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CHAPTER
ONE

BASE CLASSES FOR RINGS, ALGEBRAS AND FIELDS

1.1 Rings

This module provides the abstract base class Ring from which all rings in Sage (used to) derive, as well as a selection of
more specific base classes.

Warning

Those classes, except maybe for the lowest ones like CommutativeRing and Field, are being progressively
deprecated in favor of the corresponding categories. which are more flexible, in particular with respect to multiple
inheritance.

The class inheritance hierarchy is:
* Ring (to be deprecated)
— Algebra (deprecated and essentially removed)
— CommutativeRing
* NoetherianRing (deprecated and essentially removed)
* CommutativeAlgebra (deprecated and essentially removed)
* IntegralDomain (deprecated)
- DedekindDomain (deprecated and essentially removed)
- PrincipalIdealDomain (deprecated and essentially removed)
Subclasses of CommutativeRing are
e Field
— FiniteField

Some aspects of this structure may seem strange, but this is an unfortunate consequence of the fact that Cython classes
do not support multiple inheritance.

(A distinct but equally awkward issue is that sometimes we may not know in advance whether or not a ring belongs in one
of these classes; e.g. some orders in number fields are Dedekind domains, but others are not, and we still want to offer a
unified interface, so orders are never instances of the deprecated Dedek i ndDomain class.)

AUTHORS:

¢ David Harvey (2006-10-16): changed CommutativeAlgebra to derive from CommutativeRing instead
of from Algebra.
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¢ David Loeffler (2009-07-09): documentation fixes, added to reference manual.
¢ Simon King (2011-03-29): Proper use of the category framework for rings.
» Simon King (2011-05-20): Modify multiplication and _ideal_class_ to support ideals of non-commutative rings.

class sage.rings.ring.Algebra

Bases: Ring

class sage.rings.ring.CommutativeAlgebra

Bases: CommutativeRing

class sage.rings.ring.CommutativeRing

Bases: Ring
Generic commutative ring.

extension (poly, name=None, names=None, **kwds)

Algebraically extend self by taking the quotient self [x] / (f£(x)).
INPUT:
* poly —a polynomial whose coefficients are coercible into self

* name — (optional) name for the root of f

Note

Using this method on an algebraically complete field does not return this field; the construction self [x]
/ (£ (x)) is done anyway.

EXAMPLES:

sage: R = QQ['x"]

sage: y = polygen (R)

sage: R.extension(y"2 - 5, 'a') #.
—needs sage.libs.pari

Univariate Quotient Polynomial Ring in a over

Univariate Polynomial Ring in x over Rational Field with modulus a2 - 5
sage: # needs sage.rings.finite_rings

sage: P.<x> = PolynomialRing (GF (5))

sage: F.<a> = GF(5) .extension(x"2 - 2)

sage: P.<t> = F[]

sage: R.<b> F.extension(t"2 - a); R
Univariate Quotient Polynomial Ring in b over
Finite Field in a of size 572 with modulus b"2 + 4*a

fraction_field()
Return the fraction field of self.

EXAMPLES:

sage: R = Integers(389)['x,y"']
sage: Frac (R)
Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers.
—modulo 389
sage: R.fraction_field()
(continues on next page)

2 Chapter 1. Base Classes for Rings, Algebras and Fields



General Rings, Ideals, and Morphisms, Release 10.5.rc0

(continued from previous page)

Fraction Field of Multivariate Polynomial Ring in x, y over Ring of integers.
—modulo 389

is_commutative ()

Return True, since this ring is commutative.

EXAMPLES:

sage: QQ.is_commutative ()

True

sage: ZpCA(7) .is_commutative () #
—needs sage.rings.padics

True

sage: A = QuaternionAlgebra(QQ, -1, -3, names=('i',"'j','k")); A #_

—needs sage.combinat sage.modules

Quaternion Algebra (-1, -3) with base ring Rational Field

sage: A.is_commutative () #.
—needs sage.combinat sage.modules

False

krull_dimension ()

Return the Krull dimension of this commutative ring.
The Krull dimension is the length of the longest ascending chain of prime ideals.

localization (additional_units, names=None, normalize=True, category=None)

Return the localization of self at the given additional units.

EXAMPLES:

sage: R.<x, y> = GF(3)[]
sage: R.localization((x*y, x**2 + y**2)) #
—needs sage.rings.finite_rings
Multivariate Polynomial Ring in x, y over Finite Field of size 3
localized at (y, x, x"2 + y"2)
sage: ~y in _ #.
—needs sage.rings.finite_rings
True

class sage.rings.ring.DedekindDomain

Bases: CommutativeRing

class sage.rings.ring.Field
Bases: CommutativeRing
Generic field

algebraic_closure ()

Return the algebraic closure of self.

Note

This is only implemented for certain classes of field.

EXAMPLES:

1.1. Rings 3
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sage: K = PolynomialRing (QQ, 'x"') .fraction_field(); K

Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: K.algebraic_closure ()

Traceback (most recent call last):

NotImplementedError: Algebraic closures of general fields not implemented.

an_embedding (K)
Return some embedding of this field into another field K, and raise a ValueError if none exists.

EXAMPLES:

sage: GF (2) .an_embedding (GF (4))
Ring morphism:
From: Finite Field of size 2
To: Finite Field in z2 of size 272
Defn: 1 |-—> 1
sage: GF (4) .an_embedding (GF (8))
Traceback (most recent call last):

ValueError: no embedding from Finite Field in z2 of size 272 to Finite Field.
—in z3 of size 2”73
sage: GF (4) .an_embedding (GF (16))
Ring morphism:
From: Finite Field in z2 of size 272
To: Finite Field in z4 of size 274
Defn: z2 |-—> z472 + z4

sage: CyclotomicField(5) .an_embedding (QQbar)
Coercion map:
From: Cyclotomic Field of order 5 and degree 4
To: Algebraic Field
sage: CyclotomicField(3) .an_embedding(CyclotomicField (7))
Traceback (most recent call last):

ValueError: no embedding from Cyclotomic Field of order 3 and degree 2 to.
—Cyclotomic Field of order 7 and degree 6
sage: CyclotomicField(3) .an_embedding(CyclotomicField (6))
Generic morphism:
From: Cyclotomic Field of order 3 and degree 2
To: Cyclotomic Field of order 6 and degree 2
Defn: zeta3 -> zeta6 - 1

divides (x, y, coerce=True)
Return True if x divides vy in this field (usually True in a field!). If coerce is True (the default), first
coerce x and y into self.

EXAMPLES:

sage: QQ.divides (2, 3/4)
True

sage: QQ.divides (0, 5)
False

fraction_field()
Return the fraction field of self.

EXAMPLES:
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Since fields are their own field of fractions, we simply get the original field in return:

sage: QQ.fraction_field()

Rational Field

sage: RR.fraction_field() #.
—needs sage.rings.real_mpfr

Real Field with 53 bits of precision

sage: CC.fraction_field() #.
—needs sage.rings.real_mpfr

Complex Field with 53 bits of precision

sage: x = polygen(Zz, 'x'")

sage: F = NumberField(x"2 + 1, 'i'") #_
—needs sage.rings.number_ field
sage: F.fraction_field() #

—needs sage.rings.number_field
Number Field in i with defining polynomial x*2 + 1

integral_closure ()

Return this field, since fields are integrally closed in their fraction field.

EXAMPLES:

sage: QQ.integral_closure()

Rational Field

sage: Frac(ZZ['x,y']) .integral_closure()

Fraction Field of Multivariate Polynomial Ring in x, y over Integer Ring

is_field (proof=True)

Return True since this is a field.

EXAMPLES:
sage: Frac(zzZ['x,y']) .is_£field()
True

is_integrally_closed()
Return True since fields are trivially integrally closed in their fraction field (since they are their own fraction

field).

EXAMPLES:

sage: Frac(ZZ['x,y']) .is_integrally_closed()
True

krull_dimension ()
Return the Krull dimension of this field, which is 0.

EXAMPLES:

sage: QQ.krull_dimension ()

0

sage: Frac(QQ['x,y']) .krull_dimension ()
0

prime_subfield()
Return the prime subfield of self.

EXAMPLES:

1.1.
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sage: k = GF (9, 'a') #
—needs sage.rings.finite_rings
sage: k.prime_subfield() #

—needs sage.rings.finite_rings
Finite Field of size 3

class sage.rings.ring.IntegralDomain

Bases: CommutativeRing
Generic integral domain class.

This class is deprecated. Please use the sage.categories.integral_domains.IntegralDomains
category instead.

is_field (proof=True)
Return True if this ring is a field.

EXAMPLES:

sage: GF(7) .is_field()
True

The following examples have their own is_ field implementations:

sage: ZZ.is_field(); QQ.is_field()

False

True

sage: R.<x> = PolynomialRing(QQ); R.is_field()
False

is_integrally_closed()

Return True if this ring is integrally closed in its field of fractions; otherwise return False.
When no algorithm is implemented for this, then this function raises a Not ImplementedError.

Note that is_integrally_closed has anaive implementation in fields. For every field F', F' is its own
field of fractions, hence every element of F' is integral over F'.

EXAMPLES:

sage: ZZ.is_integrally_closed()

True

sage: QQ.is_integrally_closed()

True

sage: QQbar.is_integrally_closed() #
—needs sage.rings.number_field

True

sage: GF(5).is_integrally_closed()

True

sage: Z5 = Integers(5); Z5

Ring of integers modulo 5

sage: Z5.is_integrally_closed()
Traceback (most recent call last):

AttributeError: 'IntegerModRing_generic_with_category' object has no.
—attribute 'is_integrally_closed'...

class sage.rings.ring.NoetherianRing

Bases: CommutativeRing

6 Chapter 1. Base Classes for Rings, Algebras and Fields
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class sage.rings.ring.PrincipalIdealDomain

Bases: CommutativeRing

class sage.rings.ring.Ring

Bases: ParentWithGens
Generic ring class.

base_extend (R)
EXAMPLES:

sage: QQ.base_extend (GF (7))
Traceback (most recent call last):

TypeError: no base extension defined
sage: ZZ.base_extend (GF (7))
Finite Field of size 7

category ()

Return the category to which this ring belongs.

Note

This method exists because sometimes a ring is its own base ring. During initialisation of a ring R,
it may be checked whether the base ring (hence, the ring itself) is a ring. Hence, it is necessary that
R.category () tells that R is a ring, even before its category is properly initialised.

EXAMPLES:
sage: FreeAlgebra(QQ, 3, 'x').category() # todo: use a ring which is not an.
—algebra! # needs sage.combinat sage.modules

Category of algebras with basis over Rational Field

Since a quotient of the integers is its own base ring, and during initialisation of a ring it is tested whether the
base ring belongs to the category of rings, the following is an indirect test that the category () method of
rings returns the category of rings even before the initialisation was successful:

sage: I = Integers(15)

sage: I.base_ring() is I

True

sage: I.category ()

Join of Category of finite commutative rings
and Category of subquotients of monoids
and Category of quotients of semigroups
and Category of finite enumerated sets

epsilon ()
Return the precision error of elements in this ring.

EXAMPLES:

sage: RDF.epsilon()

2.220446049250313e-16

sage: ComplexField(53) .epsilon () #
—needs sage.rings.real_mpfr

2.22044604925031e-16

(continues on next page)
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(continued from previous page)

sage: RealField(10) .epsilon() #.
—needs sage.rings.real_mpfr
0.0020

For exact rings, zero is returned:

sage: ZZ.epsilon()
0

This also works over derived rings:

sage: RR['x'].epsilon() #_
—needs sage.rings.real_mpfr

2.22044604925031e-16

sage: QQ['x'].epsilon()

0

For the symbolic ring, there is no reasonable answer:

sage: SR.epsilon () #
—needs sage.symbolic
Traceback (most recent call last):

NotImplementedError

is_exact ()

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing
arithmetic.

Note

This defaults to True, so even if it does return True you have no guarantee (unless the ring has properly
overloaded this).

EXAMPLES:

sage: QQ.is_exact () # indirect doctest

True

sage: ZZ.is_exact ()

True

sage: Qp(7) .is_exact () #
—needs sage.rings.padics

False

sage: Zp(7, type='capped-abs') .is_exact () #
—needs sage.rings.padics

False

is_field (proof=True)
Return True if this ring is a field.

INPUT:
e proof —boolean (default: True); determines what to do in unknown cases

ALGORITHM:
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If the parameter proof is set to True, the returned value is correct but the method might throw an error.
Otherwise, if it is set to False, the method returns True if it can establish that self isafield and False

otherwise.

EXAMPLES:

sage: Q0Q.is_field()

True

sage: GF (9, 'a').is_field() #
—needs sage.rings.finite_rings
True

sage: ZZ.is_field()

False

sage: QQ['x'].is_field()

False

sage: Frac(QQ['x']).is_field()
True

This illustrates the use of the proof parameter:

sage: R.<a,b> = QQI[]

sage: S.<x,y> = R.quo((b"3)) #_
—needs sage.libs.singular
sage: S.is_field(proof=True) #

—needs sage.libs.singular
Traceback (most recent call last):

NotImplementedError

sage: S.is_field(proof=False) #.
—needs sage.libs.singular
False

one ()

Return the one element of this ring (cached), if it exists.

EXAMPLES:

sage: ZZ.one()

1

sage: QQ.one ()

1

sage: QQ['x'].one()
1

The result is cached:

sage: ZZ.one() is ZZ.one()
True

order ()
The number of elements of self.

EXAMPLES:

sage: GF (19) .order ()
19

sage: QQ.order ()
+Infinity

1.1. Rings 9
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random_element (bound=2)

Return a random integer coerced into this ring, where the integer is chosen uniformly from the interval
[-bound, bound].

INPUT:

* bound - integer (default: 2)
ALGORITHM:
Uses Python’s randint.

zero ()

Return the zero element of this ring (cached).

EXAMPLES:

sage: ZZ.zero()

0

sage: Q0Q.zero ()

0

sage: QQ['x'].zero()
0

The result is cached:

sage: ZZ.zero() is ZZ.zero()
True

zeta (n=2, all=False)

Return a primitive n-th root of unity in sel1f if there is one, or raise a ValueError otherwise.
INPUT:
* n — positive integer

* all - boolean (default: False); whether to return a list of all primitive n-th roots of unity. If True,
raise a ValueError if self is not an integral domain.

OUTPUT: element of self of finite order

EXAMPLES:

sage: QQ.zetal()

=il

sage: QQ.zeta (1)

1

sage: CyclotomicField(6) .zeta (6) #.
—needs sage.rings.number_field

zetab

sage: CyclotomicField(3) .zeta(3) #.
—needs sage.rings.number_field

zetal

sage: CyclotomicField(3) .zeta(3) .multiplicative_order () #.
—needs sage.rings.number_field

3

sage: # needs sage.rings.finite rings

sage: a GF (7) .zeta(); a

3

sage: a.multiplicative_order ()

(continues on next page)
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sage: a = GF (49,'z"').zeta(); a

sage: a.multiplicative_order ()

48

sage: a = GF(49,'z"') .zeta(2); a
6

sage: a.multiplicative_order ()
2

sage: QQ.zeta(3)
Traceback (most recent call last):

ValueError: no n-th root of unity in rational field
sage: Zp(7, prec=8).zetal()

—needs sage.rings.padics

3+ 4*7 + 6*772 + 3*7"3 + 2*7"5 + 6*776 + 2*777 + 0O(7"8)

(continued from previous page)

zeta_order ()

Return the order of the distinguished root of unity in self.

EXAMPLES:

sage: CyclotomicField(19) .zeta_order ()
—needs sage.rings.number_field
38

sage: GF (19) .zeta_order ()

18

sage: GF (573, 'a') .zeta_order ()
—needs sage.rings.finite_rings
124

sage: Zp(7, prec=8).zeta_order /()
—needs sage.rings.padics

6

sage.rings.ring.is_Ring (x)
Return True if x is a ring.

EXAMPLES:

sage: from sage.rings.ring import is_Ring
sage: is_Ring(ZZz)
doctest:warning...

—instead

True

sage: MS = MatrixSpace (QQ, 2)
—needs sage.modules

sage: is_Ring (MS)

—needs sage.modules

True
.

DeprecationWarning: The function is_Ring is deprecated; use '...

See https://github.com/sagemath/sage/issues/38288 for details.

in Rings () 'w

1.1. Rings
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1.2 Abstract base classes for rings

class sage.rings.abc.AlgebraicField

Bases: AlgebraicField_common
Abstract base class for AlgebraicField.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

-
sage: import sage.rings.abc

sage: isinstance (QQbar, sage.rings.abc.AlgebraicField)
—needs sage.rings.number_field

True

sage: isinstance (AA, sage.rings.abc.AlgebraicField)
—needs sage.rings.number_field

False
“

By design, there is a unique direct subclass:

p
sage: sage.rings.abc.AlgebraicField._ _subclasses__ ()

—needs sage.rings.number_field
[<class 'sage.rings.qggbar.AlgebraicField'>]

sage: len(sage.rings.abc.AlgebraicField.__subclasses__ _()) <= 1
True

.

class sage.rings.abc.AlgebraicField_common
Bases: Field

Abstract base class for AlgebraicField_common.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance (QQbar, sage.rings.abc.AlgebraicField_common)
—needs sage.rings.number_field

True

sage: isinstance (AA, sage.rings.abc.AlgebraicField_common)
—needs sage.rings.number_field

True

By design, other than the abstract subclasses A1gebraicField and AlgebraicRealField, there is only

one direct implementation subclass:

sage: sage.rings.abc.AlgebraicField common.__subclasses__ ()
—needs sage.rings.number_ field

[<class 'sage.rings.abc.AlgebraicField'>,

<class 'sage.rings.abc.AlgebraicRealField'>,

<class 'sage.rings.qggbar.AlgebraicField_common'>]

sage: len(sage.rings.abc.AlgebraicField_common.__subclasses__())

True
.-

<=

#

12 Chapter 1. Base Classes for Rings, Algebras and Fields
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class sage.rings.abc.AlgebraicRealField

Bases: AlgebraicField common
Abstract base class for AlgebraicRealField.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

(sage: import sage.rings.abc

sage: isinstance (QQbar, sage.rings.abc.AlgebraicRealField)
—needs sage.rings.number_field

False

sage: isinstance (AA, sage.rings.abc.AlgebraicRealField)
—needs sage.rings.number_field

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.AlgebraicRealField.__subclasses__ ()
—needs sage.rings.number_field
[<class 'sage.rings.qggbar.AlgebraicRealField'>]

sage: len(sage.rings.abc.AlgebraicRealField.__subclasses__()) <=
True

.

class sage.rings.abc.CallableSymbolicExpressionRing
Bases: SymbolicRing

Abstract base class for CallableSymbolicExpressionRing_class.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc
sage: f x.function (x) .parent ()
—needs sage.symbolic

sage: isinstance(f, sage.rings.abc.CallableSymbolicExpressionRing)
—needs sage.symbolic
True

#

#o

By design, there is a unique direct subclass:

sage: sage.rings.abc.CallableSymbolicExpressionRing.__subclasses__ ()
—needs sage.symbolic
[<class 'sage.symbolic.callable.CallableSymbolicExpressionRing_class'>]

sage: len(sage.rings.abc.CallableSymbolicExpressionRing.__subclasses__()) <= 1
True

L

class sage.rings.abc.ComplexBallField
Bases: Field

Abstract base class for ComplexBallField.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

1.2. Abstract base classes for rings
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-
sage: import sage.rings.abc

sage: isinstance (CBF, sage.rings.abc.ComplexBallField) #o
—needs sage.libs.flint
True

.

By design, there is a unique direct subclass:

-
sage: sage.rings.abc.ComplexBallField.__ subclasses__ () #_

—needs sage.libs.flint
[<class 'sage.rings.complex_arb.ComplexBallField'>]

sage: len(sage.rings.abc.ComplexBallField.__ _subclasses__ ()) <= 1
True

class sage.rings.abc.ComplexDoubleField

Bases: Field
Abstract base class for ComplexDoubleField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance (CDF, sage.rings.abc.ComplexDoubleField) #o
—needs sage.rings.complex_double
True

By design, there is a unique direct subclass:

sage: sage.rings.abc.ComplexDoubleField.__subclasses__ () #_
—needs sage.rings.complex_double
[<class 'sage.rings.complex_double.ComplexDoubleField_class'>]

sage: len(sage.rings.abc.ComplexDoubleField.__subclasses__ ()) <=
True

.

class sage.rings.abc.ComplexField

Bases: Field
Abstract base class for ComplexField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance(CC, sage.rings.abc.ComplexField) #
—needs sage.rings.real_mpfr
True

By design, there is a unique direct subclass:

sage: sage.rings.abc.ComplexField.__ subclasses__ () #o
—needs sage.rings.real_mpfr
[<class 'sage.rings.complex_mpfr.ComplexField_class'>]

sage: len(sage.rings.abc.ComplexField.__subclasses__ ()) <= 1
True

14
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class sage.rings.abc.ComplexIntervalField
Bases: Field

Abstract base class for ComplexIntervalField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

p

sage: import sage.rings.abc

sage: isinstance (CIF, sage.rings.abc.ComplexIntervalField) #o
—needs sage.rings.complex_interval field

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.ComplexIntervalField.__ _subclasses__ () #_
—needs sage.rings.complex_interval_field
[<class 'sage.rings.complex_interval_ field.ComplexIntervalField_class'>]

sage: len(sage.rings.abc.ComplexIntervalField.__subclasses_ ()) <= 1
True

.

class sage.rings.abc.IntegerModRing
Bases: object

Abstract base class for IntegerModRing_generic.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc
sage: isinstance (Integers(7), sage.rings.abc.IntegerModRing)
True

By design, there is a unique direct subclass:

sage: sage.rings.abc.IntegerModRing.__subclasses__ ()
[<class 'sage.rings.finite_rings.integer_mod_ring.IntegerModRing_generic'>]

sage: len(sage.rings.abc.IntegerModRing.__subclasses__ _()) <= 1
True

class sage.rings.abc.NumberField_cyclotomic
Bases: Field

Abstract base class for NumberField_cyclotomic.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: K.<zeta> = CyclotomicField(15) #_
—needs sage.rings.number_field

sage: isinstance (K, sage.rings.abc.NumberField cyclotomic) #_
—needs sage.rings.number_ field

True

By design, there is a unique direct subclass:

1.2. Abstract base classes for rings 15
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sage: sage.rings.abc.NumberField_cyclotomic.__subclasses__ () #o
—needs sage.rings.number_field
[<class 'sage.rings.number_field.number_field.NumberField_cyclotomic'>]

sage: len(sage.rings.abc.NumberField cyclotomic.__subclasses__ ()) <= 1
True

class sage.rings.abc.NumberField_quadratic

Bases: Field
Abstract base class for NumberField_quadratic.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

(

.

sage: import sage.rings.abc

sage: K.<sqgrt2> = QuadraticField(2) #o
—needs sage.rings.number_field

sage: isinstance (K, sage.rings.abc.NumberField_ quadratic) #o
—needs sage.rings.number_ field

True

By design, there is a unique direct subclass:

-

sage: sage.rings.abc.NumberField_quadratic.__subclasses__ () #o
—needs sage.rings.number_ field
[<class 'sage.rings.number_field.number_field.NumberField_qguadratic'>]

sage: len(sage.rings.abc.NumberField quadratic.__subclasses__ ()) <= 1
True

class sage.rings.abc.Order

Bases: object
Abstract base class for Order.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

-

sage: import sage.rings.abc
sage: x = polygen(zz, 'x'")

sage: K.<a> = NumberField(x"2 + 1); O = K.order(2*a) #_
—needs sage.rings.number_field

sage: isinstance (0O, sage.rings.abc.Order) #o
—needs sage.rings.number_field

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.Order.__subclasses__ () #_
—needs sage.rings.number_field
[<class 'sage.rings.number_field.order.Order'>]

sage: len(sage.rings.abc.Order.__subclasses_ ()) <=1
True

16
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class sage.rings.abc.RealBallField
Bases: Field

Abstract base class for RealBallField.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

-
sage: import sage.rings.abc

sage: isinstance (RBF, sage.rings.abc.RealBallField) #
—needs sage.libs.flint

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.RealBallField.__subclasses__ () #_
—needs sage.libs.flint
[<class 'sage.rings.real_arb.RealBallField'>]

sage: len(sage.rings.abc.RealBallField.__subclasses__()) <=
True

.

class sage.rings.abc.RealDoubleField
Bases: Field

Abstract base class for RealDoubleField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc
sage: isinstance (RDF, sage.rings.abc.RealDoubleField)
True

By design, there is a unique direct subclass:

sage: sage.rings.abc.RealDoubleField.__subclasses__ ()
[<class 'sage.rings.real_double.RealDoubleField_class'>]

sage: len(sage.rings.abc.RealDoubleField.__subclasses_ ()) <=1
True

class sage.rings.abc.RealField
Bases: Field

Abstract base class for RealField_class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance (RR, sage.rings.abc.RealField) #o
—needs sage.rings.real_mpfr

True

By design, there is a unique direct subclass:

1.2. Abstract base classes for rings 17
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sage: sage.rings.abc.RealField._ _subclasses__ () #o
—needs sage.rings.real_mpfr
[<class 'sage.rings.real_mpfr.RealField_class'>]

sage: len(sage.rings.abc.RealField.__subclasses__ ()) <= 1
True

class sage.rings.abc.ReallIntervalField
Bases: Field

Abstract base class for RealIntervalField class.

This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

p
sage: import sage.rings.abc

sage: isinstance (RIF, sage.rings.abc.RealIntervalField) #o
—needs sage.rings.real_interval_ field

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.ReallntervalField.__ subclasses__ () #_
—needs sage.rings.real_interval_ field
[<class 'sage.rings.real mpfi.ReallntervalField_class'>]

sage: len(sage.rings.abc.ReallntervalField.__ _subclasses_ ()) <= 1
True

.

class sage.rings.abc.SymbolicRing

Bases: CommutativeRing
Abstract base class for SymbolicRing.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance (SR, sage.rings.abc.SymbolicRing) #o
—needs sage.symbolic

True

By design, other than the abstract subclass CallableSymbolicExpressionRing, there is only one direct
implementation subclass:

-
sage: sage.rings.abc.SymbolicRing.__subclasses__ () #
—needs sage.symbolic
[<class 'sage.rings.abc.CallableSymbolicExpressionRing'>,
<class 'sage.symbolic.ring.SymbolicRing'>]

sage: len(sage.rings.abc.SymbolicRing.__subclasses__()) <= 2
True

L

class sage.rings.abc.UniversalCyclotomicField
Bases: Field

Abstract base class for UniversalCyclotomicField
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This class is defined for the purpose of isinstance () tests. It should not be instantiated.

EXAMPLES:

(

sage: import sage.rings.abc

sage: K = UniversalCyclotomicField ()

—needs sage.libs.gap sage.rings.number_field

sage: isinstance (K, sage.rings.abc.UniversalCyclotomicField)
—needs sage.libs.gap sage.rings.number_field

True

#

By design, there is a unique direct subclass:

sage: sage.rings.abc.UniversalCyclotomicField.__subclasses__ ()
—needs sage.libs.gap sage.rings.number_field

[<class 'sage.rings.universal_cyclotomic_field.UniversalCyclotomicField"'>]

sage: len(sage.rings.abc.NumberField_cyclotomic.__subclasses__ ()) <=

True

clas

s sage.rings.abc.pAdicField
Bases: Field

Abstract base class for pAdicFieldGeneric.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

(

.

sage: import sage.rings.abc

sage: isinstance(Zp(5), sage.rings.abc.pAdicField)
—needs sage.rings.padics

False

sage: isinstance(Qp(5), sage.rings.abc.pAdicField)
—needs sage.rings.padics

True

By design, there is a unique direct subclass:

sage: sage.rings.abc.pAdicField.__subclasses__ ()
—needs sage.rings.padics
[<class 'sage.rings.padics.generic_nodes.pAdicFieldGeneric'>]

sage: len(sage.rings.abc.pAdicField.__subclasses_ ()) <= 1
True

clas

s sage.rings.abc.pAdicRing

Bases: TntegralDomain
Abstract base class for pAdicRingGeneric.
This class is defined for the purpose of isinstance tests. It should not be instantiated.

EXAMPLES:

sage: import sage.rings.abc

sage: isinstance (Zp(5), sage.rings.abc.pAdicRing)
—needs sage.rings.padics

True

sage: isinstance (Qp(5), sage.rings.abc.pAdicRing)

#

(continues on next page)
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(continued from previous page)

—needs sage.rings.padics

False
.

By design, there is a unique direct subclass:

p
sage: sage.rings.abc.pAdicRing.__subclasses__ () #_

—needs sage.rings.padics
[<class 'sage.rings.padics.generic_nodes.pAdicRingGeneric'>]

sage: len(sage.rings.abc.pAdicRing.__subclasses__ ()) <= 1
True
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CHAPTER
TWO

IDEALS

2.1 ldeals of commutative rings

Sage provides functionality for computing with ideals. One can create an ideal in any commutative or non-commutative
ring R by giving a list of generators, using the notation R. ideal ([a, b, .. .]). The case of non-commutative rings
is implemented in noncommutative_ideals.

A more convenient notation may be R* [a, b, ...] or [a,b, ...]*R.If Ris non-commutative, the former creates a
left and the latter a right ideal, and R* [a, b, . . . ] *R creates a two-sided ideal.

sage.rings.ideal.Cyclic (R, n=None, homog=False, singular=None)

Ideal of cyclic n-roots from 1-st n variables of R if R is coercible to Singular.
INPUT:

* R —base ring to construct ideal for

* n —number of cyclic roots (default: None); if None, then n is set to R.ngens ()

* homog — boolean (default: False); if True a homogeneous ideal is returned using the last variable in the
ideal

e singular — Singular instance to use

Note

R will be set as the active ring in Singular

EXAMPLES:

An example from a multivariate polynomial ring over the rationals:

sage: P.<x,y,z> = PolynomialRing(QQ, 3, order='lex'")

sage: I = sage.rings.ideal.Cyclic(P); I #o
—needs sage.libs.singular

Ideal (x + y + z, x*y + xX*z + y*z, xX*y*z - 1)

of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: I.groebner_basis () #_
—needs sage.libs.singular

= 4+ v + %, ¥°2 + y¥2 + 272, 3 = 1]

L

We compute a Groebner basis for cyclic 6, which is a standard benchmark and test ideal:

21


../../../../../../html/en/reference/interfaces/sage/interfaces/singular.html#sage.interfaces.singular.Singular
../../../../../../html/en/reference/interfaces/sage/interfaces/singular.html#sage.interfaces.singular.Singular

General Rings, Ideals, and Morphisms, Release 10.5.rc0

sage: R.<x,y,z,t,u,v> = Q0['x,y,z,t,u,v']

sage: I = sage.rings.ideal.Cyclic (R, 6) #o
—needs sage.libs.singular

sage: B = I.groebner_basis|() #_
—needs sage.libs.singular

sage: len (B) #
—needs sage.libs.singular

45

sage.rings.ideal.FieldIdeal (R)

Letg = R.base_ring() .order () and (zg, ..., ) = R.gens () thenif ¢ is finite this constructor returns

(xd — zg, ..oy xd — ).

We call this ideal the field ideal and the generators the field equations.

EXAMPLES:

The field ideal generated from the polynomial ring over two variables in the finite field of size 2:

sage: P.<x,y> = PolynomialRing (GF (2), 2)

sage: I = sage.rings.ideal.FieldIdeal(P); I

Ideal (x"2 + x, y*2 + y) of

Multivariate Polynomial Ring in x, y over Finite Field of size 2

Another, similar example:

sage: Q.<x1,x2,x3,x4> = PolynomialRing(GF (24, name='alpha'), 4) #_
—needs sage.rings.finite_rings
sage: J = sage.rings.ideal.FieldIdeal(Q); J #_
—needs sage.rings.finite_rings
Ideal (x1716 + x1, x2"16 + x2, x37™16 + x3, x4716 + x4) of
Multivariate Polynomial Ring in x1, x2, x3, x4

over Finite Field in alpha of size 274

sage.rings.ideal.Ideal (*args, **kwds)

Create the ideal in ring with given generators.
There are some shorthand notations for creating an ideal, in addition to using the Tdeal () function:
* R.ideal (gens, coerce=True)
* gens*R
* R*gens
INPUT:
* R —aring (optional; if not given, will try to infer it from gens)
* gens - list of elements generating the ideal
e coerce - boolean (default: True); whether gens need to be coerced into the ring

OUTPUT: the ideal of ring generated by gens

EXAMPLES:

sage: R.<x> = ZZ[]

sage: I = R.ideal([4 + 3*x + x"2, 1 + x"2])
sage: I

(continues on next page)
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(continued from previous page)

Ideal (x"2 + 3*x + 4, x72 + 1) of Univariate Polynomial Ring in x over Integer.
—Ring

sage: Ideal(R, [4 + 3*x + x"2, 1 + x"2])

Ideal (x"2 + 3*x + 4, x72 + 1) of Univariate Polynomial Ring in x over Integer.
—Ring

sage: Ideal((4 + 3*x + x"2, 1 + x"2))

Ideal (x"2 + 3*x + 4, x72 + 1) of Univariate Polynomial Ring in x over Integer.
—Ring

.

sage: ideal (x"2-2*x+1, x"2-1)

Ideal (x"2 - 2*x + 1, %72 - 1) of Univariate Polynomial Ring in x over Integer.
—Ring

sage: ideal ([x"2-2*x+1, x"2-1])

Ideal (x"2 - 2*x + 1, %72 - 1) of Univariate Polynomial Ring in x over Integer.
—Ring

sage: 1 = [x"2-2*x+1l, x"2-1]

sage: ideal (f"2 for f in 1)

Ideal (x%4 — 4*x"3 + 6*x"2 — 4*x + 1, x"4 - 2*x"2 + 1) of
Univariate Polynomial Ring in x over Integer Ring

This example illustrates how Sage finds a common ambient ring for the ideal, even though 1 is in the integers (in

this case).

-

sage: R.<t> = ZZ['t']

sage: i = ideal(l,t,t"2)

sage: i

Ideal (1, t, t”2) of Univariate Polynomial Ring in t over Integer Ring
sage: ideal(1/2,t,t"2)

Principal ideal (1) of Univariate Polynomial Ring in t over Rational Field

This shows that the issues at Issue #1104 are resolved:

sage: Ideal (3, 5)

Principal ideal (1) of Integer Ring
sage: Ideal (ZZ, 3, 5)

Principal ideal (1) of Integer Ring
sage: Ideal (2, 4, 6)

Principal ideal (2) of Integer Ring

You have to provide enough information that Sage can figure out which ring to put the ideal in.

sage: I = Ideal([])
Traceback (most recent call last):

ValueError: unable to determine which ring to embed the ideal in

sage: I = Ideal()
Traceback (most recent call last):

ValueError: need at least one argument
.

Note that some rings use different ideal implementations than the standard, even if they are PIDs.:

sage: R.<x> = GF(5) []
sage: I = R * (x"2 + 3)

(continues on next page)
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sage: type (I)
<class 'sage.rings.polynomial.ideal.Ideal_lpoly_field'>

L

You can also pass in a specific ideal type:

-
sage: from sage.rings.ideal import Ideal_pid

sage: I = Ideal (x"2+3,ideal_class=Ideal_pid)
sage: type (I)
<class 'sage.rings.ideal.Ideal_pid'>

L

class sage.rings.ideal.Ideal_fractional (ring, gens, coerce=True, **kwds)

Bases: Tdeal_ generic
Fractional ideal of a ring.

See Ideal ().

class sage.rings.ideal.Ideal_generic (ring, gens, coerce=True, **kwds)

Bases: MonoidElement
An ideal.
See Ideal ().

absolute_norm()

Return the absolute norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

Todo

Implement this method.

EXAMPLES:

sage: R.<t> = GF (9, names='a') [] #_
—needs sage.rings.finite_rings

sage: I = R.ideal(t”™4 + t + 1) #_
—needs sage.rings.finite_rings

sage: I.absolute_norm() #

—needs sage.rings.finite_rings
Traceback (most recent call last):

NotImplementedError

apply_morphism (phi)
Apply the morphism phi to every element of this ideal. Returns an ideal in the domain of phi.

EXAMPLES:

sage: # needs sage.rings.real_mpfr

sage: psi = CC['x'].hom([-CC['x"'].0])

sage: J = ideal([CC['x'].0 + 1]); J

Principal ideal (x + 1.00000000000000) of Univariate Polynomial Ring in x
(continues on next page)
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(continued from previous page)
over Complex Field with 53 bits of precision
sage: psi (J)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x
over Complex Field with 53 bits of precision
sage: J.apply_morphism(psi)
Principal ideal (x - 1.00000000000000) of Univariate Polynomial Ring in x
over Complex Field with 53 bits of precision

sage: psi = ZZ['x'].hom([-Z2Z['x"'].0])

sage: J = ideal ([zz['x'].0, 2]); J

Ideal (x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: psi (J)

Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring
sage: J.apply_morphism(psi)

Ideal (-x, 2) of Univariate Polynomial Ring in x over Integer Ring

associated_primes ()
Return the list of associated prime ideals of this ideal.

EXAMPLES:

sage: R = ZZ['x"']

sage: I = R.ideal(7)

sage: I.associated_primes ()
Traceback (most recent call last):

NotImplementedError

base_ring()
Return the base ring of this ideal.

EXAMPLES:

sage: R = ZZ

sage: I = 3*R; I

Principal ideal (3) of Integer Ring
sage: J = 2*I; J

Principal ideal (6) of Integer Ring
sage: I.base_ring(); J.base_ring()
Integer Ring

Integer Ring

We construct an example of an ideal of a quotient ring:

sage: R = PolynomialRing(QQ, 'x'"); x = R.gen()
sage: I = R.ideal (x"2 - 2)

sage: I.base_ring()

Rational Field

And p-adic numbers:

sage: R = Zp (7, prec=10); R #
—needs sage.rings.padics

7-adic Ring with capped relative precision 10

sage: I = 7*R; I #
—needs sage.rings.padics

(continues on next page)
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Principal ideal (7 + O(7711)) of 7-adic Ring with capped relative precision 10
sage: I.base_ring() #
—needs sage.rings.padics
7-adic Ring with capped relative precision 10

category ()
Return the category of this ideal.

Note

category is dependent on the ring of the ideal.

EXAMPLES:

sage: P.<x> = ZZ[]
sage: I = ZZ.ideal(7)
sage: J = P.ideal (7,x)
sage: K = P.ideal (7)

sage: I.category ()

Category of ring ideals in Integer Ring

sage: J.category ()

Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring

sage: K.category ()

Category of ring ideals in Univariate Polynomial Ring in x
over Integer Ring

embedded_primes ()
Return the list of embedded primes of this ideal.

EXAMPLES:

sage: R.<x, y> = QQ[]

sage: I = R.ideal (x"2, x*y)

sage: I.embedded_primes () #
—needs sage.libs.singular

[Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

free_resolution (*args, **kwds)

Return a free resolution of self.
For input options, see FreeResolution.

EXAMPLES:

sage: R.<x> = PolynomialRing (QQ)

sage: I = R.ideal([x"4 + 3*x"2 + 2])

sage: I.free_resolution() #
—needs sage.modules

§2 == §7il <== 0

gen (i)
Return the i-th generator in the current basis of this ideal.

EXAMPLES:
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sage: P.<x,y> = PolynomialRing (QQ, 2)

sage: I = Ideal([x,y+1]); I

Ideal (x, y t+ 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gen(1l)

y + 1

sage: ZZ.ideal (5,10) .gen()
5

gens ()
Return a set of generators / a basis of self.

This is the set of generators provided during creation of this ideal.

EXAMPLES:

sage: P.<x,y> = PolynomialRing (QQ, 2)

sage: I = Ideal([x,y+1]); I

Ideal (x, y + 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.gens|()

[x, v + 1]

sage: ZZ.ideal(5,10) .gens ()
(5,)

gens_reduced ()

Same as gens () for this ideal, since there is currently no special gens_reduced algorithm implemented
for this ring.

This method is provided so that ideals in Z have the method gens_reduced (), just like ideals of number
fields.

EXAMPLES:

sage: ZZ.ideal (5) .gens_reduced()
(5,)

graded_free_resolution (*args, **kwds)
Return a graded free resolution of self.

For input options, see GradedFiniteFreeResolution.

EXAMPLES:

sage: R.<x> = PolynomialRing (QQ)

sage: I = R.ideal ([x"3])

sage: I.graded_free_resolution () #_
—needs sage.modules

S(0) <= S(-3) <——= 0

is_maximal ()

Return True if the ideal is maximal in the ring containing the ideal.

Todo

This is not implemented for many rings. Implement it!
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EXAMPLES:

sage: R = ZZ

sage: I = R.ideal(7)

sage: I.is_maximal ()

True

sage: R.ideal (16).is_maximal ()
False

sage: S = Integers(8)
sage: S.ideal (0).is_maximal ()

False
sage: S.ideal (2).is_maximal ()
True
sage: S.ideal (4) .is_maximal ()
False

is_primary (P=None)

Return True if this ideal is primary (or P-primary, if a prime ideal P is specified).

Recall that an ideal [ is primary if and only if I has a unique associated prime (see page 52 in [AM1969]).
If this prime is P, then [ is said to be P-primary.

INPUT:
¢ P — (default: None) a prime ideal in the same ring

EXAMPLES:

sage: R.<x, y> = QQI[]
sage: I = R.ideal ([x"2, x*y])

sage: I.is_primary() #o
—needs sage.libs.singular

False

sage: J = I.primary_decomposition() [1]; J #.

—needs sage.libs.singular

Ideal (y, x"2) of Multivariate Polynomial Ring in x, y over Rational Field
sage: J.is_primary () #o
—needs sage.libs.singular

True

sage: J.is_prime () #_
—needs sage.libs.singular

False

Some examples from the Macaulay2 documentation:

sage: # needs sage.rings.finite_rings

sage: R.<x, y, z> = GF(101) []

sage: I = R.ideal([y"6])

sage: I.is_primary() #.
—needs sage.libs.singular

True

sage: I.is_primary(R.ideal([y])) #.
—needs sage.libs.singular

True

sage: I = R.ideal([x"4, y*71])

sage: I.is_primary () #
—needs sage.libs.singular

True

sage: I = R.ideal ([x*y, y"2])

(continues on next page)
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(continued from previous page)

sage: I.is_primary () #
—needs sage.libs.singular
False
Note
This uses the list of associated primes.
is_prime ()
Return True if this ideal is prime.
EXAMPLES:
sage: R.<x, y> = Q0[]
sage: I = R.ideal ([x, Vv])
sage: I.is_prime () # a maximal ideal #_
—needs sage.libs.singular
True
sage: I = R.ideal([x"2 - y])
sage: I.is_prime() # a non—-maximal prime ideal #o
—needs sage.libs.singular
True
sage: I = R.ideal ([x"2, yI)
sage: I.is_prime () # a non-prime primary ideal #
—needs sage.libs.singular
False
sage: I = R.ideal ([x"2, x*Vy])
sage: I.is_prime () # a non-prime non-primary ideal #o
—needs sage.libs.singular
False
sage: S = Integers(8)
sage: S.ideal(0).is_prime /()
False
sage: S.ideal (2) .is_prime ()
True
sage: S.ideal (4) .is_prime ()
False
Note that this method is not implemented for all rings where it could be:
sage: R.<x> = ZZ[]
sage: I = R.ideal(7)
sage: I.is_prime() # when implemented, should be True
Traceback (most recent call last):
NotImplementedError
Note
For general rings, uses the list of associated primes.
is_principal ()
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Return True if the ideal is principal in the ring containing the ideal.

Todo

Code is naive. Only keeps track of ideal generators as set during initialization of the ideal. (Can the base
ring change? See example below.)

EXAMPLES:
sage: R.<x> = ZZ[]
sage: I R.ideal (2, x)

sage: I.is_principal ()
Traceback (most recent call last):

NotImplementedError

sage: J R.base_extend (QQ) .ideal (2, x)
sage: J.is_principal ()

True

is_trivial()

Return True if this ideal is (0) or (1).

minimal_associated_primes ()

Return the list of minimal associated prime ideals of this ideal.

EXAMPLES:
sage: R 272 ['x"]
sage: I R.ideal (7)

sage: I.minimal_associated_primes ()
Traceback (most recent call last):

NotImplementedError

ngens ()

Return the number of generators in the basis.

EXAMPLES:

sage: P.<x,y> = PolynomialRing (QQ, 2)

sage: I = Ideal([x,y+1]); I

Ideal (x, y t+ 1) of Multivariate Polynomial Ring in x, y over Rational Field
sage: I.ngens()

2

sage: ZZ.ideal (5,10) .ngens ()
1

norm ()

Return the norm of this ideal.

In the general case, this is just the ideal itself, since the ring it lies in can’t be implicitly assumed to be an
extension of anything.

We include this function for compatibility with cases such as ideals in number fields.

EXAMPLES:
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sage: R.<t> = GF (8, names='a') [] #o
—needs sage.rings.finite_rings
sage: I = R.ideal(t”4 + t + 1) #
—needs sage.rings.finite_rings
sage: I.norm() #.

—needs sage.rings.finite_rings
Principal ideal (t"4 + t + 1) of Univariate Polynomial Ring in t
over Finite Field in a of size 273

primary_decomposition ()
Return a decomposition of this ideal into primary ideals.

EXAMPLES:

sage: R = ZZ['x"']

sage: I = R.ideal(7)

sage: I.primary_decomposition ()
Traceback (most recent call last):

NotImplementedError

random_element (*args, **kwds)

Return a random element in this ideal.

EXAMPLES:

sage: P.<a,b,c> = GF (5) [[]]

sage: I = P.ideal([a"2, a*b + c, c”3])

sage: I.random_element () # random

2*a~5*c + a”2*b*c™4 + ... + O(a, b, c)”13
reduce (f)

Return the reduction of the element of f modulo self.
This is an element of R that is equivalent modulo [ to f where I is self.

EXAMPLES:

sage: ZZ.ideal (5) .reduce(17)

2

sage: parent (ZZ.ideal (5) .reduce (17))
Integer Ring

ring ()

Return the ring containing this ideal.

EXAMPLES:

sage: R 77

sage: I = 3*R; I

Principal ideal (3) of Integer Ring
sage: J = 2*I; J

Principal ideal (6) of Integer Ring
sage: I.ring(); J.ring()

Integer Ring

Integer Ring

Note that self.ring () is different from self.base_ring ()
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sage: R = PolynomialRing (QQ, 'x'); x = R.gen()
sage: I = R.ideal (x"2 - 2)

sage: I.base_ring()

Rational Field

sage: I.ring()

Univariate Polynomial Ring in x over Rational Field

Another example using polynomial rings:

sage: R = PolynomialRing (QQ, 'x'); x = R.gen()
sage: I = R.ideal (x"2 - 3)
sage: I.ring()

Univariate Polynomial Ring in x over Rational Field
sage: Rbar = R.quotient (I, names='a')
—needs sage.libs.pari

sage: S = PolynomialRing(Rbar, 'yv'); y =
—needs sage.libs.pari

Rbar.gen () ;
Univariate Polynomial Ring in y over

2 — 3

sage: J =
—needs
sage: J.
—needs
Univariate Polynomial Ring in y over

S.ideal(y"2 + 1)
sage.libs.pari
ring()
sage.libs.pari

—2 = 3

S #o

Univariate Quotient Polynomial Ring in a over Rational Field with modulus x*

#o

#

Univariate Quotient Polynomial Ring in a over Rational Field with modulus x”

class sage.rings.ideal.Ideal_pid (ring, gens, coerce=True, **kwds)

Bases: Tdeal principal
An ideal of a principal ideal domain.

See Ideal ().

EXAMPLES:
sage: I = 8*7Z7Z
sage: I

Principal ideal (8) of Integer Ring

ged (other)

Return the greatest common divisor of the principal ideal with the ideal ot her; that is, the largest principal

ideal contained in both the ideal and other

Todo

This is not implemented in the case when ot her is neither principal nor when the generator of self is
contained in other. Also, it seems that this class is used only in PIDs—is this redundant?

Note

The second example is broken.

EXAMPLES:
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An example in the principal ideal domain Z:

sage: R = ZZ

sage: I = R.ideal (42)
sage: J = R.ideal (70)
sage: I.gcd(J)

Principal ideal (14) of Integer Ring
sage: J.gcd(I)
Principal ideal (14) of Integer Ring

is_maximal ()

Return whether this ideal is maximal.

Principal ideal domains have Krull dimension 1 (or 0), so an ideal is maximal if and only if it’s prime (and
nonzero if the ring is not a field).

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: R.<t> = GF(5) []

sage: p = R.ideal (t"2 + 2)

sage: p.is_maximal ()

True

sage: p = R.ideal(t"2 + 1)

sage: p.is_maximal ()

False

sage: p = R.ideal (0)
sage: p.is_maximal ()
False
sage: p = R.ideal (1)
sage: p.is_maximal ()
False

is_prime ()
Return True if the ideal is prime.

This relies on the ring elements having a method is_irreducible () implemented, since an ideal (a) is
prime iff a is irreducible (or 0).

EXAMPLES:

sage: ZZ.ideal (2) .is_prime ()

True

sage: ZZ.ideal (-2) .is_prime ()
True

sage: ZZ.ideal (4) .is_prime ()

False

sage: ZZ.ideal (0) .is_prime ()

True

sage: R.<x> = QQI]

sage: P = R.ideal (x"2 + 1); P

Principal ideal (x*2 + 1) of Univariate Polynomial Ring in x over Rational.
—Field

sage: P.is_prime () #_
—needs sage.libs.pari

True

In fields, only the zero ideal is prime:
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sage: RR.ideal (0) .is_prime ()
True
sage: RR.ideal(7) .is_prime ()
False

reduce (f)
Return the reduction of f modulo self.

EXAMPLES:

sage: I = 8*77Z

sage: I.reduce (10)

2

sage: n = 10; n.mod(I)
2

residue_field ()
Return the residue class field of this ideal, which must be prime.

Todo

Implement this for more general rings. Currently only defined for Z and for number field orders.

EXAMPLES:

sage: # needs sage.libs.pari
sage: P = ZZ.ideal (61); P
Principal ideal (61) of Integer Ring
sage: F = P.residue_field(); F
Residue field of Integers modulo 61
sage: pi = F.reduction_map(); pi
Partially defined reduction map:
From: Rational Field
To: Residue field of Integers modulo 61
sage: pi(123/234)
6
sage: pi(1/61)
Traceback (most recent call last):

ZeroDivisionError: Cannot reduce rational 1/61 modulo 61: it has negative.
—valuation
sage: lift = F.lift_map(); 1lift
Lifting map:
From: Residue field of Integers modulo 61

TeS Integer Ring
sage: 1lift (F(12345/67890))
33
sage: (12345/67890) % 61
33

class sage.rings.ideal.Ideal_principal (ring, gens, coerce=True, **kwds)

Bases: Tdeal_ generic
A principal ideal.

See Ideal ().
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divides (other)

Return True if self divides other.

EXAMPLES:
sage: P.<x> = PolynomialRing (QQ)
sage: I = P.ideal (x)
sage: J = P.ideal (x"2)
sage: I.divides (J)
True
sage: J.divides (I)
False
gen (i=0)

Return the generator of the principal ideal.
The generator is an element of the ring containing the ideal.
EXAMPLES:

A simple example in the integers:

sage: R = ZZ

sage: I = R.ideal(7)
sage: J = R.ideal (7, 14)
sage: I.gen(); J.gen()

.

7

Note that the generator belongs to the ring from which the ideal was initialized:

sage: R.<x> = ZZ[]

sage: I = R.ideal (x)

sage: J = R.base_extend(QQ) .ideal (2, x)
sage: a = I.gen(); a

X

sage: b = J.gen(); b

1

sage: a.base_ring()
Integer Ring

sage: b.base_ring()
Rational Field

is_principal ()

Return True if the ideal is principal in the ring containing the ideal. When the ideal construction is explicitly

principal (i.e. when we define an ideal with one element) this is always the case.

EXAMPLES:

Note that Sage automatically coerces ideals into principal ideals during initialization:

sage: R.<x> = ZZ[]

sage: I = R.ideal (x)

sage: J = R.ideal (2, x)

sage: K = R.base_extend(QQ) .ideal (2, x)
sage: I

Principal ideal (x) of Univariate Polynomial Ring in x
over Integer Ring
sage: J

(continues on next page)
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Ideal (2, x)

(continued from previous page)

of Univariate Polynomial Ring in x over Integer Ring

sage: K
Principal ideal (1)
over Rational Field

sage: I.is_principal ()
True
sage: K.is_principal ()
True

of Univariate Polynomial Ring in x

sage.rings.ideal .Katsura (R, n=None, homog=False, singular=None)

n-th katsura ideal of R if R is coercible to Singular.
INPUT:

¢ R — base ring to construct ideal for

¢ n — (default: None) which katsura ideal of R. If None, then n is set to R.ngens ()

* homog — boolean (default: False);if True a homogeneous ideal is returned using the last variable in the

ideal

e singular - Singular instance to use

EXAMPLES:

e

P.<x,y,z> = PolynomialRing (QQ,
I = sage.rings.ideal.Katsura (P,

sage:
sage:
—needs sage.libs.singular
Ideal (x + 2*y + 2*z - 1,

of Multivariate Polynomial Ring in x,

3)
3);

22 F 2EGR2 # 2%rP2 = %,

Yr

I

Z*X*y + Z*Y*Z — y)
z over Rational Field

sage: Q.<x> = PolynomialRing (QQ,
—needs sage.libs.singular

sage: J = sage.rings.ideal.Katsura (Q,
—needs sage.libs.singular

1);

implementation="'singular"')

J

Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
.

sage.rings.ideal.is_Ideal (x)

Return True if object is an ideal of a ring.

EXAMPLES:

A simple example involving the ring of integers. Note that Sage does not interpret rings objects themselves as
ideals. However, one can still explicitly construct these ideals:

(

sage:
sage: R = Z7Z

sage: is_TIdeal (R)
doctest:warning...
DeprecationWarning:
—Ideal_generic)' instead.

The function is_Ideal is deprecated;

from sage.rings.ideal import is_TIdeal

use

See https://github.com/sagemath/sage/issues/38266 for details.

False

sage: 1*R; is_Ideal (1*R)

Principal ideal (1) of Integer Ring
True

sage: 0*R; is_TIdeal (0*R)

Principal ideal (0) of Integer Ring
True

'isinstance (..., .
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Sage recognizes ideals of polynomial rings as well:

sage: R = PolynomialRing(QQ, 'x'); x = R.gen()
sage: I = R.ideal(x"2 + 1); I

sage: is_TIdeal (I)

True

sage: is_TIdeal ((x"2 + 1)*R)
True

.

Principal ideal (x"2 + 1) of Univariate Polynomial Ring in x over Rational Field

2.2 Monoid of ideals in a commutative ring

WARNING: This is used by some rings that are not commutative!

sage: MS = MatrixSpace (QQ, 3, 3)

—needs sage.modules

sage: type (MS.ideal (MS.one()) .parent())

—needs sage.modules

<class 'sage.rings.ideal_monoid.IdealMonoid_c_with_category'>

sage.rings.ideal_monoid.IdealMonoid (R)

Return the monoid of ideals in the ring R.

EXAMPLES:

sage: R = QQ['x"']

sage: from sage.rings.ideal_monoid import IdealMonoid

sage: IdealMonoid(R)

Monoid of ideals of Univariate Polynomial Ring in x over Rational Field

class sage.rings.ideal_monoid.IdealMonoid_c (R)
Bases: Parent

The monoid of ideals in a commutative ring.
Element

alias of Tdeal_generic
ring ()

Return the ring of which this is the ideal monoid.

EXAMPLES:

sage: R = QuadraticField(-23, 'a'")

—needs sage.rings.number_field

sage: from sage.rings.ideal_monoid import IdealMonoid
sage: M = IdealMonoid(R); M.ring() is R

—needs sage.rings.number_field

True

#

2.2. Monoid of ideals in a commutative ring
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2.3 ldeals of non-commutative rings

Generic implementation of one- and two-sided ideals of non-commutative rings.
AUTHOR:

 Simon King (2011-03-21), <simon.king@uni-jena.de>, Issue #7797.
EXAMPLES:

sage: MS = MatrixSpace(ZZ,2,2)
sage: MS*MS([0,1,-2,3])
Left Ideal

of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS([0,1,-2,3]) *MS
Right Ideal

of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: MS*MS([0,1,-2,3]) *MS
Twosided Ideal

of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

See letterplace_ideal for a more elaborate implementation in the special case of ideals in free algebras.

class sage.rings.noncommutative_ideals.IdealMonoid_nc (R)

Bases: TdealMonoid c

Base class for the monoid of ideals over a non-commutative ring.

Note

This class is essentially the same as TdealMonoid_c, but does not complain about non-commutative rings.

EXAMPLES:

sage: MS = MatrixSpace(ZZ,2,2)
sage: MS.ideal_monoid()
Monoid of ideals of Full MatrixSpace of 2 by 2 dense matrices over Integer Ring

class sage.rings.noncommutative_ideals.Ideal_nc (ring, gens, coerce=True, side="twosided')

Bases: Ideal generic
Generic non-commutative ideal.

All fancy stuff such as the computation of Groebner bases must be implemented in sub-classes. See Letter—
placeIdeal for an example.
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EXAMPLES:

C

sage: MS = MatrixSpace (QQ,2,2)
sage: I = MS*[MS.1,MS.2]; I
Left Ideal

(

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: [MS.1,MS.2]*MS
Right Ideal
(

)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

sage: MS*[MS.1,MS.2]*MS

Twosided Ideal

(

)

of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

side ()

Return a string that describes the sidedness of this ideal.

EXAMPLES:

sage: # needs sage.combinat
sage: A = SteenrodAlgebra (2)
sage: IL = A*[A.1+A.2,A.1"2]
sage: IR = [A.1+A.2,A.1"2]*A
sage: IT = A*[A.1+A.2,A.1"2]*A
sage: IL.side()

'left'

sage: IR.side()

'right'

sage: IT.side()

'twosided'

2.3. Ildeals of non-commutative rings
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CHAPTER
THREE

RING MORPHISMS

3.1 Homomorphisms of rings

We give a large number of examples of ring homomorphisms.
EXAMPLES:

Natural inclusion Z < Q:

sage: H = Hom(ZZ, QQ)

sage: phi = H([1])

sage: phi (10)

10

sage: phi(3/1)

3

sage: phi (2/3)

Traceback (most recent call last):

TypeError: 2/3 fails to convert into the map's domain Integer Ring,
but a ‘pushforward® method is not properly implemented

There is no homomorphism in the other direction:

sage: H = Hom(QQ, ZZ)
sage: H([1])
Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

EXAMPLES:

Reduction to finite field:

sage: # needs sage.rings.finite rings
sage: H = Hom(ZZ, GF (9, 'a'))

sage: phi = H([1])

sage: phi (5)

2

sage: psi = H([4])

sage: psi (D)

2

Map from single variable polynomial ring:
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sage: R.<x> = ZZ[]
sage: phi = R.hom([2], GF(5)); phi
Ring morphism:
From: Univariate Polynomial Ring in x over Integer Ring

To: Finite Field of size 5
Defn: x [-——> 2
sage: phi(x + 12)

4

Identity map on the real numbers:

sage: # needs sage.rings.real_mpfr

sage: £ = RR.hom([RR(1)]); £

Ring endomorphism of Real Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000

sage: f(2.5)

2.50000000000000

sage: £ = RR.hom([2.0])

Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

Homomorphism from one precision of field to another.

From smaller to bigger doesn’t make sense:

sage: R200 = RealField(200) #.
—needs sage.rings.real_mpfr
sage: £ = RR.hom( R200 ) #.

—needs sage.rings.real_mpfr
Traceback (most recent call last):

TypeError: natural coercion morphism from Real Field with 53 bits of precision
to Real Field with 200 bits of precision not defined

From bigger to small does:

sage: f = RR.hom(RealField(15)) #_
—needs sage.rings.real_mpfr

sage: f(2.5) #.
—needs sage.rings.real_mpfr

2.500

sage: f(RR.pi()) #_.
—needs sage.rings.real_mpfr

3.142

Inclusion map from the reals to the complexes:

sage: # needs sage.rings.real_mpfr

sage: i = RR.hom([CC(1)]); i

Ring morphism:
From: Real Field with 53 bits of precision
To: Complex Field with 53 bits of precision
Defn: 1.00000000000000 |--> 1.00000000000000

sage: i(RR('3.1"))

3.10000000000000
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A map from a multivariate polynomial ring to itself:

sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: phi = R.hom([y, z, x72]); phi
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over Rational Field
Defn: x [-—> vy
y |[=——> z
z | -—> x"2
sage: phi(x + y + 2z)
X2 +y + z

An endomorphism of a quotient of a multi-variate polynomial ring:

sage: # needs sage.libs.singular

sage: R.<x,y> = PolynomialRing (QQ)

sage: S.<a,b> = quo(R, ideal(l + y"2))

sage: phi = S.hom([a”2, -b]l); phi

Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y
over Rational Field by the ideal (y*2 + 1)

Defn: a |-—> a2
b |-—> -b
sage: phi (b)
-b
sage: phi(a”2 + b"2)
a4 - 1

The reduction map from the integers to the integers modulo 8, viewed as a quotient ring:

sage: R = ZZ.quo(8*ZZ)

sage: pi = R.cover(); pi

Ring morphism:

From: Integer Ring

To: Ring of integers modulo 8

Defn: Natural quotient map
sage: pi.domain ()

Integer Ring

sage: pi.codomain ()

Ring of integers modulo 8

sage: pi(10)

2

sage: pi.lift ()

Set-theoretic ring morphism:
From: Ring of integers modulo 8
To: Integer Ring
Defn: Choice of lifting map

sage: pi.lift (13)

5

Inclusion of GF (2) into GF (4, 'a"'):

sage: # needs sage.rings.finite_rings
sage: k = GF (2)
sage: i k.hom (GF (4, 'a'))
sage: i
Ring morphism:
From: Finite Field of size 2
To: Finite Field in a of size 272
Defn: 1 |[-——> 1

(continues on next page)
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(continued from previous page)
sage: 1i(0)
0
sage: a = 1(1); a.parent ()
Finite Field in a of size 272

We next compose the inclusion with reduction from the integers to GF (2) :

sage: # needs sage.rings.finite rings
sage: pi = ZZ.hom(k); pi
Natural morphism:
From: Integer Ring
To: Finite Field of size 2
sage: £ = 1 * pi; £
Composite map:
From: Integer Ring

To: Finite Field in a of size 272
Defn: Natural morphism:
From: Integer Ring
To: Finite Field of size 2
then

Ring morphism:
From: Finite Field of size 2

To: Finite Field in a of size 272
Defn: 1 |-—> 1
sage: a = £(5); a

1
sage: a.parent ()
Finite Field in a of size 272

Inclusion from Q to the 3-adic field:

sage: # needs sage.rings.padics
sage: phi = QQ.hom(Qp (3, print_mode='series'))
sage: phi
Ring morphism:
From: Rational Field
To: 3-adic Field with capped relative precision 20
sage: phi.codomain ()
3-adic Field with capped relative precision 20
sage: phi (394)
1 + 2*3 4+ 372 + 2*3"3 + 374 + 375 + 0(3720)

An automorphism of a quotient of a univariate polynomial ring:

sage: # needs sage.libs.pari
sage: R.<x> = PolynomialRing (QQ)
sage: S.<sqgrt2> = R.quo(x"2 - 2)
sage: sqrt272

2

sage: (3+sqgrt2)”~10

993054*sqgrt2 + 1404491

sage: ¢ = S.hom([-sqrt2])

sage: c(l+sqgrt2)

-sgqrt2 + 1

Note that Sage verifies that the morphism is valid:
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sage: (1 - sqgrt2)"2 #.
—needs sage.libs.pari

=2%gQEt2 + 3

sage: ¢ = S.hom([1 - sqrt2]) # this 1s not valid #_
—needs sage.libs.pari

Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

Endomorphism of power series ring:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10); R
Power Series Ring in t over Rational Field
sage: £ = R.hom([t"2]); £
Ring endomorphism of Power Series Ring in t over Rational Field
Defn: t |-—> t"2
sage: s = 1/(1 + t); s
1 -t +t?2 - t"3 +t"4 - t°5 + %6 - t°7 + t78 - £t*9 + 0O(t"10)
sage: f(s)
1 -t%"2 +t"4 - t"6 + t78 - £710 + t"~12 - t714 + t716 - t718 + O(t"20)

Frobenius on a power series ring over a finite field:

sage: R.<t> = PowerSeriesRing (GF (5))

sage: £ = R.hom([t"5]); £

Ring endomorphism of Power Series Ring in t over Finite Field of size 5
Defn: t |-——> t*5

sage: a = 2 + t + 3*t"2 + 4*t"3 + 0(t"4)

sage: b = 1 + t + 2*t"2 + t73 + O(t"5)

sage: f(a)

2 4+ t*5 + 3*t"~10 + 4*t"~15 + 0(t"20)

sage: f (b)

1 + t75 + 2*t~10 + t7°15 + O(t"25)

sage: f (a*b)

2 4+ 3*t”5 4+ 3*t~10 + t~15 + 0(t"20)

sage: f(a)*f(b)

2 + 3*t~5 + 3*t210 + €215 + 0(t~20)

Homomorphism of Laurent series ring:

sage: R.<t> = LaurentSeriesRing(QQ, 10)
sage: £ = R.hom([t"3 + t]); £
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |-——> t + t*3
sage: s = 2/t"2 + 1/(1 + t); s
2*t"-2 + 1 - t + £t72 - t°3 + t"4 - £t°5 + t"6 - t£t°7 + £78 - t°9 + 0O(t"10)
sage: f(s)
2*t"=2 - 3 - t + T*t"2 - 2*t”3 - 5*t™4 - 4*t”5 + 16*t”6 - 9*Ft”T + O(t"8)
sage: £ = R.hom([t"3]); £
Ring endomorphism of Laurent Series Ring in t over Rational Field
Defn: t |—-——> t"3
sage: f(s)
2*t*-6 + 1 - £°3 + t%6 - £°9 + t712 - t715 + t718 - t721 + t724 - t727 + O(t"30)

Note that the homomorphism must result in a converging Laurent series, so the valuation of the image of the generator
must be positive:

3.1. Homomorphisms of rings 45




General Rings, Ideals, and Morphisms, Release 10.5.rc0

sage: R.hom([1/t])
Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

sage: R.hom([1])

Traceback (most recent call last):

ValueError: relations do not all (canonically) map to 0
under map determined by images of generators

Complex conjugation on cyclotomic fields:

sage: # needs sage.rings.number_field
sage: K.<zeta7> = CyclotomicField (7)
sage: ¢ = K.hom([1/zeta7]); c
Ring endomorphism of Cyclotomic Field of order 7 and degree 6
Defn: zeta7 |--> -zeta7”"5 - zeta7”"4 - zeta7”"3 - zeta7"2 - zeta7 - 1
sage: a = (l+zeta7)”"5; a
zeta7”5 + 5*zeta7”4 + 10*zeta7”3 + 10*zeta7”2 + 5*zeta7 + 1
sage: c(a)
5*zeta77”"5 + 5*zeta7”4 - 4*zeta7”"2 - 5S5*zetal - 4
sage: c(zetal + 1/zeta’) # this element is obviously fixed by inversion
-zeta7"5 - zeta7"4 - zeta7”"3 - zeta7"2 - 1
sage: zeta7 + 1/zeta7’
-zeta7”"5 - zeta7"4 - zeta7"3 - zeta7"2 - 1

Embedding a number field into the reals:

sage: # needs sage.rings.number_field

sage: R.<x> = PolynomialRing (QQ)

sage: K.<beta> = NumberField(x"3 - 2)

sage: alpha = RR(2)"(1/3); alpha

1.25992104989487

sage: i = K.hom([alpha],check=False); i

Ring morphism:
From: Number Field in beta with defining polynomial x*3 - 2
To: Real Field with 53 bits of precision
Defn: beta |-—> 1.25992104989487

sage: 1i(beta)

1.25992104989487

sage: i (beta”3)

2.00000000000000

sage: i(beta”2 + 1)

2.58740105196820

An example from Jim Carlson:

sage: K = QQ # by the way :-)
sage: R.<a,b,c,d> = K[]; R
Multivariate Polynomial Ring in a, b, ¢, d over Rational Field
sage: S.<u> = K[]; S
Univariate Polynomial Ring in u over Rational Field
sage: £ = R.hom([0,0,0,u], S); £
Ring morphism:

From: Multivariate Polynomial Ring in a, b, ¢, d over Rational Field

To: Univariate Polynomial Ring in u over Rational Field

(continues on next page)
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Defn: a |-—> 0
b |[-—> 0
c |-——> 0
d |-—> u
sage: f(a + b + ¢ + d)
u
sage: f ((atbt+ct+d)"2)
un2

class sage.rings.morphism.FrobeniusEndomorphism_generic

Bases: RingHomomorphism
A class implementing Frobenius endomorphisms on rings of prime characteristic.

power ()
Return an integer n such that this endomorphism is the n-th power of the absolute (arithmetic) Frobenius.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<u> = PowerSeriesRing (GF (5))
sage: Frob = K.frobenius_endomorphism ()
sage: Frob.power ()

1

sage: (Frob”9) .power ()

9

class sage.rings.morphism.RingHomomorphism

Bases: RingMap
Homomorphism of rings.

inverse ()

Return the inverse of this ring homomorphism if it exists.

Raises a ZeroDivisionError if the inverse does not exist.

ALGORITHM:

By default, this computes a Grobner basis of the ideal corresponding to the graph of the ring homomorphism.

EXAMPLES:

sage: R.<t> = QQI]
sage: f = R.hom([2*t - 1], R)
sage: f.inverse () #_
—needs sage.libs.singular
Ring endomorphism of Univariate Polynomial Ring in t over Rational Field
Defn: t |-—> 1/2*t + 1/2

The following non-linear homomorphism is not invertible, but it induces an isomorphism on a quotient ring:

sage: # needs sage.libs.singular
sage: R.<x,Vv,z> = QQI[]

sage: f = R.hom([y*z, x*z, x*y], R)
sage: f.inverse ()

Traceback (most recent call last):

(continues on next page)
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ZeroDivisionError: ring homomorphism not surjective

sage: f.is_injective()

True

sage: 0.<x,y,z> = R.quotient (x*y*z - 1)

sage: g = Q.hom([y*z, x*z, x*y], Q)

sage: g.inverse ()

Ring endomorphism of Quotient of Multivariate Polynomial Ring

in x, y, z over Rational Field by the ideal (x*y*z - 1)
Defn: x |-—> y*z
y |=—> x*z
z |—-—> x*y

Homomorphisms over the integers are supported:

sage: S.<x,y> = ZZ[]
sage: £ = S.hom([x + 2*y, x + 3*y], S)
sage: f.inverse() #
—needs sage.libs.singular
Ring endomorphism of Multivariate Polynomial Ring in x, y over Integer Ring
Defn: x |-—> 3*x - 2*y
vy |I-——> -x + vy
sage: (f.inverse() * f).is_identity () #.
—needs sage.libs.singular
True

The following homomorphism is invertible over the rationals, but not over the integers:

sage: g = S.hom([x + vy, x -y — 2], S)

sage: g.inverse() #.
—needs sage.libs.singular

Traceback (most recent call last):

ZeroDivisionError: ring homomorphism not surjective
sage: R.<x,y> = QQ[x,y]
sage: h = R.hom([x + vy, x — vy - 2], R)

sage: (h.inverse() * h).is_identity () #.
—needs sage.libs.singular
True

This example by M. Nagata is a wild automorphism:

sage: R.<x,y,z> = QQI]

sage: sigma = R.hom([x — 2*y* (z*x+y"2) - z*(z*x+ty"2)"2,
e y + z*(z*x+y"*2), z], R)
sage: tau = sigma.inverse(); tau #.

—needs sage.libs.singular
Ring endomorphism of Multivariate Polynomial Ring in x, y, z over
Rational Field
Defn: x |—-—> —y*4*z — 2*x*y"2*z"2 — x"2*z"3 + 2*y"3 + 2*x*y*z + x
y |=-—> —-y"2*z - x*z"2 + vy
z |-——> z
sage: (tau * sigma) .is_identity () #o
—needs sage.libs.singular
True

We compute the triangular automorphism that converts moments to cumulants, as well as its inverse, using
the moment generating function. The choice of a term ordering can have a great impact on the computation
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time of a Grobner basis, so here we choose a weighted ordering such that the images of the generators are
homogeneous polynomials.

sage: d = 12

sage: T = TermOrder ('wdegrevlex', [1..d])

sage: R = PolynomialRing(QQ, ['x%s' % j for j in (1..d)], order=T)
sage: S.<t> = PowerSeriesRing(R)

sage: egf = S([0] + list(R.gens())) .ogf_to_egf () .exp(prec=d+1)
sage: phi = R.hom(egf.egf_to_ogf().list()[1:], R)

sage: phi.im_gens () [:5]

[Xll
X172
%173

X2,

3*x1*x2 + x3,

x1"4 6*x1"2*x2 + 3*x272 + 4*x1*x3 + x4,

x175 10*x173*x2 + 15*x1*x272 + 10*x172*x3 + 10*x2*x3 + 5*x1*x4 + x5]
sage: all (p.is_homogeneous () for p in phi.im_gens()) #
—needs sage.libs.singular
True
sage: phi.inverse().im_gens () [:5] #
—needs sage.libs.singular

[x1,

-x1"2 + x2,

272173 = JFRAW=2 + %3,

—6*x1"M4 + 12*x172*x2 — 3*x2"2 - 4*x1*x3 + x4,

24 *FxINEE — 6 A8 3 = BI0xxAFE x2I0 28 - 2[00 A2 2 3 — QA= 2Ax 3 — 5*xiax 48 5]

+ + + +

sage: (phi.inverse() * phi).is_identity() #.
—needs sage.libs.singular
True

Automorphisms of number fields as well as Galois fields are supported:

sage: K.<zeta7> = CyclotomicField (7) #_
—needs sage.rings.number_ field

sage: ¢ = K.hom([1/zeta7]) #
—needs sage.rings.number_ field

sage: (c.inverse() * c).is_identity () #
—needs sage.libs.singular sage.rings.number_field

True

sage: F.<t> = GF(7"3) #
—needs sage.rings.finite_rings

sage: f = F.hom(t"7, F) #_
—needs sage.rings.finite_rings

sage: (f.inverse() * f).is_identity () #.
—needs sage.libs.singular sage.rings.finite_rings

True

An isomorphism between the algebraic torus and the circle over a number field:

sage: # needs sage.libs.singular sage.rings.number_field
sage: K.<i> = QuadraticField(-1)

sage: A.<z,w> = K['z,w'].quotient ('z*w - 1'")

sage: B.<x,y> = K['x,y'].quotient ('x"2 + y*2 - 1")

sage: £ = A.hom([x + i*y, x - i*y], B)

sage: g = f.inverse()

sage: g.morphism_from_cover () .im_gens ()

[1/2*z + 1/2*w, (=1/2*%i)*z + (1/2*1i)*w]

sage: all(g(f(z)) == z for z in A.gens())

(continues on next page)
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{True

inverse_image (/)

Return the inverse image of an ideal or an element in the codomain of this ring homomorphism.
INPUT:
e I —an ideal or element in the codomain
OUTPUT:
For an ideal I in the codomain, this returns the largest ideal in the domain whose image is contained in I.

Given an element b in the codomain, this returns an arbitrary element a in the domain such that self (a)
= b if one such exists. The element a is unique if this ring homomorphism is injective.

EXAMPLES:

sage: R.<x,vy,z> = QQI]

sage: S.<u,v> = QQI[]

sage: f = R.hom([u"2, u*v, v*2], S)

sage: I = S.ideal([u”6, u”5*v, u”4*v”*2, u”"3*v~31])

sage: J = f.inverse_image(I); J #
—needs sage.libs.singular

Ideal (y*"2 - x*z, x*y*z, x"2*z, x"2*y, x"3)

of Multivariate Polynomial Ring in x, y, z over Rational Field

sage: f(J) == #
—needs sage.libs.singular

True

Under the above homomorphism, there exists an inverse image for every element that only involves monomials
of even degree:

sage: [f.inverse_image(p) for p in [u”2, u”4, u*v + u”"3*v”"3]] #
—needs sage.libs.singular

[z, =*2, X*Y~% 4+ V]

sage: f.inverse_image (u*v"2) #
—needs sage.libs.singular

Traceback (most recent call last):

ValueError: element u*v”"2 does not have preimage

The image of the inverse image ideal can be strictly smaller than the original ideal:

sage: # needs sage.libs.singular sage.rings.number_field
sage: S.<u,v> = QQ['u,v'].quotient('v"2 - 2")

sage: f = QuadraticField(2) .hom([v], S)

sage: I = S.ideal(u + v)

sage: J = f.inverse_image (I)

sage: J.is_zero()

True

sage: f(J) < I

True

Fractional ideals are not yet fully supported:

sage: # needs sage.rings.number_field
sage: K.<a> = NumberField(QQ['x'] ('x"2+2"))

(continues on next page)
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True

Fractional ideal

sage: f = K.hom([-
sage: I = K.ideal([a + 117)

sage: f.inverse_image (I)

—needs sage.libs.singular
Traceback (most recent call last):

NotImplementedError:

al, K)

sage: f.inverse() (I)
—needs sage.rings.padics
(-a + 1)

inverse image not implemented...
sage: f.inverse_image (K.ideal (0)) .is_zero()
—needs sage.libs.singular

(continued from previous page)

ALGORITHM:

By default, this computes a Grobner basis of an ideal related to the graph of the ring homomorphism.

REFERENCES:

¢ Proposition 2.5.12 [DS2009]

is_invertible ()

Return whether this ring homomorphism is bijective.

EXAMPLES:

sage: R.<x,y,z> =
sage: R.hom([y*z,

False
sage: Q.<x,y,z> =

sage: Q.hom([y*z,

True

—needs sage.libs.

—needs sage.libs.

—needs sage.libs.

QO[]
x*z, x*y], R).is_invertible ()
singular

R.quotient (x*y*z - 1)
singular

x*z, x*y], Q).is_invertible ()
singular

ALGORITHM:

By default, this requires the computation of a Grobner basis.

is_surjective ()

Return whether this ring homomorphism is surjective.

EXAMPLES:

sage: R.<x,y,z> =
sage: R.hom([y*z,

False
sage: Q.<x,y,z> =

sage: R.hom([y*z,

True

—needs sage.libs.

—needs sage.libs.

—needs sage.libs.

QO[]
x*z, x*y], R).is_surjective()
singular

R.quotient (x*y*z - 1)
singular

x*z, x*yl], Q).is_surjective ()
singular

ALGORITHM:

By default, this requires the computation of a Grobner basis.
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kernel ()

Return the kernel ideal of this ring homomorphism.

EXAMPLES:

sage: A.<x,y> = QQI[]

sage: B.<t> = QQ[]

sage: f = A.hom([t"4, t"3 - t*2], B)

sage: f.kernel () #
—needs sage.libs.singular

Ideal (y™4 — x"3 + 4*x"2*y — 2*x*y"2 + x"2)

of Multivariate Polynomial Ring in x, y over Rational Field

We express a Veronese subring of a polynomial ring as a quotient ring:

sage: A.<a,b,c,d> = QQI]

sage: B.<u,v> = QQI[]

sage: £ = A.hom([u"3, u"2*v, u*v"2, v~3], B)

sage: f.kernel() == A.ideal (matrix.hankel([a, b, c], [d]).minors(2)) #_
—needs sage.libs.singular

True

sage: Q = A.quotient (f.kernel()) #.
—needs sage.libs.singular

sage: Q.hom(f.im_gens (), B).is_injective() #_
—needs sage.libs.singular

True

The Steiner-Roman surface:

sage: R.<x,y,z> = QQ[]

sage: S = R.quotient (x"2 + y*2 + z"2 - 1)

sage: f = R.hom([x*y, x*z, y*z], S) #
—needs sage.libs.singular

sage: f.kernel () #

—needs sage.libs.singular
Ideal (X"2*y"2 + xX"2*z"2 + y 2*z"2 - x*y*z)
of Multivariate Polynomial Ring in x, y, z over Rational Field

1lift (x=None)

Return a lifting map associated to this homomorphism, if it has been defined.
If % is not None, return the value of the lift morphism on x.

EXAMPLES:

sage: R.<x,y> = QQ[]

sage: f = R.hom([x,x])

sage: f (x+ty)

2%5%

sage: f.lift ()

Traceback (most recent call last):

ValueError: no lift map defined
sage: g = R.hom(R)

sage: f._set_lift (qg)

sage: f.lift() == g

True

sage: f.lift (x)

X
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pushforward (/)

Return the pushforward of the ideal I under this ring homomorphism.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x"2, y~2]); £ = S.cover() #_
—needs sage.libs.singular

sage: f.pushforward(R.ideal ([x, 3*x + x*y + y~2]1)) #

—needs sage.libs.singular
Ideal (xx, xx*yy + 3*xx) of Quotient of Multivariate Polynomial Ring
in x, y over Rational Field by the ideal (x"2, y"2)

class sage.rings.morphism.RingHomomorphism_cover

Bases: RingHomomorphism

A homomorphism induced by quotienting a ring out by an ideal.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: S.<a,b> = R.quo(x"2 + y"2) #o
—needs sage.libs.singular

sage: phi = S.cover(); phi #o

—needs sage.libs.singular
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field
To: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x"2 + y"2)
Defn: Natural quotient map

sage: phi(x + y) #e
—needs sage.libs.singular

a + b

.

kernel ()

Return the kernel of this covering morphism, which is the ideal that was quotiented out by.

EXAMPLES:

sage: f = Zmod(6) .cover ()
sage: f.kernel()
Principal ideal (6) of Integer Ring

class sage.rings.morphism.RingHomomorphism_from_base

Bases: RingHomomorphism
A ring homomorphism determined by a ring homomorphism of the base ring.
AUTHOR:
* Simon King (initial version, 2010-04-30)
EXAMPLES:

We define two polynomial rings and a ring homomorphism:

sage: R.<x,y> = QQI[]
sage: S.<z> = QQ[]
sage: £ = R.hom([2*z,3*z],S)

Now we construct polynomial rings based on R and S, and let £ act on the coefficients:
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&

sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f,PS)
sage: Pf
Ring morphism:
From: Univariate Polynomial Ring in t
over Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in t
over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field

To: Univariate Polynomial Ring in z over Rational Field
Defn: x |—-—> 2*z
y |—=——> 3*z
sage: p = (x — 4*y + 1/13)*t"2 + (1/2*x"2 — 1/3*y"2)*t + 2*y"2 + x

sage: Pf (p)
(-10*z + 1/13)*t"2 — z~2*t + 18*z*2 + 2*z

Similarly, we can construct the induced homomorphism on a matrix ring over our polynomial rings:

sage: # needs sage.modules
sage: MR = MatrixSpace (R, 2, 2)
sage: MS = MatrixSpace (S, 2, 2)
sage: M = MR([x"2 + 1/7*x*y - y*2, -1/2*y"2 + 2*y + 1/6,
5000¢ 4*x"2 — 14*x, 1/2*y*2 + 13/4*x — 2/11*y])
sage: Mf = MR.hom(f, MS)
sage: Mf
Ring morphism:
From: Full MatrixSpace of 2 by 2 dense matrices
over Multivariate Polynomial Ring in x, y over Rational Field
To: Full MatrixSpace of 2 by 2 dense matrices
over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field

To: Univariate Polynomial Ring in z over Rational Field
Defn: x |—-——> 2*z
y |—-——> 3*z

sage: Mf (M)
[ -29/7*z%2 -9/2*z72 + 6*z + 1/6]
[ 16*z"2 — 28*z 9/2*z"2 4+ 131/22*z]

The construction of induced homomorphisms is recursive, and so we have:

sage: # needs sage.modules
sage: MPR = MatrixSpace (PR, 2)
sage: MPS = MatrixSpace (PS, 2)
sage: M = MPR([(-x + y)*t”"2 + 58*t - 3*x"2 + x*y,
(- 1/7*x*y — 1/40*x)*t~2 + (5*x"2 + y~2)*t + 2*y,
P (- 1/3*y + 1)*t"2 + 1/3*x*y + y*2 + 5/2*y + 1/4,
..... (x + 6%y + 1)*t~2])
sage: MPf = MPR.hom(f, MPS); MPf
Ring morphism:

From: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial
Ring in t over Multivariate Polynomial Ring in x, y over Rational Field
To: Full MatrixSpace of 2 by 2 dense matrices over Univariate Polynomial
(continues on next page)
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Ring in t over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Univariate Polynomial Ring in t
over Multivariate Polynomial Ring in x, y over Rational Field
To: Univariate Polynomial Ring in t
over Univariate Polynomial Ring in z over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field

To: Univariate Polynomial Ring in z over Rational Field
Defn: x |—-—> 2*z
y |——> 3*z

sage: MPf (M)

[ Z*t"2 + 58*t — 6*z"2 (=6/7*z"2 — 1/20*%z)*t"2 + 29*z"2*t +._
‘—)6*2]

[ (-z + 1)*t"2 + 11*z"2 + 15/2*z + 1/4 (20*z + 1) *£2
2]

inverse ()
Return the inverse of this ring homomorphism if the underlying homomorphism of the base ring is invertible.

EXAMPLES:

sage: R.<x,y> = QQI[]
sage: S.<a,b> = QQI[]
sage: f = R.hom([a + b, a - b], S)
sage: PR.<t> = R[]
sage: PS = S['t']
sage: Pf = PR.hom(f, PS)
sage: Pf.inverse () #
—needs sage.libs.singular
Ring morphism:
From: Univariate Polynomial Ring in t over Multivariate
Polynomial Ring in a, b over Rational Field
To: Univariate Polynomial Ring in t over Multivariate
Polynomial Ring in x, y over Rational Field
Defn: Induced from base ring by
Ring morphism:
From: Multivariate Polynomial Ring in a, b over Rational Field

To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: a |-—> 1/2*x + 1/2*y
9 === /25 = i/~
sage: Pf.inverse () (P£(x*t"2 + y*t)) #.

—needs sage.libs.singular
X*EA2 + y*rt

underlying map ()
Return the underlying homomorphism of the base ring.

EXAMPLES:

sage: # needs sage.modules
sage: R.<x,y> = QQ[]
sage: S.<z> = QQ[]
sage: f = R.hom([2*z, 3*z], S)
sage: MR = MatrixSpace (R, 2)
(continues on next page)
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sage: MS = MatrixSpace (S, 2)

sage: g MR.hom (f, MS)
sage: g.underlying_map() == f
True

class sage.rings.morphism.RingHomomorphism_from_fraction_field

Bases: RingHomomorphism
Morphisms between fraction fields.

inverse ()

Return the inverse of this ring homomorphism if it exists.

EXAMPLES:

sage: S.<x> = QQ[]
sage: £ = S.hom([2*x - 1])

sage: g = f.extend_to_fraction_field() #
—needs sage.libs.singular
sage: g.inverse () #_

—needs sage.libs.singular

Ring endomorphism of Fraction Field of Univariate Polynomial Ring
in x over Rational Field
Defn: x |-—> 1/2*x + 1/2

class sage.rings.morphism.RingHomomorphism_from_quotient

Bases: RingHomomorphism
A ring homomorphism with domain a generic quotient ring.
INPUT:
* parent —aring homset Hom (R, S)
e phi — aring homomorphism C —-> S, where C is the domain of R. cover ()
OUTPUT: a ring homomorphism

The domain R is a quotient object C — R, and R.cover () is the ring homomorphism ¢ : C — R. The
condition on the elements im_gens of S is that they define a homomorphism C' — S such that each generator of
the kernel of ¢ maps to 0.

EXAMPLES:

sage: # needs sage.libs.singular

sage: R.<x, y, z> = PolynomialRing(QQ, 3)

sage: S.<a, b, ¢c> = R.quo(x"3 + y"3 + z"3)

sage: phi = S.hom([b, ¢, al); phi

Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y, z
over Rational Field by the ideal (x"3 + y*3 + z"3)

Defn: a |-—> b
I |==> @
e [[==> a

sage: phi(a + b + ¢)

a+b+c

sage: loads (dumps (phi)) == phi
True

L

Validity of the homomorphism is determined, when possible, and a TypeError is raised if there is no homomor-
phism sending the generators to the given images:
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sage: S.hom([b"2, c"2, a”2]) #o
—needs sage.libs.singular
Traceback (most recent call last):

ValueError: relations do not all (canonically) map to 0
under map determined by images of generators

morphism_from_cover ()
Underlying morphism used to define this quotient map, i.e., the morphism from the cover of the domain.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<xx,yy> = R.quo([x"2, y"2]) #
—needs sage.libs.singular

sage: S.hom([yy,xx]) .morphism_from_cover () #

—needs sage.libs.singular
Ring morphism:
From: Multivariate Polynomial Ring in x, y over Rational Field

To: Quotient of Multivariate Polynomial Ring in x, y
over Rational Field by the ideal (x%2, y"2)
Defn: x |-—> yy
vy |=—> xx

class sage.rings.morphism.RingHomomorphism_im_gens

Bases: RingHomomorphism
A ring homomorphism determined by the images of generators.

base_map ()
Return the map on the base ring that is part of the defining data for this morphism. May return None if a
coercion is used.

EXAMPLES:

sage: # needs sage.rings.number_field

sage: R.<x> = ZZ[]

sage: K.<i> = NumberField(x"2 + 1)

sage: cc = K.hom([-1])

sage: S.<y> = KI[]

sage: phi = S.hom([y"2], base_map=cc)

sage: phi

Ring endomorphism of Univariate Polynomial Ring in y
over Number Field in i1 with defining polynomial x"2 + 1
Defn: y |-——> y"2

with map of base ring

sage: phi (y)

yh2

sage: phi (i*y)

—i*y~2

sage: phi.base_map ()

Composite map:
From: Number Field in i1 with defining polynomial x"2 + 1

To: Univariate Polynomial Ring in y over Number Field in i
with defining polynomial x"2 + 1
Defn: Ring endomorphism of Number Field in i with defining polynomial x"2.
-+ 1
Defn: i |-—> -i
then

(continues on next page)
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Polynomial base injection morphism:
From: Number Field in i with defining polynomial x"2 + 1
To: Univariate Polynomial Ring in y over Number Field in i
with defining polynomial x"2 + 1

im_gens ()
Return the images of the generators of the domain.
OUTPUT:
e list —acopy of the list of gens (it is safe to change this)
EXAMPLES:

sage: R.<x,y> = QQI[]

sage: f = R.hom([x, x + y])
sage: f.im_gens ()

[x, x + y]

We verify that the returned list of images of gens is a copy, so changing it doesn’t change f:

sage: f.im_gens () [0] = 5
sage: f.im_gens|()
[x, x + V]

class sage.rings.morphism.RingMap

Bases: Morphism
Set-theoretic map between rings.

class sage.rings.morphism.RingMap_lift
Bases: RingMap

Given rings R and S such that for any € R the function x.1ift () is an element that naturally coerces to .S,
this returns the set-theoretic ring map R — S sending xz to x . 1ift ().

EXAMPLES:

sage: R.<x,y> Q011

sage: S.<xbar,ybar> = R.quo( (x"2 + y"2, y) ) #o
—needs sage.libs.singular

sage: S.lift () #_

—needs sage.libs.singular
Set-theoretic ring morphism:

From: Quotient of Multivariate Polynomial Ring in x, y

over Rational Field by the ideal (x72 + y"2, V)

To: Multivariate Polynomial Ring in x, y over Rational Field

Defn: Choice of lifting map
sage: S.lift() == O #
—needs sage.libs.singular
False

L

Since Issue #11068, it is possible to create quotient rings of non-commutative rings by two-sided ideals. It was
needed to modify RingMap_ 11t so that rings can be accepted that are no instances of sage. rings.ring.
Ring, as in the following example:
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sage: # needs sage.modules sage.rings.finite_rings

sage: MS MatrixSpace (GF (5), 2, 2)

sage: I = MS * [MS.0*MS.1, MS.2+MS.3] * MS
sage: Q = MS.quo(I)

sage: 0.0*0Q.1 # indirect doctest

[0 1]

[0 0]

.

3.2 Space of homomorphisms between two rings

sage.rings.homset .RingHomset (R, S, category=None)

Construct a space of homomorphisms between the rings R and S.
For more on homsets, see Hom () .

EXAMPLES:

sage: Hom(ZZ, QQ) # indirect doctest
Set of Homomorphisms from Integer Ring to Rational Field

class sage.rings.homset .RingHomset_generic (R, S, category=None)
Bases: HomsetWithBase

A generic space of homomorphisms between two rings.

EXAMPLES:

sage: Hom(ZZ, QOQ)

Set of Homomorphisms from Integer Ring to Rational Field
sage: QQ.Hom(ZZ)
Set of Homomorphisms from Rational Field to Integer Ring

Element
alias of RingHomomorphism
has_coerce_map_from (x)

The default for coercion maps between ring homomorphism spaces is very restrictive (until more implementa-
tion work is done).

Currently this checks if the domains and the codomains are equal.

EXAMPLES:

sage: H = Hom(ZZ, QQ)

sage: H2 = Hom(QQ, ZZ)

sage: H.has_coerce_map_from (H2)
False

natural_map ()
Return the natural map from the domain to the codomain.
The natural map is the coercion map from the domain ring to the codomain ring.

EXAMPLES:
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sage: H = Hom(ZZ, QQ)

sage: H.natural_map ()

Natural morphism:
From: Integer Ring
To: Rational Field

zero ()

Return the zero element of this homset.
EXAMPLES:

Since a ring homomorphism maps 1 to 1, there can only be a zero morphism when mapping to the trivial ring:

sage: Hom(ZZ, Zmod(l)) .zero()
Ring morphism:
From: Integer Ring

To: Ring of integers modulo 1
Defn: 1 |-—> 0
sage: Hom(ZZ, Zmod(2)) .zero()

Traceback (most recent call last):

ValueError: homset has no zero element

class sage.rings.homset .RingHomset_quo_ring (R, S, category=None)

Bases: RingHomset_generic

Space of ring homomorphisms where the domain is a (formal) quotient ring.

EXAMPLES:

sage: R.<x,y> = PolynomialRing (QQ, 2)

sage: S.<a,b> = R.quotient (x"2 + y"2) #o
—needs sage.libs.singular

sage: phi = S.hom([b,a]); phi #

—needs sage.libs.singular
Ring endomorphism of Quotient of Multivariate Polynomial Ring in x, y

over Rational Field by the ideal (x"2 + y"2)

Defn: a |-—> b
b |-——> a

sage: phi (a) #_
—needs sage.libs.singular
b
sage: phi (b) #
—needs sage.libs.singular
a
Element

alias of RingHomomorphism_from quotient

sage.rings.homset.is_RingHomset (H)

Return True if H is a space of homomorphisms between two rings.

EXAMPLES:

sage: from sage.rings.homset import is_RingHomset as is_RH
sage: 1s_RH(Hom(ZZ, QQ))

doctest:warning...

DeprecationWarning: the function is_RingHomset is deprecated;

(continues on next page)

60

Chapter 3. Ring Morphisms




General Rings, Ideals, and Morphisms, Release 10.5.rc0

L

(continued from previous page)
use 'isinstance (..., RingHomset_generic)' instead
See https://github.com/sagemath/sage/issues/37922 for details.
True
sage: is_RH(ZZ)
False
sage: is_RH(Hom(RR, CC)) #_
—needs sage.rings.real_mpfr
True
sage: is_RH (Hom(FreeModule (2Z,1), FreeModule (QQ,1))) #
—needs sage.modules
False
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CHAPTER
FOUR

QUOTIENT RINGS

4.1 Quotient Rings

AUTHORS:
» William Stein
¢ Simon King (2011-04): Put it into the category framework, use the new coercion model.

 Simon King (2011-04): Quotients of non-commutative rings by twosided ideals.

Todo

The following skipped tests should be removed once Issue #13999 is fixed:

[sage: TestSuite (S) .run(skip=['_test_nonzero_equal', '_test_elements'’, '_test_zero'})]

In Issue #11068, non-commutative quotient rings R/I were implemented. The only requirement is that the two-sided
ideal I provides a reduce method so that I.reduce (x) is the normal form of an element x with respect to I (i.e.,
we have I.reduce (x) == I.reduce(y) ifz—y € l,andx - I.reduce(x) in I).Hereisatoyexample:

sage: from sage.rings.noncommutative_ideals import Ideal_nc

sage: from itertools import product

sage: class PowerIdeal (Ideal_nc):

e def _ init_ (self, R, n):

I self._power = n

et self._power = n

et Ideal_nc.__init__ (self, R, [R.prod(m) for m in product (R.gens (),

e def reduce (self, x):
e R = self.ring()
e return add([c*R(m) for m,c in x if len(m)<self._power],R(0))

sage: F.<x,y,z> = FreeAlgebra (QQ, 3) #.
—needs sage.combinat sage.modules
sage: I3 = PowerlIdeal(F,3); I3 #.

—needs sage.combinat sage.modules
Twosided Ideal (x"3, x"2*y, x"2*z, x*y*
X582, YIRP2, YEIREY, VRTm, Y2¥%, ¥'3, ¥ 2¥m, Y BYR, V*2¥Y, V- 8" 2,
2R Z22%%, #BO2¥y, B 3) Of
z) over Rational Field

R, KEGAD, REYEE, REBWE, RWEWY,
z

BEEOD, BEKRWY, BERYR, BEYER, B2,

Free Algebra on 3 generators (%, y,

Free algebras have a custom quotient method that serves at creating finite dimensional quotients defined by multiplication
matrices. We are bypassing it, so that we obtain the default quotient:
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sage: # needs sage.combinat sage.modules

sage: Q03.<a,b,c> = F.quotient (I3)

sage: Q3

Quotient of Free Algebra on 3 generators (x, y, z) over Rational Field by
Ehe demal (x*3, R*2¥y, X*2% B, K¥YWK, RTY 2, REYTR, KTEBTK, KTRZWY, K EZ 2,
YERA2, YERFY, VX%, ¥2¥R, V'3, ¥V 2%z, Y¥E¥R, Y¥E¥Y, V¥ 2, B R 2, BFRy,
BRSNS, BEYER, BEG 2, BEYEZ, BO2¥R, B 2%y, z"3)

sage: (atb+2)"4

16 + 32*a + 32*b + 24*a”2 + 24*a*b + 24*b*a + 24*b" 2

sage: Q3.is_commutative ()

False

Even though Q3 is not commutative, there is commutativity for products of degree three:

sage: a* (b*c)-(b*c) *a==F.zero () #_
—needs sage.combinat sage.modules
True

If we quotient out all terms of degree two then of course the resulting quotient ring is commutative:

sage: # needs sage.combinat sage.modules

sage: I2 = PowerIdeal (F,2); I2

Twosided Ideal (x"2, x*y, x*z, y*x, v"2, y*z, z*x, z*y, z”2) of Free Algebra
on 3 generators (x, y, z) over Rational Field

sage: Q2.<a,b,c> = F.quotient (I2)

sage: Q2.is_commutative ()

True

sage: (atb+2)"4

16 + 32*a + 32*Db

Since Issue #7797, there is an implementation of free algebras based on Singular’s implementation of the Letterplace
Algebra. Our letterplace wrapper allows to provide the above toy example more easily:

sage: # needs sage.combinat sage.libs.singular sage.modules
sage: from itertools import product

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: Q3 = F.quo(F*[F.prod(m) for m in product (F.gens (), repeat=3)]*F)
sage: Q3

Quotient of Free Associative Unital Algebra on 3 generators (x, y, z)
over Rational Field by the ideal (x*x*x, x*x*y, x*x*z, xX*y*x, x*y*y, x*y*z,
x*z*x, x*z*y, x*z*z, y*x*x, y*x*y, y*x*z, y*y*x, y*y*y, y*y*z, y*z*x, y*z*y,
VRZE %, BERER, BEREY, BERER, BEYER, 2EYEyY, 2¥VEZ, B¥2YK, 2¥8¥y, B¥Z )

sage: 03.0*Q3.1 - Q03.1*Q3.0

xbar*ybar - ybar*xbar
sage: 03.0*(Q3.1*0Q3.2) - (03.1*03.2)*03.0
0

sage: Q2 = F.quo(F*[F.prod(m) for m in product (F.gens (), repeat=2)]*F)
sage: Q2.is_commutative ()
True

sage.rings.quotient_ring.QuotientRing (R, I, names=None, **kwds)

Create a quotient ring of the ring R by the twosided ideal 1.

Variables are labeled by namess (if the quotient ring is a quotient of a polynomial ring). If names isn’t given, ‘bar’
will be appended to the variable names in R.

INPUT:

e R—aring
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e I —atwosided ideal of R
* names — (optional) a list of strings to be used as names for the variables in the quotient ring R/
* further named arguments that will be passed to the constructor of the quotient ring instance
OUTPUT: R/I - the quotient ring R mod the ideal I
ASSUMPTION:

T has a method I.reduce (x) returning the normal form of elements x € R. In other words, it is required that
I.reduce (x)==I.reduce(y) <= x—y € [,and x-I.reduce (x) in I,forallz,y € R.

EXAMPLES:

Some simple quotient rings with the integers:

r

sage: R = QuotientRing(ZZ, 7*ZZ); R
Quotient of Integer Ring by the ideal (7)
sage: R.gens ()

(1,)

sage: 1*R(3); 6*R(3); 7*R(3)

sage: S = QuotientRing(ZZ,ZZ.ideal(8)); S
Quotient of Integer Ring by the ideal (8)
sage: 2*S(4)

0

.

With polynomial rings (note that the variable name of the quotient ring can be specified as shown below):

-
sage: # needs sage.libs.pari

sage: P.<x> = QQ[]

sage: R.<xx> = QuotientRing (P, P.ideal(x"2 + 1))

sage: R

Univariate Quotient Polynomial Ring in xx over Rational Field
with modulus x"2 + 1

sage: R.gens(); R.gen()
(xx,)

XX

sage: for n in range(4): xx
1

XX

=il

—XX

A

n

-
sage: # needs sage.libs.pari

sage: P.<x> = QO[]
sage: S = QuotientRing (P, P.ideal (x"2 - 2))

sage: S

Univariate Quotient Polynomial Ring in xbar over Rational Field
with modulus x"2 - 2

sage: xbar = S.gen(); S.gen()

xbar

sage: for n in range(3): xbar”n

1

xbar

2

L
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Sage coerces objects into ideals when possible:

sage: P.<x> = QQ[]

sage: R = QuotientRing (P, x72 + 1); R #_
—needs sage.libs.pari

Univariate Quotient Polynomial Ring in xbar over Rational Field

with modulus x72 + 1

By Noether’s homomorphism theorems, the quotient of a quotient ring of R is just the quotient of R by the sum
of the ideals. In this example, we end up modding out the ideal () from the ring Q[x, y]:

sage: # needs sage.libs.pari sage.libs.singular
sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: S.<a,b> = QuotientRing (R, R.ideal (1 + y*2))
sage: T.<c,d> = QuotientRing (S, S.ideal (a))

sage: T

Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x, y*2 + 1)

sage: R.gens(); S.gens(); T.gens|()
(%, y)

(a, b)

(0, d)

sage: for n in range(4): d"n

1

d

=i

-d

class sage.rings.quotient_ring.QuotientRingIdeal_generic (ring, gens, coerce=True,
*¥kwds)

Bases: Tdeal generic
Specialized class for quotient-ring ideals.

EXAMPLES:

sage: Zmod(9) .ideal ([-6,9])
Ideal (3, 0) of Ring of integers modulo 9

class sage.rings.quotient_ring.QuotientRingIdeal_principal (ring, gens, coerce=True,
**kywds )

Bases: Tdeal_principal, QuotientRingIdeal_generic
Specialized class for principal quotient-ring ideals.

EXAMPLES:

sage: Zmod(9) .ideal (-33)
Principal ideal (3) of Ring of integers modulo 9

class sage.rings.quotient_ring.QuotientRing_generic (R, I, names, category=None)

Bases: QuotientRing_nc, CommutativeRing
Create a quotient ring of a commutative ring R by the ideal I.

EXAMPLES:
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sage: R.<x> = PolynomialRing(ZZ)

sage: I = R.ideal([4 + 3*x + x"2, 1 + x"2])

sage: S = R.quotient_ring(I); S

Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x72 + 3*x + 4, x"2 + 1)

class sage.rings.quotient_ring.QuotientRing nc (R, I, names, category=None)

Bases: Ring, ParentWithGens

The quotient ring of R by a twosided ideal I.

This class is for rings that do not inherit from CommutativeRing.
EXAMPLES:

Here is a quotient of a free algebra by a twosided homogeneous ideal:

p
sage: # needs sage.combinat sage.libs.singular sage.modules

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')

sage: I = F * [x*y + y*z, x"2 + x*y — y*x — y"2]*F

sage: Q.<a,b,c> = F.quo(I); QO

Quotient of Free Associative Unital Algebra on 3 generators (x, y, z) over.
—Rational Field

by the ideal (x*y + y*z, x*x + X*y — y*x — y*y)

sage: a*b

=lo*@

sage: a”3

=lg*weva = lB¥e¥ly = lo¥e e

A quotient of a quotient is just the quotient of the original top ring by the sum of two ideals:

sage: # needs sage.combinat sage.libs.singular sage.modules

sage: J = Q * [a®"3 - b"3] * Q

sage: R.<i,j,k> = Q.quo(J); R

Quotient of

Free Associative Unital Algebra on 3 generators (x, y, z) over Rational Field
by the ideal (-y*y*z — y*z*x — 2*y*z*z, x*y + y*z, X*x + X*y — y*x — y*y)
sage: i"3

—9*k*i — J*k*j — j*k*k

sage: j”3

—J*k*i — J*k*j - Jrkrk

For rings that do inherit from CommutativeRing, we provide a subclass QuotientRing _generic, for
backwards compatibility.

EXAMPLES:

-
sage: R.<x> = PolynomialRing(ZZ, 'x")

sage: I = R.ideal([4 + 3*x + x"2, 1 + x"2])

sage: S = R.quotient_ring(I); S

Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x%2 + 3*x + 4, x"2 + 1)

-

sage: R.<x,y> = PolynomialRing (QQ)

sage: S.<a,b> = R.quo(x"2 + y"2) #o
—needs sage.libs.singular
sage: a2 + b"2 == 0 #o

—needs sage.libs.singular

(continues on next page)
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True

sage: S(0) == a2 + b"2 #_
—needs sage.libs.singular

True

Again, a quotient of a quotient is just the quotient of the original top ring by the sum of two ideals.

sage: # needs sage.libs.singular

sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: S.<a,b> = R.quo(l + y*2)

sage: T.<c,d> = S.quo(a)

sage: T

Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x, y*2 + 1)

sage: T.gens ()

(0, d)

Element
alias of QuotientRingElement
ambient ()
Return the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, /.

EXAMPLES:

sage: Q = QuotientRing(ZZ, 7 * ZZ)
sage: Q.cover_ring()
Integer Ring

sage: P.<x> = QQI[]

sage: Q = QuotientRing (P, x"2 + 1) #_
—needs sage.libs.pari
sage: Q.cover_ring() #

—needs sage.libs.pari
Univariate Polynomial Ring in x over Rational Field

characteristic()

Return the characteristic of the quotient ring.

Todo

Not yet implemented!

EXAMPLES:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.characteristic()
Traceback (most recent call last):

NotImplementedError

construction ()

Return the functorial construction of self.

EXAMPLES:
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sage: R.<x> = PolynomialRing(ZZ, 'x")

sage: I = R.ideal([4 + 3*x + x"2, 1 + x"2])

sage: R.quotient_ring(I).construction ()

(QuotientFunctor, Univariate Polynomial Ring in x over Integer Ring)

sage: # needs sage.combinat sage.libs.singular sage.modules
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F * [x*y + y*z, X"2 + x*y - y*x - y*"2] * F
sage: Q = F.quo(I)
sage: Q.construction ()
(QuotientFunctor,
Free Associative Unital Algebra on 3 generators (x, y, z) over Rational.
—Field)
cover ()

The covering ring homomorphism R — R/I, equipped with a section.

EXAMPLES:

sage: R = ZZ.quo (3 * ZZ)
sage: pi = R.cover()
sage: pi
Ring morphism:

From: Integer Ring

To: Ring of integers modulo 3
Defn: Natural quotient map
sage: pi(5)

2
sage: 1 = pi.lift ()

sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing (QQ)
sage: Q = R.quo((x"2, y"2))

sage: pi = Q.cover()

sage: pi(x"3 + vy)

ybar

sage: 1 = pi.lift(x + y”3)
sage: 1

X

sage: 1 = pi.lift(); 1
Set-theoretic ring morphism:
From: Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x%2, y"2)
To: Multivariate Polynomial Ring in x, y over Rational Field
Defn: Choice of lifting map
sage: 1l(x + y”3)
X

cover_ring ()

Return the cover ring of the quotient ring: that is, the original ring R from which we modded out an ideal, /.

EXAMPLES:

sage: Q = QuotientRing(ZZ, 7 * ZZ)
sage: Q.cover_ring()
Integer Ring
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sage: P.<x> = QQI]

sage: Q = QuotientRing (P, x"2 + 1)

—needs sage.libs.pari

sage: Q.cover_ring()

—needs sage.libs.pari

Univariate Polynomial Ring in x over Rational Field

defining_ideal ()

Return the ideal generating this quotient ring.
EXAMPLES:

In the integers:

sage: Q = QuotientRing(ZZ,7*ZZ)
sage: Q.defining_ideal ()
Principal ideal (7) of Integer Ring

An example involving a quotient of a quotient. By Noether’s homomorphism theorems, this is actually a

quotient by a sum of two ideals:

sage:
sage:

# needs sage.libs.singular

R.<x,y> = PolynomialRing (QQ, 2)
sage: S.<a,b> = QuotientRing(R, R.ideal (1l + y"2))
sage: T.<c,d> = QuotientRing (S, S.ideal (a))
sage: S.defining_ideal ()
Ideal (y”2 + 1) of Multivariate Polynomial Ring in x,
sage: T.defining_ideal ()
Ideal (x

y over Rational Field

, v°2 + 1) of Multivariate Polynomial Ring in x, y over Rational Field

gen (i=0)
Return the i-th generator for this quotient ring.

EXAMPLES:

sage: R = QuotientRing(ZZ, 7*Z2Z)
sage: R.gen (0)

1

sage: # needs sage.libs.singular

sage: R.<x,y> = PolynomialRing (QQ, 2)

sage: S.<a,b> = QuotientRing (R, R.ideal (1l + y"2))
sage: T.<c,d> = QuotientRing(S, S.ideal (a))

sage: T

by the ideal (x, y*2 + 1)
sage: R.gen(0); R.gen (1)
X
Yy
sage: S.gen(0); S.gen(1l)
a
b
sage: T.gen(0); T.gen (1)
0
d

Quotient of Multivariate Polynomial Ring in x, y over Rational Field

ideal (*gens, **kwds)

Return the ideal of self with the given generators.
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EXAMPLES:

sage: R.<x,y> = PolynomialRing (QQ)

sage: S = R.quotient_ring(x"2 + y"2)

sage: S.ideal () #.
—needs sage.libs.singular

Ideal (0) of Quotient of Multivariate Polynomial Ring in x, y

over Rational Field by the ideal (x"2 + y*2)

sage: S.ideal(x + y + 1) #.
—needs sage.libs.singular

Ideal (xbar + ybar + 1) of Quotient of Multivariate Polynomial Ring in x, y
over Rational Field by the ideal (x"2 + y"2)

is_commutative ()

Tell whether this quotient ring is commutative.

Note

This is certainly the case if the cover ring is commutative. Otherwise, if this ring has a finite number of
generators, it is tested whether they commute. If the number of generators is infinite, a Not Tmple—
mentedError is raised.

AUTHOR:
¢ Simon King (2011-03-23): See Issue #7797.
EXAMPLES:

Any quotient of a commutative ring is commutative:

sage: P.<a,b,c> = QQI]
sage: P.quo (P.random_element ()) .is_commutative ()
True

The non-commutative case is more interesting:

sage: # needs sage.combinat sage.libs.singular sage.modules
sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F * [x*y + y*z, X2 + x*y — y*x — y"2] * F

sage: Q = F.quo(I)

sage: Q.is_commutative ()

False

sage: Q.1*Q.2 == Q.2*Q.1

False

In the next example, the generators apparently commute:

sage: # needs sage.combinat sage.libs.singular sage.modules
sage: J = F * [x*y - y*x, x*z - z*x, y*z - z*y, x"3 - y*"3] * F
sage: R = F.quo (J)

sage: R.is_commutative ()

True

is_field (proof=True)

Return True if the quotient ring is a field. Checks to see if the defining ideal is maximal.
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is_integral_domain (proof=True)
With proof equal to True (the default), this function may raise a Not ImplementedError.
When proof is False, if True is returned, then self is definitely an integral domain. If the function

returns False, then either self is not an integral domain or it was unable to determine whether or not
self is an integral domain.

EXAMPLES:

sage: R.<x,y> = QQI[]

sage: R.quo(x"2 - y).is_integral_domain () #
—needs sage.libs.singular

True

sage: R.quo(x"2 - y”2).is_integral_domain () #
—needs sage.libs.singular

False

sage: R.quo(x"2 - y”2).is_integral_domain (proof=False) #
—needs sage.libs.singular

False

sage: R.<a,b,c> = Z2Z][]

sage: Q = R.quotient_ring([a, b])
sage: Q.is_integral_domain ()
Traceback (most recent call last):

NotImplementedError
sage: Q.is_integral_domain (proof=False)
False

is_noetherian ()

Return True if this ring is Noetherian.

EXAMPLES:

sage: R = QuotientRing(ZZ, 102 * ZZ)
sage: R.is_noetherian()
True

sage: P.<x> = QQ[]

sage: R = QuotientRing(P, x"2 + 1) #_
—needs sage.libs.pari

sage: R.is_noetherian()

True

If the cover ring of se 1 f is not Noetherian, we currently have no way of testing whether se 1 f is Noetherian,
SO We raise an error:

sage: R.<x> = InfinitePolynomialRing (QQ)
sage: R.is_noetherian()
False

sage: I = R.ideal([x[1]1"2, x[2]])
sage: S = R.quotient (I)

sage: S.is_noetherian()

Traceback (most recent call last):

NotImplementedError

1lift (x=None)

Return the lifting map to the cover, or the image of an element under the lifting map.
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Note

The category framework imposes that Q.11 ft (x) returns the image of an element x under the lifting
map. For backwards compatibility, we let 9. 11 £t () return the lifting map.

EXAMPLES:

sage: R.<x,y> = PolynomialRing (QQ, 2)
sage: S = R.quotient (x"2 + y*2)

sage: S.lift()

—needs sage.libs.singular
Set-theoretic ring morphism:

From:
by the ideal (x"2 + y"2)
Multivariate Polynomial Ring in x,
Choice of lifting map
1ift (S.0)
sage.libs.singular

To:
Defn:
sage: S.
—needs

True

== X

Quotient of Multivariate Polynomial Ring in x,

y over Rational Field

y over Rational Field

lifting_map ()
Return the lifting map to the cover.

EXAMPLES:
sage: # needs sage.libs.singular
sage: R.<x,y> = PolynomialRing (QQ, 2)
sage: S = R.quotient (x"2 + y*2)
sage: pi = S.cover(); pi
Ring morphism:
From: Multivariate Polynomial Ring in x,
To: Quotient of Multivariate Polynomial Ring in x,
by the ideal (x"2 + y"2)
Defn: Natural quotient map
sage: L = S.lifting map(); L

Set-theoretic ring morphism:

by the ideal (x"2 + y"2)

To: Multivariate Polynomial Ring in x,
Defn: Choice of lifting map

sage: L(S.0)

X

sage: L(S.1)

Yy

From: Quotient of Multivariate Polynomial Ring in x,

y over Rational Field
y over Rational Field

y over Rational Field

y over Rational Field

Note that some reduction may be applied so that the lift of a reduction need not equal the original element:

sage: pli(x"3 + 2*y"2); =z
—needs sage.libs.singular
—-xbar*ybar”"2 + 2*ybar”2
sage: L(z)

—needs sage.libs.singular
—X*y"2 + 2*y"2

sage: L(z) N3+ 2Fyh2
—needs sage.libs.singular
False

% =

#
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Test that there also is a lift for rings that are no instances of Ring (see Issue #11068):

sage: # needs sage.modules
sage: MS = MatrixSpace (GF (5), 2, 2)
sage: I = MS * [MS.0*MS.1, MS.2 + MS.3] * MS
sage: Q = MS.quo(I)
sage: Q.lift ()
Set-theoretic ring morphism:
From: Quotient of Full MatrixSpace of 2 by 2 dense matrices
over Finite Field of size 5 by the ideal

[0 1]
[0 0],

[0 0]
[1 1]

To: Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 5
Defn: Choice of lifting map

ngens ()

Return the number of generators for this quotient ring.

Todo

Note that ngens counts 0 as a generator. Does this make sense? That is, since O only generates itself
and the fact that this is true for all rings, is there a way to “knock it oft” of the generators list if a generator
of some original ring is modded out?

EXAMPLES:

sage: R = QuotientRing(ZZ, 7*ZZ)
sage: R.gens(); R.ngens()

(D)

1

sage: # needs sage.libs.singular

sage: R.<x,y> = PolynomialRing (QQ, 2)

sage: S.<a,b> = QuotientRing(R, R.ideal (1l + y"2))
sage: T.<c,d> = QuotientRing (S, S.ideal (a))

sage: T

Quotient of Multivariate Polynomial Ring in x, y over Rational Field
by the ideal (x, y*2 + 1)

sage: R.gens(); S.gens(); T.gens()

(%, ¥)

(a, b)

(0, d)

sage: R.ngens(); S.ngens(); T.ngens()

2

2

2

random_element ()

Return a random element of this quotient ring obtained by sampling a random element of the cover ring and
reducing it modulo the defining ideal.
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EXAMPLES:

sage: R.<x,y> = QQI[]

sage: S = R.quotient ([x"3, y~2])

sage: S.random_element () # random
-8/5*xbar”"2 + 3/2*xbar*ybar + 2*xbar - 4/23

retract (x)
The image of an element of the cover ring under the quotient map.

INPUT:

¢ x —an element of the cover ring
OUTPUT: the image of the given element in self
EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: S = R.quotient (x"2 + y"2)

sage: S.retract ((x+y) "2)

—needs sage.libs.singular
2*xbar*ybar

term_order ()

Return the term order of this ring.

EXAMPLES:

sage: P.<a,b,c> = PolynomialRing (QQ)

sage: I = Ideal([a™2 - a, b"2 - b, c"2 - c])
sage: Q = P.quotient (I)

sage: Q.term_order ()

Degree reverse lexicographic term order

sage.rings.quotient_ring.is_QuotientRing (x)
Test whether or not x inherits from QuotientRing nc.

EXAMPLES:

.
sage: from sage.rings.quotient_ring import is_QuotientRing

sage: R.<x> = PolynomialRing(ZZ, 'x"')

sage: I = R.ideal([4 + 3*x + x"2, 1 + x"2])

sage: S = R.quotient_ring(I)

sage: is_QuotientRing (S)

doctest:warning...

DeprecationWarning: The function is_QuotientRing is deprecated;

use 'isinstance (..., QuotientRing_nc)' instead.

See https://github.com/sagemath/sage/issues/38266 for details.
True

sage: is_QuotientRing (R)

False

.

-
sage: # needs sage.combinat sage.libs.singular sage.modules

sage: F.<x,y,z> = FreeAlgebra(QQ, implementation='letterplace')
sage: I = F * [x*y + y*z, x"2 + x*y — y*x — y"2] * F

sage: Q = F.quo(I)

sage: is_QuotientRing (Q)

True

(continues on next page)
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(continued from previous page)

sage: is_QuotientRing (F)
False

4.2 Quotient Ring Elements

AUTHORS:
¢ William Stein

class sage.rings.quotient_ring_element.QuotientRingElement (parent, rep, reduce=True)

Bases: RingElement
An element of a quotient ring R/I.
INPUT:
* parent —thering R/T
* rep — arepresentative of the element in R; this is used as the internal representation of the element

¢ reduce —boolean (default: True); if True, then the internal representation of the element is rep reduced
modulo the ideal 1

EXAMPLES:

sage: R.<x> = PolynomialRing(ZZ)

sage: S.<xbar> = R.quo((4 + 3*x + x*2, 1 + x"2)); S

Quotient of Univariate Polynomial Ring in x over Integer Ring
by the ideal (x"2 + 3*x + 4, x"2 + 1)

sage: v = S.gens(); v

(xbar, )
.

sage: loads(v[0].dumps()) == vI[0]

True
.

r

sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: S = R.quo(x"2 + y"2); S

Quotient of Multivariate Polynomial Ring in x, y over Rational Field

by the ideal (x"2 + y"2)

sage: S.gens () #
—needs sage.libs.singular

(xbar, ybar)

L

We name each of the generators.

-
sage: # needs sage.libs.singular

sage: S.<a,b> = R.quotient (x"2 + y"2)

sage: a

a

sage: b

b

sage: a2 + b"2 ==
True

sage: b.lift ()

y

(continues on next page)

76 Chapter 4. Quotient Rings



../../../../../../html/en/reference/structure/sage/structure/element.html#sage.structure.element.RingElement

General Rings, Ideals, and Morphisms, Release 10.5.rc0

(continued from previous page)

sage: (a”3 + b"2).1lift ()
—xX*y"2 + y"2

is_unit ()
Return True if self is a unit in the quotient ring.

EXAMPLES:

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(l - x*y); type(a) #
—needs sage.libs.singular

<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
—~class'>

sage: a*b #o
—needs sage.libs.singular

1

sage: S(2).is_unit () #.

—needs sage.libs.singular
True

Check that Issue #294609 is fixed:

sage: a.is_unit () #
—needs sage.libs.singular
True
sage: (atb).is_unit () #
—needs sage.libs.singular
False
lc()
Return the leading coefficient of this quotient ring element.
EXAMPLES:
sage: # needs sage.libs.singular
sage: R.<x,y,z> = PolynomialRing(GF (7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal (R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lc()
2
1ift ()
If self is an element of R/I, then return self as an element of R.
EXAMPLES:
sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x"2 + y"2); type(a) #o

—needs sage.libs.singular
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
—class'>

sage: a.lift () #_
—needs sage.libs.singular

X

sage: (3/5*(a + a”2 + b"2)).1ift () #_
—needs sage.libs.singular

3/ 5=
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1m ()

Return the leading monomial of this quotient ring element.

EXAMPLES:

sage: # needs sage.libs.singular

sage: R.<x,y,z> = PolynomialRing(GF (7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal (R)

sage: Q = R.quo(I)

sage: f = Q(z*y + 2*x)

sage: f.I1m()

xbar

1t ()
Return the leading term of this quotient ring element.
EXAMPLES:
sage: # needs sage.libs.singular
sage: R.<x,y,z> = PolynomialRing (GF (7), 3, order='lex')
sage: I = sage.rings.ideal.FieldIdeal (R)
sage: Q = R.quo(I)
sage: f = Q(z*y + 2*x)
sage: f.lt ()
2*xbar

monomials ()

Return the monomials in self.

OUTPUT: list of monomials

EXAMPLES:

sage: # needs sage.libs.singular

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x"2 + y"2); type(a)
<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
—~class'>

sage: a.monomials ()

[a]

sage: (a + a*b).monomials ()

[a*b, a]

sage: R.zero () .monomials ()

[]

reduce (G)

Reduce this quotient ring element by a set of quotient ring elements G.
INPUT:

¢ G - list of quotient ring elements

Warning

This method is not guaranteed to return unique minimal results. For quotients of polynomial rings, use
reduce () on the ideal generated by G, instead.

EXAMPLES:
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sage: # needs sage.libs.singular
sage: P.<a,b,c,d,e> = PolynomialRing(GF (2), 5, order='lex')
sage: Il = ideal([a*b + c*d + 1, a*c*e + d*e,
20083 a*b*e + c*e, b*c + c*d*e + 11])
Q = P.quotient (sage.rings.ideal.FieldIdeal (P))
sage: I2 = ideal([Q(f) for f in Il.gens()])
f =0Q((a*b + c*d + 1)"2 + e)
f.reduce (I2.gens())

Notice that the result above is not minimal:

sage: I2.reduce (f) #
—needs sage.libs.singular
0

variables ()
Return all variables occurring in self.

OUTPUT:
A tuple of linear monomials, one for each variable occurring in self.

EXAMPLES:

sage: # needs sage.libs.singular

sage: R.<x,y> = QQ[]; S.<a,b> = R.quo(x"2 + y*2); type(a)

<class 'sage.rings.quotient_ring.QuotientRing_generic_with_category.element_
—class'>

sage: a.variables()

(a,)

sage: b.variables ()

(b,)

sage: s = a”2 + b"2 + 1; s
1

sage: s.variables|()

()

sage: (a + b).variables()
(a, b)
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CHAPTER
FIVE

FRACTION FIELDS

5.1 Fraction Field of Integral Domains

AUTHORS:
» William Stein (with input from David Joyner, David Kohel, and Joe Wetherell)
 Burcin Erocal
¢ Julian Riith (2017-06-27): embedding into the field of fractions and its section
EXAMPLES:

Quotienting is a constructor for an element of the fraction field:

sage: R.<x> = QQ[]

sage: (x"2-1)/(x+1)

x — 1

sage: parent ((x"2-1)/(x+1))

Fraction Field of Univariate Polynomial Ring in x over Rational Field

The GCD is not taken (since it doesn’t converge sometimes) in the inexact case:

sage: # needs sage.rings.real_mpfr

sage: Z.<z> = CC[]

sage: I = CC.gen()

sage: (1+I+z)/(z+0.1*1I)

(z + 1.00000000000000 + I)/(z + 0.100000000000000*1T)
sage: (1+I*z)/(z+1.1)

(I*z + 1.00000000000000)/(z + 1.10000000000000)

sage.rings.fraction_field.FractionField (R, names=None)

Create the fraction field of the integral domain R.
INPUT:

* R —an integral domain

* names — ignored
EXAMPLES:

We create some example fraction fields:

sage: FractionField(IntegerRing/())
Rational Field
sage: FractionField (PolynomialRing (RationalField (), 'x"'))

(continues on next page)
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(continued from previous page)
Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: FractionField(PolynomialRing (IntegerRing(), 'x"))
Fraction Field of Univariate Polynomial Ring in x over Integer Ring
sage: FractionField (PolynomialRing (RationalField(),2, 'x"))
Fraction Field of Multivariate Polynomial Ring in x0, x1 over Rational Field

Dividing elements often implicitly creates elements of the fraction field:

sage: x = PolynomialRing (RationalField(), 'x'").gen()
sage: f = x/(x+1)
sage: g = x**3/(x+1)

sage: f/g
1/x"2
sage: g/f
x"2

.

The input must be an integral domain:

-
sage: Frac(Integers (4))

Traceback (most recent call last):

TypeError: R must be an integral domain
.

class sage.rings.fraction_field.FractionFieldEmbedding

Bases: DefaultConvertMap_unique
The embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQ[]
sage: f = R.fraction_field() .coerce_map_from(R); £
Coercion map:
From: Univariate Polynomial Ring in x over Rational Field
To: Fraction Field of Univariate Polynomial Ring in x over Rational Field

is_injective ()
Return whether this map is injective.

EXAMPLES:

The map from an integral domain to its fraction field is always injective:

sage: R.<x> = QQI]
sage: R.fraction_field() .coerce_map_from(R) .is_injective ()
True

is_surjective ()

Return whether this map is surjective.

EXAMPLES:

sage: R.<x> = QQI[]
sage: R.fraction_field() .coerce_map_from(R).is_surjective ()
False
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section()

Return a section of this map.

EXAMPLES:

sage: R.<x> = QQI[]

sage: R.fraction_field() .coerce_map_from(R) .section ()

Section map:
From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionFieldEmbeddingSection

Bases: Section
The section of the embedding of an integral domain into its field of fractions.

EXAMPLES:

sage: R.<x> = QQI]

sage: f = R.fraction_field() .coerce_map_from(R) .section(); £

Section map:
From: Fraction Field of Univariate Polynomial Ring in x over Rational Field
To: Univariate Polynomial Ring in x over Rational Field

class sage.rings.fraction_field.FractionField_lpoly_field (R, element_class=<class
'sage.rings. fraction_field_ele-
ment.FractionFieldEle-
ment_Ipoly_field"™>)

Bases: FractionField generic
The fraction field of a univariate polynomial ring over a field.
Many of the functions here are included for coherence with number fields.

class_number ()

Here for compatibility with number fields and function fields.

EXAMPLES:

sage: R.<t> = GF(5)[]; K = R.fraction_field()
sage: K.class_number ()

1

function_field()

Return the isomorphic function field.

EXAMPLES:

sage: R.<t> = GF (5) []

sage: K = R.fraction_field()

sage: K.function_field()

Rational function field in t over Finite Field of size 5

See also

sage.rings.function_field.RationalFunctionField.field()
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maximal_order ()

Return the maximal order in this fraction field.

EXAMPLES:

sage: K = FractionField(GF(5)['t"'])
sage: K.maximal_order ()
Univariate Polynomial Ring in t over Finite Field of size 5

ring_of_integers ()
Return the ring of integers in this fraction field.

EXAMPLES:

sage: K = FractionField (GF(5)['t'])
sage: K.ring_of_integers()
Univariate Polynomial Ring in t over Finite Field of size 5

class sage.rings.fraction_field.FractionField_generic (R, element_class=<class
'sage.rings. fraction_field_ele-
ment.FractionFieldElement'>,
category=Category of quotient
fields)

Bases: Field
The fraction field of an integral domain.

base_ring()

Return the base ring of self.
This is the base ring of the ring which this fraction field is the fraction field of.
EXAMPLES:

sage: R = Frac(zZz['t'])
sage: R.base_ring()
Integer Ring

characteristic()
Return the characteristic of this fraction field.

EXAMPLES:

sage: R = Frac(ZzZ['t'])
sage: R.base_ring()
Integer Ring

sage: R = Frac(ZZ['t']); R.characteristic()

0

sage: R = Frac(GF(5)['w']); R.characteristic()
5

construction ()
EXAMPLES:

sage: Frac(ZZ['x']) .construction ()
(FractionField, Univariate Polynomial Ring in x over Integer Ring)
sage: K = Frac(GF(3)['t'])
sage: f, R = K.construction()
(continues on next page)
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sage: f (R)

Fraction Field of Univariate Polynomial Ring in t
over Finite Field of size 3

sage: f(R) == K

True

gen (i=0)
Return the i-th generator of self.

EXAMPLES:

sage: R = Frac (PolynomialRing(QQ, 'z',10)); R
Fraction Field of Multivariate Polynomial Ring
in z0, z1, z2, z3, z4, z5, z6, z7, 28, z9 over Rational Field

sage: R.0

z0

sage: R.gen(3)
z3

sage: R.3

z3

is_exact ()

Return if self is exact which is if the underlying ring is exact.

EXAMPLES:
sage: Frac(ZZ['x']) .is_exact ()
True
sage: Frac(CDF['x']) .is_exact () #
—needs sage.rings.complex_double
False
is_field (proof=True)
Return True, since the fraction field is a field.
EXAMPLES:
sage: Frac(zz) .is_field()
True
is_finite ()
Tells whether this fraction field is finite.
Note
A fraction field is finite if and only if the associated integral domain is finite.
EXAMPLES:
sage: Frac(QQ['a','b','c']).is_finite()
False
ngens ()
This is the same as for the parent object.
EXAMPLES:
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sage: R = Frac (PolynomialRing(QQ, 'z',10)); R
Fraction Field of Multivariate Polynomial Ring
in z0, z1, z2, z3, z4, z5, z6, z7, z8, z9 over Rational Field
sage: R.ngens ()
10

random_element (*args, **kwds)

Return a random element in this fraction field.

The arguments are passed to the random generator of the underlying ring.

EXAMPLES:

sage: F = ZZ['x'].fraction_field()
sage: F.random_element () # random
(2*x — 8)/(-x"2 + x)

sage: f = F.random_element (degree=5)

sage: f.numerator ().degree() == f.denominator ().degree ()
True

sage: f.denominator () .degree() <= 5

True

sage: while f.numerator () .degree() != 5:

e f = F.random_element (degree=5)

ring ()

Return the ring that this is the fraction field of.
EXAMPLES:

sage: R = Frac(QQ['x,v"'])

sage: R

Fraction Field of Multivariate Polynomial Ring in x, y over Rational Field
sage: R.ring()

Multivariate Polynomial Ring in x, y over Rational Field

some_elements ()

Return some elements in this field.

EXAMPLES:
sage: R.<x> = QQ[]
sage: R.fraction_field() .some_elements ()
[OI

1,

Xy

2%5%,

x/(x"2 + 2*x + 1),

1/x°2,

(2*x72 + 2)/(x"2 + 2*x + 1),
(2*x"2 + 2)/x"3,

(2*x72 + 2)/(x*2 - 1),

2]

sage.rings.fraction_field.is_FractionField (x)

Test whether or not x inherits from Fract ionField generic.
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EXAMPLES:

sage: from sage.rings.fraction_field import is_FractionField
sage: is_FractionField(Frac(zzZ['x"']))

doctest:warning. ..

DeprecationWarning: The function is_FractionField is deprecated;

use 'isinstance (..., FractionField_generic)' instead.

See https://github.com/sagemath/sage/issues/38128 for details.
True

sage: is_FractionField(QQ)

False

5.2 Fraction Field Elements

AUTHORS:

¢ William Stein (input from David Joyner, David Kohel, and Joe Wetherell)

* Sebastian Pancratz (2010-01-06): Rewrite of addition, multiplication and derivative to use Henrici’s algorithms

[Hor1972]

class sage.rings.fraction_field_element.FractionFieldElement
Bases: FieldElement

EXAMPLES:

sage: K = FractionField(PolynomialRing (QQ, 'x'"))
sage: K

Fraction Field of Univariate Polynomial Ring in x over Rational Field
sage: loads (K.dumps()) == K

True

sage: x = K.gen()

sage: f = (x"3 + x)/(17 - x"19); £

(-x"3 - x)/(x~19 - 17)

sage: loads(f.dumps()) == £

True

denominator ()

Return the denominator of self.

EXAMPLES:

sage: R.<x,y> = ZZ][]
sage: f = x/y + 1; £

(x + y)/y
sage: f.denominator ()
y

is_one ()

Return True if this element is equal to one.

EXAMPLES:

sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()
sage: (x/x).is_one()

(continues on next page)
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True
sage: (x/y).1is_one/()
False

is_square (root=False)

Return whether or not self is a perfect square.

If the optional argument root is True, then also returns a square root (or None, if the fraction field element
is not square).

INPUT:

e root — whether or not to also return a square root (default: False)
OUTPUT:

* boolean; whether or not a square

* object (optional); an actual square root if found, and None otherwise

EXAMPLES:

sage: R.<t> = QQI]

sage: (1/t).is_square ()

False

sage: (1/t”6).is_square ()

True

sage: ((1+t)"4/t”6).1is_square ()
True

sage: (4*(1+t)"4/t"6).1is_square ()
True

sage: (2*(1+t)"4/t"6) .1is_square ()
False

sage: ((1+t)/t”6).is_square ()
False

sage: (4*(1+t)"4/t"6).1is_square (root=True)
(True, (2*t”2 + 4*t + 2)/t"3)

sage: (2*(1+t)"4/t”6).1is_square (root=True)
(False, None)

sage: R.<x> = QQI]

sage: a = 2* (x+1)"2 / (2*(x-1)"2); a
(x"2 + 2*x + 1)/ (x"2 — 2*x + 1)
sage: a.is_square ()

True

sage: (0/x).is_square ()

True

is_zero()

Return True if this element is equal to zero.

EXAMPLES:

sage: F = ZZ['x,y'].fraction_field()
sage: x,y = F.gens()

sage: t = F(0)/x

sage: t.is_zero()

True

(continues on next page)
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sage: u = 1/x - 1/x
sage: u.is_zero()
True

sage: u.parent () is F
True

nth_root (n)
Return a n-th root of this element.

EXAMPLES:

sage: R = QQ['t'].fraction_field()
sage: t = R.gen()

sage: p = (t+1)73 / (£t"2+t-1)"3
sage: p.nth_root (3)

(t + 1)/(t"2 + £t - 1)

sage: p = (t+1) / (t-1)

sage: p.nth_root (2)

Traceback (most recent call last):
ValueError: not a 2nd power

numerator ()

Return the numerator of self.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = x/y + 1; £

(x + y)/y
sage: f.numerator ()
X + y

reduce ()

Reduce this fraction.

Divides out the gcd of the numerator and denominator. If the denominator becomes a unit, it becomes 1.
Additionally, depending on the base ring, the leading coefficients of the numerator and the denominator may
be normalized to 1.

Automatically called for exact rings, but because it may be numerically unstable for inexact rings it must be
called manually in that case.

EXAMPLES:

sage: R.<x> = RealField(10) [] #_
—needs sage.rings.real_mpfr

sage: f = (x"2+2*x+1)/(x+1); £ #_

—needs sage.rings.real_mpfr
(x"2 + 2.0*x + 1.0)/(x + 1.0)

sage: f.reduce(); £ #_
—needs sage.rings.real_mpfr
x + 1.0

specialization (D=None, phi=None)
Return the specialization of a fraction element of a polynomial ring.

5.2. Fraction Field Elements 89



General Rings, Ideals, and Morphisms, Release 10.5.rc0

subs (in_dict=None, *args, **kwds)

Substitute variables in the numerator and denominator of self.

If a dictionary is passed, the keys are mapped to generators of the parent ring. Otherwise, the arguments are
transmitted unchanged to the method subs of the numerator and the denominator.

EXAMPLES:

sage: x, y = PolynomialRing(ZZ, 2, 'xy') .gens()
sage: f = x"2 + y + x"2*y"2 + 5

sage: (1/f).subs (x=5)

1/(25*y"~2 + y + 30)

valuation (v=None)

Return the valuation of sel £, assuming that the numerator and denominator have valuation functions defined

on them.

EXAMPLES:

sage: x = PolynomialRing(RationalField(), 'x") .gen()
sage: £ = (x"3 + x)/(x"2 - 2*x"3)

sage: f

(-1/2*x"2 — 1/2)/(x"2 - 1/2*x)
sage: f.valuation()

=1

sage: f.valuation(x"2 + 1)

1

class sage.rings.fraction_field_element.FractionFieldElement_lpoly_field

Bases: FractionFieldElement
A fraction field element where the parent is the fraction field of a univariate polynomial ring over a field.
Many of the functions here are included for coherence with number fields.

is_integral ()
Return whether this element is actually a polynomial.

EXAMPLES:

sage: R.<t> = QQI]

sage: elt = (£"2 + t — 2) / (t + 2); elt # == (t + 2)*(t - 1)/(t + 2)
t -1

sage: elt.is_integral()

True

sage: elt = (t"2 - t) / (t+2); elt # == t*(t - 1)/(t + 2)

(t*2 - )/ (t + 2)
sage: elt.is_integral()
False

reduce ()
Pick a normalized representation of self.

In particular, for any a == b, after normalization they will have the same numerator and denominator.
EXAMPLES:

For univariate rational functions over a field, we have:
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sage: R.<x> = QQI[]
sage: (2 + 2*x) / (4*x) # indirect doctest
(1/2*x + 1/2)/x

Compare with:

sage: R.<x> = ZZ[]
sage: (2 + 2*x) / (4*x)
(x + 1)/ (2*x)

support ()
Return a sorted list of primes dividing either the numerator or denominator of this element.

EXAMPLES:

sage: R.<t> = QQ[]

sage: h = (t"14 + 2*t"12 - 4*t~11 - 8*t”9 + 6*t"8 + 12*t"6 - 4*t"5
50008 - 8*t"3 + t"2 + 2)/(t"6 + 6*t"5 + 9*t"4 - 2*t"2 - 12*t - 18)
sage: h.support ()

—needs sage.libs.pari

[t -1, t + 3, t7°2 + 2, t°2 + t + 1, t"4 - 2]

sage.rings.fraction_field_element.is_FractionFieldElement (x)

Return whether or not x isa FractionFieldElement.

EXAMPLES:

-
sage: from sage.rings.fraction_field element import is_FractionFieldElement

sage: R.<x> = ZZ][]

sage: 1is_FractionFieldElement (x/2)

doctest:warning...

DeprecationWarning: The function is_FractionFieldElement is deprecated;

use 'isinstance (..., FractionFieldElement)' instead.

See https://github.com/sagemath/sage/issues/38128 for details.
False

sage: 1is_FractionFieldElement (2/x)

True

sage: is_FractionFieldElement (1/3)

False

&

sage.rings.fraction_field_element .make_element (parent, numerator, denominator)

Used for unpickling FractionFieldElement objects (and subclasses).

EXAMPLES:

sage: from sage.rings.fraction_field_element import make_element
sage: R = ZZ['x,y"']

sage: X,y = R.gens|()

sage: F = R.fraction_field()

sage: make_element(F, 1 + x, 1 + y)

(x + 1)/(y + 1)

sage.rings.fraction_field_element .make_element_old (parent, cdict)

Used for unpickling old FractionFieldElement pickles.
EXAMPLES:
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sage: from sage.rings.fraction_field element import make_element_old
sage: R.<x,y> = ZZ[]

sage: F = R.fraction_field()

sage: make_element_old(F, {'_FractionFieldElement__numerator': x + vy,
e ' _FractionFieldElement___denominator': x — y})
(x + y)/(x - V)
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LOCALIZATION

6.1 Localization

Localization is an important ring construction tool. Whenever you have to extend a given integral domain such that it
contains the inverses of a finite set of elements but should allow non injective homomorphic images this construction will
be needed. See the example on Ariki-Koike algebras below for such an application.

EXAMPLES:

sage: # needs sage.modules

sage: LZ = Localization(ZZ, (5,11))

sage: m = matrix(Lz, [[5, 71, [0,1111])

sage: m.parent ()

Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)

sage: ~m # parent of inverse is different: see documentation of m.__invert_
[ 1/5 =7/55]

[ 0 1/11]

sage: _.parent ()

Full MatrixSpace of 2 by 2 dense matrices over Rational Field

sage: mi = matrix(LZ, ~m)

sage: mi.parent ()

Full MatrixSpace of 2 by 2 dense matrices over Integer Ring localized at (5, 11)
sage: mi == ~m

True

The next example defines the most general ring containing the coefficients of the irreducible representations of the
Ariki-Koike algebra corresponding to the three colored permutations on three elements:

sage: R.<u0, ul, u2, g> = ZZ[]

sage: u = [u0, ul, u2]

sage: S = Set (u)

sage: I = S.cartesian_product (S)

sage: add_units = u + [gq, g + 1] + [uli - uj for ui, uj in I if ui != uj]

sage: add_units += [g*ui - uj for ui, uj in I if ui != uj]

sage: L = R.localization(tuple (add_units)); L #_

—needs sage.libs.pari

Multivariate Polynomial Ring in u0, ul, u2, g over Integer Ring localized at
(q, g + 1, uvw2, ul, ul - u2, u0, u0 - v2, u0 - ul, u2*g - ul, u2*gq - uo,
ul*q - u2, ul*gq - u0, u0*q - u2, ul0*q - ul)

Define the representation matrices (of one of the three dimensional irreducible representations):

sage: # needs sage.libs.pari sage.modules
sage: ml = matrix(L, [[ul, O, 0], [0, uO, 01, [0, O, uO]])
(continues on next page)
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m2 = matrix (L, [[(u0*q - u0)/(u0 - ul), (ud*q
[(-ul*qg + u0)/(ud - ul),
[0, 0, -111)
m3 = matrix(L, [[-1, O, O],
[0, u0*(1 - qgq)/(ul*g - u0),
[0, (ul*g”2 - u0)/(ul*g - u0),
ml.base_ring() ==

(-ul*g + ul)/(u0d - ul),

(continued from previous page)

01,
01,

- ul)/(u0 - ul),

g*(ul - u0)/(ul*g - u0)],

(ul*g” 2 — ul*q)/(ul*g - u0)]1])

Check relations of the Ariki-Koike algebra:

sage:
sage:
True
sage:
True
sage:
True
sage:
True
sage:
True
sage:
True

sage:

True

sage:

True

sage:

True

# needs sage.libs.pari sage.modules
ml*m2*ml*m2 == m2*ml*m2*ml

m2*m3*m2 == m3*m2*m3

ml*m3 == m3*ml

ml**3 — (u0+ul+u2)*ml**2 + (ud*ul+ul*u2+ul*u2)
m2**2 - (g-1)*m2 - g ==

m3**2 - (g-1)*m3 - q ==

~ml in ml.parent ()
~m2 in m2.parent ()

~m3 in m3.parent ()

*ml - uO0*ul*u2

Obtain specializations in positive characteristic:

sage: # needs sage.libs.pari sage.modules
sage: Fp = GF (17)
sage: £ = L.hom((3,5,7,11), codomain=Fp); £
Ring morphism:
From: Multivariate Polynomial Ring in u0, ul, u2, g over Integer Ring localized at
(e, @ + 1, w2, wil, wl = w2, W, wd = w2, WO = wil, W2¥g = uwil, wW2*eg = w0,
ul*qg - u2, ul*g - u0, u0*g - u2, uO*g - ul)
To Finite Field of size 17
Defn: u0 |——> 3
ul |——> 5
u2 |-—> 7
q |-—> 11
sage: mFpl = matrix({k: f(v) for k, v in ml.dict () .items()}); mFpl
[5 0 0]
[0 3 0]
[0 0 3]
sage: mFpl.base_ring()
Finite Field of size 17
sage: mFp2 = matrix({k: f(v) for k, v in m2.dict () .items()}); mFp2
[ 2 3 0]
[ 9 8 0]
[ O 0 16]
sage: mFp3 = matrix({k: f(v) for k, v in m3.dict().items()}); mFp3
[16 0 0]
(continues on next page)
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Obtain specializations in characteristic 0:

sage: # needs sage.libs.pari
sage: fQ = L.hom((3,5,7,11), codomain=0QQ); £fQ
Ring morphism:

From: Multivariate Polynomial Ring in u0, ul, u2, g over Integer Ring
localized at (q, g + 1, u2, ul, ul - u2, u0, u0 - uv2, u0 - ul,
u2*q - ul, u2*q - u0, ul*g - u2, ul*g - u0, u0*g - u2, uO*g - ul)

To: Rational Field

Defn: u0 |——> 3
ul |——> 5
u2 |—> 7
q |-—> 11

sage: # needs sage.libs.pari sage.modules sage.rings.finite_rings
sage: mQl = matrix({k: fQ(v) for k, v in ml.dict().items()}); mQl
[5 0 0]

[0 3 0]

[0 O 3]

sage: mQl.base_ring()

Rational Field

sage: mQ2 = matrix({k: fQ(v) for k, v in m2.dict().items()}); mQ2
[-15 -14 0]

[ 26 25 0]

[ 0 0 -1]

sage: mQ3 = matrix({k: fQ(v) for k, v in m3.dict().items()}); mQ3

[ =i 0 0]

[ 0 -15/26 11/26]

[ 0 301/26 275/26]

sage: # needs sage.libs.pari sage.libs.singular
sage: S.<x, vy, z, t> = QQI]

sage: T = S.quo(x + y + z)

sage: F = T.fraction_field()

sage: fF = L.hom((x, vy, z, t), codomain=F); fF
Ring morphism:
From: Multivariate Polynomial Ring in u0, ul, u2, g over Integer Ring
localized at (q, g + 1, u2, ul, ul - u2, u0, u0 - u2, u0 - ul,
u2*q - ul, u2*q - u0, ul*g - uvu2, ul*q - ul0, u0*q - u2, ul0*g - ul)

To: Fraction Field of Quotient of Multivariate Polynomial Ring in x, y, 2z, t
over Rational Field by the ideal (x + y + z)
Defn: u0 |--> -ybar - zbar
ul |--> ybar
u2 |-—-> zbar
q |-—> tbar
sage: mFl = matrix({k: fF(v) for k, v in ml.dict () .items()}); mF1l #_
—needs sage.modules
[ ybar 0 0]
[ 0 -ybar - zbar 0]
[ 0 0 -ybar - zbar]
sage: mF1l.base_ring() == F #_
—needs sage.modules
True
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AUTHORS:

¢ Sebastian Oehms 2019-12-09: initial version.

¢ Sebastian Oehms 2022-03-05: fix some corner cases and add factor () (Issue #33463)

class sage.rings.localization.Localization (base_ring, extra_units, names=None,

normalize=True, category=None, warning=True)

Bases: TntegralDomain, UniqueRepresentation

The localization generalizes the construction of the field of fractions of an integral domain to an arbitrary ring.
Given a (not necessarily commutative) ring R and a subset S of R, there exists a ring R[S™!] together with the
ring homomorphism R — R[S™!] that “inverts” S; that is, the homomorphism maps elements in S to unit
elements in R[S~!] and, moreover, any ring homomorphism from R that “inverts” S uniquely factors through

R[S).

The ring R[S™1] is called the localization of R with respect to S. For example, if R is a commutative ring and
f an element in R, then the localization consists of elements of the form r/f,r € R,n > 0 (to be precise,

R[f~'] = R[t]/(ft - 1)).

The above text is taken from Wikipedia. The construction here used for this class relies on the construction of
the field of fraction and is therefore restricted to integral domains.

Accordingly, this class is inherited from IntegralDomain and can only be used in that context. Furthermore,
the base ring should support sage . structure.element.CommutativeRingElement .divides ()
and the exact division operator // (sage.structure.element .Element.___floordiv__ ())in order
to guarantee a successful application.

INPUT:

* base_ring-aninstance of Ring allowing the construction of fraction_field () (thatisan integral
domain)

* extra_units — tuple of elements of base_ring which should be turned into units
* names —passed to TntegralDomain

e normalize —boolean (default: True); passed to IntegralDomain

e category — (default: None) passed to TntegralDomain

* warning - boolean (default: True); to suppress a warning which is thrown if self cannot be represented
uniquely

REFERENCES:
* Wikipedia article Ring_(mathematics)#Localization

EXAMPLES:

-

sage: L = Localization(ZZ, (3,5))
sage: 1/45 in L

True

sage: 1/43 in L

False

sage: Localization(L, (7,11))

Integer Ring localized at (3, 5, 7, 11)
sage: _.is_subring(QQ)

True

sage: L (~7)
Traceback (most recent call last) :

(continues on next page)
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ValueError: factor 7 of denominator is not a unit

sage: Localization (Zp(7), (3, 5)) #o
—needs sage.rings.padics
Traceback (most recent call last):

ValueError: all given elements are invertible in
7-adic Ring with capped relative precision 20

sage: # needs sage.libs.pari

sage: R.<x> = ZZ[]

sage: L = R.localization(x**2 + 1)
sage: s = (x+5)/(x**2+1)

sage: s in L

True

sage: t = (x+5)/(x**2+2)

sage: t in L

False

sage: L (t)

Traceback (most recent call last):

TypeError: fraction must have unit denominator
sage: L(s) in R

False

sage: y = L(x)

sage: g = L(s)

sage: g.parent ()

Univariate Polynomial Ring in x over Integer Ring localized at (x"2 + 1,)
sage: f = (y+5)/(y**2+1); £

(x + 5)/(x"2 + 1)

sage: f == g

True

sage: (y+5)/(y**2+2)

Traceback (most recent call last) :

ValueError: factor x"2 + 2 of denominator is not a unit

sage: Lau.<u, v> = LaurentPolynomialRing(ZZz) #o
—needs sage.modules
sage: Laul = Lau.localization(u + 1) #_
—needs sage.modules
sage: Laul (~u) .parent () #_

—needs sage.modules
Multivariate Polynomial Ring in u, v over Integer Ring localized at (v, u, u + 1)

More examples will be shown typing sage.rings.localization?

Element
alias of LocalizationElement
characteristic()

Return the characteristic of self.

EXAMPLES:
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sage: # needs sage.libs.pari
sage: R.<a> = GF (5) []

sage: L = R.localization((a**2 - 3, a))
sage: L.characteristic()
5

fraction_field()
Return the fraction field of self.

EXAMPLES:

sage: # needs sage.libs.pari

sage: R.<a> = GF (5) []

sage: L = Localization(R, (a**2 - 3, a))

sage: L.fraction_field()

Fraction Field of Univariate Polynomial Ring in a over Finite Field of size 5
sage: L.is_subring(_)

True

gen (i)
Return the i-th generator of self which is the i-th generator of the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ[]

sage: R.localization((x**2 + 1, y — 1)) .gen(0) #
—needs sage.libs.pari

X

sage: ZZ.localization(2) .gen(0)
1

gens ()

Return a tuple whose entries are the generators for this object, in order.

EXAMPLES:

sage: R.<x, y> = ZZ][]

sage: Localization(R, (x**2 + 1, y — 1)) .gens() #_
—needs sage.libs.pari

(%, ¥)

sage: Localization(ZZ, 2) .gens()
(1,)

is_field (proof=True)
Return True if this ring is a field.
INPUT:
e proof —boolean (default: True); determines what to do in unknown cases

ALGORITHM:

If the parameter proof is set to True, the returned value is correct but the method might throw an error.
Otherwise, if it is set to Fal se, the method returns True if it can establish that self isafield and False
otherwise.

EXAMPLES:
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sage: R = ZZ.localization((2, 3))
sage: R.is_field()
False

krull_dimension ()
Return the Krull dimension of this localization.
Since the current implementation just allows integral domains as base ring and localization at a finite set of

elements the spectrum of self is open in the irreducible spectrum of its base ring. Therefore, by density we
may take the dimension from there.

EXAMPLES:

sage: R = ZZ.localization((2, 3))
sage: R.krull_dimension ()
1

ngens ()
Return the number of generators of self according to the same method for the base ring.

EXAMPLES:

sage: R.<x, y> = ZZ][]

sage: Localization(R, (x**2 + 1, y - 1)) .ngens/() #.
—needs sage.libs.pari

2

sage: Localization(ZZ, 2) .ngens|()
1

class sage.rings.localization.LocalizationElement (parent, x)

Bases: IntegralDomainElement
Element class for localizations of integral domains.
INPUT:
e parent —instance of Localization
e x —instance of FractionFieldElement whose parent is the fraction field of the parent’s base ring

EXAMPLES:

p
sage: # needs sage.libs.pari

sage: from sage.rings.localization import LocalizationElement
sage: P.<x,y,z> = GF (5) []

sage: L = P.localization((x, y*z - X))

sage: LocalizationElement (L, 4/ (y*z-x)**2)

(=1)/(yh2*z"2 — 2*x*y*z + x"2)

sage: _.parent ()
Multivariate Polynomial Ring in x, y, z over Finite Field of size 5
localized at (x, y*z — x)

L

denominator ()

Return the denominator of self.

EXAMPLES:
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sage: L Localization(ZZ, (3,5))
sage: L(7/15) .denominator ()
15

factor (proof=None)
Return the factorization of this polynomial.

INPUT:

* proof — (optional) if given it is passed to the corresponding method of the numerator of self

EXAMPLES:

sage: P.<X, Y> = 00['x, y']
sage: L = P.localization(X - Y)
sage: x, y = L.gens()

sage: p (x"2 — y72)/(x~y)"2 #
—needs sage.libs.singular
sage: p.factor () #
—needs sage.libs.singular
(1/(x = y)) * (x +vy)
inverse_of_unit ()
Return the inverse of self.
EXAMPLES:
sage: P.<x,y,z> = ZZ[]
sage: L = Localization(P, x*y*z)
sage: L(x*y*z).inverse_of_unit () #
—needs sage.libs.singular
1/ (x*y*z)
sage: L(z).inverse_of_unit () #

—needs sage.libs.singular
1/z

is_unit ()

Return True if self is a unit.

EXAMPLES:

sage: P.<x,y,z> = QQI]

sage: L P.localization((x, y*z))
sage: L(y*z).is_unit ()

True

sage: L(z).is_unit ()

True

sage: L(x*y*z).is_unit ()

True

sage: # needs sage.libs.pari sage.singular

numerator ()

Return the numerator of self.

EXAMPLES:

sage: L = ZZ.localization ((3,5))
sage: L(7/15) .numerator ()
7
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sage.rings.localization.normalize_extra_units (base_ring, add_units, warning=True)

Function to normalize input data.
The given list will be replaced by a list of the involved prime factors (if possible).
INPUT:
* base_ring-aninstance of IntegralDomain
e add_units - list of elements from base ring
* warning - boolean (default: True); to suppress a warning which is thrown if no normalization was possible
OUTPUT: list of all prime factors of the elements of the given list
EXAMPLES:

sage: from sage.rings.localization import normalize_extra_units
sage: normalize_extra_units(zz, [3, -15, 45, 9, 2, 50])

(2, 3, 5]
sage: P.<x,y,z> = ZZ[]
sage: normalize_extra_units (P, #_

—needs sage.libs.pari

et (352, B Y"*2, 2%8, L% (XY~ ®)**2, X*%, 60 % m, 5])

[2, 3, 5, z, y, x]

sage: P.<x,y,z> = QQ[]

sage: normalize_extra_units (P, #_
—needs sage.libs.pari

e (355, B*Y %2, 2%=, L% (X "y~ =) “*2, =*%, 60%%*m, 5])

sage: # needs sage.libs.singular

sage: R.<x, y> = ZZ][]

sage: Q.<a, b> = R.quo(x**2 - 5)

sage: p = b**2 - 5

sage: p == (b-a)* (bta)

True

sage: normalize_extra_units(Q, [pl) #_
—needs sage.libs.pari

doctest:...: UserWarning: Localization may not be represented uniquely

[b*2 - 5]

sage: normalize_extra_units(Q, [p], warning=False) #_

—needs sage.libs.pari
[b*2 - 5]

.
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CHAPTER
SEVEN

RING EXTENSIONS

7.1 Extension of rings

Sage offers the possibility to work with ring extensions L/K as actual parents and perform meaningful operations on
them and their elements.

The simplest way to build an extension is to use the method sage.categories.commutative_rings.
CommutativeRings.ParentMethods.over () on the top ring, that is L. For example, the following line con-
structs the extension of finite fields Fza /F2:

sage: GF(574) .over (GF (5"2)) #
—needs sage.rings.finite_rings
Field in z4 with defining polynomial x*2 + (4*z2 + 3)*x + z2 over its base

By default, Sage reuses the canonical generator of the top ring (here z4 € Fs4), together with its name. However, the
user can customize them by passing in appropriate arguments:

sage: # needs sage.rings.finite rings

sage: F = GF (5"2)

sage: k = GF (574)

sage: z4 = k.gen()

sage: K.<a> = k.over (F, gen=1-z4); K

Field in a with defining polynomial x"2 + z2*x + 4 over its base

The base of the extension is available via the method base () (or equivalently base_ring()):

sage: K.base() #_
—needs sage.rings.finite_rings
Finite Field in z2 of size 572

It is also possible to build an extension on top of another extension, obtaining this way a tower of extensions:

sage: L.<b> = GF (578) .over(K); L #
—needs sage.rings.finite_rings

Field in b with defining polynomial x"2 + (4*z2 + 3*a)*x + 1 - a over its base

sage: L.base () #_

—needs sage.rings.finite_rings

Field in a with defining polynomial x"2 + z2*x + 4 over its base

sage: L.base () .base() #_
—needs sage.rings.finite_rings

Finite Field in z2 of size 572

The method bases () gives access to the complete list of rings in a tower:
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sage: L.bases() #_
—needs sage.rings.finite_rings

[Field in b with defining polynomial x"2 + (4*z2 + 3*a)*x + 1 - a over its Dbase,

Field in a with defining polynomial x"2 + z2*x + 4 over its base,

Finite Field in z2 of size 572]

Once we have constructed an extension (or a tower of extensions), we have interesting methods attached to it. As a basic
example, one can compute a basis of the top ring over any base in the tower:

sage: L.basis_over (K) #.
—needs sage.rings.finite_rings

[1, bl

sage: L.basis_over (F) #.

—needs sage.rings.finite_rings
[1, a, b, a*b]

‘When the base is omitted, the default is the natural base of the extension:

sage: L.basis_over () #.
—needs sage.rings.finite_rings
[1, b]

The method sage.rings.ring_extension_element.RingExtensionWithBasis.vector () com-
putes the coordinates of an element according to the above basis:

sage: u = a + 2*b + 3*a*b #o
—needs sage.rings.finite_rings
sage: u.vector () # over K #o

—needs sage.rings.finite_rings

(a, 2 + 3*a)

sage: u.vector (F) #
—needs sage.rings.finite_rings

(0, 1, 2, 3)

One can also compute traces and norms with respect to any base of the tower:

sage: # needs sage.rings.finite rings

sage: u.trace() # over K

(2*z2 + 1) + (2*z2 + 1)*a

sage: u.trace (F)

z2 + 1

sage: u.trace() .trace() # over K, then over F
z2 + 1

sage: u.norm() # over K

(z2 + 1) + (4*z2 + 2)*a
sage: u.norm(F)
2*z2 + 2

And minimal polynomials:

sage: u.minpoly () #o
—needs sage.rings.finite_rings

X"2 + ((3*z2 + 4) + (3*z2 + 4)*a)*x + (z2 + 1) + (4*z2 + 2)*a

sage: u.minpoly (F) #o
—needs sage.rings.finite_rings

X" + (4*%z2 4+ 4)*x"3 + x"2 4+ (z2 + 1)*x + 2*z2 + 2

AUTHOR:
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e Xavier Caruso (2019)

class sage.rings.ring_extension.RingExtensionFactory

Bases: UniqueFactory
Factory for ring extensions.

create_key_and_extra_args (ring, defining_morphism=None, gens=None, names=None,
constructors=None)

Create a key and return it together with a list of constructors of the object.
INPUT:
* ring - acommutative ring

¢ defining_morphism—a ring homomorphism or a commutative ring or None (default: None); the
defining morphism of this extension or its base (if it coerces to ring)

¢ gens - list of generators of this extension (over its base) or None (default: None)
* names - list or a tuple of variable names or None (default: None)

* constructors - list of constructors; each constructor is a pair (class, arguments) where class is
the class implementing the extension and arguments is the dictionary of arguments to pass in to init
function

create_obiject (version, key, **extra_args)

Return the object associated to a given key.

class sage.rings.ring_extension.RingExtensionFractionField

Bases: RingExtension_generic
A class for ring extensions of the form * extrm{Frac}(A)/A".

Element

alias of RingExtensionFractionFieldElement
ring ()

Return the ring whose fraction field is this extension.

EXAMPLES:

sage: # needs sage.rings.number_field

sage: x = polygen(Zz, 'x')

sage: A.<a> = ZZ.extension(x"2 - 2)

sage: OK = A.over ()

sage: K = OK.fraction_field(); K

Fraction Field of

Maximal Order generated by a in Number Field in a with defining polynomial x”"
—~2 — 2 over its base

sage: K.ring()

Maximal Order generated by a in Number Field in a with defining polynomial x”

—~2 — 2 over its base
sage: K.ring() is OK
True

class sage.rings.ring_extension.RingExtensionWithBasis

Bases: RingExtension_generic

A class for finite free ring extensions equipped with a basis.
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Element

alias of RingExtensionWithBasisElement

basis_over (base=None)

Return a basis of this extension over base.
INPUT:

* base —a commutative ring (which might be itself an extension)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F.<a> = GF (5"2) .over () # over GF (5)
sage: K.<b> = GF (574) .over (F)

sage: L.<c> = GF(5712) .over (K)

sage: L.basis_over (K)

[1, c, c*2]

sage: L.basis_over (F)

i, s, €, b¥*e, €©*2, *e”*2]

sage: L.basis_over (GF (5))

[1, a, b, a*b, ¢, a*c, b*c, a*b*c, c*2, a*c™2, b*c”"2, a*b*c”"2]

If base is omitted, it is set to its default which is the base of the extension:

sage: L.basis_over() #_
—needs sage.rings.finite_rings
(1, ¢, c*2]

sage: K.basis_over () #.
—needs sage.rings.finite_rings
(1, bl

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases ()):

sage: L.degree_over (GF (576)) #_
—needs sage.rings.finite_rings
Traceback (most recent call last):

ValueError: not (explicitly) defined over Finite Field in z6 of size 576

fraction_field (extend_base=False)

Return the fraction field of this extension.
INPUT:
¢ extend_base — boolean (default: False)

If extend_base is False, the fraction field of the extension L/K is defined as Frac(L)/L/ K, except is
L is already a field in which base the fraction field of L/K is L/K itself.

If extend_base is True, the fraction field of the extension L/ K is defined as Frac(L) /Frac(K) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

sage: # needs sage.rings.number_field

sage: x = polygen(zZz, 'x')
sage: A.<a> = ZZ.extension(x"2 - 5)

(continues on next page)
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sage: OK = A.over () # over ZZ

sage: OK

Order of conductor 2 generated by a in Number Field in a with defining.
—polynomial x*2 - 5 over its base

sage: K1 = OK.fraction_field(); K1

Fraction Field of Order of conductor 2 generated by a in Number Field in a
with defining polynomial x"2 - 5 over its base

sage: Kl.bases()

[Fraction Field of Order of conductor 2 generated by a in Number Field in a

with defining polynomial x"*2 - 5 over its base,
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x*2 - 5 over its base,

Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True); K2
Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x”2 - 5 over its base
sage: K2.bases /()
[Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x*2 - 5 over its base,
Rational Field]

Note that there is no coercion map between K7 and Ko:

sage: Kl.has_coerce_map_from(K2) #
—needs sage.rings.number_field

False

sage: K2.has_coerce_map_from (K1) #
—needs sage.rings.number_ field

False

We check that when the extension is a field, its fraction field does not change:

sage: Kl.fraction_field() is K1 #_
—needs sage.rings.number_ field

True

sage: K2.fraction_field() is K2 #_
—needs sage.rings.number_ field

True

free_module (base=None, map="True)

Return a free module V over base which is isomorphic to this ring
INPUT:
* base —a commutative ring (which might be itself an extension) or None (default: None)
* map — boolean (default: True); whether to return isomorphisms between this ring and V
OUTPUT:
¢ A finite-rank free module V over base

¢ The isomorphism from V to this ring corresponding to the basis output by the method basis_over ()
(only included if map is True)

* The reverse isomorphism of the isomorphism above (only included if map is True)

EXAMPLES:

7.1. Extension of rings 107



General Rings, Ideals, and Morphisms, Release 10.5.rc0

sage: F = GF (11)

sage: K.<a> = GF (11"2) .over () #.
—needs sage.rings.finite_rings
sage: L.<b> = GF (1176) .over (K) #

—needs sage.rings.finite_rings

Forgetting a part of the multiplicative structure, the field L can be viewed as a vector space of dimension 3
over K, equipped with a distinguished basis, namely (1, b, b?):

sage: # needs sage.rings.finite rings
sage: V, i, j = L.free_module (K)
sage: V
Vector space of dimension 3 over
Field in a with defining polynomial x"2 + 7*x + 2 over its base
sage: i
Generic map:
From: Vector space of dimension 3 over
Field in a with defining polynomial x"2 + 7*x + 2 over its base
To: Field in b with defining polynomial
X3 + (7 + 2*a)*x™2 4+ (2 - a)*x — a over 1ts base
sage: j
Generic map:
From: Field in b with defining polynomial

xX*"3 + (7 + 2*a)*x"2 + (2 - a)*x — a over its base
To: Vector space of dimension 3 over
Field in a with defining polynomial x"2 + 7*x + 2 over its base
sage: j(b)
(0, 1, 0)

sage: i((1, a, a+l))
1 + a*b + (1 + a)*b"2

Similarly, one can view L as a F-vector space of dimension 6:

sage: V, i, j, = L.free_module (F) #.
—needs sage.rings.finite_rings
sage: V #o

—needs sage.rings.finite_rings
Vector space of dimension 6 over Finite Field of size 11

In this case, the isomorphisms between V and L are given by the basis (1, a, b, ab, b*, ab?):

sage: j(a*b) # needs sage.rings.finite_rings (0, 0, 0, 1, 0, 0) sage: 1i((1,2,3,4,5,6)) # needs
sage.rings.finite_rings (1 + 2*a) + (3 + 4*a)*b + (5 + 6*a)*b" 2

When base is omitted, the default is the base of this extension:

sage: L.free_module (map=False) #.
—needs sage.rings.finite_rings

Vector space of dimension 3 over

Field in a with defining polynomial x"2 + 7*x + 2 over its base

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases ()):

sage: L.degree (GF (1173)) #_
—needs sage.rings.finite_rings
Traceback (most recent call last):

(continues on next page)
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ValueError: not (explicitly) defined over Finite Field in z3 of size 1173

class sage.rings.ring_extension.RingExtensionWithGen

Bases: RingExtensionWithBasis
A class for finite free ring extensions generated by a single element

fraction_field (extend_base=False)
Return the fraction field of this extension.

INPUT:
¢ extend_base —boolean (default: False)

If extend_base is False, the fraction field of the extension L/K is defined as Frac(L)/L/K, except is
L is already a field in which base the fraction field of L/K is L/ K itself.

If extend_base is True, the fraction field of the extension L/ K is defined as Frac(L) /Frac(K) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).

EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = polygen(Zz, 'x')

sage: A.<a> = ZZ.extension(x"2 - 5)

sage: OK = A.over () # over ZZ

sage: OK

Order of conductor 2 generated by a in Number Field in a
with defining polynomial x"2 - 5 over its base

sage: K1 = OK.fraction_field(); K1
Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x"2 - 5 over its base
sage: Kl.bases()
[Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x"2 - 5 over its base,
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x*2 - 5 over its base,

Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True); K2
Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x"2 - 5 over its base
sage: K2.bases /()
[Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x"2 - 5 over its base,
Rational Field]

Note that there is no coercion map between K7 and Ko:

sage: Kl.has_coerce_map_from(K2) #_
—needs sage.rings.number_field

False

sage: K2.has_coerce_map_from (K1) #_

—needs sage.rings.number_field
False

We check that when the extension is a field, its fraction field does not change:
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sage: Kl.fraction_field() is K1 #
—needs sage.rings.number_field

True

sage: K2.fraction_field() is K2 #
—needs sage.rings.number_field

True

gens (base=None)

Return the generators of this extension over base.
INPUT:

* base —a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF (5"2) .over () # over GF (5)
sage: K.gens ()

(a,)

sage: L.<b> = GF (574) .over (K)
sage: L.gens()

(b,)

sage: L.gens (GF (5))

(b, a)

modulus (var=%")

Return the defining polynomial of this extension, that is the minimal polynomial of the given generator of this
extension.

INPUT:
e var —a variable name (default: x)

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: K.<u> = GF (7710) .over(GF (7"2)); K
Field in u with defining polynomial x*5 + (6*z2 + 4)*x"4
+ (3*z2 + 5)*x"3 + (2*z2 + 2)*x"2 4+ 4*x 4+ 6*z2 over its base
sage: P = K.modulus(); P
X"5 + (6*z2 + 4)*x™4 + (3*z2 + 5)*x"3 + (2*z2 + 2)*x"2 + 4*x + 6*z2
sage: P (u)
0

We can use a different variable name:

sage: K.modulus('y") #_
—needs sage.rings.finite_rings
y*5 + (6*z2 + 4)*y™4 + (3*z2 + 5)*y"3 + (2*%z2 + 2)*y"2 + 4*y + 6%z2

class sage.rings.ring_extension.RingExtension_generic

Bases: Parent
A generic class for all ring extensions.

Element

alias of RingExtensionElement
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absolute_base ()

Return the absolute base of this extension.
By definition, the absolute base of an iterated extension K,/ - - - Ko/ K] is the ring K.
EXAMPLES:

sage: # needs sage.rings.finite_rings

sage: F = GF (5"2) .over () # over GF (5)
sage: K = GF (574) .over (F)

sage: L = GF(5712) .over (K)

sage: F.absolute_base()

Finite Field of size 5
sage: K.absolute_base ()
Finite Field of size 5
sage: L.absolute_base()
Finite Field of size 5

See also

base (), bases (), i1s_defined_over()

absolute_degree ()

Return the degree of this extension over its absolute base.

EXAMPLES:
sage: # needs sage.rings.finite rings
sage: A = GF(5%4) .over (GF (572))
sage: B = GF (5"12) .over (A)
sage: A.absolute_degree()
2
sage: B.absolute_degree()
6
See also

degree (), relative_degree ()

backend (force=False)
Return the backend of this extension.

INPUT:
e force —boolean (default: False);if False, raise an error if the backend is not exposed

EXAMPLES:

sage: # needs sage.rings.finite rings

sage: K = GF (573)

sage: E = K.over ()

sage: E

Field in z3 with defining polynomial x"3 + 3*x + 3 over its base
sage: E.backend()

Finite Field in z3 of size 573

(continues on next page)
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sage: E.backend() is K
True

base ()

Return the base of this extension.

EXAMPLES:

sage: F = GF (5"2) #
—needs sage.rings.finite_rings

sage: K = GF (574) .over (F) #_
—needs sage.rings.finite_rings

sage: K.base() #.

—needs sage.rings.finite_rings
Finite Field in z2 of size 572

\

In case of iterated extensions, the base is itself an extension:

sage: L = GF (578) .over (K) #
—needs sage.rings.finite_rings
sage: L.base() #_

—needs sage.rings.finite_rings
Field in z4 with defining polynomial x*2 + (4*z2 + 3)*x + z2 over its base

sage: L.base() is K #_
—needs sage.rings.finite_rings
True

See also

bases (), absolute_base (), is_defined_over ()

bases ()

Return the list of successive bases of this extension (including itself).

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: F = GF(5"2) .over() # over GF(5)
sage: K = GF (574) .over (F)

sage: L = GF(5712) .over (K)

sage: F.bases()

[Field in z2 with defining polynomial x"2 + 4*x + 2 over its base,
Finite Field of size 5]
sage: K.bases|()
[Field in z4 with defining polynomial x"2 + (3 - z2)*x + z2 over its base,
Field in z2 with defining polynomial x"2 + 4*x + 2 over its base,
Finite Field of size 5]
sage: L.bases()
[Field in z12 with defining polynomial
x"3 + (1 + (2 — z2)*z4)*x"2 + (2 + 2*z4)*x - z4 over its base,
Field in z4 with defining polynomial x*2 + (3 - z2)*x + z2 over its base,
Field in z2 with defining polynomial x"2 + 4*x + 2 over its base,
Finite Field of size 5]
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See also

base (), absolute_base (), is_defined over()

characteristic()

Return the characteristic of the extension as a ring.

OUTPUT: a prime number or zero

EXAMPLES:

sage: # needs sage.rings.finite_ rings
sage: F = GF (5"2) .over () # over GF (5)
sage: K = GF (5%4) .over (F)

sage: L = GF(5"12) .over (K)

sage: F.characteristic()

5

sage: K.characteristic()

5

sage: L.characteristic()

5

sage: F = RR.over (ZZ)

sage: F.characteristic()
0
sage: F = GF (11)
sage: A.<x> = F[]
sage: K = Frac(F) .over (F)
sage: K.characteristic()
11
sage: E = GF(7) .over (Z2Z)
sage: E.characteristic()
7

construction()

Return the functorial construction of this extension, if defined.

EXAMPLES:

sage: E = GF (5"3) .over () #
—needs sage.rings.finite_rings

sage: E.construction () #

—needs sage.rings.finite_rings

defining_morphism (base=None)

Return the defining morphism of this extension over base.
INPUT:
* base —a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:
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sage: # needs sage.rings.finite_rings
sage: F = GF (5"2)

sage: K = GF (574) .over (F)

sage: L = GF(5712) .over (K)

sage: K.defining_morphism ()
Ring morphism:
From: Finite Field in z2 of size 572

To: Field in z4 with defining polynomial x"2 + (4*z2 + 3)*x + z2 over its.
—base
Defn: z2 |—-——> z2

sage: L.defining_morphism ()
Ring morphism:
From: Field in z4 with defining polynomial x"2 + (4*z2 + 3)*x + z2 over its.

—base
To: Field in z12 with defining polynomial
X3 4+ (1 + (4*z2 + 2)*z4)*x"2 4+ (2 + 2*z4)*x - z4 over its base
Defn: z4 |—-——> z4

One can also pass in a base over which the extension is explicitly defined (see also i s_defined_over()):

sage: L.defining_morphism(F) #o
—needs sage.rings.finite_rings
Ring morphism:

From: Finite Field in z2 of size 572

To: Field in z12 with defining polynomial
x 3 + (1 4+ (4*%z2 + 2)*z4)*x"2 4+ (2 + 2*z4)*x - z4 over 1ts base
Defn: z2 |-—> z2
sage: L.defining morphism (GF (5)) #_

—needs sage.rings.finite_rings
Traceback (most recent call last):

ValueError: not (explicitly) defined over Finite Field of size 5

degree (base)

Return the degree of this extension over base.
INPUT:

* base —a commutative ring (Which might be itself an extension)

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: A = GF(574) .over (GF (572))

sage: B = GF (5"12) .over (A)

sage: A.degree(GF (572))

2

sage: B.degree (A)

3

sage: B.degree (GF (572))

6

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases ()):

sage: A.degree (GF (5)) #
—needs sage.rings.finite_rings
Traceback (most recent call last):

(continues on next page)
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ValueError: not (explicitly) defined over Finite Field of size 5

See also

relative_degree (), absolute_degree ()

degree_over (base=None)

Return the degree of this extension over base.
INPUT:

* base —a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF (5"2)

sage: K = GF (5%4) .over (F)
sage: L = GF(5712) .over (K)
sage: K.degree_over (F)

2

sage: L.degree_over (K)

3

sage: L.degree_over (F)

6

If base is omitted, the degree is computed over the base of the extension:

sage: K.degree_over () #_
—needs sage.rings.finite_rings

2

sage: L.degree_over () #_
—needs sage.rings.finite_rings

3

Note that base must be an explicit base over which the extension has been defined (as listed by the method
bases ()):

sage: K.degree_over (GF (5)) #_
—needs sage.rings.finite_rings
Traceback (most recent call last):

ValueError: not (explicitly) defined over Finite Field of size 5

fraction_field (extend_base=False)

Return the fraction field of this extension.
INPUT:
¢ extend_base —boolean (default: False)

If extend_base is False, the fraction field of the extension L/ K is defined as Frac(L)/L/K, except if
L is already a field in which base the fraction field of L/ K is L/K itself.

If extend_baseis True, the fraction field of the extension L/ K is defined as Frac(L) /Frac(K) (provided
that the defining morphism extends to the fraction fields, i.e. is injective).
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EXAMPLES:

sage: # needs sage.rings.number_field
sage: x = polygen(Zz, 'x')

sage: A.<a> = ZZ.extension(x"2 - 5)
sage: OK = A.over () # over ZZ
sage: OK
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x"2 - 5 over its base
sage: K1 = OK.fraction_field(); K1
Fraction Field of Order of conductor 2 generated by a
in Number Field in a with defining polynomial x"2 - 5 over

sage: Kl.bases()
[Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x*2 - 5 over
Order of conductor 2 generated by a in Number Field in a
with defining polynomial x"2 - 5 over its base,

Integer Ring]
sage: K2 = OK.fraction_field(extend_base=True); K2
Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x"2 - 5 over
sage: K2.bases ()

[Fraction Field of Order of conductor 2 generated by a

in Number Field in a with defining polynomial x*2 - 5 over
Rational Field]

its base

its base,

its base

its base,

Note that there is no coercion between K7 and Ks:

sage: Kl.has_coerce_map_from(K2)
—needs sage.rings.number_ field
False
sage: K2.has_coerce_map_from (K1)
—needs sage.rings.number_ field
False

We check that when the extension is a field, its fraction field does not change:

sage: Kl.fraction_field() is K1
—needs sage.rings.number_ field
True
sage: K2.fraction_field() is K2
—needs sage.rings.number_ field
True

from_base_ring (r)
Return the canonical embedding of r into this extension.

INPUT:
e r —an element of the base of the ring of this extension

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k = GF (5)

sage: K.<u> = GF (5"2) .over (k)

sage: L.<v> = GF (574) .over (K)

sage: x = L.from base_ring(k(2)); x
2

(continues on next page)
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sage: x.parent ()

Field in v with defining polynomial x"2 + (3 - u)*x + u over its base
sage: x = L.from_base_ring(u); x
u

sage: x.parent ()
Field in v with defining polynomial x"2 + (3 - u)*x + u over its base

gen ()

Return the first generator of this extension.

EXAMPLES:

sage: K = GF (5"2) .over () # over GF (5)
—needs sage.rings.finite_rings

sage: x = K.gen(); x

—needs sage.rings.finite_rings

z2

Observe that the generator lives in the extension:

sage: x.parent ()

—needs sage.rings.finite_rings

Field in z2 with defining polynomial x*2 + 4*x + 2 over its base
sage: x.parent () is K

—needs sage.rings.finite_rings

True

gens (base=None)

Return the generators of this extension over base.

INPUT:

* base —a commutative ring (which might be itself an extension) or None (default: None); if omitted,

use the base of this extension

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: K.<a> = GF(572) .over () # over GF (5)
sage: K.gens ()

(a,)

sage: L.<b> = GF (574) .over (K)
sage: L.gens()

(b,)

sage: L.gens (GF (5))

(b, a)

sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: T.over (S).gens ()
(y,)

sage: T.over (QQ) .gens ()
(y, %)

hom (im_gens, codomain=None, base_map=None, category=None, check=True)

Return the unique homomorphism from this extension to codomain that sends self.gens () to the

entries of im_gens and induces the map base_map on the base ring.

Extension of rings

117




General Rings, Ideals, and Morphisms, Release 10.5.rc0

INPUT:
* im_gens — the images of the generators of this extension

* codomain — the codomain of the homomorphism; if omitted, it is set to the smallest parent containing
all the entries of im_gens

* base_map — a map from one of the bases of this extension into something that coerces into the
codomain; if omitted, coercion maps are used

* category — the category of the resulting morphism

¢ check — boolean (default: True); whether to verify that the images of generators extend to define a
map (using only canonical coercions)

EXAMPLES:

sage: K.<a> = GF (5"2) .over () # over GF (5) #..
—needs sage.rings.finite_rings

sage: L.<b> = GF (576) .over (K) #_

—needs sage.rings.finite_rings

We define (by hand) the relative Frobenius endomorphism of the extension L/K:

sage: L.hom([b"25]) #_
—needs sage.rings.finite_rings
Ring endomorphism of
Field in b with defining polynomial x"3 + (2 + 2*a)*x - a over its base
Defn: b |-—> 2 + 2*a*b + (2 - a)*b"2

Defining the absolute Frobenius of L is a bit more complicated because it is not a homomorphism of
K-algebras. For this reason, the construction L. hom ( [b”~5]) fails:

sage: L.hom([b"5]) #
—needs sage.rings.finite_rings
Traceback (most recent call last):

ValueError: images do not define a valid homomorphism

What we need is to specify a base map:

sage: FrobK = K.hom([a”5]) #_
—needs sage.rings.finite_rings
sage: FrobL = L.hom([b"5], base_map=FrobK); FrobL #

—needs sage.rings.finite_rings
Ring endomorphism of

Field in b with defining polynomial x"3 + (2 + 2*a)*x - a over its base
Defn: b |--> (-1 + a) + (1 + 2*a)*b + a*b"2
with map on base ring:
a |l-——> 1 - a

As a shortcut, we may use the following construction:

sage: phi = L.hom([b"5, a”5]); phi #
—needs sage.rings.finite_rings

Ring endomorphism of

Field in b with defining polynomial x"3 + (2 + 2*a)*x - a over its base

Defn: b |-—> (-1 + a) + (1 + 2*a)*b + a*b”2
with map on base ring:
a |-——> 1 - a

(continues on next page)
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sage: phi == FrobL #
—needs sage.rings.finite_rings
True

is_defined_over (base)
Return whether or not base is one of the bases of this extension.

INPUT:

* base —a commutative ring, which might be itself an extension

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: A = GF (574) .over (GF (572))

sage: B = GF(5712) .over (A)

sage: A.is_defined_over (GF (572))

True

sage: A.is_defined_over (GF (5))

False

sage: # needs sage.rings.finite rings

sage: B.is_defined_over (A)
True
sage: B.is_defined_over (GF (574))

True

sage: B.is_defined_over (GF (572))
True

sage: B.is_defined_over (GF (5))
False

Note that an extension is defined over itself:

sage: A.is_defined_over (A) #.
—needs sage.rings.finite_rings
True
sage: A.is_defined_over (GF (574)) #.
—needs sage.rings.finite_rings
True

See also

base (), bases (), absolute_base ()

is_field (proof=True)
Return whether or not this extension is a field.

INPUT:

¢ proof —boolean (default: False)

EXAMPLES:

sage: K = GF (5"5) .over () # over GF (5) #.
—needs sage.rings.finite_rings

sage: K.is_field() #

(continues on next page)
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—needs sage.rings.finite_rings
True

sage: S.<x> = QQI[]
sage: A = S.over (QQ)
sage: A.is_field()
False

sage: B = A.fraction_field()
sage: B.is_field()
True

is_finite_over (base=None)

Return whether or not this extension is finite over base (as a module).
INPUT:

* base —a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: K = GF (5"2) .over () # over GF (5)
sage: L = GF(574) .over (K)

sage: L.is_finite_over (K)

True

sage: L.is_finite_over (GF (5))

True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_finite_over()
—needs sage.rings.finite_rings
True

is_free_over (base=None)

Return True if this extension is free (as a module) over base
INPUT:

* base —a commutative ring (Which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: K = GF (5"2) .over () # over GF (5)
sage: L = GF (574) .over (K)

sage: L.is_free_over (K)

True

sage: L.is_free_over (GF (5))

True

If base is omitted, it is set to its default which is the base of the extension:

sage: L.is_free_over()
—needs sage.rings.finite_rings
True
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ngens (base=None)

Return the number of generators of this extension over base.

INPUT:

* base —a commutative ring (which might be itself an extension) or None (default: None)

EXAMPLES:

sage: # needs sage.rings.finite rings
sage: K = GF (572) .over () # over GF (5)
sage: K.gens()

(z2,)

sage: K.ngens ()

1

sage: L = GF (574) .over (K)

sage: L.gens (GF (5))

(z4, z2)

sage: L.ngens (GF (5))

2

print_options (**opftions)
Update the printing options of this extension.

INPUT:

e over —integer or Infinity (default: 0); the maximum number of bases included in the printing of

this extension

* base — a base over which this extension is finite free; elements in this extension will be printed as a
linear combinaison of a basis of this extension over the given base

EXAMPLES:
sage: # needs sage.rings.finite rings
sage: A.<a> = GF (5"2) .over /() # over GF (5)
sage: B.<b> = GF (574) .over (A)
sage: C.<c> = GF(5712) .over (B)
sage: D.<d> = GF (5724) .over (C)
Observe what happens when we modify the option over:
sage: # needs sage.rings.finite_rings
sage: D
Field in d with defining polynomial
x*"2 + ((1 - a) + ((1L + 2*a) — b)*c + ((2 + a) + (1 - a)*b)*c”"2)*x + c over.
—its base
sage: D.print_options (over=2)
sage: D
Field in d with defining polynomial x*2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2o
-+ a) + (1 - a)*b)*c"2)*x + c over
Field in ¢ with defining polynomial x*3 + (1 + (2 - a)*b)*x"2 + (2 + 2*b)*x —_
—b over
Field in b with defining polynomial x"2 + (3 - a)*x + a over its base
sage: D.print_options (over=Infinity)
sage: D
Field in d with defining polynomial x"2 + ((1 - a) + ((1 + 2*a) - b)*c + ((2=
—+ a) + (1 - a)*b)*c”"2)*x + c over
Field in ¢ with defining polynomial x*3 + (1 + (2 - a)*b)*x"2 + (2 + 2*b)*x —_
—b over

(continues on next page)
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Field in b with defining polynomial x*2 + (3 - a)*x + a over
Field in a with defining polynomial x"2 + 4*x + 2 over
Finite Field of size 5

Now the option base:

sage: # needs sage.rings.finite_rings

sage: d*2

=g + ((=1 &+ a) + ((=1 + 3I¥a) +«+ b)*e + ((3 = a) + (=1 + a)*b)*e”2) el
sage: D.basis_over (B)

[1, ¢, c*2, d, c*d, c”2*d]

sage: D.print_options (base=B)

sage: d*2

—c + (-1 + a)*d + ((-1 + 3*a) + b)*c*d + ((3 - a) + (-1 + a)*b)*c*2*d
sage: D.basis_over (A)

i, s, ©, b*e, @2, b¥e*2, @, lb*el, @+ e, lb*e*e, e*2%c, lb*e” 2*al]

sage: D.print_options (base=A)

sage: d"2

=g + (=1 + a)*e + (=1 + 3I¥a)*e¥el + lb*e¥e + (3 = a)*we”*2¥el + (=1l + a)~ls*e*2%c

random_element ()

Return a random element in this extension.

EXAMPLES:

sage: # needs sage.rings.finite_ rings

sage: K = GF (5"2) .over () # over GF (5)

sage: x = K.random_element (); x # random

3 + z2

sage: x.parent ()

Field in z2 with defining polynomial x"2 + 4*x + 2 over its base
sage: x.parent () is K

True

relative_degree ()

Return the degree of this extension over its base.

EXAMPLES:

sage: A = GF (574) .over (GF (572)) #
—needs sage.rings.finite_rings

sage: A.relative_degree() #.
—needs sage.rings.finite_rings

2

See also

degree (), absolute_degree ()

sage.rings.ring_extension.common_base (K, L, degree)

Return a common base on which K and L are defined.
INPUT:

e K —acommutative ring
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e L —a commutative ring
* degree — boolean; if True, return the degree of K and L over their common base

EXAMPLES:

-

sage: from sage.rings.ring_extension import common_base

sage: common_base (GF (5°3), GF(5°7), False) #_
—needs sage.rings.finite_rings

Finite Field of size 5

sage: common_base (GF (5°3), GF(5°7), True) #
—needs sage.rings.finite_rings

(Finite Field of size 5, 3, 7)

sage: common_base (GF (5°3), GF(7"5), False) #_
—needs sage.rings.finite rings

Traceback (most recent call last):

NotImplementedError: unable to find a common base

When degree is set to True, we only look up for bases on which both K and L are finite:

(

sage: S.<x> = QQ[]

sage: common_base (S, QQ, False)
Rational Field

sage: common_base (S, QQ, True)
Traceback (most recent call last):

NotImplementedError: unable to find a common base
C

sage.rings.ring_extension.generators (ring, base)

Return the generators of ring over base.
INPUT:

* ring —acommutative ring

* base —a commutative ring

EXAMPLES:

-
sage: from sage.rings.ring_extension import generators

sage: S.<x> = QQ[]
sage: T.<y> = S[]

sage: generators (T, S)
(y,)

sage: generators (T, QQ)
(y, %)

sage.rings.ring_extension.tower_bases (ring, degree)

Return the list of bases of ring (including itself); if degree is True, restrict to finite extensions and return in
addition the degree of ring over each base.

INPUT:
* ring - acommutative ring
¢ degree —boolean

EXAMPLES:
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sage: from sage.rings.ring extension import tower_bases
sage: S.<x> = Q0[]
sage: T.<y> = S[]
sage: tower_bases (T, False)
([Univariate Polynomial Ring in y over
Univariate Polynomial Ring in x over Rational Field,
Univariate Polynomial Ring in x over Rational Field,
Rational Field],
(1
sage: tower_bases (T, True)
([Univariate Polynomial Ring in y over
Univariate Polynomial Ring in x over Rational Field],
(11)

sage: K.<a> = Qqg(5"2)

—needs sage.rings.padics

sage: L.<w> = K.extens