3,2,1])
[5*x^2 + 5*x + 1 5 6*x + 4 0]
[ 3*x + 1 1 2 0]
[ 4 1 5 6]

sage: M.truncate([2,1,1,2], row_wise=False)
[5*x + 1 5 4 0]
[3*x + 1 1 2 0]
[6*x + 4 1 5 5*x + 6]

Length of list of truncation orders is checked:

sage: M.truncate([2,1,1,2])
Traceback (most recent call last):
...
ValueError: length of input precision list should be the row
dimension of the input matrix

sage: M.truncate([3,2,1], row_wise=False)
Traceback (most recent call last):
...
ValueError: length of input precision list should be the column
dimension of the input matrix

See also

sage.rings.polynomial.polynomial_element.Polynomial.truncate() .

weak_popov_form(transformation=False, shifts=None, row_wise=True, ordered=False,
include_zero_vectors=True)

Return a (shifted) (ordered) weak Popov form of this matrix.

See is_weak_popov() for a definition of weak Popov forms. If the input matrix is𝐴, a weak Popov form
of 𝐴 is any matrix 𝑃 in weak Popov form and such that 𝑈𝐴 = 𝑃 for some unimodular matrix 𝑈 . The latter
matrix is called the transformation, and the first optional argument allows one to specify whether to return
this transformation.

Sometimes, one forbids weak Popov forms to have zero rows (resp. columns) in the above definitions; an
optional parameter allows one to adopt this more restrictive setting. If zero rows (resp. columns) are allowed,
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the convention here is to place them as the bottommost rows (resp. the rightmost columns) of the output
weak Popov form.

Note that, if asking for the transformation and discarding zero vectors (i.e. transformation=True
and include_zero_vectors=False), then the returned transformation is still the complete unimod-
ular matrix, including its bottommost rows (resp. rightmost columns) which correspond to zero rows (resp.
columns) of the complete weak Popov form. In fact, this bottom part of the transformation yields a basis of
the left (resp. right) kernel of the input matrix.

INPUT:

• transformation – (default: False) if this is True, the transformation matrix 𝑈 will be returned
as well

• shifts – (default: None) list of integers; None is interpreted as shifts=[0,...,0]

• row_wise – boolean (default: True); True if working row-wise (see the class description)

• ordered – boolean (default: False); True if seeking an ordered weak Popov form

• include_zero_vectors – boolean (default: True); False if zero rows (resp. zero columns)
should be discarded from the (ordered) weak Popov forms

OUTPUT:

A polynomial matrix which is a weak Popov form of self if transformation is False; otherwise two
polynomial matrices which are a weak Popov form of self and the corresponding unimodular transforma-
tion.

ALGORITHM:

This method implements the Mulders-Storjohann algorithm of [MS2003], straightforwardly extended to the
case of shifted forms.

EXAMPLES:

sage: pR.<x> = GF(7)[]
sage: M = Matrix(pR, [
....: [ 6*x+4, 5*x^3+5*x, 6*x^2+2*x+2],
....: [4*x^2+5*x+2, x^4+5*x^2+2*x+4, 4*x^3+6*x^2+6*x+5]])
sage: P, U = M.weak_popov_form(transformation=True)
sage: P
[ 4 x^2 6*x^2 + x + 2]
[ 2 4*x^2 + 2*x + 4 5]
sage: U
[2*x^2 + 1 4*x]
[ 4*x 1]
sage: P.is_weak_popov() and U.is_invertible() and U*M == P
True

Demonstrating the ordered option:

sage: P.leading_positions()
[2, 1]
sage: PP = M.weak_popov_form(ordered=True); PP
[ 2 4*x^2 + 2*x + 4 5]
[ 4 x^2 6*x^2 + x + 2]
sage: PP.leading_positions()
[1, 2]

Demonstrating shifts:
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sage: P = M.weak_popov_form(shifts=[0,2,4]); P
[ 6*x^2 + 6*x + 4 5*x^4 + 4*x^3 + 5*x^2 + 5*x ␣
→˓2*x + 2]
[ 2 4*x^2 + 2*x + 4 ␣
→˓ 5]
sage: P == M.weak_popov_form(shifts=[-10,-8,-6])
True

Column-wise form is the row-wise form of the transpose:

sage: M.weak_popov_form() == M.T.weak_popov_form(row_wise=False).T
True

Zero vectors can be discarded:

sage: M.weak_popov_form(row_wise=False)
[x + 4 6 0]
[ 5 1 0]

sage: # needs sage.combinat
sage: P, U = M.weak_popov_form(transformation=True,
....: row_wise=False,
....: include_zero_vectors=False)
sage: P
[x + 4 6]
[ 5 1]
sage: U
[ 5*x + 2 5*x^2 + 4*x + 4 3*x^3 + 3*x^2 + 2*x + 4]
[ 1 1 2*x + 1]
[ 5*x + 5 2 6]
sage: M*U[:,:2] == P and (M*U[:,2]).is_zero()
True

See also

is_weak_popov() , reduced_form() , popov_form() , hermite_form() .
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CHAPTER

THIRTYTHREE

DENSE MATRICES OVER MULTIVARIATE POLYNOMIALS OVER
FIELDS

This implementation inherits from Matrix_generic_dense, i.e. it is not optimized for speed only some methods were
added.

AUTHOR:

• Martin Albrecht <malb@informatik.uni-bremen.de>

class sage.matrix.matrix_mpolynomial_dense.Matrix_mpolynomial_dense

Bases: Matrix_generic_dense

Dense matrix over a multivariate polynomial ring over a field.

determinant(algorithm=None)
Return the determinant of this matrix.

INPUT:

• algorithm – ignored

EXAMPLES:

We compute the determinant of the arbitrary 3𝑥3 matrix:

sage: R = PolynomialRing(QQ, 9, �x�)
sage: A = matrix(R, 3, R.gens())
sage: A
[x0 x1 x2]
[x3 x4 x5]
[x6 x7 x8]
sage: A.determinant()
-x2*x4*x6 + x1*x5*x6 + x2*x3*x7 - x0*x5*x7 - x1*x3*x8 + x0*x4*x8

We check if two implementations agree on the result:

sage: R.<x,y> = QQ[]
sage: C = matrix(R, [[-6/5*x*y - y^2, -6*y^2 - 1/4*y],
....: [ -1/3*x*y - 3, x*y - x]])
sage: C.determinant()
-6/5*x^2*y^2 - 3*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 - 18*y^2 - 3/4*y

sage: C.change_ring(R.change_ring(QQbar)).det()
(-6/5)*x^2*y^2 + (-3)*x*y^3 + 6/5*x^2*y + 11/12*x*y^2 + (-18)*y^2 + (-3/4)*y

Finally, we check whether the Singular interface is working:
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sage: R.<x,y> = RR[]
sage: C = matrix(R, [[0.368965517352886*y^2 + 0.425700773972636*x, -0.
→˓800362171389760*y^2 - 0.807635502485287],
....: [0.706173539423122*y^2 - 0.915986060298440, 0.
→˓897165181570476*y + 0.107903328188376]])
sage: C.determinant()
0.565194587390682*y^4 + 0.33102301536914...*y^3 + 0.381923912175852*x*y - 0.
→˓122977163520282*y^2 + 0.0459345303240150*x - 0.739782862078649

ALGORITHM: Calls Singular, libSingular or native implementation.

echelon_form(algorithm='row_reduction', **kwds)
Return an echelon form of self using chosen algorithm.

By default only a usual row reduction with no divisions or column swaps is returned.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via
swapped_columns().

INPUT:

• algorithm – string, which algorithm to use (default: ‘row_reduction’). Valid options are:

– �row_reduction� (default) – reduce as far as possible, only divide by constant entries

– �frac� – reduced echelon form over fraction field

– �bareiss� – fraction free Gauss-Bareiss algorithm with column swaps

OUTPUT:

The row echelon form of A depending on the chosen algorithm, as an immutable matrix. Note that self is
not changed by this command. Use A.echelonize() to change 𝐴 in place.

EXAMPLES:

sage: P.<x,y> = PolynomialRing(GF(127), 2)
sage: A = matrix(P, 2, 2, [1, x, 1, y])
sage: A
[1 x]
[1 y]
sage: A.echelon_form()
[ 1 x]
[ 0 -x + y]

The reduced row echelon form over the fraction field is as follows:

sage: A.echelon_form(�frac�) # over fraction field
[1 0]
[0 1]

Alternatively, the Gauss-Bareiss algorithm may be chosen:

sage: E = A.echelon_form(�bareiss�); E
[ 1 y]
[ 0 x - y]

After the application of the Gauss-Bareiss algorithm the swapped columns may inspected:
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sage: E.swapped_columns(), E.pivots()
((0, 1), (0, 1))
sage: A.swapped_columns(), A.pivots()
(None, (0, 1))

Another approach is to row reduce as far as possible:

sage: A.echelon_form(�row_reduction�)
[ 1 x]
[ 0 -x + y]

echelonize(algorithm='row_reduction', **kwds)
Transform self into a matrix in echelon form over the same base ring as self.

If Gauss-Bareiss algorithm is chosen, column swaps are recorded and can be retrieved via
swapped_columns().

INPUT:

• algorithm – string, which algorithm to use. Valid options are:

– �row_reduction� – reduce as far as possible, only divide by constant entries

– �bareiss� – fraction free Gauss-Bareiss algorithm with column swaps

EXAMPLES:

sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: A = matrix(P, 2, 2, [1/2, x, 1, 3/4*y+1])
sage: A
[ 1/2 x]
[ 1 3/4*y + 1]

sage: B = copy(A)
sage: B.echelonize(�bareiss�); B
[ 1 3/4*y + 1]
[ 0 x - 3/8*y - 1/2]

sage: B = copy(A)
sage: B.echelonize(�row_reduction�); B
[ 1 2*x]
[ 0 -2*x + 3/4*y + 1]

sage: P.<x,y> = PolynomialRing(QQ, 2)
sage: A = matrix(P,2,3,[2,x,0,3,y,1]); A
[2 x 0]
[3 y 1]

sage: E = A.echelon_form(�bareiss�); E
[1 3 y]
[0 2 x]
sage: E.swapped_columns()
(2, 0, 1)
sage: A.pivots()
(0, 1, 2)

pivots()

Return the pivot column positions of this matrix as a list of integers.

This returns a list, of the position of the first nonzero entry in each row of the echelon form.
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OUTPUT: list of Python ints

EXAMPLES:

sage: matrix([PolynomialRing(GF(2), 2, �x�).gen()]).pivots()
(0,)
sage: K = QQ[�x,y�]
sage: x, y = K.gens()
sage: m = matrix(K, [(-x, 1, y, x - y), (-x*y, y, y^2 - 1, x*y - y^2 + x), (-
→˓x*y + x, y - 1, y^2 - y - 2, x*y - y^2 + x + y)])
sage: m.pivots()
(0, 2)
sage: m.rank()
2

swapped_columns()

Return which columns were swapped during the Gauss-Bareiss reduction.

OUTPUT:

Return a tuple representing the column swaps during the last application of the Gauss-Bareiss algorithm (see
echelon_form() for details).

The tuple as length equal to the rank of self and the value at the 𝑖-th position indicates the source column
which was put as the 𝑖-th column.

If no Gauss-Bareiss reduction was performed yet, None is returned.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: C = random_matrix(R, 2, 2, terms=2)
sage: while C.rank() != 2:
....: C = random_matrix(R, 2, 2, terms=2)
sage: C.swapped_columns()
sage: E = C.echelon_form(�bareiss�)
sage: sorted(E.swapped_columns())
[0, 1]
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MATRICES OVER CYCLOTOMIC FIELDS

The underlying matrix for a Matrix_cyclo_dense object is stored as follows: given an n x m matrix over a cyclotomic field
of degree d, we store a d x (nm) matrix over QQ, each column of which corresponds to an element of the original matrix.
This can be retrieved via the _rational_matrix method. Here is an example illustrating this:

EXAMPLES:

sage: F.<zeta> = CyclotomicField(5)
sage: M = Matrix(F, 2, 3, [zeta, 3, zeta**4+5, (zeta+1)**4, 0, 1])
sage: M
[ zeta 3 -zeta^3 - zeta^2 - zeta +␣
→˓4]
[3*zeta^3 + 5*zeta^2 + 3*zeta 0 ␣
→˓1]

sage: M._rational_matrix()
[ 0 3 4 0 0 1]
[ 1 0 -1 3 0 0]
[ 0 0 -1 5 0 0]
[ 0 0 -1 3 0 0]

AUTHORS:

• William Stein

• Craig Citro

class sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense

Bases: Matrix_dense

Initialize a newly created cyclotomic matrix.

INPUT:

• parent – a matrix space over a cyclotomic number field

• entries – see matrix()

• copy – ignored (for backwards compatibility)

• coerce – if False, assume without checking that the entries lie in the base ring

EXAMPLES:

This function is called implicitly when you create new cyclotomic dense matrices:

sage: W.<a> = CyclotomicField(100)
sage: A = matrix(2, 3, [1, 1/a, 1-a,a, -2/3*a, a^19])
sage: A

(continues on next page)
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(continued from previous page)

[ 1 -a^39 + a^29 - a^19 + a^9 -a + 1]
[ a -2/3*a a^19]
sage: TestSuite(A).run()

charpoly(var='x', algorithm='multimodular', proof=None)
Return the characteristic polynomial of self, as a polynomial over the base ring.

INPUT:

• algorithm – options:

– �multimodular� (default): reduce modulo primes, compute charpoly mod p, and lift (very fast)

– �pari�: use pari (quite slow; comparable to Magma v2.14 though)

– �hessenberg�: put matrix in Hessenberg form (double dog slow)

• proof – boolean (default: None); proof flag determined by global linalg proof

OUTPUT: polynomial

EXAMPLES:

sage: K.<z> = CyclotomicField(5)
sage: a = matrix(K, 3, [1,z,1+z^2, z/3,1,2,3,z^2,1-z])
sage: f = a.charpoly(); f
x^3 + (z - 3)*x^2 + (-16/3*z^2 - 2*z)*x - 2/3*z^3 + 16/3*z^2 - 5*z + 5/3
sage: f(a)
[0 0 0]
[0 0 0]
[0 0 0]
sage: a.charpoly(algorithm=�pari�)
x^3 + (z - 3)*x^2 + (-16/3*z^2 - 2*z)*x - 2/3*z^3 + 16/3*z^2 - 5*z + 5/3
sage: a.charpoly(algorithm=�hessenberg�)
x^3 + (z - 3)*x^2 + (-16/3*z^2 - 2*z)*x - 2/3*z^3 + 16/3*z^2 - 5*z + 5/3

sage: Matrix(K, 1, [0]).charpoly()
x
sage: Matrix(K, 1, [5]).charpoly(var=�y�)
y - 5

sage: Matrix(CyclotomicField(13),3).charpoly()
x^3
sage: Matrix(CyclotomicField(13),3).charpoly()[2].parent()
Cyclotomic Field of order 13 and degree 12

coefficient_bound()

Return an upper bound for the (complex) absolute values of all entries ofselfwith respect to all embeddings.

Use self.height() for a sharper bound.

This is computed using just the Cauchy-Schwarz inequality, i.e., we use the fact that

\left| \sum_i a_i\zeta^i \right| \leq \sum_i |a_i|,

as |𝜁| = 1.

EXAMPLES:
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sage: W.<z> = CyclotomicField(5)
sage: A = matrix(W, 2, 2, [1+z, 0, 9*z+7, -3 + 4*z]); A
[ z + 1 0]
[9*z + 7 4*z - 3]
sage: A.coefficient_bound()
16

The above bound is just 9 + 7, coming from the lower left entry. A better bound would be the following:

sage: (A[1,0]).abs()
12.997543663...

denominator()

Return the denominator of the entries of this matrix.

OUTPUT: integer; the smallest integer 𝑑 so that d * self has entries in the ring of integers

EXAMPLES:

sage: W.<z> = CyclotomicField(5)
sage: A = matrix(W, 2, 2, [-2/7,2/3*z+z^2,-z,1+z/19]); A
[ -2/7 z^2 + 2/3*z]
[ -z 1/19*z + 1]
sage: d = A.denominator(); d
399

echelon_form(algorithm='multimodular', height_guess=None)
Find the echelon form of self, using the specified algorithm.

The result is cached for each algorithm separately.

EXAMPLES:

sage: W.<z> = CyclotomicField(3)
sage: A = matrix(W, 2, 3, [1+z, 2/3, 9*z+7, -3 + 4*z, z, -7*z]); A
[ z + 1 2/3 9*z + 7]
[4*z - 3 z -7*z]
sage: A.echelon_form()
[ 1 0 -192/97*z - 361/97]
[ 0 1 1851/97*z + 1272/97]
sage: A.echelon_form(algorithm=�classical�)
[ 1 0 -192/97*z - 361/97]
[ 0 1 1851/97*z + 1272/97]

We verify that the result is cached and that the caches are separate:

sage: A.echelon_form() is A.echelon_form()
True
sage: A.echelon_form() is A.echelon_form(algorithm=�classical�)
False

height()

Return the height of self.

If we let 𝑎𝑖𝑗 be the 𝑖, 𝑗 entry of self, then we define the height of self to be

max𝑣 max𝑖,𝑗 |𝑎𝑖𝑗 |𝑣 ,

where 𝑣 runs over all complex embeddings of self.base_ring().
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EXAMPLES:

sage: W.<z> = CyclotomicField(5)
sage: A = matrix(W, 2, 2, [1+z, 0, 9*z+7, -3 + 4*z]); A
[ z + 1 0]
[9*z + 7 4*z - 3]
sage: A.height()
12.997543663...
sage: (A[1,0]).abs()
12.997543663...

randomize(density=1, num_bound=2, den_bound=2, distribution=None, nonzero=False, *args, **kwds)
Randomize the entries of self.

Choose rational numbers according to distribution, whose numerators are bounded by num_bound
and whose denominators are bounded by den_bound.

EXAMPLES:

sage: A = Matrix(CyclotomicField(5),2,2,range(4)) ; A
[0 1]
[2 3]
sage: A.randomize()
sage: A # random output
[ 1/2*zeta5^2 + zeta5 1/2]
[ -zeta5^2 + 2*zeta5 -2*zeta5^3 + 2*zeta5^2 + 2]

set_immutable()

Change this matrix so that it is immutable.

EXAMPLES:

sage: W.<z> = CyclotomicField(5)
sage: A = matrix(W, 2, 2, [1,2/3*z+z^2,-z,1+z/2])
sage: A[0,0] = 10
sage: A.set_immutable()
sage: A[0,0] = 20
Traceback (most recent call last):
...
ValueError: matrix is immutable; please change a copy instead (i.e., use␣
→˓copy(M) to change a copy of M).

Note that there is no function to set a matrix to be mutable again, since such a function would violate the
whole point. Instead make a copy, which is always mutable by default.:

sage: A.set_mutable()
Traceback (most recent call last):
...
AttributeError: �sage.matrix.matrix_cyclo_dense.Matrix_cyclo_dense� object␣
→˓has no attribute �set_mutable�...
sage: B = A.__copy__()
sage: B[0,0] = 20
sage: B[0,0]
20

tensor_product(A, subdivide=True)
Return the tensor product of two matrices.

INPUT:
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• A – a matrix

• subdivide – boolean (default: True); whether or not to return natural subdivisions with the matrix

OUTPUT:

Replace each element of self by a copy of A, but first create a scalar multiple of A by the element it replaces.
So if self is an 𝑚 × 𝑛 matrix and A is a 𝑝 × 𝑞 matrix, then the tensor product is an 𝑚𝑝 × 𝑛𝑞 matrix. By
default, the matrix will be subdivided into submatrices of size 𝑝× 𝑞.

EXAMPLES:

sage: C = CyclotomicField(12)
sage: M = matrix.random(C, 3, 3)
sage: N = matrix.random(C, 50, 50)
sage: M.tensor_product(M) == super(type(M), M).tensor_product(M)
True
sage: N = matrix.random(C, 15, 20)
sage: M.tensor_product(N) == super(type(M), M).tensor_product(N)
True
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OPERATION TABLES

This module implements general operation tables, which are very matrix-like.

class sage.matrix.operation_table.OperationTable(S, operation, names='letters',
elements=None)

Bases: SageObject

An object that represents a binary operation as a table.

Primarily this object is used to provide a multiplication_table() for objects in the category of magmas
(monoids, groups, …) and addition_table() for objects in the category of commutative additive magmas
(additive monoids, groups, …).

INPUT:

• S – a finite algebraic structure (or finite iterable)

• operation – a function of two variables that accepts pairs
of elements from S. A natural source of such functions is the Python operatormodule, and in partic-
ular operator.add() and operator.mul(). This may also be a function defined with lambda
or def.

• names – (default: �letters�) The type of names used, values are:

– �letters� – lowercase ASCII letters are used for a base 26 representation of the elements’ positions
in the list given by column_keys(), padded to a common width with leading ‘a’s.

– �digits� – base 10 representation of the elements’ positions in the list given by column_keys(),
padded to a common width with leading zeros.

– �elements� – the string representations of the elements themselves.

– a list - a list of strings, where the length of the list equals the number of elements.

• elements – (default: None) A list of elements ofS, in forms that can be coerced into the structure, eg. their
string representations. This may be used to impose an alternate ordering on the elements of S, perhaps when
this is used in the context of a particular structure. The default is to use whatever ordering the S.list()
method returns. elements can also be a subset which is closed under the operation, useful perhaps when
the set is infinite.

OUTPUT:

An object with methods that abstracts multiplication tables, addition tables, Cayley tables, etc. It should be general
enough to be useful for any finite algebraic structure whose elements can be combined with a binary operation.
This is not necessarily meant be constructed directly, but instead should be useful for constructing operation tables
of various algebraic structures that have binary operations.

EXAMPLES:

In its most basic use, the table needs a structure and an operation:
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sage: from sage.matrix.operation_table import OperationTable
sage: G = SymmetricGroup(3) #␣
→˓needs sage.groups
sage: OperationTable(G, operation=operator.mul) #␣
→˓needs sage.groups
* a b c d e f
+------------
a| a b c d e f
b| b a d c f e
c| c e a f b d
d| d f b e a c
e| e c f a d b
f| f d e b c a

With two operations present, we can specify which operation we want:

sage: from sage.matrix.operation_table import OperationTable
sage: R = Integers(6)
sage: OperationTable(R, operation=operator.add)
+ a b c d e f
+------------
a| a b c d e f
b| b c d e f a
c| c d e f a b
d| d e f a b c
e| e f a b c d
f| f a b c d e

The default symbol set for elements is lowercase ASCII letters, which take on a base 26 flavor for structures with
more than 26 elements.

sage: from sage.matrix.operation_table import OperationTable
sage: G = DihedralGroup(14) #␣
→˓needs sage.groups
sage: OperationTable(G, operator.mul, names=�letters�) #␣
→˓needs sage.groups
* aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az␣
→˓ba bb
+-------------------------------------------------------------------------------

→˓-----
aa| aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az␣
→˓ba bb
ab| ab aa ad ac af ae ah ag aj ai al ak an am ap ao ar aq at as av au ax aw az ay␣
→˓bb ba
ac| ac ba aa ae ad ag af ai ah ak aj am al ao an aq ap as ar au at aw av ay ax bb␣
→˓ab az
ad| ad bb ab af ac ah ae aj ag al ai an ak ap am ar ao at aq av as ax au az aw ba␣
→˓aa ay
ae| ae az ba ag aa ai ad ak af am ah ao aj aq al as an au ap aw ar ay at bb av ab␣
→˓ac ax
af| af ay bb ah ab aj ac al ae an ag ap ai ar ak at am av ao ax aq az as ba au aa␣
→˓ad aw
ag| ag ax az ai ba ak aa am ad ao af aq ah as aj au al aw an ay ap bb ar ab at ac␣
→˓ae av
ah| ah aw ay aj bb al ab an ac ap ae ar ag at ai av ak ax am az ao ba aq aa as ad␣
→˓af au
ai| ai av ax ak az am ba ao aa aq ad as af au ah aw aj ay al bb an ab ap ac ar ae␣

(continues on next page)
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(continued from previous page)

→˓ag at
aj| aj au aw al ay an bb ap ab ar ac at ae av ag ax ai az ak ba am aa ao ad aq af␣
→˓ah as
ak| ak at av am ax ao az aq ba as aa au ad aw af ay ah bb aj ab al ac an ae ap ag␣
→˓ai ar
al| al as au an aw ap ay ar bb at ab av ac ax ae az ag ba ai aa ak ad am af ao ah␣
→˓aj aq
am| am ar at ao av aq ax as az au ba aw aa ay ad bb af ab ah ac aj ae al ag an ai␣
→˓ak ap
an| an aq as ap au ar aw at ay av bb ax ab az ac ba ae aa ag ad ai af ak ah am aj␣
→˓al ao
ao| ao ap ar aq at as av au ax aw az ay ba bb aa ab ad ac af ae ah ag aj ai al ak␣
→˓am an
ap| ap ao aq ar as at au av aw ax ay az bb ba ab aa ac ad ae af ag ah ai aj ak al␣
→˓an am
aq| aq an ap as ar au at aw av ay ax bb az ab ba ac aa ae ad ag af ai ah ak aj am␣
→˓ao al
ar| ar am ao at aq av as ax au az aw ba ay aa bb ad ab af ac ah ae aj ag al ai an␣
→˓ap ak
as| as al an au ap aw ar ay at bb av ab ax ac az ae ba ag aa ai ad ak af am ah ao␣
→˓aq aj
at| at ak am av ao ax aq az as ba au aa aw ad ay af bb ah ab aj ac al ae an ag ap␣
→˓ar ai
au| au aj al aw an ay ap bb ar ab at ac av ae ax ag az ai ba ak aa am ad ao af aq␣
→˓as ah
av| av ai ak ax am az ao ba aq aa as ad au af aw ah ay aj bb al ab an ac ap ae ar␣
→˓at ag
aw| aw ah aj ay al bb an ab ap ac ar ae at ag av ai ax ak az am ba ao aa aq ad as␣
→˓au af
ax| ax ag ai az ak ba am aa ao ad aq af as ah au aj aw al ay an bb ap ab ar ac at␣
→˓av ae
ay| ay af ah bb aj ab al ac an ae ap ag ar ai at ak av am ax ao az aq ba as aa au␣
→˓aw ad
az| az ae ag ba ai aa ak ad am af ao ah aq aj as al au an aw ap ay ar bb at ab av␣
→˓ax ac
ba| ba ac ae aa ag ad ai af ak ah am aj ao al aq an as ap au ar aw at ay av bb ax␣
→˓az ab
bb| bb ad af ab ah ac aj ae al ag an ai ap ak ar am at ao av aq ax as az au ba aw␣
→˓ay aa

Another symbol set is base 10 digits, padded with leading zeros to make a common width.

sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(4) #␣
→˓needs sage.groups
sage: OperationTable(G, operator.mul, names=�digits�) #␣
→˓needs sage.groups
* 00 01 02 03 04 05 06 07 08 09 10 11
+------------------------------------

00| 00 01 02 03 04 05 06 07 08 09 10 11
01| 01 02 00 05 03 04 07 08 06 11 09 10
02| 02 00 01 04 05 03 08 06 07 10 11 09
03| 03 06 09 00 07 10 01 04 11 02 05 08
04| 04 08 10 02 06 11 00 05 09 01 03 07
05| 05 07 11 01 08 09 02 03 10 00 04 06
06| 06 09 03 10 00 07 04 11 01 08 02 05
07| 07 11 05 09 01 08 03 10 02 06 00 04

(continues on next page)
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08| 08 10 04 11 02 06 05 09 00 07 01 03
09| 09 03 06 07 10 00 11 01 04 05 08 02
10| 10 04 08 06 11 02 09 00 05 03 07 01
11| 11 05 07 08 09 01 10 02 03 04 06 00

If the group’s elements are not too cumbersome, or the group is small, then the string representation of the elements
can be used.

sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(3) #␣
→˓needs sage.groups
sage: OperationTable(G, operator.mul, names=�elements�) #␣
→˓needs sage.groups

* () (1,2,3) (1,3,2)
+------------------------

()| () (1,2,3) (1,3,2)
(1,2,3)| (1,2,3) (1,3,2) ()
(1,3,2)| (1,3,2) () (1,2,3)

You can give the elements any names you like, but they need to be ordered in the same order as returned by the
column_keys() method.

sage: # needs sage.groups
sage: from sage.matrix.operation_table import OperationTable
sage: G = QuaternionGroup()
sage: T = OperationTable(G, operator.mul)
sage: T.column_keys()
((), (1,2,3,4)(5,6,7,8), ..., (1,8,3,6)(2,7,4,5))
sage: names=[�1�, �I�, �-1�, �-I�, �J�, �-K�, �-J�, �K�]
sage: T.change_names(names=names)
sage: sorted(T.translation().items())
[(�-1�, (1,3)(2,4)(5,7)(6,8)), ..., (�K�, (1,8,3,6)(2,7,4,5))]
sage: T
* 1 I -1 -I J -K -J K
+------------------------

1| 1 I -1 -I J -K -J K
I| I -1 -I 1 K J -K -J
-1| -1 -I 1 I -J K J -K
-I| -I 1 I -1 -K -J K J
J| J -K -J K -1 -I 1 I
-K| -K -J K J I -1 -I 1
-J| -J K J -K 1 I -1 -I
K| K J -K -J -I 1 I -1

With the right functions and a list comprehension, custom names can be easier. A multiplication table for hex digits
(without carries):

sage: from sage.matrix.operation_table import OperationTable
sage: R = Integers(16)
sage: names=[�{:x}�.format(Integer(a)) for a in R]
sage: OperationTable(R, operation=operator.mul, names=names)
* 0 1 2 3 4 5 6 7 8 9 a b c d e f
+--------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 3 4 5 6 7 8 9 a b c d e f
2| 0 2 4 6 8 a c e 0 2 4 6 8 a c e

(continues on next page)
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3| 0 3 6 9 c f 2 5 8 b e 1 4 7 a d
4| 0 4 8 c 0 4 8 c 0 4 8 c 0 4 8 c
5| 0 5 a f 4 9 e 3 8 d 2 7 c 1 6 b
6| 0 6 c 2 8 e 4 a 0 6 c 2 8 e 4 a
7| 0 7 e 5 c 3 a 1 8 f 6 d 4 b 2 9
8| 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8
9| 0 9 2 b 4 d 6 f 8 1 a 3 c 5 e 7
a| 0 a 4 e 8 2 c 6 0 a 4 e 8 2 c 6
b| 0 b 6 1 c 7 2 d 8 3 e 9 4 f a 5
c| 0 c 8 4 0 c 8 4 0 c 8 4 0 c 8 4
d| 0 d a 7 4 1 e b 8 5 2 f c 9 6 3
e| 0 e c a 8 6 4 2 0 e c a 8 6 4 2
f| 0 f e d c b a 9 8 7 6 5 4 3 2 1

This should be flexible enough to create a variety of such tables.

sage: from sage.matrix.operation_table import OperationTable
sage: from operator import xor
sage: T=OperationTable(ZZ, xor, elements=range(8))
sage: T
. a b c d e f g h
+----------------
a| a b c d e f g h
b| b a d c f e h g
c| c d a b g h e f
d| d c b a h g f e
e| e f g h a b c d
f| f e h g b a d c
g| g h e f c d a b
h| h g f e d c b a
sage: names=[�000�, �001�,�010�,�011�,�100�,�101�,�110�,�111�]
sage: T.change_names(names)
sage: T.set_print_symbols(�^�, �\\land�)
sage: T
^ 000 001 010 011 100 101 110 111
+--------------------------------

000| 000 001 010 011 100 101 110 111
001| 001 000 011 010 101 100 111 110
010| 010 011 000 001 110 111 100 101
011| 011 010 001 000 111 110 101 100
100| 100 101 110 111 000 001 010 011
101| 101 100 111 110 001 000 011 010
110| 110 111 100 101 010 011 000 001
111| 111 110 101 100 011 010 001 000

sage: T = OperationTable([False, True], operator.or_, names = �elements�)
sage: T

. False True
+------------

False| False True
True| True True

AUTHORS:

• Rob Beezer (2010-03-15)

• Bruno Edwards (2022-10-31)
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change_names(names)
For an existing operation table, change the names used for the elements.

INPUT:

• names – the type of names used, values are:

– �letters� – lowercase ASCII letters are used for a base 26 representation of the elements’ posi-
tions in the list given by list(), padded to a common width with leading ‘a’s.

– �digits� – base 10 representation of the elements’ positions in the list given by list(), padded
to a common width with leading zeros.

– �elements� – the string representations of the elements themselves.

– a list - a list of strings, where the length of the list equals the number of elements.

OUTPUT: None. This method changes the table “in-place”, so any printed version will change and the output
of the dict() will also change. So any items of interest about a particular table need to be copied/saved
prior to calling this method.

EXAMPLES:

More examples can be found in the documentation for OperationTable since creating a new operation
table uses the same routine.

sage: # needs sage.groups
sage: from sage.matrix.operation_table import OperationTable
sage: D = DihedralGroup(2)
sage: T = OperationTable(D, operator.mul)
sage: T
* a b c d
+--------

a| a b c d
b| b a d c
c| c d a b
d| d c b a
sage: T.translation()[�c�]
(1,2)
sage: T.change_names(�digits�)
sage: T
* 0 1 2 3
+--------

0| 0 1 2 3
1| 1 0 3 2
2| 2 3 0 1
3| 3 2 1 0
sage: T.translation()[�2�]
(1,2)
sage: T.change_names(�elements�)
sage: T

* () (3,4) (1,2) (1,2)(3,4)
+--------------------------------------------

()| () (3,4) (1,2) (1,2)(3,4)
(3,4)| (3,4) () (1,2)(3,4) (1,2)
(1,2)| (1,2) (1,2)(3,4) () (3,4)

(1,2)(3,4)| (1,2)(3,4) (1,2) (3,4) ()
sage: T.translation()[�(1,2)�]
(1,2)
sage: T.change_names([�w�, �x�, �y�, �z�])

(continues on next page)
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sage: T
* w x y z
+--------

w| w x y z
x| x w z y
y| y z w x
z| z y x w
sage: T.translation()[�y�]
(1,2)

color_table(element_names=True, cmap=None, **options)
Return a graphic image as a square grid where entries are color coded.

INPUT:

• element_names – (default: True) whether to display text with element names on the image

• cmap – (default: matplotlib.cm.gist_rainbow) color map for plot, see matplotlib.cm

• **options – passed on to matrix_plot()

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: OTa = OperationTable(SymmetricGroup(3), operation=operator.mul) #␣
→˓needs sage.groups
sage: OTa.color_table() #␣
→˓needs sage.groups sage.plot
Graphics object consisting of 37 graphics primitives

a b c d e f

b a d c f e

c e a f b d

d f b e a c

e c f a d b

f d e b c a

column_keys()

Return a tuple of the elements used to build the table.

Note

column_keys and row_keys are identical. Both list the elements in the order used to label the table.
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OUTPUT:

The elements of the algebraic structure used to build the table, as a list. But most importantly, elements are
present in the list in the order which they appear in the table’s column headings.

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(3) #␣
→˓needs sage.groups
sage: T = OperationTable(G, operator.mul) #␣
→˓needs sage.groups
sage: T.column_keys() #␣
→˓needs sage.groups
((), (1,2,3), (1,3,2))

gray_table(**options)

Return a graphic image as a square grid where entries are displayed in grayscale.

INPUT:

• element_names – boolean (default: True); whether to display text with element names on the image

• **options – passed on to matrix_plot()

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: OTa = OperationTable(SymmetricGroup(3), operation=operator.mul) #␣
→˓needs sage.groups
sage: OTa.gray_table() #␣
→˓needs sage.groups sage.plot
Graphics object consisting of 37 graphics primitives

a b c d e f

b a d c f e

c e a f b d

d f b e a c

e c f a d b

f d e b c a

matrix_of_variables()

This method provides some backward compatibility for Cayley tables of groups, whose output was restricted
to this single format.

EXAMPLES:
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The output here is from the doctests for the old cayley_table() method for permutation groups.

sage: # needs sage.groups
sage: from sage.matrix.operation_table import OperationTable
sage: G = PermutationGroup([�(1,2,3)�, �(2,3)�])
sage: T = OperationTable(G, operator.mul)
sage: T.matrix_of_variables()
[x0 x1 x2 x3 x4 x5]
[x1 x0 x3 x2 x5 x4]
[x2 x4 x0 x5 x1 x3]
[x3 x5 x1 x4 x0 x2]
[x4 x2 x5 x0 x3 x1]
[x5 x3 x4 x1 x2 x0]
sage: T.column_keys()[2]*T.column_keys()[2] == T.column_keys()[0]
True

row_keys()

Return a tuple of the elements used to build the table.

Note

column_keys and row_keys are identical. Both list the elements in the order used to label the table.

OUTPUT:

The elements of the algebraic structure used to build the table, as a list. But most importantly, elements are
present in the list in the order which they appear in the table’s column headings.

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(3) #␣
→˓needs sage.groups
sage: T = OperationTable(G, operator.mul) #␣
→˓needs sage.groups
sage: T.column_keys() #␣
→˓needs sage.groups
((), (1,2,3), (1,3,2))

set_print_symbols(ascii, latex)
Set the symbols used for text and LaTeX printing of operation tables.

INPUT:

• ascii – a single character for text table

• latex – string to represent an operation in LaTeX math mode; note the need for double-backslashes
to escape properly

EXAMPLES:

sage: # needs sage.groups
sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(3)
sage: T = OperationTable(G, operator.mul)
sage: T.set_print_symbols(�@�, �\\times�)
sage: T
@ a b c

(continues on next page)
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+------
a| a b c
b| b c a
c| c a b
sage: T._latex_()
�{\\setlength{\\arraycolsep}{2ex}\n\\begin{array}{r|*{3}{r}}\n\\multicolumn{1}
→˓{c|}{\\times}&a&b&c\\\\\\hline\n{}a&a&b&c\\\\\n{}b&b&c&a\\\\\n{}c&c&a&b\\\\\
→˓n\\end{array}}�

table()

Return the table as a list of lists, using integers to reference the elements.

OUTPUT:

The rows of the table, as a list of rows, each row being a list of integer entries. The integers correspond to
the order of the elements in the headings of the table and the order of the output of the list() method.

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: C = CyclicPermutationGroup(3) #␣
→˓needs sage.groups
sage: T=OperationTable(C, operator.mul) #␣
→˓needs sage.groups
sage: T.table() #␣
→˓needs sage.groups
[[0, 1, 2], [1, 2, 0], [2, 0, 1]]

translation()

Return a dictionary associating names with elements.

OUTPUT:

A dictionary whose keys are strings used as names for entries of the table and values that are the actual
elements of the algebraic structure.

EXAMPLES:

sage: from sage.matrix.operation_table import OperationTable
sage: G = AlternatingGroup(3) #␣
→˓needs sage.groups
sage: T = OperationTable(G, operator.mul, names=[�p�,�q�,�r�]) #␣
→˓needs sage.groups
sage: T.translation() #␣
→˓needs sage.groups
{�p�: (), �q�: (1,2,3), �r�: (1,3,2)}
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CHAPTER

THIRTYSIX

ACTIONS USED BY THE COERCION MODEL FOR MATRIX AND
VECTOR MULTIPLICATIONS

Warning

The class MatrixMulAction and its descendants extends the class Action. As a consequence objects from these
classes only keep weak references to the underlying sets which are acted upon. This decision was made in Issue #715
in order to allow garbage collection within the coercion framework, where actions are mainly used, and avoid memory
leaks.

To ensure that the underlying set of such an object does not get garbage collected, it is sufficient to explicitly create a
strong reference to it before creating the action.

sage: MSQ = MatrixSpace(QQ, 2)
sage: MSZ = MatrixSpace(ZZ[�x�], 2)
sage: A = MSQ.get_action(MSZ)
sage: A
Left action by Full MatrixSpace of 2 by 2 dense matrices over Rational Field
on Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in x over Integer Ring

sage: import gc
sage: _ = gc.collect()
sage: A
Left action by Full MatrixSpace of 2 by 2 dense matrices over Rational Field
on Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in x over Integer Ring

Note

TheMatrixSpace() function caches the objects it creates. Therefore, the underlying setMSZ in the above example
will not be garbage collected, even if it is not strongly ref’ed. Nonetheless, there is no guarantee that the set that is
acted upon will always be cached in such a way, so that following the above example is good practice.

EXAMPLES:

An action requires a common parent for the base rings, so the following doesn’t work (see Issue #17859):

sage: vector(QQ, [1]) * matrix(Zmod(2), [[1]])
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for *: �Vector space of

(continues on next page)
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(continued from previous page)

dimension 1 over Rational Field� and �Full MatrixSpace of 1 by 1
dense matrices over Ring of integers modulo 2�

AUTHOR:

• Robert Bradshaw (2007-09): Initial version.

class sage.matrix.action.MatrixMatrixAction

Bases: MatrixMulAction

Action of a matrix on another matrix.

This is always implemented as a left action.

EXAMPLES:

By Issue #715, there only is a weak reference on the underlying set, so that it can be garbage collected if only the
action itself is explicitly referred to. Hence, we first assign the involved matrix spaces to a variable:

sage: R.<x> = ZZ[]
sage: MSR = MatrixSpace(R, 3, 3)
sage: MSQ = MatrixSpace(QQ, 3, 2)
sage: from sage.matrix.action import MatrixMatrixAction
sage: A = MatrixMatrixAction(MSR, MSQ); A
Left action
by Full MatrixSpace of 3 by 3 dense matrices

over Univariate Polynomial Ring in x over Integer Ring
on Full MatrixSpace of 3 by 2 dense matrices over Rational Field
sage: A.codomain()
Full MatrixSpace of 3 by 2 dense matrices
over Univariate Polynomial Ring in x over Rational Field
sage: A(matrix(R, 3, 3, x), matrix(QQ, 3, 2, range(6)))
[ 0 x]
[2*x 3*x]
[4*x 5*x]

Note

The MatrixSpace() function caches the object it creates. Therefore, the underlying set MSZ in the above
example will not be garbage collected, even if it is not strongly ref’ed. Nonetheless, there is no guarantee that
the set that is acted upon will always be cached in such a way, so that following the above example is good
practice.

class sage.matrix.action.MatrixMulAction

Bases: Action

Abstract base class for a matrix space acting on something.

EXAMPLES:

sage: MSQ = MatrixSpace(QQ, 2)
sage: MSZ = MatrixSpace(ZZ[�x�], 2)
sage: A = MSQ.get_action(MSZ); A
Left action by Full MatrixSpace of 2 by 2 dense matrices over Rational Field
on Full MatrixSpace of 2 by 2 dense matrices

over Univariate Polynomial Ring in x over Integer Ring

(continues on next page)
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(continued from previous page)

sage: A.actor()
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: A.domain()
Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in x over Integer Ring
sage: A.codomain()
Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in x over Rational Field

codomain()

class sage.matrix.action.MatrixPolymapAction

Bases: MatrixMulAction

Left action of a matrix on a scheme polynomial morphism

class sage.matrix.action.MatrixSchemePointAction

Bases: MatrixMulAction

Action class for left multiplication of schemes points by matrices.

class sage.matrix.action.MatrixVectorAction

Bases: MatrixMulAction

Left action of a matrix on a vector

class sage.matrix.action.PolymapMatrixAction

Bases: MatrixMulAction

Right action of a matrix on a scheme polynomial morphism

class sage.matrix.action.VectorMatrixAction

Bases: MatrixMulAction

Right action of a matrix on a vector
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CHAPTER

THIRTYSEVEN

FUNCTIONS FOR CHANGING THE BASE RING OF MATRICES
QUICKLY

sage.matrix.change_ring.integer_to_real_double_dense(A)

Fast conversion of a matrix over the integers to a matrix with real double entries.

INPUT:

• A – a dense matrix over the integers

OUTPUT: a dense real double matrix

EXAMPLES:

sage: a = matrix(ZZ,2,3,[-2,-5,3,4,8,1030339830489349908])
sage: a.change_ring(RDF)
[ -2.0 -5.0 3.0]
[ 4.0 8.0 1.0303398304893499e+18]
sage: import sage.matrix.change_ring
sage: sage.matrix.change_ring.integer_to_real_double_dense(a)
[ -2.0 -5.0 3.0]
[ 4.0 8.0 1.0303398304893499e+18]
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CHAPTER

THIRTYEIGHT

ECHELON MATRICES OVER FINITE FIELDS.

sage.matrix.echelon_matrix.reduced_echelon_matrix_iterator(K , k, n, sparse=False,
copy=True,
set_immutable=False)

An iterator over (𝑘, 𝑛) reduced echelon matrices over the finite field𝐾.

INPUT:

• K – a finite field

• k – number of rows (or the size of the subspace)

• n – number of columns (or the dimension of the ambient space)

• sparse – boolean (default: False)

• copy – boolean (default: True); if set to False then iterator yields the same matrix over and over (but
with different entries). Default is True which is safer but might be slower.

• set_immutable – boolean; if set to True then the output matrices are immutable. This option automat-
ically turns copy into True.

Note

We ensure that the iteration order is so that all matrices with given pivot columns are generated consecutively.
Furthermore, the order in which the pivot columns appear is lexicographic.

It would be faster to generate the pivots columns following a Gray code. There would be only one pivot changing
at a time, avoiding the possibly expensive m0.__copy__(). However that would modify the generation order
some functions depend upon.

EXAMPLES:

sage: from sage.matrix.echelon_matrix import reduced_echelon_matrix_iterator
sage: it = reduced_echelon_matrix_iterator(GF(2), 2, 3)
sage: for m in it:
....: print(m)
....: print(m.pivots())
....: print("*******")
[1 0 0]
[0 1 0]
(0, 1)
*******
[1 0 0]
[0 1 1]

(continues on next page)
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(0, 1)
*******
[1 0 1]
[0 1 0]
(0, 1)
*******
[1 0 1]
[0 1 1]
(0, 1)
*******
[1 0 0]
[0 0 1]
(0, 2)
*******
[1 1 0]
[0 0 1]
(0, 2)
*******
[0 1 0]
[0 0 1]
(1, 2)
*******
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CHAPTER

THIRTYNINE

MISCELLANEOUS MATRIX FUNCTIONS

sage.matrix.matrix_misc.permanental_minor_polynomial(A, permanent_only=False, var='t',
prec=None)

Return the polynomial of the sums of permanental minors of A.

INPUT:

• A – a matrix

• permanent_only – if True, return only the permanent of 𝐴

• var – name of the polynomial variable

• prec – if prec is not None, truncate the polynomial at precision 𝑝𝑟𝑒𝑐

The polynomial of the sums of permanental minors is

𝑚𝑖𝑛(𝑛𝑟𝑜𝑤𝑠,𝑛𝑐𝑜𝑙𝑠)∑︁
𝑖=0

𝑝𝑖(𝐴)𝑥𝑖

where 𝑝𝑖(𝐴) is the 𝑖-th permanental minor of 𝐴 (that can also be obtained through the method permanen-
tal_minor() via A.permanental_minor(i)).

The algorithm implemented by that function has been developed by P. Butera and M. Pernici, see [BP2015]. Its
complexity is 𝑂(2𝑛𝑚2𝑛) where𝑚 and 𝑛 are the number of rows and columns of 𝐴. Moreover, if 𝐴 is a banded
matrix with width 𝑤, that is 𝐴𝑖𝑗 = 0 for |𝑖 − 𝑗| > 𝑤 and 𝑤 < 𝑛/2, then the complexity of the algorithm is
𝑂(4𝑤(𝑤 + 1)𝑛2).

INPUT:

• A – matrix

• permanent_only – boolean (default: False); ifTrue, only the permanent is computed (might be faster)

• var – a variable name

EXAMPLES:

sage: from sage.matrix.matrix_misc import permanental_minor_polynomial
sage: m = matrix([[1,1],[1,2]])
sage: permanental_minor_polynomial(m)
3*t^2 + 5*t + 1
sage: permanental_minor_polynomial(m, permanent_only=True)
3
sage: permanental_minor_polynomial(m, prec=2)
5*t + 1
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sage: M = MatrixSpace(ZZ,4,4)
sage: A = M([1,0,1,0,1,0,1,0,1,0,10,10,1,0,1,1])
sage: permanental_minor_polynomial(A)
84*t^3 + 114*t^2 + 28*t + 1
sage: [A.permanental_minor(i) for i in range(5)]
[1, 28, 114, 84, 0]

An example over 2:

sage: M = MatrixSpace(QQ,2,2)
sage: A = M([1/5,2/7,3/2,4/5])
sage: permanental_minor_polynomial(A, True)
103/175

An example with polynomial coefficients:

sage: R.<a> = PolynomialRing(ZZ)
sage: A = MatrixSpace(R,2)([[a,1], [a,a+1]])
sage: permanental_minor_polynomial(A, True)
a^2 + 2*a

A usage of the var argument:

sage: m = matrix(ZZ,4,[0,1,2,3,1,2,3,0,2,3,0,1,3,0,1,2])
sage: permanental_minor_polynomial(m, var=�x�)
164*x^4 + 384*x^3 + 172*x^2 + 24*x + 1

ALGORITHM:

The permanent 𝑝𝑒𝑟𝑚(𝐴) of a 𝑛× 𝑛 matrix 𝐴 is the coefficient of the 𝑥1𝑥2 . . . 𝑥𝑛 monomial in

𝑛∏︁
𝑖=1

⎛⎝ 𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝑥𝑗

⎞⎠
Evaluating this product one can neglect 𝑥2

𝑖 , that is 𝑥𝑖 can be considered to be nilpotent of order 2.

To formalize this procedure, consider the algebra 𝑅 = 𝐾[𝜂1, 𝜂2, . . . , 𝜂𝑛] where the 𝜂𝑖 are commuting,
nilpotent of order 2 (i.e. 𝜂2𝑖 = 0). Formally it is the quotient ring of the polynomial ring in 𝜂1, 𝜂2, . . . , 𝜂𝑛
quotiented by the ideal generated by the 𝜂2𝑖 .

We will mostly consider the ring 𝑅[𝑡] of polynomials over 𝑅. We denote a generic element of 𝑅[𝑡] by
𝑝(𝜂1, . . . , 𝜂𝑛) or 𝑝(𝜂𝑖1 , . . . , 𝜂𝑖𝑘) if we want to emphasize that some monomials in the 𝜂𝑖 are missing.

Introduce an “integration” operation ⟨𝑝⟩ over𝑅 and𝑅[𝑡] consisting in the sum of the coefficients of the
non-vanishing monomials in 𝜂𝑖 (i.e. the result of setting all variables 𝜂𝑖 to 1). Let us emphasize that this
is not a morphism of algebras as ⟨𝜂1⟩2 = 1 while ⟨𝜂21⟩ = 0!

Let us consider an example of computation. Let 𝑝1 = 1 + 𝑡𝜂1 + 𝑡𝜂2 and 𝑝2 = 1 + 𝑡𝜂1 + 𝑡𝜂3. Then

𝑝1𝑝2 = 1 + 2𝑡𝜂1 + 𝑡(𝜂2 + 𝜂3) + 𝑡2(𝜂1𝜂2 + 𝜂1𝜂3 + 𝜂2𝜂3)

and

⟨𝑝1𝑝2⟩ = 1 + 4𝑡+ 3𝑡2

In this formalism, the permanent is just

𝑝𝑒𝑟𝑚(𝐴) = ⟨
𝑛∏︁

𝑖=1

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝜂𝑗⟩
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A useful property of ⟨.⟩ which makes this algorithm efficient for band matrices is the following: let
𝑝1(𝜂1, . . . , 𝜂𝑛) and 𝑝2(𝜂𝑗 , . . . , 𝜂𝑛) be polynomials in 𝑅[𝑡] where 𝑗 ≥ 1. Then one has

⟨𝑝1(𝜂1, . . . , 𝜂𝑛)𝑝2⟩ = ⟨𝑝1(1, . . . , 1, 𝜂𝑗 , . . . , 𝜂𝑛)𝑝2⟩

where 𝜂1, .., 𝜂𝑗−1 are replaced by 1 in 𝑝1. Informally, we can “integrate” these variables before per-
forming the product. More generally, if a monomial 𝜂𝑖 is missing in one of the terms of a product of
two terms, then it can be integrated in the other term.

Now let us consider an𝑚× 𝑛 matrix with𝑚 ≤ 𝑛. The sum of permanental `k`-minors of `A` is

𝑝𝑒𝑟𝑚(𝐴, 𝑘) =
∑︁
𝑟,𝑐

𝑝𝑒𝑟𝑚(𝐴𝑟,𝑐)

where the sum is over the 𝑘-subsets 𝑟 of rows and 𝑘-subsets 𝑐 of columns and 𝐴𝑟,𝑐 is the submatrix ob-
tained from𝐴 by keeping only the rows 𝑟 and columns 𝑐. Of course 𝑝𝑒𝑟𝑚(𝐴,min(𝑚,𝑛)) = 𝑝𝑒𝑟𝑚(𝐴)
and note that 𝑝𝑒𝑟𝑚(𝐴, 1) is just the sum of all entries of the matrix.

The generating function of these sums of permanental minors is

𝑔(𝑡) =

⟨
𝑚∏︁
𝑖=1

⎛⎝1 + 𝑡

𝑛∑︁
𝑗=1

𝐴𝑖𝑗𝜂𝑗

⎞⎠⟩

In fact the 𝑡𝑘 coefficient of 𝑔(𝑡) corresponds to choosing 𝑘 rows of𝐴; 𝜂𝑖 is associated to the 𝑖-th column;
nilpotency avoids having twice the same column in a product of 𝐴’s.

For more details, see the article [BP2015].

From a technical point of view, the product in 𝐾[𝜂1, . . . , 𝜂𝑛][𝑡] is implemented as a subroutine in
prm_mul(). The indices of the rows and columns actually start at 0, so the variables are 𝜂0, . . . , 𝜂𝑛−1.
Polynomials are represented in dictionary form: to a variable 𝜂𝑖 is associated the key 2𝑖 (or in Python
1 << i). The keys associated to products are obtained by considering the development in base 2:
to the monomial 𝜂𝑖1 . . . 𝜂𝑖𝑘 is associated the key 2𝑖1 + . . . + 2𝑖𝑘 . So the product 𝜂1𝜂2 corresponds to
the key 6 = (110)2 while 𝜂0𝜂3 has key 9 = (1001)2. In particular all operations on monomials are
implemented via bitwise operations on the keys.

sage.matrix.matrix_misc.prm_mul(p1, p2, mask_free, prec)
Return the product of p1 and p2, putting free variables in mask_free to 1.

This function is mainly use as a subroutine of permanental_minor_polynomial().

INPUT:

• 𝑝1, 𝑝2 – polynomials as dictionaries

• mask_free – integer mask that give the list of free variables (the 𝑖-th variable is free if the 𝑖-th bit of
mask_free is 1)

• prec – if prec is not None, truncate the product at precision prec

EXAMPLES:

sage: from sage.matrix.matrix_misc import prm_mul
sage: t = polygen(ZZ, �t�)
sage: p1 = {0: 1, 1: t, 4: t}
sage: p2 = {0: 1, 1: t, 2: t}
sage: prm_mul(p1, p2, 1, None)
{0: 2*t + 1, 2: t^2 + t, 4: t^2 + t, 6: t^2}

sage.matrix.matrix_misc.row_iterator(A)
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CHAPTER

FORTY

MATRIX WINDOWS

class sage.matrix.matrix_window.MatrixWindow

Bases: object

add(A)

add_prod(A, B)

echelon_in_place()

Calculate the echelon form of this matrix, returning the list of pivot columns

element_is_zero(i, j)

get_unsafe(i, j)

matrix()

Return the underlying matrix that this window is a view of.

matrix_window(row, col, n_rows, n_cols)
Return a matrix window relative to this window of the underlying matrix.

ncols()

new_empty_window(nrows, ncols)

new_matrix_window(matrix, row, col, n_rows, n_cols)
This method is here only to provide a fast cdef way of constructing new matrix windows. The only implicit
assumption is that self._matrix and matrix are over the same base ring (so share the zero).

nrows()

set(src)

set_to(A)

Change self, making it equal A.

set_to_diff(A, B)

set_to_prod(A, B)

set_to_sum(A, B)

set_to_zero()

set_unsafe(i, j, x)
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subtract(A)

subtract_prod(A, B)

swap_rows(a, b)

to_matrix()

Return an actual matrix object representing this view.
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CHAPTER

FORTYONE

MISC MATRIX ALGORITHMS

sage.matrix.misc.cmp_pivots(x, y)
Compare two sequences of pivot columns.

If 𝑥 is shorter than 𝑦, return−1, i.e., 𝑥 < 𝑦, “not as good”. If 𝑥 is longer than 𝑦, then 𝑥 > 𝑦, so “better” and return
+1. If the length is the same, then 𝑥 is better, i.e., 𝑥 > 𝑦 if the entries of 𝑥 are correspondingly ≤ those of 𝑦 with
one being strictly less.

INPUT:

• x, y – lists or tuples of integers

EXAMPLES:

We illustrate each of the above comparisons.

sage: from sage.matrix.misc import cmp_pivots
sage: cmp_pivots([1,2,3], [4,5,6,7])
-1
sage: cmp_pivots([1,2,3,5], [4,5,6])
1
sage: cmp_pivots([1,2,4], [1,2,3])
-1
sage: cmp_pivots([1,2,3], [1,2,3])
0
sage: cmp_pivots([1,2,3], [1,2,4])
1

sage.matrix.misc.matrix_integer_sparse_rational_reconstruction(A, N)
Given a sparse matrix over the integers and an integer modulus, do rational reconstruction on all entries of the
matrix, viewed as numbers mod 𝑁 .

EXAMPLES:

sage: A = matrix(ZZ, 3, 4, [(1/3)%500, 2, 3, (-4)%500, 7, 2, 2, 3, 4, 3, 4, (5/7)
→˓%500], sparse=True)
sage: from sage.matrix.misc import matrix_integer_sparse_rational_reconstruction
sage: matrix_integer_sparse_rational_reconstruction(A, 500)
[1/3 2 3 -4]
[ 7 2 2 3]
[ 4 3 4 5/7]

sage.matrix.misc.matrix_rational_echelon_form_multimodular(self , height_guess=None,
proof=None)

Return reduced row-echelon form using a multi-modular algorithm. Does not change self.

REFERENCE: Chapter 7 of Stein’s “Explicitly Computing Modular Forms”.
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INPUT:

• height_guess – integer or None

• proof – boolean or None (default: None, see proof.linear_algebra or sage.structure.
proof). Note that the global Sage default is proof=True

OUTPUT: a pair consisting of a matrix in echelon form and a tuple of pivot positions.

ALGORITHM:

The following is a modular algorithm for computing the echelon form. Define the height of a matrix to be the max
of the absolute values of the entries.

Given Matrix A with n columns (self).

0. Rescale input matrix A to have integer entries. This does not change echelon form and makes reduction
modulo lots of primes significantly easier if there were denominators. Henceforth we assume A has integer
entries.

1. Let c be a guess for the height of the echelon form. E.g., c=1000, e.g., if matrix is very sparse and application
is to computing modular symbols.

2. Let M = n * c * H(A) + 1, where n is the number of columns of A.

3. List primes p_1, p_2, …, such that the product of the p_i is at least M.

4. Try to compute the rational reconstruction CRT echelon form of A mod the product of the p_i. If rational
reconstruction fails, compute 1 more echelon forms mod the next prime, and attempt again. Make sure to
keep the result of CRT on the primes from before, so we don’t have to do that computation again. Let E be
this matrix.

5. Compute the denominator d of E. Attempt to prove that result is correct by checking that

H(d*E)*ncols(A)*H(A) < (prod of reduction primes)

where H denotes the height. If this fails, do step 4 with a few more primes.

EXAMPLES:

sage: A = matrix(QQ, 3, 7, [1..21])
sage: from sage.matrix.misc import matrix_rational_echelon_form_multimodular
sage: E, pivots = matrix_rational_echelon_form_multimodular(A)
sage: E
[ 1 0 -1 -2 -3 -4 -5]
[ 0 1 2 3 4 5 6]
[ 0 0 0 0 0 0 0]
sage: pivots
(0, 1)

sage: A = matrix(QQ, 3, 4, [0,0] + [1..9] + [-1/2^20])
sage: E, pivots = matrix_rational_echelon_form_multimodular(A)
sage: E
[ 1 0 0 -10485761/1048576]
[ 0 1 0 27262979/4194304]
[ 0 0 1 2]
sage: pivots
(0, 1, 2)

sage: A.echelon_form()
[ 1 0 0 -10485761/1048576]
[ 0 1 0 27262979/4194304]
[ 0 0 1 2]

(continues on next page)
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(continued from previous page)

sage: A.pivots()
(0, 1, 2)
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CHAPTER

FORTYTWO

MISC MATRIX ALGORITHMS USING MPFR

sage.matrix.misc_mpfr.hadamard_row_bound_mpfr(A)

Given a matrix 𝐴 with entries that coerce to RR, compute the row Hadamard bound on the determinant.

INPUT:

• A – a matrix over RR

OUTPUT:

integer – an integer n such that the absolute value of the determinant of this matrix is at most 10𝑛.

EXAMPLES:

We create a very large matrix, compute the row Hadamard bound, and also compute the row Hadamard bound of
the transpose, which happens to be sharp.

sage: a = matrix(ZZ, 2, [2^10000, 3^10000, 2^50, 3^19292])
sage: from sage.matrix.misc_mpfr import hadamard_row_bound_mpfr
sage: hadamard_row_bound_mpfr(a.change_ring(RR))
13976
sage: len(str(a.det()))
12215
sage: hadamard_row_bound_mpfr(a.transpose().change_ring(RR))
12215

Note that in the above example using RDF would overflow:

sage: b = a.change_ring(RDF)
sage: b._hadamard_row_bound()
Traceback (most recent call last):
...
OverflowError: cannot convert float infinity to integer
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CHAPTER

FORTYTHREE

MISC MATRIX ALGORITHMS USING FLINT

sage.matrix.misc_flint.matrix_integer_dense_rational_reconstruction(A, N)
Given a matrix over the integers and an integer modulus, do rational reconstruction on all entries of the matrix,
viewed as numbers mod 𝑁 . This is done efficiently by assuming there is a large common factor dividing the
denominators.

INPUT:

• A – matrix

• N – integer

EXAMPLES:

sage: B = ((matrix(ZZ, 3,4, [1,2,3,-4,7,2,18,3,4,3,4,5])/3)%500).change_ring(ZZ)
sage: from sage.matrix.misc_flint import matrix_integer_dense_rational_
→˓reconstruction
sage: matrix_integer_dense_rational_reconstruction(B, 500)
[ 1/3 2/3 1 -4/3]
[ 7/3 2/3 6 1]
[ 4/3 1 4/3 5/3]
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CHAPTER

FORTYFOUR

CALCULATE SYMPLECTIC BASES FOR MATRICES OVER FIELDS
AND THE INTEGERS.

This module finds a symplectic basis for an anti-symmetric, alternating matrix M defined over a field or the integers.

Anti-symmetric means that𝑀 = −𝑀 𝑡, where𝑀 𝑡 denotes the transpose of𝑀 . Alternating means that the diagonal of
𝑀 is identically zero.

A symplectic basis is a basis of the form 𝑒1, . . . , 𝑒𝑗 , 𝑓1, . . . , 𝑓𝑗 , 𝑧1, . . . , 𝑧𝑘 such that

• 𝑧𝑖𝑀𝑣𝑡 = 0 for all vectors 𝑣;

• 𝑒𝑖𝑀𝑒𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑓𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑒𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖 not equal 𝑗;

and such that the nonzero terms

• 𝑒𝑖𝑀𝑓𝑖
𝑡 are “as nice as possible”: 1 over fields, or integers satisfying divisibility properties otherwise.

REFERENCES:

Bourbaki gives a nice proof that can be made constructive but is not efficient (see Section 5, Number 1, Theorem 1, page
79):

Bourbaki, N. Elements of Mathematics, Algebra III, Springer Verlag 2007.

Kuperberg gives a more efficient and constructive exposition (see Theorem 18).

Kuperberg, Greg. Kasteleyn Cokernels. Electr. J. Comb. 9(1), 2002.

Todo

The routine over the integers applies over general principal ideal domains.

Warning

This code is not a good candidate for conversion to Cython. The majority of the execution time is spent adding
multiples of columns and rows, which is already fast. It would be better to devise a better algorithm, perhaps modular
or based on a fast smith_form implementation.

AUTHOR:

• Nick Alexander: initial implementation
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• David Loeffler (2008-12-08): changed conventions for consistency with smith_form

sage.matrix.symplectic_basis.symplectic_basis_over_ZZ(M)

Find a symplectic basis for an anti-symmetric, alternating matrix M defined over the integers.

Returns a pair (F, C) such that the rows of C form a symplectic basis for M and F = C * M * C.transpose().

Anti-symmetric means that𝑀 = −𝑀 𝑡. Alternating means that the diagonal of𝑀 is identically zero.

A symplectic basis is a basis of the form 𝑒1, . . . , 𝑒𝑗 , 𝑓1, . . . , 𝑓𝑗 , 𝑧1, . . . , 𝑧𝑘 such that

• 𝑧𝑖𝑀𝑣𝑡 = 0 for all vectors 𝑣;

• 𝑒𝑖𝑀𝑒𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑓𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑒𝑖𝑀𝑓𝑖
𝑡 = 𝑑𝑖 for all 𝑖, where d_i are positive integers such that 𝑑𝑖|𝑑𝑖+1 for all 𝑖;

• 𝑒𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖 not equal 𝑗.

The ordering for the factors 𝑑𝑖|𝑑𝑖+1 and for the placement of zeroes was chosen to agree with the output of
smith_form.

See the examples for a pictorial description of such a basis.

EXAMPLES:

sage: from sage.matrix.symplectic_basis import symplectic_basis_over_ZZ

An example which does not have full rank:

sage: E = matrix(ZZ, 4, 4, [0, 16, 0, 2, -16, 0, 0, -4, 0, 0, 0, 0, -2, 4, 0, 0]);
→˓ E
[ 0 16 0 2]
[-16 0 0 -4]
[ 0 0 0 0]
[ -2 4 0 0]
sage: F, C = symplectic_basis_over_ZZ(E)
sage: F
[ 0 2 0 0]
[-2 0 0 0]
[ 0 0 0 0]
[ 0 0 0 0]
sage: C * E * C.transpose() == F
True

A larger example:

sage: E = matrix(ZZ, 8, 8, [0, 25, 0, 0, -37, -3, 2, -5, -25, 0, 1, -5, -54, -3,␣
→˓3, 3, 0, -1, 0, 7, 0, -4, -20, 0, 0, 5, -7, 0, 0, 14, 0, -3, 37, 54, 0, 0, 0, 2,
→˓ 3, -12, 3, 3, 4, -14, -2, 0, -3, 2, -2, -3, 20, 0, -3, 3, 0, -2, 5, -3, 0, 3,␣
→˓12, -2, 2, 0]); E
[ 0 25 0 0 -37 -3 2 -5]
[-25 0 1 -5 -54 -3 3 3]
[ 0 -1 0 7 0 -4 -20 0]
[ 0 5 -7 0 0 14 0 -3]
[ 37 54 0 0 0 2 3 -12]
[ 3 3 4 -14 -2 0 -3 2]
[ -2 -3 20 0 -3 3 0 -2]
[ 5 -3 0 3 12 -2 2 0]
sage: F, C = symplectic_basis_over_ZZ(E)

(continues on next page)
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sage: F
[ 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 20191]
[ -1 0 0 0 0 0 0 0]
[ 0 -1 0 0 0 0 0 0]
[ 0 0 -1 0 0 0 0 0]
[ 0 0 0 -20191 0 0 0 0]
sage: F == C * E * C.transpose()
True
sage: E.smith_form()[0]
[ 1 0 0 0 0 0 0 0]
[ 0 1 0 0 0 0 0 0]
[ 0 0 1 0 0 0 0 0]
[ 0 0 0 1 0 0 0 0]
[ 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 20191 0]
[ 0 0 0 0 0 0 0 20191]

An odd dimensional example:

sage: E = matrix(ZZ, 5, 5, [0, 14, 0, -8, -2, -14, 0, -3, -11, 4, 0, 3, 0, 0, 0,␣
→˓8, 11, 0, 0, 8, 2, -4, 0, -8, 0]); E
[ 0 14 0 -8 -2]
[-14 0 -3 -11 4]
[ 0 3 0 0 0]
[ 8 11 0 0 8]
[ 2 -4 0 -8 0]
sage: F, C = symplectic_basis_over_ZZ(E)
sage: F
[ 0 0 1 0 0]
[ 0 0 0 2 0]
[-1 0 0 0 0]
[ 0 -2 0 0 0]
[ 0 0 0 0 0]
sage: F == C * E * C.transpose()
True
sage: E.smith_form()[0]
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 2 0 0]
[0 0 0 2 0]
[0 0 0 0 0]

sage: F.parent()
Full MatrixSpace of 5 by 5 dense matrices over Integer Ring
sage: C.parent()
Full MatrixSpace of 5 by 5 dense matrices over Integer Ring

sage.matrix.symplectic_basis.symplectic_basis_over_field(M)

Find a symplectic basis for an anti-symmetric, alternating matrix M defined over a field.

Returns a pair (F, C) such that the rows of C form a symplectic basis forM and F = C * M * C.transpose().

Anti-symmetric means that𝑀 = −𝑀 𝑡. Alternating means that the diagonal of𝑀 is identically zero.
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A symplectic basis is a basis of the form 𝑒1, . . . , 𝑒𝑗 , 𝑓1, . . . 𝑓𝑗 , 𝑧1, . . . , 𝑧𝑘 such that

• 𝑧𝑖𝑀𝑣𝑡 = 0 for all vectors 𝑣;

• 𝑒𝑖𝑀𝑒𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑓𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖, 𝑗;

• 𝑒𝑖𝑀𝑓𝑖
𝑡 = 1 for all 𝑖;

• 𝑒𝑖𝑀𝑓𝑗
𝑡 = 0 for all 𝑖 not equal 𝑗.

See the examples for a pictorial description of such a basis.

EXAMPLES:

sage: from sage.matrix.symplectic_basis import symplectic_basis_over_field

A full rank exact example:

sage: E = matrix(QQ, 8, 8, [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0, 2,␣
→˓5/2, -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2, -1/2, -1/2, -2,␣
→˓0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0, 0, 1/2, -2, 2, -5/2, 1, 1/2, -1, -1/2,
→˓ 0, -1, -1, 3, 2, 1/2, 1, 2, 1, 0]); E
[ 0 -1/2 -2 1/2 2 0 -2 1]
[ 1/2 0 -1 -3 0 2 5/2 -3]
[ 2 1 0 3/2 -1 0 -1 -2]
[-1/2 3 -3/2 0 1 3/2 -1/2 -1/2]
[ -2 0 1 -1 0 0 1 -1]
[ 0 -2 0 -3/2 0 0 1/2 -2]
[ 2 -5/2 1 1/2 -1 -1/2 0 -1]
[ -1 3 2 1/2 1 2 1 0]
sage: F, C = symplectic_basis_over_field(E); F
[ 0 0 0 0 1 0 0 0]
[ 0 0 0 0 0 1 0 0]
[ 0 0 0 0 0 0 1 0]
[ 0 0 0 0 0 0 0 1]
[-1 0 0 0 0 0 0 0]
[ 0 -1 0 0 0 0 0 0]
[ 0 0 -1 0 0 0 0 0]
[ 0 0 0 -1 0 0 0 0]
sage: F == C * E * C.transpose()
True

An example over a finite field:

sage: E = matrix(GF(7), 8, 8,
....: [0, -1/2, -2, 1/2, 2, 0, -2, 1, 1/2, 0, -1, -3, 0, 2, 5/2,
....: -3, 2, 1, 0, 3/2, -1, 0, -1, -2, -1/2, 3, -3/2, 0, 1, 3/2,
....: -1/2, -1/2, -2, 0, 1, -1, 0, 0, 1, -1, 0, -2, 0, -3/2, 0,
....: 0, 1/2, -2, 2, -5/2, 1, 1/2, -1, -1/2, 0, -1, -1, 3, 2,
....: 1/2, 1, 2, 1, 0]); E
[0 3 5 4 2 0 5 1]
[4 0 6 4 0 2 6 4]
[2 1 0 5 6 0 6 5]
[3 3 2 0 1 5 3 3]
[5 0 1 6 0 0 1 6]
[0 5 0 2 0 0 4 5]
[2 1 1 4 6 3 0 6]
[6 3 2 4 1 2 1 0]

(continues on next page)

638 Chapter 44. Calculate symplectic bases for matrices over fields and the integers.



Matrices and Spaces of Matrices, Release 10.5.rc0

(continued from previous page)

sage: F, C = symplectic_basis_over_field(E); F
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
[6 0 0 0 0 0 0 0]
[0 6 0 0 0 0 0 0]
[0 0 6 0 0 0 0 0]
[0 0 0 6 0 0 0 0]
sage: F == C * E * C.transpose()
True

The tricky case of characteristic 2:

sage: E = matrix(GF(2), 8, 8,
....: [0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
....: 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0,
....: 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
....: 0, 1, 0, 0]); E
[0 0 1 1 0 1 0 1]
[0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 1 1]
[1 0 0 0 0 0 0 1]
[0 0 0 0 0 1 1 0]
[1 0 0 0 1 0 1 1]
[0 0 1 0 1 1 0 0]
[1 0 1 1 0 1 0 0]
sage: F, C = symplectic_basis_over_field(E); F
[0 0 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0]
sage: F == C * E * C.transpose()
True

An inexact example:

sage: E = matrix(RR, 8, 8, [0.000000000000000, 0.420674846479344, -0.
→˓839702420666807, 0.658715385244413, 1.69467394825853, -1.14718543053828, 1.
→˓03076138152950, -0.227739521708484, -0.420674846479344, 0.000000000000000, 0.
→˓514381455379082, 0.282194064028260, -1.38977093018412, 0.278305070958958, -0.
→˓0781320488361574, -0.496003664217833, 0.839702420666807, -0.514381455379082, 0.
→˓000000000000000, -0.00618222322875384, -0.318386939149028, -0.0840205427053993,␣
→˓1.28202592892333, -0.512563654267693, -0.658715385244413, -0.282194064028260, 0.
→˓00618222322875384, 0.000000000000000, 0.852525732369211, -0.356957405431611, -0.
→˓699960114607661, 0.0260496330859998, -1.69467394825853, 1.38977093018412, 0.
→˓318386939149028, -0.852525732369211, 0.000000000000000, -0.836072521423577, 0.
→˓450137632758469, -0.696145287292091, 1.14718543053828, -0.278305070958958, 0.
→˓0840205427053993, 0.356957405431611, 0.836072521423577, 0.000000000000000, 0.
→˓214878541347751, -1.20221688928379, -1.03076138152950, 0.0781320488361574, -1.
→˓28202592892333, 0.699960114607661, -0.450137632758469, -0.214878541347751, 0.
→˓000000000000000, 0.785074452163036, 0.227739521708484, 0.496003664217833, 0.
→˓512563654267693, -0.0260496330859998, 0.696145287292091, 1.20221688928379, -0.

(continues on next page)
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→˓785074452163036, 0.000000000000000]); E
[ 0.000000000000000 0.420674846479344 -0.839702420666807 0.
→˓658715385244413 1.69467394825853 -1.14718543053828 1.03076138152950 ␣
→˓ -0.227739521708484]
[ -0.420674846479344 0.000000000000000 0.514381455379082 0.
→˓282194064028260 -1.38977093018412 0.278305070958958 -0.0781320488361574 ␣
→˓ -0.496003664217833]
[ 0.839702420666807 -0.514381455379082 0.000000000000000 -0.
→˓00618222322875384 -0.318386939149028 -0.0840205427053993 1.
→˓28202592892333 -0.512563654267693]
[ -0.658715385244413 -0.282194064028260 0.00618222322875384 0.
→˓000000000000000 0.852525732369211 -0.356957405431611 -0.699960114607661 ␣
→˓ 0.0260496330859998]
[ -1.69467394825853 1.38977093018412 0.318386939149028 -0.
→˓852525732369211 0.000000000000000 -0.836072521423577 0.450137632758469 ␣
→˓ -0.696145287292091]
[ 1.14718543053828 -0.278305070958958 0.0840205427053993 0.
→˓356957405431611 0.836072521423577 0.000000000000000 0.214878541347751 ␣
→˓ -1.20221688928379]
[ -1.03076138152950 0.0781320488361574 -1.28202592892333 0.
→˓699960114607661 -0.450137632758469 -0.214878541347751 0.000000000000000 ␣
→˓ 0.785074452163036]
[ 0.227739521708484 0.496003664217833 0.512563654267693 -0.
→˓0260496330859998 0.696145287292091 1.20221688928379 -0.785074452163036␣
→˓ 0.000000000000000]
sage: F, C = symplectic_basis_over_field(E); F # random
[ 0.000000000000000 0.000000000000000 2.22044604925031e-16 -2.
→˓22044604925031e-16 1.00000000000000 0.000000000000000 0.
→˓000000000000000 -3.33066907387547e-16]
[ 0.000000000000000 8.14814392305203e-17 -1.66533453693773e-16 -1.
→˓11022302462516e-16 0.000000000000000 1.00000000000000 -1.
→˓11022302462516e-16 0.000000000000000]
[-5.27829526256056e-16 -2.40004077757759e-16 1.28373418199470e-16 -1.
→˓11022302462516e-16 0.000000000000000 -3.15483812822081e-16 1.
→˓00000000000000 -4.44089209850063e-16]
[ 1.31957381564014e-16 1.41622049084608e-16 -6.68515202578511e-17 -3.
→˓95597468756028e-17 -4.85722573273506e-17 -5.32388011580111e-17 -1.
→˓31328455615552e-16 1.00000000000000]
[ -1.00000000000000 0.000000000000000 0.000000000000000 4.
→˓85722573273506e-17 0.000000000000000 -5.55111512312578e-17 -1.
→˓11022302462516e-16 2.22044604925031e-16]
[ 0.000000000000000 -1.00000000000000 0.000000000000000 -2.
→˓77555756156289e-17 5.55111512312578e-17 -8.69223574327834e-17 0.
→˓000000000000000 -4.44089209850063e-16]
[ 0.000000000000000 -1.05042437087238e-17 -1.00000000000000 3.
→˓33066907387547e-16 1.11022302462516e-16 -1.18333563634309e-16 4.
→˓40064433050777e-17 2.22044604925031e-16]
[ 5.27829526256056e-16 1.99901485752317e-16 1.65710718121313e-17 -1.
→˓00000000000000 -2.22044604925031e-16 5.52150940090699e-16 -3.93560383111738e-
→˓16 1.01155762925061e-16]
sage: F == C * E * C.transpose()
True
sage: abs(F[0, 4] - 1) < 1e-10
True
sage: abs(F[4, 0] + 1) < 1e-10
True

(continues on next page)
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sage: F.parent()
Full MatrixSpace of 8 by 8 dense matrices over Real Field with 53 bits of␣
→˓precision
sage: C.parent()
Full MatrixSpace of 8 by 8 dense matrices over Real Field with 53 bits of␣
→˓precision
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CHAPTER

FORTYFIVE

𝐽-IDEALS OF MATRICES

Let 𝐵 be an 𝑛× 𝑛-matrix over a principal ideal domain 𝐷.

For an ideal 𝐽 , the 𝐽-ideal of 𝐵 is defined to be 𝑁𝐽(𝐵) = {𝑓 ∈ 𝐷[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(𝐽)}.

For a prime element 𝑝 of𝐷 and 𝑡 ≥ 0, a (𝑝𝑡)-minimal polynomial of𝐵 is a monic polynomial 𝑓 ∈ 𝑁(𝑝𝑡)(𝐵) of minimal
degree.

This module computes these minimal polynomials.

Let 𝑝 be a prime element of 𝐷. Then there is a finite set 𝒮𝑝 of positive integers and monic polynomials 𝜈𝑝𝑠 for 𝑠 ∈ 𝒮𝑝

such that for 𝑡 ≥ 1,

𝑁(𝑝𝑡)(𝐵) = 𝜇𝐵𝐷[𝑋] + 𝑝𝑡𝐷[𝑋] +
∑︁
𝑠∈𝒮𝑝

𝑠≤𝑏(𝑡)

𝑝max{0,𝑡−𝑠}𝜈𝑝𝑠𝐷[𝑋]

holds where 𝑏(𝑡) = min{𝑟 ∈ 𝒮𝑝 | 𝑟 ≥ 𝑠}. The degree of 𝜈𝑝𝑠 is strictly increasing in 𝑠 ∈ 𝒮𝑝 and 𝜈𝑝𝑠 is a (𝑝𝑠)-minimal
polynomial. If 𝑡 ≤ max𝒮𝑝, then the summand 𝜇𝐵𝐷[𝑋] can be omitted.

All computations are done by the class ComputeMinimalPolynomials where various intermediate results are
cached. It provides the following methods:

• p_minimal_polynomials() computes 𝒮𝑝 and the monic polynomials 𝜈𝑝𝑠.

• null_ideal() determines 𝑁(𝑝𝑡)(𝐵).

• prime_candidates() determines all primes 𝑝 where 𝒮𝑝 might be non-empty.

• integer_valued_polynomials_generators() determines the generators of the ring {𝑓 ∈ 𝐾[𝑋] |
𝑓(𝐵) ∈ 𝑀𝑛(𝐷)} of integer valued polynomials on 𝐵.

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: for t in range(4):
....: print(C.null_ideal(2^t))
Principal ideal (1) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (2, x^2 + x) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (4, x^2 + 3*x + 2) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of

(continues on next page)
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Univariate Polynomial Ring in x over Integer Ring
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])

The last output means that

{𝑓 ∈ 2[𝑋] | 𝑓(𝐵) ∈ 𝑀3(Z)} = (𝑥3 + 𝑥2 − 12𝑥− 20)2[𝑋] + Z[𝑋] +
1

4
(𝑥2 + 3𝑥+ 2)Z[𝑋].

Todo

Test code over PIDs other than ZZ.

This requires implementation of frobenius() over more general domains than ZZ.

Additionally, lifting() requires modification or a bug needs fixing, see AskSage Question 35555.
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45.1 Classes and Methods

class sage.matrix.compute_J_ideal.ComputeMinimalPolynomials(B)
Bases: SageObject

Create an object for computing (𝑝𝑡)-minimal polynomials and 𝐽-ideals.

For an ideal 𝐽 and a square matrix 𝐵 over a principal ideal domain𝐷, the 𝐽-ideal of 𝐵 is defined to be𝑁𝐽(𝐵) =
{𝑓 ∈ 𝐷[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(𝐽)}.

For a prime element 𝑝 of 𝐷 and 𝑡 ≥ 0, a (𝑝𝑡)-minimal polynomial of 𝐵 is a monic polynomial 𝑓 ∈ 𝑁(𝑝𝑡)(𝐵) of
minimal degree.

The characteristic polynomial of 𝐵 is denoted by 𝜒𝐵 ; 𝑛 is the size of 𝐵.

INPUT:

• B – a square matrix over a principal ideal domain 𝐷

OUTPUT:

An object which allows to call p_minimal_polynomials(), null_ideal() and integer_val-
ued_polynomials_generators().
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EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: for t in range(4):
....: print(C.null_ideal(2^t))
Principal ideal (1) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (2, x^2 + x) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (4, x^2 + 3*x + 2) of

Univariate Polynomial Ring in x over Integer Ring
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])

current_nu(p, t, pt_generators, prev_nu)
Compute (𝑝𝑡)-minimal polynomial of 𝐵.

INPUT:

• p – a prime element of 𝐷

• t – positive integer

• pt_generators – list (𝑔1, . . . , 𝑔𝑠) of polynomials in 𝐷[𝑋] such that 𝑁(𝑝𝑡)(𝐵) = (𝑔1, . . . , 𝑔𝑠) +
𝑝𝑁(𝑝𝑡−1)(𝐵)

• prev_nu – a (𝑝𝑡−1)-minimal polynomial of 𝐵

OUTPUT:

A (𝑝𝑡)-minimal polynomial of 𝐵.

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, �x�)
sage: nu_1 = x^2 + x
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
sage: C.current_nu(2, 2, generators_4, nu_1)
x^2 + 3*x + 2

ALGORITHM:

[HR2016], Algorithm 4.

find_monic_replacements(p, t, pt_generators, prev_nu)
Replace possibly non-monic generators of 𝑁(𝑝𝑡)(𝐵) by monic generators.

INPUT:

• p – a prime element of 𝐷

• t – nonnegative integer
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• pt_generators – list (𝑔1, . . . , 𝑔𝑠) of polynomials in 𝐷[𝑋] such that 𝑁(𝑝𝑡)(𝐵) = (𝑔1, . . . , 𝑔𝑠) +
𝑝𝑁(𝑝𝑡−1)(𝐵)

• prev_nu – a (𝑝𝑡−1)-minimal polynomial of 𝐵

OUTPUT:

A list (ℎ1, . . . , ℎ𝑟) of monic polynomials such that 𝑁(𝑝𝑡)(𝐵) = (ℎ1, . . . , ℎ𝑟) + 𝑝𝑁(𝑝𝑡−1)(𝐵).

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, �x�)
sage: nu_1 = x^2 + x
sage: generators_4 = [2*x^2 + 2*x, x^2 + 3*x + 2]
sage: C.find_monic_replacements(2, 2, generators_4, nu_1)
[x^2 + 3*x + 2]

ALGORITHM:

[HR2016], Algorithms 2 and 3.

integer_valued_polynomials_generators()

Determine the generators of the ring of integer valued polynomials on 𝐵.

OUTPUT:

A pair (mu_B, P) where P is a list of polynomials in𝐾[𝑋] such that

{𝑓 ∈ 𝐾[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(𝐷)} = 𝜇𝐵𝐾[𝑋] +
∑︁
𝑔∈𝑃

𝑔𝐷[𝑋]

where𝐾 denotes the fraction field of 𝐷.

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.integer_valued_polynomials_generators()
(x^3 + x^2 - 12*x - 20, [1, 1/4*x^2 + 3/4*x + 1/2])

mccoy_column(p, t, nu)
Compute matrix for McCoy’s criterion.

INPUT:

• p – a prime element in 𝐷

• t – positive integer

• nu – a (𝑝𝑡)-minimal polynomial of 𝐵

OUTPUT:

An (𝑛2 + 1)× 1 matrix 𝑔 with first entry nu such that
(︀
𝑏 −𝜒𝐵𝐼

)︀
𝑔 ≡ 0 (mod 𝑝𝑡) where 𝑏 consists of the

entries of adj(𝑋 −𝐵).

EXAMPLES:
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sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: x = polygen(ZZ, �x�)
sage: nu_4 = x^2 + 3*x + 2
sage: g = C.mccoy_column(2, 2, nu_4)
sage: b = matrix(9, 1, (x - B).adjugate().list())
sage: M = matrix.block([[b, -B.charpoly(x)*matrix.identity(9)]])
sage: (M*g % 4).is_zero()
True

ALGORITHM:

[HR2016], Algorithm 5.

null_ideal(b=0)

Return the (𝑏)-ideal 𝑁(𝑏)(𝐵) = {𝑓 ∈ 𝐷[𝑋] | 𝑓(𝐵) ∈ 𝑀𝑛(𝑏𝐷)}.

INPUT:

• b – an element of 𝐷 (default: 0)

OUTPUT: an ideal in 𝐷[𝑋]

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.null_ideal()
Principal ideal (x^3 + x^2 - 12*x - 20) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(2)
Ideal (2, x^2 + x) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(4)
Ideal (4, x^2 + 3*x + 2) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(8)
Ideal (8, x^3 + x^2 - 12*x - 20, 2*x^2 + 6*x + 4) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(3)
Ideal (3, x^3 + x^2 - 12*x - 20) of

Univariate Polynomial Ring in x over Integer Ring
sage: C.null_ideal(6)
Ideal (6, 2*x^3 + 2*x^2 - 24*x - 40, 3*x^2 + 3*x) of

Univariate Polynomial Ring in x over Integer Ring

p_minimal_polynomials(p, s_max=None)
Compute (𝑝𝑠)-minimal polynomials 𝜈𝑠 of 𝐵.

Compute a finite subset 𝒮 of the positive integers and (𝑝𝑠)-minimal polynomials 𝜈𝑠 for 𝑠 ∈ 𝒮 .

For 0 < 𝑡 ≤ max𝒮 , a (𝑝𝑡)-minimal polynomial is given by 𝜈𝑠 where 𝑠 = min{𝑟 ∈ 𝒮 | 𝑟 ≥ 𝑡}. For
𝑡 > max𝒮 , the minimal polynomial of 𝐵 is also a (𝑝𝑡)-minimal polynomial.

INPUT:

• p – a prime in 𝐷
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• s_max – positive integer (default: None); if set, only (𝑝𝑠)-minimal polynomials for s <= s_max are
computed (see below for details)

OUTPUT:

A dictionary. Keys are the finite set 𝒮, the values are the associated (𝑝𝑠)-minimal polynomials 𝜈𝑠, 𝑠 ∈ 𝒮 .

Setting s_max only affects the output if s_max is at most max𝒮 where 𝒮 denotes the full set. In that case,
only those 𝜈𝑠 with s <= s_max are returned where s_max is always included even if it is not included in
the full set 𝒮.

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: set_verbose(1)
sage: C = ComputeMinimalPolynomials(B)
sage: C.p_minimal_polynomials(2)
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 1:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
F =
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + x]
[ x]
[ 0]
[ 1]
[ 1]
[ x + 1]
[ 1]
[ 0]
[ 0]
[ x + 1]
verbose 1 (...: compute_J_ideal.py, current_nu)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, current_nu)
(x^2 + x)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^2 + x]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^2 + x
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
corresponding columns for G
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + x]
[ x + 2]
[ 0]
[ 1]
[ 1]
[ x - 1]

(continues on next page)
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[ -1]
[ 10]
[ 0]
[ x + 1]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 2:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
F =
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[ 2*x^2 + 2*x x^2 + 3*x + 2]
[ 2*x x + 4]
[ 0 0]
[ 2 1]
[ 2 1]
[ 2*x + 2 x + 1]
[ 2 -1]
[ 0 10]
[ 0 0]
[ 2*x + 2 x + 3]
verbose 1 (...: compute_J_ideal.py, current_nu)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, current_nu)
(2*x^2 + 2*x, x^2 + 3*x + 2)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^2 + 3*x + 2]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^2 + 3*x + 2
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
corresponding columns for G
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^2 + 3*x + 2]
[ x + 4]
[ 0]
[ 1]
[ 1]
[ x + 1]
[ -1]
[ 10]
[ 0]
[ x + 3]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
p = 2, t = 3:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
Result of lifting:
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
F =
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
[x^3 + 7*x^2 + 6*x x^3 + 3*x^2 + 2*x]
[ x^2 + 8*x x^2 + 4*x]

(continues on next page)
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(continued from previous page)

[ 0 0]
[ x x + 4]
[ x + 4 x]
[ x^2 + 5*x + 4 x^2 + x]
[ -x + 4 -x]
[ 10*x 10*x]
[ 0 0]
[ x^2 + 7*x x^2 + 3*x + 4]
verbose 1 (...: compute_J_ideal.py, current_nu)
------------------------------------------
verbose 1 (...: compute_J_ideal.py, current_nu)
(x^3 + 7*x^2 + 6*x, x^3 + 3*x^2 + 2*x)
verbose 1 (...: compute_J_ideal.py, current_nu)
Generators with (p^t)-generating property:
verbose 1 (...: compute_J_ideal.py, current_nu)
...
verbose 1 (...: compute_J_ideal.py, current_nu)
[x^3 + 3*x^2 + 2*x]
verbose 1 (...: compute_J_ideal.py, p_minimal_polynomials)
nu = x^3 + 3*x^2 + 2*x
{2: x^2 + 3*x + 2}
sage: set_verbose(0)
sage: C.p_minimal_polynomials(2, s_max=1)
{1: x^2 + x}
sage: C.p_minimal_polynomials(2, s_max=2)
{2: x^2 + 3*x + 2}
sage: C.p_minimal_polynomials(2, s_max=3)
{2: x^2 + 3*x + 2}

ALGORITHM:

[HR2016], Algorithm 5.

prime_candidates()

Determine those primes 𝑝 where 𝜇𝐵 might not be a (𝑝)-minimal polynomial.

OUTPUT: list of primes

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import ComputeMinimalPolynomials
sage: B = matrix(ZZ, [[1, 0, 1], [1, -2, -1], [10, 0, 0]])
sage: C = ComputeMinimalPolynomials(B)
sage: C.prime_candidates()
[2, 3, 5]
sage: C.p_minimal_polynomials(2)
{2: x^2 + 3*x + 2}
sage: C.p_minimal_polynomials(3)
{}
sage: C.p_minimal_polynomials(5)
{}

This means that 3 and 5 were candidates, but actually, 𝜇𝐵 turns out to be a (3)-minimal polynomial and a
(5)-minimal polynomial.

sage.matrix.compute_J_ideal.lifting(p, t, A, G)
Compute generators of {𝑓 ∈ 𝐷[𝑋]𝑑 | 𝐴𝑓 ≡ 0 (mod 𝑝𝑡)} given generators of {𝑓 ∈ 𝐷[𝑋]𝑑 | 𝐴𝑓 ≡ 0
(mod 𝑝𝑡−1)}.
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INPUT:

• p – a prime element of some principal ideal domain 𝐷

• t – nonnegative integer

• A – a 𝑐× 𝑑 matrix over 𝐷[𝑋]

• G – a matrix over 𝐷[𝑋]. The columns of
(︀
𝑝𝑡−1𝐼 𝐺

)︀
are generators of {𝑓 ∈ 𝐷[𝑋]𝑑 | 𝐴𝑓 ≡ 0

(mod 𝑝𝑡−1)}; can be set to None if t is zero

OUTPUT:

A matrix 𝐹 over 𝐷[𝑋] such that the columns of
(︀
𝑝𝑡𝐼 𝐹 𝑝𝐺

)︀
are generators of {𝑓 ∈ 𝐷[𝑋]𝑑 | 𝐴𝑓 ≡ 0

(mod 𝑝𝑡)}.

EXAMPLES:

sage: from sage.matrix.compute_J_ideal import lifting
sage: X = polygen(ZZ, �X�)
sage: A = matrix([[1, X], [2*X, X^2]])
sage: G0 = lifting(5, 0, A, None)
sage: G1 = lifting(5, 1, A, G0); G1
[]
sage: (A*G1 % 5).is_zero()
True
sage: A = matrix([[1, X, X^2], [2*X, X^2, 3*X^3]])
sage: G0 = lifting(5, 0, A, None)
sage: G1 = lifting(5, 1, A, G0); G1
[3*X^2]
[ X]
[ 1]
sage: (A*G1 % 5).is_zero()
True
sage: G2 = lifting(5, 2, A, G1); G2
[15*X^2 23*X^2]
[ 5*X X]
[ 5 1]
sage: (A*G2 % 25).is_zero()
True
sage: lifting(5, 10, A, G1)
Traceback (most recent call last):
...
ValueError: A*G not zero mod 5^9

ALGORITHM:

[HR2016], Algorithm 1.

sage.matrix.compute_J_ideal.p_part(f , p)
Compute the 𝑝-part of a polynomial.

INPUT:

• f – a polynomial over 𝐷

• p – a prime in 𝐷

OUTPUT:

A polynomial 𝑔 such that deg 𝑔 ≤ deg 𝑓 and all nonzero coefficients of 𝑓 − 𝑝𝑔 are not divisible by 𝑝.

EXAMPLES:
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sage: from sage.matrix.compute_J_ideal import p_part
sage: X = polygen(ZZ, �X�)
sage: f = X^3 + 5*X + 25
sage: g = p_part(f, 5); g
X + 5
sage: f - 5*g
X^3
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CHAPTER

FORTYSIX

BENCHMARKS FOR MATRICES

This file has many functions for computing timing benchmarks of various methods for randommatrices with given bounds
for the entries. The systems supported are Sage and Magma.

The basic command syntax is as follows:

sage: import sage.matrix.benchmark as b
sage: print("starting"); import sys; sys.stdout.flush(); b.report([b.det_ZZ], �Test�,␣
→˓systems=[�sage�])
starting...
======================================================================

Test
======================================================================
...
======================================================================

sage.matrix.benchmark.MatrixVector_QQ(n=1000, h=100, system='sage', times=1)
Compute product of square n matrix by random vector with num and denom bounded by h the given number of
times.

INPUT:

• n – matrix dimension (default: 300)

• h – numerator and denominator bound (default: bnd)

• system – either �sage� or �magma� (default: �sage�)

• times – number of experiments (default: 1)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.MatrixVector_QQ(500)
sage: tm = b.MatrixVector_QQ(500, system=�magma�) # optional - magma

sage.matrix.benchmark.charpoly_GF(n=100, p=16411, system='sage')
Given a n x n matrix over GF with random entries, compute the charpoly.

INPUT:

• n – matrix dimension (default: 100)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

EXAMPLES:
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sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_GF(100)
sage: tm = b.charpoly_GF(100, system=�magma�) # optional - magma

sage.matrix.benchmark.charpoly_ZZ(n=100, min=0, max=9, system='sage')
Characteristic polynomial over ZZ: Given a n x n matrix over ZZ with random entries between min and max,
compute the charpoly.

INPUT:

• n – matrix dimension (default: 100)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.charpoly_ZZ(100)
sage: tm = b.charpoly_ZZ(100, system=�magma�) # optional - magma

sage.matrix.benchmark.det_GF(n=400, p=16411, system='sage')
Dense determinant over GF(p). Given an n x n matrix A over GF with random entries compute det(A).

INPUT:

• n – matrix dimension (default: 300)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.det_GF(1000)
sage: tm = b.det_GF(1000, system=�magma�) # optional - magma

sage.matrix.benchmark.det_QQ(n=300, num_bound=10, den_bound=10, system='sage')
Dense rational determinant over QQ. Given an n x n matrix A over QQ with random entries with numerator bound
and denominator bound, compute det(A).

INPUT:

• n – matrix dimension (default: 200)

• num_bound – numerator bound, inclusive (default: 10)

• den_bound – denominator bound, inclusive (default: 10)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.det_QQ(200)
sage: ts = b.det_QQ(10, num_bound=100000, den_bound=10000)
sage: tm = b.det_QQ(200, system=�magma�) # optional - magma
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sage.matrix.benchmark.det_ZZ(n=200, min=1, max=100, system='sage')
Dense integer determinant over ZZ. Given an n x n matrix A over ZZ with random entries between min and max,
inclusive, compute det(A).

INPUT:

• n – matrix dimension (default: 200)

• min – minimal value for entries of matrix (default: 1)

• max – maximal value for entries of matrix (default: 100)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.det_ZZ(200)
sage: tm = b.det_ZZ(200, system=�magma�) # optional - magma

sage.matrix.benchmark.det_hilbert_QQ(n=80, system='sage')
Run the benchmark for calculating the determinant of the hilbert matrix over rationals of dimension n.

INPUT:

• n – matrix dimension (default: 300)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.det_hilbert_QQ(50)
sage: tm = b.det_hilbert_QQ(50, system=�magma�) # optional - magma

sage.matrix.benchmark.echelon_QQ(n=100, min=0, max=9, system='sage')
Given a n x (2*n) matrix over QQ with random integer entries between min and max, compute the reduced row
echelon form.

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: -9)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.echelon_QQ(100)
sage: tm = b.echelon_QQ(100, system=�magma�) # optional - magma

sage.matrix.benchmark.hilbert_matrix(n)

Return the Hilbert matrix of size n over rationals.

EXAMPLES:
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sage: import sage.matrix.benchmark as b
sage: b.hilbert_matrix(3)
[ 1 1/2 1/3]
[1/2 1/3 1/4]
[1/3 1/4 1/5]

sage.matrix.benchmark.inverse_QQ(n=100, min=0, max=9, system='sage')
Given a n x n matrix over QQ with random integer entries between min and max, compute the reduced row echelon
form.

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: -9)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.inverse_QQ(100)
sage: tm = b.inverse_QQ(100, system=�magma�) # optional - magma

sage.matrix.benchmark.invert_hilbert_QQ(n=40, system='sage')
Run the benchmark for calculating the inverse of the hilbert matrix over rationals of dimension n.

INPUT:

• n – matrix dimension (default: 300)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.invert_hilbert_QQ(30)
sage: tm = b.invert_hilbert_QQ(30, system=�magma�) # optional - magma

sage.matrix.benchmark.matrix_add_GF(n=1000, p=16411, system='sage', times=100)
Given two n x n matrix over GF(p) with random entries, add them.

INPUT:

• n – matrix dimension (default: 300)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

• times – number of experiments (default: 100)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_GF(500, p=19)
sage: tm = b.matrix_add_GF(500, p=19, system=�magma�) # optional - magma
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sage.matrix.benchmark.matrix_add_ZZ(n=200, min=-9, max=9, system='sage', times=50)
Matrix addition over ZZ Given an n x n matrix A and B over ZZ with random entries between min and max,
inclusive, compute A + B times times.

INPUT:

• n – matrix dimension (default: 200)

• min – minimal value for entries of matrix (default: -9)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

• times – number of experiments (default: 50)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_ZZ(200)
sage: tm = b.matrix_add_ZZ(200, system=�magma�) # optional - magma

sage.matrix.benchmark.matrix_add_ZZ_2(n=200, bits=16, system='sage', times=50)
Matrix addition over ZZ. Given an n x n matrix A and B over ZZ with random bits-bit entries, compute A + B.

INPUT:

• n – matrix dimension (default: 200)

• bits – bitsize of entries

• system – either �sage� or �magma� (default: �sage�)

• times – number of experiments (default: 50)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_add_ZZ_2(200)
sage: tm = b.matrix_add_ZZ_2(200, system=�magma�) # optional - magma

sage.matrix.benchmark.matrix_multiply_GF(n=100, p=16411, system='sage', times=3)
Given an n x n matrix A over GF(p) with random entries, compute A * (A+1).

INPUT:

• n – matrix dimension (default: 100)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

• times – number of experiments (default: 3)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_GF(100, p=19)
sage: tm = b.matrix_multiply_GF(100, p=19, system=�magma�) # optional - magma

sage.matrix.benchmark.matrix_multiply_QQ(n=100, bnd=2, system='sage', times=1)
Given an n x n matrix A over QQ with random entries whose numerators and denominators are bounded by bnd,
compute A * (A+1).

INPUT:
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• n – matrix dimension (default: 300)

• bnd – numerator and denominator bound (default: bnd)

• system – either �sage� or �magma� (default: �sage�)

• times – number of experiments (default: 1)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_QQ(100)
sage: tm = b.matrix_multiply_QQ(100, system=�magma�) # optional - magma

sage.matrix.benchmark.matrix_multiply_ZZ(n=300, min=-9, max=9, system='sage', times=1)
Matrix multiplication over ZZ Given an n x n matrix A over ZZ with random entries between min and max,
inclusive, compute A * (A+1).

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: -9)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

• times – number of experiments (default: 1)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.matrix_multiply_ZZ(200)
sage: tm = b.matrix_multiply_ZZ(200, system=�magma�) # optional - magma

sage.matrix.benchmark.nullspace_GF(n=300, p=16411, system='sage')
Given a n+1 x n matrix over GF(p) with random entries, compute the nullspace.

INPUT:

• n – matrix dimension (default: 300)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_GF(300)
sage: tm = b.nullspace_GF(300, system=�magma�) # optional - magma

sage.matrix.benchmark.nullspace_RDF(n=300, min=0, max=10, system='sage')
Nullspace over RDF: Given a n+1 x n matrix over RDF with random entries between min and max, compute the
nullspace.

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 10)
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• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RDF(100) # long time
sage: tm = b.nullspace_RDF(100, system=�magma�) # optional - magma

sage.matrix.benchmark.nullspace_RR(n=300, min=0, max=10, system='sage')
Nullspace over RR: Given a n+1 x n matrix over RR with random entries between min and max, compute the
nullspace.

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 10)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_RR(100)
sage: tm = b.nullspace_RR(100, system=�magma�) # optional - magma

sage.matrix.benchmark.nullspace_ZZ(n=200, min=0, max=4294967296, system='sage')
Nullspace over ZZ: Given a n+1 x n matrix over ZZ with random entries between min and max, compute the
nullspace.

INPUT:

• n – matrix dimension (default: 200)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 2**32)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.nullspace_ZZ(200)
sage: tm = b.nullspace_ZZ(200, system=�magma�) # optional - magma

sage.matrix.benchmark.rank2_GF(n=500, p=16411, system='sage')
Rank over GF(p): Given a (n + 10) x n matrix over GF(p) with random entries, compute the rank.

INPUT:

• n – matrix dimension (default: 300)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_GF(500)
sage: tm = b.rank2_GF(500, system=�magma�) # optional - magma
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sage.matrix.benchmark.rank2_ZZ(n=400, min=0, max=18446744073709551616, system='sage')
Rank 2 over ZZ: Given a (n + 10) x n matrix over ZZ with random entries between min and max, compute the
rank.

INPUT:

• n – matrix dimension (default: 400)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 2**64)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.rank2_ZZ(300)
sage: tm = b.rank2_ZZ(300, system=�magma�) # optional - magma

sage.matrix.benchmark.rank_GF(n=500, p=16411, system='sage')
Rank over GF(p): Given a n x (n+10) matrix over GF(p) with random entries, compute the rank.

INPUT:

• n – matrix dimension (default: 300)

• p – prime number (default: 16411)

• system – either ‘magma’ or ‘sage’ (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.rank_GF(1000)
sage: tm = b.rank_GF(1000, system=�magma�) # optional - magma

sage.matrix.benchmark.rank_ZZ(n=700, min=0, max=9, system='sage')
Rank over ZZ: Given a n x (n+10) matrix over ZZ with random entries between min and max, compute the rank.

INPUT:

• n – matrix dimension (default: 700)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.rank_ZZ(300)
sage: tm = b.rank_ZZ(300, system=�magma�) # optional - magma

sage.matrix.benchmark.report(F , title, systems=['sage', 'magma'], **kwds)
Run benchmarks with default arguments for each function in the list F.

INPUT:

• F – list of callables used for benchmarking

• title – string describing this report
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• systems – list of systems (supported entries are ‘sage’ and ‘magma’)

• **kwds – keyword arguments passed to all functions in F

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: print("starting"); import sys; sys.stdout.flush(); b.report([b.det_ZZ],
→˓�Test�, systems=[�sage�])
starting...
======================================================================

Test
======================================================================
...
======================================================================

sage.matrix.benchmark.report_GF(p=16411, **kwds)
Run all the reports for finite field matrix operations, for prime p=16411.

INPUT:

• p – ignored

• **kwds – passed through to report()

Note

right now, even though p is an input, it is being ignored! If you need to check the performance for other primes,
you can call individual benchmark functions.

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: print("starting"); import sys; sys.stdout.flush(); b.report_GF(systems=[
→˓�sage�])
starting...
======================================================================
Dense benchmarks over GF with prime 16411
======================================================================
...
======================================================================

sage.matrix.benchmark.report_ZZ(**kwds)

Reports all the benchmarks for integer matrices and few rational matrices.

INPUT:

• **kwds – passed through to report()

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: print("starting"); import sys; sys.stdout.flush(); b.report_ZZ(systems=[
→˓�sage�]) # long time (15s on sage.math, 2012)
starting...
======================================================================
Dense benchmarks over ZZ
======================================================================

(continues on next page)
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(continued from previous page)

...
======================================================================

sage.matrix.benchmark.smithform_ZZ(n=128, min=0, max=9, system='sage')
Smith Form over ZZ: Given a n x n matrix over ZZ with random entries between min and max, compute the Smith
normal form.

INPUT:

• n – matrix dimension (default: 128)

• min – minimal value for entries of matrix (default: 0)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.smithform_ZZ(100)
sage: tm = b.smithform_ZZ(100, system=�magma�) # optional - magma

sage.matrix.benchmark.vecmat_ZZ(n=300, min=-9, max=9, system='sage', times=200)
Vector matrix multiplication over ZZ.

Given an n x n matrix A over ZZ with random entries between min and max, inclusive, and v the first row of A,
compute the product v * A.

INPUT:

• n – matrix dimension (default: 300)

• min – minimal value for entries of matrix (default: -9)

• max – maximal value for entries of matrix (default: 9)

• system – either �sage� or �magma� (default: �sage�)

• times – number of runs (default: 200)

EXAMPLES:

sage: import sage.matrix.benchmark as b
sage: ts = b.vecmat_ZZ(300) # long time
sage: tm = b.vecmat_ZZ(300, system=�magma�) # optional - magma
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sage.matrix.action, 613
sage.matrix.args, 69
sage.matrix.benchmark, 653
sage.matrix.berlekamp_massey, 347
sage.matrix.change_ring, 617
sage.matrix.compute_J_ideal, 643
sage.matrix.constructor, 21
sage.matrix.docs, 81
sage.matrix.echelon_matrix, 619
sage.matrix.matrix0, 89
sage.matrix.matrix1, 129
sage.matrix.matrix2, 153
sage.matrix.matrix_complex_ball_dense,

545
sage.matrix.matrix_complex_dou-

ble_dense, 543
sage.matrix.matrix_cyclo_dense, 597
sage.matrix.matrix_dense, 349
sage.matrix.matrix_double_dense, 431
sage.matrix.matrix_generic_dense, 357
sage.matrix.matrix_generic_sparse, 359
sage.matrix.matrix_gf2e_dense, 483
sage.matrix.matrix_integer_dense, 363
sage.matrix.matrix_integer_dense_hnf,

397
sage.matrix.matrix_integer_dense_satu-

ration, 409
sage.matrix.matrix_integer_sparse, 391
sage.matrix.matrix_misc, 621
sage.matrix.matrix_mod2_dense, 473
sage.matrix.matrix_modn_dense_double,

491
sage.matrix.matrix_modn_dense_float, 503
sage.matrix.matrix_modn_sparse, 515
sage.matrix.matrix_mpolynomial_dense,

593
sage.matrix.matrix_polynomial_dense, 551
sage.matrix.matrix_rational_dense, 413
sage.matrix.matrix_rational_sparse, 427
sage.matrix.matrix_real_double_dense,

471

sage.matrix.matrix_space, 3
sage.matrix.matrix_sparse, 351
sage.matrix.matrix_symbolic_dense, 519
sage.matrix.matrix_symbolic_sparse, 531
sage.matrix.matrix_window, 625
sage.matrix.misc, 627
sage.matrix.misc_flint, 633
sage.matrix.misc_mpfr, 631
sage.matrix.operation_table, 603
sage.matrix.special, 31
sage.matrix.strassen, 343
sage.matrix.symplectic_basis, 635
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A
act_on_polynomial() (sage.matrix.matrix0.Matrix

method), 90
add() (sage.matrix.matrix_window.MatrixWindow

method), 625
add_column() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 397
add_column_fallback() (in module sage.ma-

trix.matrix_integer_dense_hnf), 397
add_multiple_of_column() (sage.matrix.ma-

trix0.Matrix method), 90
add_multiple_of_row() (sage.matrix.matrix0.Ma-

trix method), 90
add_prod() (sage.matrix.matrix_window.MatrixWin-

dow method), 625
add_row() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 398
add_to_entry() (sage.matrix.matrix0.Matrix

method), 91
add_to_entry() (sage.matrix.matrix_ratio-

nal_dense.Matrix_rational_dense method),
414

add_to_entry() (sage.matrix.matrix_ratio-
nal_sparse.Matrix_rational_sparse method),
427

adjoint() (sage.matrix.matrix2.Matrix method), 165
adjoint_classical() (sage.matrix.matrix2.Matrix

method), 165
adjugate() (sage.matrix.matrix2.Matrix method), 166
anticommutator() (sage.matrix.matrix0.Matrix

method), 91
antitranspose() (sage.matrix.matrix_dense.Ma-

trix_dense method), 349
antitranspose() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method),
367

antitranspose() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
414

antitranspose() (sage.matrix.matrix_sparse.Ma-
trix_sparse method), 351

apply_map() (sage.matrix.matrix2.Matrix method), 167

apply_map() (sage.matrix.matrix_sparse.Matrix_sparse
method), 351

apply_morphism() (sage.matrix.matrix2.Matrix
method), 168

apply_morphism() (sage.matrix.matrix_sparse.Ma-
trix_sparse method), 352

arguments() (sage.matrix.matrix_symbolic_dense.Ma-
trix_symbolic_dense method), 521

arguments() (sage.matrix.matrix_symbolic_sparse.Ma-
trix_symbolic_sparse method), 533

as_bipartite_graph() (sage.matrix.matrix2.Matrix
method), 169

as_sum_of_permutations() (sage.matrix.ma-
trix2.Matrix method), 169

augment() (sage.matrix.matrix1.Matrix method), 129
augment() (sage.matrix.matrix_gf2e_dense.Ma-

trix_gf2e_dense method), 484
augment() (sage.matrix.matrix_integer_dense.Ma-

trix_integer_dense method), 368
augment() (sage.matrix.matrix_mod2_dense.Ma-

trix_mod2_dense method), 474
augment() (sage.matrix.matrix_sparse.Matrix_sparse

method), 353
automorphisms_of_rows_and_columns()

(sage.matrix.matrix2.Matrix method), 170

B
base (sage.matrix.args.MatrixArgs attribute), 72
base_extend() (sage.matrix.matrix_space.MatrixS-

pace method), 5
base_ring() (sage.matrix.matrix0.Matrix method), 91
basis() (sage.matrix.matrix_space.MatrixSpace

method), 5
basis_completion() (sage.matrix.matrix_polyno-

mial_dense.Matrix_polynomial_dense method),
552

benchmark_hnf() (in module sage.matrix.matrix_inte-
ger_dense_hnf), 398

benchmark_magma_hnf() (in module sage.ma-
trix.matrix_integer_dense_hnf), 399

berlekamp_massey() (in module sage.ma-
trix.berlekamp_massey), 347
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BKZ() (sage.matrix.matrix_integer_dense.Matrix_inte-
ger_dense method), 364

BKZ() (sage.matrix.matrix_rational_dense.Matrix_ratio-
nal_dense method), 413

block_diagonal_matrix() (in module sage.ma-
trix.special), 32

block_ldlt() (sage.matrix.matrix2.Matrix method),
171

block_matrix() (in module sage.matrix.special), 32
block_sum() (sage.matrix.matrix1.Matrix method), 131

C
C (sage.matrix.matrix2.Matrix attribute), 154
cached_method() (sage.matrix.matrix_space.MatrixS-

pace method), 6
canonicalize_radical() (sage.matrix.ma-

trix_symbolic_dense.Matrix_symbolic_dense
method), 521

canonicalize_radical() (sage.matrix.ma-
trix_symbolic_sparse.Matrix_symbolic_sparse
method), 533

cardinality() (sage.matrix.matrix_space.MatrixS-
pace method), 7

change_names() (sage.matrix.operation_table.Opera-
tionTable method), 607

change_ring() (sage.matrix.matrix0.Matrix method),
92

change_ring() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
415

change_ring() (sage.matrix.matrix_space.MatrixS-
pace method), 7

change_ring() (sage.matrix.matrix_sparse.Ma-
trix_sparse method), 353

characteristic() (sage.matrix.matrix_space.Ma-
trixSpace method), 8

characteristic_polynomial() (sage.matrix.ma-
trix2.Matrix method), 174

charpoly() (sage.matrix.matrix2.Matrix method), 175
charpoly() (sage.matrix.matrix_com-

plex_ball_dense.Matrix_complex_ball_dense
method), 545

charpoly() (sage.matrix.matrix_cyclo_dense.Ma-
trix_cyclo_dense method), 598

charpoly() (sage.matrix.matrix_integer_dense.Ma-
trix_integer_dense method), 369

charpoly() (sage.matrix.matrix_integer_sparse.Ma-
trix_integer_sparse method), 391

charpoly() (sage.matrix.matrix_modn_dense_dou-
ble.Matrix_modn_dense_template method),
491

charpoly() (sage.matrix.ma-
trix_modn_dense_float.Ma-
trix_modn_dense_template method), 503

charpoly() (sage.matrix.matrix_rational_dense.Ma-
trix_rational_dense method), 415

charpoly() (sage.matrix.matrix_sparse.Matrix_sparse
method), 354

charpoly() (sage.matrix.matrix_symbolic_dense.Ma-
trix_symbolic_dense method), 522

charpoly() (sage.matrix.matrix_symbolic_sparse.Ma-
trix_symbolic_sparse method), 534

charpoly_GF() (in module sage.matrix.benchmark),
653

charpoly_ZZ() (in module sage.matrix.benchmark),
654

cholesky() (sage.matrix.matrix2.Matrix method), 177
cholesky() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 438
circulant() (in module sage.matrix.special), 34
cling() (sage.matrix.matrix_gf2e_dense.Ma-

trix_gf2e_dense method), 484
cmp_pivots() (in module sage.matrix.misc), 627
codomain() (sage.matrix.action.MatrixMulAction

method), 615
coefficient_bound() (sage.matrix.matrix_cy-

clo_dense.Matrix_cyclo_dense method), 598
coefficient_matrix() (sage.matrix.matrix_poly-

nomial_dense.Matrix_polynomial_dense
method), 554

color_table() (sage.matrix.operation_table.Opera-
tionTable method), 609

column() (sage.matrix.matrix1.Matrix method), 132
column() (sage.matrix.matrix_integer_dense.Matrix_in-

teger_dense method), 369
column() (sage.matrix.matrix_rational_dense.Ma-

trix_rational_dense method), 416
column_ambient_module() (sage.matrix.ma-

trix1.Matrix method), 132
column_degrees() (sage.matrix.matrix_polyno-

mial_dense.Matrix_polynomial_dense method),
555

column_keys (sage.matrix.args.MatrixArgs attribute),
72

column_keys() (sage.matrix.operation_table.Opera-
tionTable method), 609

column_matrix() (in module sage.matrix.special), 35
column_module() (sage.matrix.matrix2.Matrix

method), 180
column_space() (sage.matrix.matrix2.Matrix

method), 180
column_space() (sage.matrix.matrix_space.MatrixS-

pace method), 8
columns() (sage.matrix.matrix1.Matrix method), 133
columns() (sage.matrix.matrix_mod2_dense.Ma-

trix_mod2_dense method), 475
commutator() (sage.matrix.matrix0.Matrix method),

92

668 Index



Matrices and Spaces of Matrices, Release 10.5.rc0

companion_matrix() (in module sage.matrix.spe-
cial), 36

ComputeMinimalPolynomials (class in sage.ma-
trix.compute_J_ideal), 644

condition() (sage.matrix.matrix_double_dense.Ma-
trix_double_dense method), 440

conjugate() (sage.matrix.matrix2.Matrix method), 181
conjugate() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 442
conjugate_transpose() (sage.matrix.matrix2.Ma-

trix method), 182
constant_matrix() (sage.matrix.matrix_polyno-

mial_dense.Matrix_polynomial_dense method),
556

construction() (sage.matrix.matrix_space.MatrixS-
pace method), 8

contains() (sage.matrix.matrix_com-
plex_ball_dense.Matrix_complex_ball_dense
method), 545

current_nu() (sage.matrix.compute_J_ideal.Com-
puteMinimalPolynomials method), 645

cyclic_subspace() (sage.matrix.matrix2.Matrix
method), 183

D
decomp_seq() (in module sage.matrix.matrix2), 341
decomposition() (sage.matrix.matrix2.Matrix

method), 185
decomposition() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method),
370

decomposition() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
416

decomposition_of_subspace() (sage.matrix.ma-
trix2.Matrix method), 186

degree() (sage.matrix.matrix_polynomial_dense.Ma-
trix_polynomial_dense method), 556

degree_matrix() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
557

delete_columns() (sage.matrix.matrix1.Matrix
method), 133

delete_rows() (sage.matrix.matrix1.Matrix method),
134

denominator() (sage.matrix.matrix2.Matrix method),
187

denominator() (sage.matrix.matrix_cyclo_dense.Ma-
trix_cyclo_dense method), 599

denominator() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
417

denominator() (sage.matrix.matrix_ratio-
nal_sparse.Matrix_rational_sparse method),

427
dense_coefficient_list() (sage.matrix.ma-

trix0.Matrix method), 92
dense_columns() (sage.matrix.matrix1.Matrix

method), 135
dense_matrix() (sage.matrix.matrix1.Matrix

method), 135
dense_matrix() (sage.matrix.matrix_ratio-

nal_sparse.Matrix_rational_sparse method),
428

dense_rows() (sage.matrix.matrix1.Matrix method),
136

density() (sage.matrix.matrix2.Matrix method), 188
density() (sage.matrix.matrix_mod2_dense.Ma-

trix_mod2_dense method), 475
density() (sage.matrix.matrix_modn_sparse.Ma-

trix_modn_sparse method), 516
density() (sage.matrix.matrix_sparse.Matrix_sparse

method), 354
derivative() (sage.matrix.matrix2.Matrix method),

188
det() (sage.matrix.matrix2.Matrix method), 189
det_from_modp_and_divisor() (in module

sage.matrix.matrix_integer_dense_hnf), 399
det_GF() (in module sage.matrix.benchmark), 654
det_given_divisor() (in module sage.matrix.ma-

trix_integer_dense_hnf), 399
det_hilbert_QQ() (in module sage.matrix.bench-

mark), 655
det_padic() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 400
det_QQ() (in module sage.matrix.benchmark), 654
det_ZZ() (in module sage.matrix.benchmark), 654
determinant() (sage.matrix.matrix2.Matrix method),

189
determinant() (sage.matrix.matrix_com-

plex_ball_dense.Matrix_complex_ball_dense
method), 545

determinant() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method),
443

determinant() (sage.matrix.matrix_inte-
ger_dense.Matrix_integer_dense method),
370

determinant() (sage.matrix.matrix_mod2_dense.Ma-
trix_mod2_dense method), 475

determinant() (sage.matrix.ma-
trix_modn_dense_double.Ma-
trix_modn_dense_template method), 492

determinant() (sage.matrix.ma-
trix_modn_dense_float.Ma-
trix_modn_dense_template method), 504

determinant() (sage.matrix.matrix_modn_sparse.Ma-
trix_modn_sparse method), 516
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determinant() (sage.matrix.matrix_mpolyno-
mial_dense.Matrix_mpolynomial_dense
method), 593

determinant() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
417

determinant() (sage.matrix.matrix_sparse.Ma-
trix_sparse method), 354

diagonal() (sage.matrix.matrix2.Matrix method), 190
diagonal_matrix() (in module sage.matrix.special),

38
diagonal_matrix() (sage.matrix.matrix_space.Ma-

trixSpace method), 8
diagonalization() (sage.matrix.matrix2.Matrix

method), 191
dict() (sage.matrix.args.MatrixArgs method), 72
dict() (sage.matrix.matrix0.Matrix method), 93
dict_to_list() (in module sage.matrix.ma-

trix_space), 16
dimension() (sage.matrix.matrix_space.MatrixSpace

method), 9
dimensions() (sage.matrix.matrix0.Matrix method),

93
dims() (sage.matrix.matrix_space.MatrixSpace method),

9
double_det() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 401

E
echelon_form() (sage.matrix.matrix2.Matrix

method), 192
echelon_form() (sage.matrix.matrix_cy-

clo_dense.Matrix_cyclo_dense method), 599
echelon_form() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method),
372

echelon_form() (sage.matrix.matrix_mpoly-
nomial_dense.Matrix_mpolynomial_dense
method), 594

echelon_form() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
418

echelon_form() (sage.matrix.matrix_ratio-
nal_sparse.Matrix_rational_sparse method),
428

echelon_in_place() (sage.matrix.matrix_win-
dow.MatrixWindow method), 625

echelon_QQ() (in module sage.matrix.benchmark), 655
echelonize() (sage.matrix.matrix2.Matrix method),

193
echelonize() (sage.matrix.matrix_gf2e_dense.Ma-

trix_gf2e_dense method), 485
echelonize() (sage.matrix.matrix_mod2_dense.Ma-

trix_mod2_dense method), 476

echelonize() (sage.matrix.matrix_modn_dense_dou-
ble.Matrix_modn_dense_template method), 493

echelonize() (sage.matrix.ma-
trix_modn_dense_float.Ma-
trix_modn_dense_template method), 505

echelonize() (sage.matrix.matrix_mpolyno-
mial_dense.Matrix_mpolynomial_dense
method), 595

echelonize() (sage.matrix.matrix_rational_dense.Ma-
trix_rational_dense method), 419

echelonize() (sage.matrix.matrix_ratio-
nal_sparse.Matrix_rational_sparse method),
428

echelonize() (sage.matrix.matrix_sym-
bolic_dense.Matrix_symbolic_dense method),
522

echelonize() (sage.matrix.matrix_sym-
bolic_sparse.Matrix_symbolic_sparse method),
534

eigenmatrix_left() (sage.matrix.matrix2.Matrix
method), 196

eigenmatrix_right() (sage.matrix.matrix2.Matrix
method), 198

eigenspaces_left() (sage.matrix.matrix2.Matrix
method), 199

eigenspaces_right() (sage.matrix.matrix2.Matrix
method), 204

eigenvalue_multiplicity() (sage.matrix.ma-
trix2.Matrix method), 207

eigenvalues() (sage.matrix.matrix2.Matrix method),
207

eigenvalues() (sage.matrix.matrix_com-
plex_ball_dense.Matrix_complex_ball_dense
method), 546

eigenvalues() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method),
443

eigenvalues() (sage.matrix.matrix_sym-
bolic_dense.Matrix_symbolic_dense method),
522

eigenvalues() (sage.matrix.matrix_sym-
bolic_sparse.Matrix_symbolic_sparse method),
534

eigenvectors_left() (sage.matrix.matrix2.Matrix
method), 209

eigenvectors_left() (sage.matrix.matrix_com-
plex_ball_dense.Matrix_complex_ball_dense
method), 547

eigenvectors_left() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method), 445

eigenvectors_left() (sage.matrix.matrix_sym-
bolic_dense.Matrix_symbolic_dense method),
522

eigenvectors_left() (sage.matrix.matrix_sym-
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bolic_sparse.Matrix_symbolic_sparse method),
534

eigenvectors_left_approx() (sage.ma-
trix.matrix_complex_ball_dense.Matrix_com-
plex_ball_dense method), 547

eigenvectors_right() (sage.matrix.matrix2.Matrix
method), 210

eigenvectors_right() (sage.matrix.matrix_com-
plex_ball_dense.Matrix_complex_ball_dense
method), 548

eigenvectors_right() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method), 447

eigenvectors_right() (sage.matrix.matrix_sym-
bolic_dense.Matrix_symbolic_dense method),
524

eigenvectors_right() (sage.matrix.matrix_sym-
bolic_sparse.Matrix_symbolic_sparse method),
536

eigenvectors_right_approx() (sage.ma-
trix.matrix_complex_ball_dense.Matrix_com-
plex_ball_dense method), 549

element() (sage.matrix.args.MatrixArgs method), 72
element_is_zero() (sage.matrix.matrix_win-

dow.MatrixWindow method), 625
elementary_divisors() (sage.matrix.matrix2.Ma-

trix method), 210
elementary_divisors() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method), 374
elementary_divisors() (sage.matrix.matrix_inte-

ger_sparse.Matrix_integer_sparse method), 391
elementary_matrix() (in module sage.matrix.spe-

cial), 41
elementwise_product() (sage.matrix.matrix2.Ma-

trix method), 211
entries (sage.matrix.args.MatrixArgs attribute), 73
entry (sage.matrix.args.SparseEntry attribute), 80
exp() (sage.matrix.matrix2.Matrix method), 213
exp() (sage.matrix.matrix_complex_ball_dense.Ma-

trix_complex_ball_dense method), 549
exp() (sage.matrix.matrix_double_dense.Matrix_dou-

ble_dense method), 448
exp() (sage.matrix.matrix_symbolic_dense.Matrix_sym-

bolic_dense method), 524
exp() (sage.matrix.matrix_symbolic_sparse.Matrix_sym-

bolic_sparse method), 536
expand() (sage.matrix.matrix_symbolic_dense.Ma-

trix_symbolic_dense method), 525
expand() (sage.matrix.matrix_symbolic_sparse.Ma-

trix_symbolic_sparse method), 537
extended_echelon_form() (sage.matrix.ma-

trix2.Matrix method), 214
extract_ones_data() (in module sage.matrix.ma-

trix_integer_dense_hnf), 401

F
factor() (sage.matrix.matrix_symbolic_dense.Ma-

trix_symbolic_dense method), 526
factor() (sage.matrix.matrix_symbolic_sparse.Ma-

trix_symbolic_sparse method), 538
fcp() (sage.matrix.matrix2.Matrix method), 217
fcp() (sage.matrix.matrix_symbolic_dense.Matrix_sym-

bolic_dense method), 526
fcp() (sage.matrix.matrix_symbolic_sparse.Matrix_sym-

bolic_sparse method), 538
finalized() (sage.matrix.args.MatrixArgs method), 73
find() (sage.matrix.matrix2.Matrix method), 217
find_monic_replacements() (sage.matrix.com-

pute_J_ideal.ComputeMinimalPolynomials
method), 645

fitting_ideal() (sage.matrix.matrix2.Matrix
method), 218

frobenius() (sage.matrix.matrix_integer_dense.Ma-
trix_integer_dense method), 375

frobenius_form() (sage.matrix.matrix_inte-
ger_dense.Matrix_integer_dense method),
375

from_png() (in module sage.matrix.ma-
trix_mod2_dense), 480

from_vector() (sage.matrix.matrix_space.MatrixS-
pace method), 9

function() (sage.matrix.matrix_symbolic_dense.Ma-
trix_symbolic_dense method), 526

function() (sage.matrix.matrix_symbolic_sparse.Ma-
trix_symbolic_sparse method), 538

G
gcd() (sage.matrix.matrix_integer_dense.Matrix_inte-

ger_dense method), 376
gen() (sage.matrix.matrix_space.MatrixSpace method),

10
get_matrix_class() (in module sage.matrix.ma-

trix_space), 16
get_subdivisions() (sage.matrix.matrix2.Matrix

method), 219
get_unsafe() (sage.matrix.matrix_window.Ma-

trixWindow method), 625
gram_schmidt() (sage.matrix.matrix2.Matrix

method), 220
gray_table() (sage.matrix.operation_table.Opera-

tionTable method), 610

H
H (sage.matrix.matrix2.Matrix attribute), 154
hadamard_bound() (sage.matrix.matrix2.Matrix

method), 225
hadamard_row_bound_mpfr() (in module sage.ma-

trix.misc_mpfr), 631
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hankel() (in module sage.matrix.special), 45
height() (sage.matrix.matrix_cyclo_dense.Matrix_cy-

clo_dense method), 599
height() (sage.matrix.matrix_integer_dense.Matrix_in-

teger_dense method), 376
height() (sage.matrix.matrix_rational_dense.Ma-

trix_rational_dense method), 420
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trix_rational_sparse method), 429
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method), 226
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ger_dense.Matrix_integer_dense method),
376

hermite_form() (sage.matrix.matrix_inte-
ger_sparse.Matrix_integer_sparse method),
392

hermite_form() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
558

hessenberg_form() (sage.matrix.matrix2.Matrix
method), 227

hessenbergize() (sage.matrix.matrix2.Matrix
method), 227

hessenbergize() (sage.matrix.ma-
trix_modn_dense_double.Ma-
trix_modn_dense_template method), 494

hessenbergize() (sage.matrix.ma-
trix_modn_dense_float.Ma-
trix_modn_dense_template method), 506

hilbert() (in module sage.matrix.special), 46
hilbert_matrix() (in module sage.matrix.bench-

mark), 655
hnf() (in module sage.matrix.matrix_integer_dense_hnf),

402
hnf_square() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 402
hnf_with_transformation() (in module sage.ma-

trix.matrix_integer_dense_hnf), 403
hnf_with_transformation_tests() (in module

sage.matrix.matrix_integer_dense_hnf), 403

I
i (sage.matrix.args.SparseEntry attribute), 80
ideal_or_fractional() (in module sage.ma-

trix.matrix2), 341
identical() (sage.matrix.matrix_com-

plex_ball_dense.Matrix_complex_ball_dense
method), 550

identity_matrix() (in module sage.matrix.special),
46

identity_matrix() (sage.matrix.matrix_space.Ma-
trixSpace method), 10

image() (sage.matrix.matrix2.Matrix method), 227

indefinite_factorization() (sage.matrix.ma-
trix2.Matrix method), 228

index_in_saturation() (in module sage.ma-
trix.matrix_integer_dense_saturation), 409

index_in_saturation() (sage.matrix.matrix_inte-
ger_dense.Matrix_integer_dense method), 378

insert_row() (sage.matrix.matrix_integer_dense.Ma-
trix_integer_dense method), 379

int_range (class in sage.matrix.strassen), 343
integer_kernel() (sage.matrix.matrix2.Matrix

method), 231
integer_to_real_double_dense() (in module

sage.matrix.change_ring), 617
integer_valued_polynomials_genera-

tors() (sage.matrix.compute_J_ideal.Com-
puteMinimalPolynomials method), 646

integer_valued_polynomials_genera-
tors() (sage.matrix.matrix_integer_dense.Ma-
trix_integer_dense method), 379

interleave_matrices() (in module sage.ma-
trix.matrix_integer_dense_hnf), 403

intervals() (sage.matrix.strassen.int_range method),
344

inverse() (sage.matrix.matrix2.Matrix method), 231
inverse() (sage.matrix.matrix_rational_dense.Ma-

trix_rational_dense method), 420
inverse_of_unit() (sage.matrix.matrix0.Matrix

method), 93
inverse_of_unit() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method), 380
inverse_positive_definite() (sage.matrix.ma-

trix2.Matrix method), 232
inverse_QQ() (in module sage.matrix.benchmark), 656
inverse_series_trunc() (sage.matrix.ma-

trix_polynomial_dense.Matrix_polyno-
mial_dense method), 559

invert_hilbert_QQ() (in module sage.ma-
trix.benchmark), 656

is_alternating() (sage.matrix.matrix0.Matrix
method), 94

is_bistochastic() (sage.matrix.matrix2.Matrix
method), 234

is_constant() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
560

is_cross_positive_on() (sage.matrix.ma-
trix2.Matrix method), 235

is_dense() (sage.matrix.matrix0.Matrix method), 95
is_dense() (sage.matrix.matrix_space.MatrixSpace

method), 10
is_diagonal() (sage.matrix.matrix2.Matrix method),

236
is_diagonalizable() (sage.matrix.matrix2.Matrix

method), 236
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is_finite() (sage.matrix.matrix_space.MatrixSpace
method), 10

is_hermite() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
560

is_hermitian() (sage.matrix.matrix0.Matrix
method), 95

is_hermitian() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method),
449

is_immutable() (sage.matrix.matrix0.Matrix
method), 96

is_in_hnf_form() (in module sage.matrix.matrix_in-
teger_dense_hnf), 404

is_invertible() (sage.matrix.matrix0.Matrix
method), 96

is_LLL_reduced() (sage.matrix.matrix_inte-
ger_dense.Matrix_integer_dense method),
380

is_LLL_reduced() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method),
421

is_lyapunov_like_on() (sage.matrix.matrix2.Ma-
trix method), 239

is_MatrixSpace() (in module sage.matrix.ma-
trix_space), 19

is_minimal_approximant_basis() (sage.ma-
trix.matrix_polynomial_dense.Matrix_polyno-
mial_dense method), 562

is_minimal_kernel_basis() (sage.ma-
trix.matrix_polynomial_dense.Matrix_poly-
nomial_dense method), 563

is_mutable() (sage.matrix.matrix0.Matrix method),
97

is_nilpotent() (sage.matrix.matrix2.Matrix
method), 240

is_normal() (sage.matrix.matrix2.Matrix method), 240
is_normal() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 450
is_one() (sage.matrix.matrix2.Matrix method), 242
is_one() (sage.matrix.matrix_integer_dense.Matrix_in-

teger_dense method), 381
is_permutation_of() (sage.matrix.matrix2.Matrix

method), 242
is_popov() (sage.matrix.matrix_polynomial_dense.Ma-

trix_polynomial_dense method), 564
is_positive_definite() (sage.matrix.ma-

trix2.Matrix method), 243
is_positive_definite() (sage.matrix.ma-

trix_double_dense.Matrix_double_dense
method), 452

is_positive_operator_on() (sage.matrix.ma-
trix2.Matrix method), 245

is_positive_semidefinite() (sage.matrix.ma-

trix2.Matrix method), 247
is_primitive() (sage.matrix.matrix_inte-

ger_dense.Matrix_integer_dense method),
381

is_reduced() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
566

is_scalar() (sage.matrix.matrix2.Matrix method), 248
is_semisimple() (sage.matrix.matrix2.Matrix

method), 249
is_similar() (sage.matrix.matrix2.Matrix method),

249
is_singular() (sage.matrix.matrix0.Matrix method),

97
is_skew_hermitian() (sage.matrix.matrix0.Matrix

method), 98
is_skew_hermitian() (sage.matrix.matrix_dou-

ble_dense.Matrix_double_dense method), 454
is_skew_symmetric() (sage.matrix.matrix0.Matrix

method), 99
is_skew_symmetrizable() (sage.matrix.ma-

trix0.Matrix method), 100
is_sparse() (sage.matrix.matrix0.Matrix method), 100
is_sparse() (sage.matrix.matrix_space.MatrixSpace

method), 11
is_square() (sage.matrix.matrix0.Matrix method), 101
is_symmetric() (sage.matrix.matrix0.Matrix

method), 101
is_symmetrizable() (sage.matrix.matrix0.Matrix

method), 101
is_triangular() (sage.matrix.matrix2.Matrix

method), 253
is_unit() (sage.matrix.matrix0.Matrix method), 102
is_unitary() (sage.matrix.matrix2.Matrix method),

253
is_unitary() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 456
is_weak_popov() (sage.matrix.matrix_polyno-

mial_dense.Matrix_polynomial_dense method),
566

is_Z_operator_on() (sage.matrix.matrix2.Matrix
method), 233

items() (sage.matrix.matrix0.Matrix method), 103
iter() (sage.matrix.args.MatrixArgs method), 74
iterates() (sage.matrix.matrix0.Matrix method), 103
ith_to_zero_rotation_matrix() (in module

sage.matrix.special), 47

J
j (sage.matrix.args.SparseEntry attribute), 80
jordan_block() (in module sage.matrix.special), 48
jordan_decomposition() (sage.matrix.ma-

trix2.Matrix method), 254
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jordan_form() (sage.matrix.matrix2.Matrix method),
255

jordan_form() (sage.matrix.matrix_sym-
bolic_dense.Matrix_symbolic_dense method),
527

jordan_form() (sage.matrix.matrix_sym-
bolic_sparse.Matrix_symbolic_sparse method),
539

K
kernel() (sage.matrix.matrix2.Matrix method), 257
kernel_on() (sage.matrix.matrix2.Matrix method), 260
kwds (sage.matrix.args.MatrixArgs attribute), 75

L
leading_matrix() (sage.matrix.matrix_polyno-

mial_dense.Matrix_polynomial_dense method),
568

leading_positions() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
569

left_eigenmatrix() (sage.matrix.matrix2.Matrix
method), 261

left_eigenspaces() (sage.matrix.matrix2.Matrix
method), 263

left_eigenvectors() (sage.matrix.matrix2.Matrix
method), 268

left_eigenvectors() (sage.matrix.matrix_dou-
ble_dense.Matrix_double_dense method), 457

left_kernel() (sage.matrix.matrix2.Matrix method),
268

left_kernel_matrix() (sage.matrix.matrix2.Matrix
method), 271

left_nullity() (sage.matrix.matrix2.Matrix
method), 271

left_quo_rem() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
570

lehmer() (in module sage.matrix.special), 48
lift() (sage.matrix.matrix1.Matrix method), 136
lift() (sage.matrix.matrix_modn_dense_double.Ma-

trix_modn_dense_template method), 495
lift() (sage.matrix.matrix_modn_dense_float.Ma-

trix_modn_dense_template method), 506
lift_centered() (sage.matrix.matrix1.Matrix

method), 137
lifting() (in module sage.matrix.compute_J_ideal),

650
linear_combination_of_columns() (sage.ma-

trix.matrix0.Matrix method), 104
linear_combination_of_rows() (sage.ma-

trix.matrix0.Matrix method), 105
list() (sage.matrix.args.MatrixArgs method), 75
list() (sage.matrix.matrix0.Matrix method), 106

LLL() (sage.matrix.matrix_integer_dense.Matrix_inte-
ger_dense method), 365

LLL() (sage.matrix.matrix_rational_dense.Matrix_ratio-
nal_dense method), 414

LLL_gram() (sage.matrix.matrix2.Matrix method), 154
log_determinant() (sage.matrix.matrix_dou-

ble_dense.Matrix_double_dense method), 459
LU() (sage.matrix.matrix2.Matrix method), 156
LU() (sage.matrix.matrix_double_dense.Matrix_dou-

ble_dense method), 431
LU_valid() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 434

M
M4RIE_finite_field (class in sage.matrix.ma-

trix_gf2e_dense), 483
Matrix (class in sage.matrix.matrix0), 89
Matrix (class in sage.matrix.matrix1), 129
Matrix (class in sage.matrix.matrix2), 154
Matrix() (in module sage.matrix.constructor), 21
matrix() (in module sage.matrix.constructor), 24
matrix() (sage.matrix.args.MatrixArgs method), 76
matrix() (sage.matrix.matrix_space.MatrixSpace

method), 11
matrix() (sage.matrix.matrix_window.MatrixWindow

method), 625
matrix_add_GF() (in module sage.matrix.bench-

mark), 656
matrix_add_ZZ() (in module sage.matrix.bench-

mark), 656
matrix_add_ZZ_2() (in module sage.matrix.bench-

mark), 657
Matrix_complex_ball_dense (class in sage.ma-

trix.matrix_complex_ball_dense), 545
Matrix_complex_double_dense (class in

sage.matrix.matrix_complex_double_dense),
543

Matrix_cyclo_dense (class in sage.matrix.ma-
trix_cyclo_dense), 597

Matrix_dense (class in sage.matrix.matrix_dense), 349
Matrix_double_dense (class in sage.matrix.ma-

trix_double_dense), 431
matrix_from_columns() (sage.matrix.matrix1.Ma-

trix method), 137
matrix_from_columns() (sage.ma-

trix.matrix_modn_dense_double.Ma-
trix_modn_dense_template method), 495

matrix_from_columns() (sage.ma-
trix.matrix_modn_dense_float.Ma-
trix_modn_dense_template method), 507

matrix_from_columns() (sage.matrix.ma-
trix_modn_sparse.Matrix_modn_sparse method),
517
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matrix_from_columns() (sage.matrix.matrix_ratio-
nal_dense.Matrix_rational_dense method), 421

matrix_from_rows() (sage.matrix.matrix1.Matrix
method), 138

matrix_from_rows() (sage.matrix.ma-
trix_modn_dense_double.Ma-
trix_modn_dense_template method), 495

matrix_from_rows() (sage.ma-
trix.matrix_modn_dense_float.Ma-
trix_modn_dense_template method), 507

matrix_from_rows() (sage.matrix.ma-
trix_modn_sparse.Matrix_modn_sparse method),
517

matrix_from_rows_and_columns() (sage.ma-
trix.matrix1.Matrix method), 138

matrix_from_rows_and_columns() (sage.ma-
trix.matrix_modn_dense_double.Ma-
trix_modn_dense_template method), 496

matrix_from_rows_and_columns()
(sage.matrix.matrix_modn_dense_float.Ma-
trix_modn_dense_template method), 507

matrix_from_rows_and_columns() (sage.ma-
trix.matrix_sparse.Matrix_sparse method),
355

Matrix_generic_dense (class in sage.matrix.ma-
trix_generic_dense), 357

Matrix_generic_sparse (class in sage.matrix.ma-
trix_generic_sparse), 360

Matrix_gf2e_dense (class in sage.matrix.ma-
trix_gf2e_dense), 484

Matrix_integer_dense (class in sage.matrix.ma-
trix_integer_dense), 363

matrix_integer_dense_rational_re-
construction() (in module sage.ma-
trix.misc_flint), 633

Matrix_integer_sparse (class in sage.matrix.ma-
trix_integer_sparse), 391

matrix_integer_sparse_rational_recon-
struction() (in module sage.matrix.misc),
627

matrix_method() (in module sage.matrix.special), 48
Matrix_mod2_dense (class in sage.matrix.ma-

trix_mod2_dense), 474
Matrix_modn_dense_double (class in sage.ma-

trix.matrix_modn_dense_double), 491
Matrix_modn_dense_float (class in sage.ma-

trix.matrix_modn_dense_float), 503
Matrix_modn_dense_template (class in sage.ma-

trix.matrix_modn_dense_double), 491
Matrix_modn_dense_template (class in sage.ma-

trix.matrix_modn_dense_float), 503
Matrix_modn_sparse (class in sage.matrix.ma-

trix_modn_sparse), 516
Matrix_mpolynomial_dense (class in sage.ma-

trix.matrix_mpolynomial_dense), 593
matrix_multiply_GF() (in module sage.ma-

trix.benchmark), 657
matrix_multiply_QQ() (in module sage.ma-

trix.benchmark), 657
matrix_multiply_ZZ() (in module sage.ma-

trix.benchmark), 658
matrix_of_variables() (sage.matrix.operation_ta-

ble.OperationTable method), 610
matrix_over_field() (sage.matrix.matrix1.Matrix

method), 139
Matrix_polynomial_dense (class in sage.ma-

trix.matrix_polynomial_dense), 551
Matrix_rational_dense (class in sage.matrix.ma-

trix_rational_dense), 413
matrix_rational_echelon_form_multi-

modular() (in module sage.matrix.misc),
627

Matrix_rational_sparse (class in sage.matrix.ma-
trix_rational_sparse), 427

Matrix_real_double_dense (class in sage.ma-
trix.matrix_real_double_dense), 471

matrix_space() (sage.matrix.matrix1.Matrix
method), 139

matrix_space() (sage.matrix.matrix_space.MatrixS-
pace method), 12

Matrix_sparse (class in sage.matrix.matrix_sparse),
351

Matrix_sparse_from_rows() (in module sage.ma-
trix.matrix_generic_sparse), 360

Matrix_symbolic_dense (class in sage.matrix.ma-
trix_symbolic_dense), 521

Matrix_symbolic_sparse (class in sage.matrix.ma-
trix_symbolic_sparse), 533

matrix_window() (sage.matrix.matrix2.Matrix
method), 271

matrix_window() (sage.matrix.matrix_window.Ma-
trixWindow method), 625

MatrixArgs (class in sage.matrix.args), 69
MatrixArgs_init() (in module sage.matrix.args), 79
MatrixMatrixAction (class in sage.matrix.action),

614
MatrixMulAction (class in sage.matrix.action), 614
MatrixPolymapAction (class in sage.matrix.action),

615
MatrixSchemePointAction (class in sage.ma-

trix.action), 615
MatrixSpace (class in sage.matrix.matrix_space), 3
MatrixVector_QQ() (in module sage.matrix.bench-

mark), 653
MatrixVectorAction (class in sage.matrix.action),

615
MatrixWindow (class in sage.matrix.matrix_ratio-

nal_dense), 413
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MatrixWindow (class in sage.matrix.matrix_window),
625

max_det_prime() (in module sage.matrix.matrix_inte-
ger_dense_hnf), 404

maxspin() (sage.matrix.matrix2.Matrix method), 272
mccoy_column() (sage.matrix.compute_J_ideal.Com-

puteMinimalPolynomials method), 646
minimal_approximant_basis() (sage.ma-

trix.matrix_polynomial_dense.Matrix_polyno-
mial_dense method), 571

minimal_kernel_basis() (sage.matrix.ma-
trix_polynomial_dense.Matrix_polyno-
mial_dense method), 573

minimal_polynomial() (sage.matrix.matrix2.Matrix
method), 272

minors() (sage.matrix.matrix2.Matrix method), 273
minpoly() (sage.matrix.matrix2.Matrix method), 273
minpoly() (sage.matrix.matrix_integer_dense.Ma-

trix_integer_dense method), 382
minpoly() (sage.matrix.matrix_integer_sparse.Ma-

trix_integer_sparse method), 393
minpoly() (sage.matrix.matrix_modn_dense_dou-

ble.Matrix_modn_dense_template method),
496

minpoly() (sage.matrix.matrix_modn_dense_float.Ma-
trix_modn_dense_template method), 508

minpoly() (sage.matrix.matrix_rational_dense.Ma-
trix_rational_dense method), 422

minpoly() (sage.matrix.matrix_symbolic_dense.Ma-
trix_symbolic_dense method), 528

minpoly() (sage.matrix.matrix_symbolic_sparse.Ma-
trix_symbolic_sparse method), 540

mod() (sage.matrix.matrix0.Matrix method), 106
module

sage.matrix.action, 613
sage.matrix.args, 69
sage.matrix.benchmark, 653
sage.matrix.berlekamp_massey, 347
sage.matrix.change_ring, 617
sage.matrix.compute_J_ideal, 643
sage.matrix.constructor, 21
sage.matrix.docs, 81
sage.matrix.echelon_matrix, 619
sage.matrix.matrix0, 89
sage.matrix.matrix1, 129
sage.matrix.matrix2, 153
sage.matrix.matrix_com-

plex_ball_dense, 545
sage.matrix.matrix_complex_dou-

ble_dense, 543
sage.matrix.matrix_cyclo_dense, 597
sage.matrix.matrix_dense, 349
sage.matrix.matrix_double_dense, 431
sage.matrix.matrix_generic_dense,

357
sage.matrix.matrix_generic_sparse,

359
sage.matrix.matrix_gf2e_dense, 483
sage.matrix.matrix_integer_dense,

363
sage.matrix.matrix_inte-

ger_dense_hnf, 397
sage.matrix.matrix_inte-

ger_dense_saturation, 409
sage.matrix.matrix_integer_sparse,

391
sage.matrix.matrix_misc, 621
sage.matrix.matrix_mod2_dense, 473
sage.matrix.matrix_modn_dense_dou-

ble, 491
sage.matrix.ma-

trix_modn_dense_float, 503
sage.matrix.matrix_modn_sparse, 515
sage.matrix.matrix_mpolyno-

mial_dense, 593
sage.matrix.matrix_polyno-

mial_dense, 551
sage.matrix.matrix_rational_dense,

413
sage.matrix.matrix_rational_sparse,

427
sage.matrix.matrix_real_dou-

ble_dense, 471
sage.matrix.matrix_space, 3
sage.matrix.matrix_sparse, 351
sage.matrix.matrix_symbolic_dense,

519
sage.matrix.matrix_symbolic_sparse,

531
sage.matrix.matrix_window, 625
sage.matrix.misc, 627
sage.matrix.misc_flint, 633
sage.matrix.misc_mpfr, 631
sage.matrix.operation_table, 603
sage.matrix.special, 31
sage.matrix.strassen, 343
sage.matrix.symplectic_basis, 635

monomial_coefficients() (sage.matrix.ma-
trix0.Matrix method), 107

multiplicative_order() (sage.matrix.ma-
trix0.Matrix method), 107

mutate() (sage.matrix.matrix0.Matrix method), 108

N
ncols (sage.matrix.args.MatrixArgs attribute), 77
ncols() (sage.matrix.matrix0.Matrix method), 109
ncols() (sage.matrix.matrix_space.MatrixSpace

method), 12
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ncols() (sage.matrix.matrix_window.MatrixWindow
method), 625

new_empty_window() (sage.matrix.matrix_win-
dow.MatrixWindow method), 625

new_matrix() (sage.matrix.matrix1.Matrix method),
139

new_matrix_window() (sage.matrix.matrix_win-
dow.MatrixWindow method), 625

ngens() (sage.matrix.matrix_space.MatrixSpace
method), 12

nonpivots() (sage.matrix.matrix0.Matrix method), 110
nonzero_positions() (sage.matrix.matrix0.Matrix

method), 110
nonzero_positions_in_column() (sage.ma-

trix.matrix0.Matrix method), 110
nonzero_positions_in_row() (sage.matrix.ma-

trix0.Matrix method), 111
norm() (sage.matrix.matrix2.Matrix method), 274
norm() (sage.matrix.matrix_double_dense.Matrix_dou-

ble_dense method), 459
NotFullRankError, 340
nrows (sage.matrix.args.MatrixArgs attribute), 77
nrows() (sage.matrix.matrix0.Matrix method), 111
nrows() (sage.matrix.matrix_space.MatrixSpace

method), 12
nrows() (sage.matrix.matrix_window.MatrixWindow

method), 625
null_ideal() (sage.matrix.compute_J_ideal.Com-

puteMinimalPolynomials method), 647
null_ideal() (sage.matrix.matrix_integer_dense.Ma-

trix_integer_dense method), 382
nullity() (sage.matrix.matrix2.Matrix method), 275
nullspace_GF() (in module sage.matrix.benchmark),

658
nullspace_RDF() (in module sage.matrix.bench-

mark), 658
nullspace_RR() (in module sage.matrix.benchmark),

659
nullspace_ZZ() (in module sage.matrix.benchmark),

659
number_of_arguments() (sage.matrix.matrix_sym-

bolic_dense.Matrix_symbolic_dense method),
528

number_of_arguments() (sage.matrix.matrix_sym-
bolic_sparse.Matrix_symbolic_sparse method),
540

numerical_approx() (sage.matrix.matrix2.Matrix
method), 275

numpy() (sage.matrix.matrix1.Matrix method), 140

O
one() (sage.matrix.matrix_space.MatrixSpace method),

12

ones() (in module sage.matrix.matrix_inte-
ger_dense_hnf), 405

ones_matrix() (in module sage.matrix.special), 49
OperationTable (class in sage.matrix.operation_ta-

ble), 603
options() (in module sage.matrix.constructor), 28
overlaps() (sage.matrix.matrix_com-

plex_ball_dense.Matrix_complex_ball_dense
method), 550

P
p (sage.matrix.matrix_modn_sparse.Matrix_modn_sparse

attribute), 517
p_minimal_polynomials() (sage.matrix.com-

pute_J_ideal.ComputeMinimalPolynomials
method), 647

p_minimal_polynomials() (sage.matrix.ma-
trix_integer_dense.Matrix_integer_dense
method), 383

p_part() (in module sage.matrix.compute_J_ideal), 651
p_saturation() (in module sage.matrix.matrix_inte-

ger_dense_saturation), 409
pad_zeros() (in module sage.matrix.matrix_inte-

ger_dense_hnf), 405
parity() (in module sage.matrix.matrix_mod2_dense),

480
permanent() (sage.matrix.matrix2.Matrix method), 276
permanental_minor() (sage.matrix.matrix2.Matrix

method), 278
permanental_minor_polynomial() (in module

sage.matrix.matrix_misc), 621
permutation_normal_form() (sage.matrix.ma-

trix2.Matrix method), 279
permute_columns() (sage.matrix.matrix0.Matrix

method), 112
permute_rows() (sage.matrix.matrix0.Matrix

method), 112
permute_rows_and_columns() (sage.matrix.ma-

trix0.Matrix method), 113
pfaffian() (sage.matrix.matrix2.Matrix method), 279
pivot_rows() (sage.matrix.matrix2.Matrix method),

282
pivots() (sage.matrix.matrix0.Matrix method), 114
pivots() (sage.matrix.matrix_integer_dense.Matrix_in-

teger_dense method), 383
pivots() (sage.matrix.matrix_mpolynomial_dense.Ma-

trix_mpolynomial_dense method), 595
pivots_of_hnf_matrix() (in module sage.ma-

trix.matrix_integer_dense_hnf), 405
ple() (in module sage.matrix.matrix_mod2_dense), 480
plot() (sage.matrix.matrix2.Matrix method), 282
pluq() (in module sage.matrix.matrix_mod2_dense), 481
PolymapMatrixAction (class in sage.matrix.action),

615
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trixSpace method), 13
random_matrix() (in module sage.matrix.special), 53
random_rref_matrix() (in module sage.matrix.spe-
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rank() (sage.matrix.matrix_gf2e_dense.Ma-

trix_gf2e_dense method), 487
rank() (sage.matrix.matrix_integer_dense.Matrix_inte-
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ger_sparse method), 394
rank() (sage.matrix.matrix_mod2_dense.Ma-
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rank_GF() (in module sage.matrix.benchmark), 660
rank_ZZ() (in module sage.matrix.benchmark), 660
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rational_reconstruction() (sage.matrix.ma-
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method), 394
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module sage.matrix.echelon_matrix), 619

reduced_form() (sage.matrix.matrix_polyno-
mial_dense.Matrix_polynomial_dense method),
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method), 298
right_eigenvectors() (sage.matrix.matrix2.Matrix
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sage.matrix.args

module, 69
sage.matrix.benchmark

module, 653
sage.matrix.berlekamp_massey

module, 347
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sage.matrix.matrix_integer_dense
module, 363

sage.matrix.matrix_integer_dense_hnf
module, 397

Index 679



Matrices and Spaces of Matrices, Release 10.5.rc0
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saturation() (sage.matrix.matrix_integer_dense.Ma-
trix_integer_dense method), 386
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method), 78
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ble_dense.Matrix_double_dense method), 467
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method), 144
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subdivide() (sage.matrix.matrix2.Matrix method), 329
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500
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zero() (sage.matrix.matrix_space.MatrixSpace method),

16
zero_at() (sage.matrix.matrix_double_dense.Ma-

trix_double_dense method), 469
zero_matrix() (in module sage.matrix.special), 66
zero_matrix() (sage.matrix.matrix_space.MatrixS-

pace method), 16
zero_pattern_matrix() (sage.matrix.matrix1.Ma-

trix method), 149
zigzag_form() (sage.matrix.matrix2.Matrix method),

337

682 Index


	Matrix Spaces
	General matrix Constructor and display options
	Constructors for special matrices
	Helpers for creating matrices
	Matrices over an arbitrary ring
	Indexing
	Implementation and Design


	Base class for matrices, part 0
	Base class for matrices, part 1
	Base class for matrices, part 2
	Generic Asymptotically Fast Strassen Algorithms
	Minimal Polynomials of Linear Recurrence Sequences
	Base class for dense matrices
	Base class for sparse matrices
	Dense Matrices over a general ring
	Sparse Matrices over a general ring
	Dense matrices over the integer ring
	Sparse integer matrices
	Modular algorithm to compute Hermite normal forms of integer matrices
	Saturation over ZZ
	Dense matrices over the rational field
	Sparse rational matrices
	Dense matrices using a NumPy backend
	Dense matrices over the Real Double Field using NumPy
	Dense matrices over GF(2) using the M4RI library
	Dense matrices over F2e for 2 e 16 using the M4RIE library
	Dense matrices over Z/nZ for n < 94906266 using LinBox’s Modular<double>
	Dense matrices over Z/nZ for n < 28 using LinBox’s Modular<float>
	Sparse matrices over Z/nZ for n small
	Symbolic dense matrices
	Symbolic sparse matrices
	Dense matrices over the Complex Double Field using NumPy
	Arbitrary precision complex ball matrices
	Dense matrices over univariate polynomials over fields
	Dense matrices over multivariate polynomials over fields
	Matrices over Cyclotomic Fields
	Operation Tables
	Actions used by the coercion model for matrix and vector multiplications
	Functions for changing the base ring of matrices quickly
	Echelon matrices over finite fields.
	Miscellaneous matrix functions
	Matrix windows
	Misc matrix algorithms
	Misc matrix algorithms using MPFR
	Misc matrix algorithms using FLINT
	Calculate symplectic bases for matrices over fields and the integers.
	J-ideals of matrices
	Classes and Methods

	Benchmarks for matrices
	Indices and Tables
	Python Module Index
	Index

