Parents and Elements
Release 10.5.rc0

The Sage Development Team

Nov 16, 2024

8

Sage Objects

Parents

Elements

Mathematical Data Structures

Use of Heuristic and Probabilistic Algorithms
Utilities

Internals

Indices and Tables

Python Module Index

Index

CONTENTS

13
49
91
125
127
169
173
175

177

CHAPTER
ONE

SAGE OBJECTS

1.1 Abstract base class for Sage objects

class sage.structure.sage_object.SageObject
Bases: object

Base class for all (user-visible) objects in Sage
Every object that can end up being returned to the user should inherit from SageObject.

_ascii_art_ ()

Return an ASCII art representation.

To implement multi-line ASCII art output in a derived class you must override this method. Unlike

repr (), which is sometimes used for the hash key, the output of _ascii_art_ () may depend on
settings and is allowed to change during runtime.
OUTPUT:

An AsciiArt object, see sage.typeset.ascii_art for details.
EXAMPLES:

You can use the ascii_art () function to get the ASCII art representation of any object in Sage:

sage: result = ascii_art (integral (exp (x+x"2)/ (x+1), x)) #_
—needs sage.symbolic
sage: result #o
—needs sage.symbolic

/

\

| 2

| X + X

| e

| ======= dx

| x + 1

\
/

Alternatively, you can use the $display ascii_art/simple magic to switch all output to ASCII art
and back:

sage: # needs sage.combinat
sage: from sage.repl.interpreter import get_test_shell
(continues on next page)

../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#sage.typeset.ascii_art.AsciiArt
../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#module-sage.typeset.ascii_art
../../../../../../html/en/reference/misc/sage/typeset/ascii_art.html#sage.typeset.ascii_art.ascii_art

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: shell = get_test_shell ()
sage: shell.run_cell('tab = StandardTableaux(3) [2]; tab')

[r1, 21, (311

sage: shell.run_cell (' isplay ascii_art')
sage: shell.run_cell('tab')

1 2

sage: shell.run_cell ('Tableaux.options (ascii_art="table", convention="French")

sage: shell.run_cell('tab'")

o=t
I 31

to——t———+
11 2|
fo——t———+

sage: shell.run_cell('?%display plain')
sage: shell.run_cell ('Tableaux.options._reset () ")
sage: shell.quit ()

_cache_key ()

Return a hashable key which identifies this objects for caching. The output must be hashable itself, or a tuple
of objects which are hashable or define a _cache_key.

This method will only be called if the object itself is not hashable.

Some immutable objects (such as p-adic numbers) cannot implement a reasonable hash function because

their == operator has been modified to return True for objects which might behave differently in some
computations:

sage: # needs sage.rings.padics
sage: K.<a> = Qqg(9)

sage: b = a + 0(3)

sage: ¢ = a + 3

sage: b

a + 0(3)

sage: cC

a + 3 + 0(3720)

sage: b == ¢

True

sage: b == a

True

sage: c == a

False

If such objects defined a non-trivial hash function, this would break caching in many places. However, such
objects should still be usable in caches. This can be achieved by defining an appropriate _cache_key:

sage: # needs sage.rings.padics
sage: hash (b)
Traceback (most recent call last):

TypeError: unhashable type: 'sage.rings.padics.gadic_flint_CR.
—gAdicCappedRelativeElement'

sage: (@cached_method

....: def f(x): return x==a

sage: f (b)

True

(continues on next page)

2 Chapter 1. Sage Objects

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: f(c) # if b and ¢ were hashable, this would return True
False
sage: b._cache_key ()
(..., (€0, 1),), 0, 1)
sage: c._cache_key()

(ooop (O, 1), (1,)), O, 20)
An implementation must make sure that for elements a and b, if a != b, then also a._cache_key ()
!= b._cache_key (). In practice this means that the _cache_key should always include the parent

as its first argument:

sage: S.<a> = Qg (4) #.
—needs sage.rings.padics

sage: d = a + 0(2) #_
—needs sage.rings.padics

sage: b._cache_key () == d._cache_key() # this would be True if the parents.
—were not included # needs sage.rings.padics

False

category ()

dump (filename, compress=True)

Same as self.save(filename, compress)

dumps (compress=True)

Dump self to a string s, which can later be reconstituted as se1f using loads (s).
There is an optional boolean argument compress which defaults to True.

EXAMPLES:

sage: from sage.misc.persist import comp

sage: O = SageObject ()

sage: p_comp = O.dumps ()

sage: p_uncomp O.dumps (compress=False)

sage: comp.decompress (p_comp) == p_uncomp
True

sage: import pickletools

sage: pickletools.dis (p_uncomp)

0: \x80 PROTO 2
2: ¢ GLOBAL 'sage.structure.sage_object SageObject'
41: g BINPUT
43:) EMPTY_TUPLE
44: \x81 NEWOBJ
45: g BINPUT
47: . STOP
highest protocol among opcodes = 2

get_custom_name ()

Return the custom name of this object, or None if it is not renamed.

EXAMPLES:

sage: P.<x> = QQI[]

sage: P.get_custom_name () is None
True

sage: P.rename ('A polynomial ring')

(continues on next page)

1.1. Abstract base class for Sage objects 3

Parents and Elements, Release 10.5.rc0

sage: P.get_custom_name ()

'A polynomial ring'

sage: P.reset_name ()

sage: P.get_custom_name () is None
True

(continued from previous page)

parent ()

Return the type of self to support the coercion framework.

EXAMPLES:
sage: t = log(sqgrt(2) - 1) + log(sqgrt(2) + 1); t #.
—needs sage.symbolic
log(sgrt (2) + 1) + log(sgrt(2) - 1)
sage: u = t.maxima_methods () #.
—needs sage.symbolic
sage: u.parent () #
—needs sage.symbolic
<class 'sage.symbolic.maxima_wrapper.MaximaWrapper'>
rename (x=None)
Change self so it prints as X, where X is a string.
If x is None, the existing custom name is removed.
Note
This is only supported for Python classes that derive from SageObject.
EXAMPLES:
sage: x = PolynomialRing (QQ, 'x', sparse=True) .gen ()
sage: g = x"3 + x - 5
sage: g
x"3 + x - 5
sage: g.rename('a polynomial')
sage: g
a polynomial
sage: g + x
x"3 + 2*x - 5
sage: h = g~100
sage: str(h) [:20]
'x7300 + 100*x"298 -
sage: h.rename('x"300 + ...")
sage: h
x~300 +
sage: g.rename (None)
sage: g
x*"3 + x - 5
Real numbers are not Python classes, so rename is not supported:
sage: a = 3.14
sage: type(a) #.

—needs sage.rings.real_mpfr

(continues on next page)

Chapter 1. Sage Objects

Parents and Elements, Release 10.5.rc0

(continued from previous page)
<... 'sage.rings.real_mpfr.Realliteral'>
sage: a.rename('pi') #
—needs sage.rings.real_mpfr
Traceback (most recent call last):

NotImplementedError: object does not support renaming: 3.14000000000000

Note

The reason C-extension types are not supported by default is if they were then every single one would
have to carry around an extra attribute, which would be slower and waste a lot of memory.

To support them for a specific class, add a cdef public _SageObject__ custom_name at-
tribute.

reset_name ()

Remove the custom name of an object.

EXAMPLES:

sage: P.<x> = QQ[]

sage: P

Univariate Polynomial Ring in x over Rational Field
sage: P.rename ('A polynomial ring')

sage: P

A polynomial ring

sage: P.reset_name ()

sage: P

Univariate Polynomial Ring in x over Rational Field

save (filename=None, compress=True)

Save self to the given filename.

EXAMPLES:

sage: # needs sage.symbolic

sage: x = SR.var ("x")

sage: f = x*3 + 5

sage: from tempfile import NamedTemporaryFile

sage: with NamedTemporaryFile (suffix="'.sobj') as t:
et f.save (t.name)

e load (t .name)

1.1. Abstract base class for Sage objects 5

Parents and Elements, Release 10.5.rc0

1.2 Base class for objects of a category

CLASS HIERARCHY:
e SageObject
— CategoryObject
* Parent

Many category objects in Sage are equipped with generators, which are usually special elements of the object. For example,
the polynomial ring Z[x, y, 2] is generated by z, y, and z. In Sage the i th generator of an object X is obtained using the
notation X . gen (i) . From the Sage interactive prompt, the shorthand notation X . i is also allowed.

The following examples illustrate these functions in the context of multivariate polynomial rings and free modules.

EXAMPLES:

sage: R = PolynomialRing(ZzZ, 3, 'x')
sage: R.ngens ()

3

sage: R.gen (0)

x0

sage: R.gens ()

(x0, x1, x2)

sage: R.variable_names ()

('x0', 'x1', 'x2')

This example illustrates generators for a free module over Z.

sage: # needs sage.modules

sage: M = FreeModule (ZZ, 4)

sage: M

Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: M.ngens ()

4

sage: M.gen (0)
(1, 0, 0, 0)
sage: M.gens ()

(¢, o, 0, 0), (0, 1, O, O0), (O, O, 1, O), (O, O, O, 1))

class sage.structure.category_object.CategoryObject
Bases: SageObject

An object in some category.

Hom (codomain, cat=None)

Return the homspace Hom (self, codomain, cat) of allhomomorphisms from self to codomain
in the category cat.

The default category is determined by self.category () and codomain.category ().

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: R.Hom(QQ)
Set of Homomorphisms
from Multivariate Polynomial Ring in x, y over Rational Field
to Rational Field

6 Chapter 1. Sage Objects

Parents and Elements, Release 10.5.rc0

Homspaces are defined for very general Sage objects, even elements of familiar rings.

sage: n = 5; Hom(n,7)

Set of Morphisms from 5 to 7 in Category of elements of Integer Ring
sage: z = 2/3; Hom(z, 8/1)

Set of Morphisms from 2/3 to 8 in Category of elements of Rational Field

This example illustrates the optional third argument:

sage: QQ.Hom(ZZ, Sets())
Set of Morphisms from Rational Field to Integer Ring in Category of sets

base ()
base_ring()
Return the base ring of self.
INPUT:
* self —an object over a base ring; typically a module

EXAMPLES:

sage: from sage.modules.module import Module
sage: Module (ZZ) .base_ring()
Integer Ring

sage: F = FreeModule (27, 3) #
—needs sage.modules
sage: F.base_ring() #_

—needs sage.modules

Integer Ring

sage: F._class__ .base_ring #
—needs sage.modules

<method 'base_ring' of 'sage.structure.category_object.CategoryObject'.
—objects>

Note that the coordinates of the elements of a module can lie in a bigger ring, the coordinate_ring:

sage: # needs sage.modules
sage: M = (zZ72) * (1/2)
sage: v = M([1/2, 0])
sage: v.base_ring()

Integer Ring

sage: parent (v[0])
Rational Field

sage: v.coordinate_ring ()
Rational Field

More examples:

sage: F = FreeAlgebra(QQ, 'x') #_
—needs sage.combinat sage.modules
sage: F.base_ring() #

—needs sage.combinat sage.modules

Rational Field

sage: F._ class__ .base_ring #
—needs sage.combinat sage.modules

<method 'base_ring' of 'sage.structure.category_object.CategoryObject'.

(continues on next page)

1.2. Base class for objects of a category 7

Parents and Elements, Release 10.5.rc0

—objects>

Integer Ring
sage: H. class__ .base_ring

—objects>

sage: # needs sage.modules

sage: E = CombinatorialFreeModule (Z2Z, [1,2,3])
sage: F = CombinatorialFreeModule (ZZ, [2,3,4])
sage: H = Hom(E, F)

sage: H.base_ring()

(continued from previous page)

<method 'base_ring' of 'sage.structure.category_object.CategoryObject'.

Todo

category objects.

Move this method elsewhere (typically in the Modules category) so as not to pollute the namespace of all

categories ()

Return the categories of self.

EXAMPLES:

sage: ZZ.categories()

[Join of Category of Dedekind domains
and Category of euclidean domains
and Category of noetherian rings

and Category of metric spaces,
Category of Dedekind domains,
Category of euclidean domains,
Category of principal ideal domains,
Category of unique factorization domains,
Category of gcd domains,
Category of integral domains,
Category of domains,
Category of commutative rings,

Category of monoids, ...,
Category of commutative additive groups,
Category of sets, ...,

Category of objects]

and Category of infinite enumerated sets

category ()

gens_dict (copy=True)

Return a dictionary whose entries are {name:variable, .

. .}, where name stands for the variable

names of this object (as strings) and variable stands for the corresponding defining generators (as el-

ements of this object).

EXAMPLES:

sage: B.<a,b,c,d> = BooleanPolynomialRing ()
—needs sage.rings.polynomial.pbori

sage: B.gens_dict ()

—needs sage.rings.polynomial.pbori

{'a': a, 'b': b, 'c': ¢, 'd': d}

Chapter 1. Sage Objects

Parents and Elements, Release 10.5.rc0

gens_dict_recursive ()

Return the dictionary of generators of self and its base rings.
OUTPUT:

¢ adictionary with string names of generators as keys and generators of sel1f and its base rings as values.

EXAMPLES:

sage: R = Q0['x,y'1["'z,w'"]
sage: sorted(R.gens_dict_recursive () .items())
[(('w', w), ('x', %), ('yv', y), ('z', z)]

inject_variables (scope=None, verbose=True)

Inject the generators of self with their names into the namespace of the Python code from which this
function is called.

Thus, e.g., if the generators of self are labeled ‘@’, ‘b’, and ‘c’, then after calling this method the variables a,
b, and c in the current scope will be set equal to the generators of self.

NOTE: If Foo is a constructor for a Sage object with generators, and Foo is defined in Cython, then it would
typically call inject_variables () on the object it creates. E.g., PolynomialRing (QQ, 'y"')
does this so that the variable y is the generator of the polynomial ring.

latex_name ()
latex_variable_names ()
Return the list of variable names suitable for latex output.

All _SOMETHING substrings are replaced by _ { SOMETHING} recursively so that subscripts of subscripts
work.

EXAMPLES:

sage: R, x = PolynomialRing(QQ, 'x', 12).objgens ()

sage: X

(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11)

sage: R.latex_variable_names ()

['x_{0}', "x_{1}', 'x_{2}', 'x_{3}', 'x_{4}', 'x_{5}', 'x_{6}',
"k {7, '"x_{8}', '"x_{9r', 'x_{10}', 'x_{11}']

sage: f = x[0]"3 + 15/3 * x[1]"10

sage: print (latex(f))

5 x {137{10} + x_{0}r~{3}

objgen ()
Return the tuple (self, self.gen()).

EXAMPLES:

sage: R, x = PolynomialRing(QQ, 'x") .objgen ()

sage: R

Univariate Polynomial Ring in x over Rational Field
sage: x

X

objgens ()
Return the tuple (self, self.gens()).

EXAMPLES:

1.2,

Base class for objects of a category 9

Parents and Elements, Release 10.5.rc0

sage: R = PolynomialRing(QQ, 3, 'x'); R

Multivariate Polynomial Ring in x0, x1, x2 over Rational Field

sage: R.objgens ()

(Multivariate Polynomial Ring in x0, x1, x2 over Rational Field, (x0, x1, x2))

variable_name ()

Return the first variable name.
OUTPUT: string
EXAMPLES:

sage: R.<z,y,ad42> = Z7Z][]
sage: R.variable_name ()
'ZI

sage: R.<x> = InfinitePolynomialRing(ZZ)
sage: R.variable_name ()
'XI

variable_names ()

Return the list of variable names corresponding to the generators.
OUTPUT: a tuple of strings
EXAMPLES:

sage: R.<z,y,a42> = QQ[]
sage: R.variable_names ()

('z', 'y', 'ad2")

sage: S = R.quotient_ring(z+y)
sage: S.variable_names ()
('zbar', 'ybar', 'ad42bar')

sage: T.<x> = InfinitePolynomialRing(ZZ)
sage: T.variable_names ()
("x",)

sage.structure.category_object.certify names (names)

Check that names are valid variable names.
INPUT:
* names — an iterable with strings representing variable names

OUTPUT: True (for efficiency of the Cython call)

EXAMPLES:

sage: from sage.structure.category_object import certify_names as cn
sage: cn(["a", "b", "c"1])

1

sage: cn("abc")

1

sage: cn([])

1

sage: cn([""])
Traceback (most recent call last) :

ValueError: variable name must be nonempty

(continues on next page)

10 Chapter 1. Sage Objects

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: cn(["_foo"])
Traceback (most recent call last):

ValueError: variable name '_foo' does not start with a letter
sage: cn(["x'"])
Traceback (most recent call last):

ValueError: variable name "x'" is not alphanumeric
sage: Cn(["a", "b", llb"})
Traceback (most recent call last):

ValueError: variable name 'b' appears more than once

sage.structure.category_object.check_default_category (default_category, category)

The resulting category is guaranteed to be a sub-category of the default.

sage.structure.category_object.normalize_names (ngens, names)

Return a tuple of strings of variable names of length ngens given the input names.

INPUT:

* ngens — integer; number of generators. The value ngens=-1 means that the number of generators is

unknown a priori.

* names — any of the following:

a tuple or list of strings, suchas ('x', 'y'")

a comma-separated string, such as x, y

a string prefix, such as ‘alpha’

a string of single character names, such as ‘xyz’
OUTPUT: a tuple of ngens strings to be used as variable names

EXAMPLES:

sage: from sage.structure.category_ object import normalize_names as nn
sage: nn(0, "")

0)

sage: nn(0, [1])

0)

sage: nn (0, None)

()

sage: nn(l, 'a')
(ta'y)
sage: nn(2, 'z_z')

('z_z0"'", 'z_zl")

sage: nn(3, 'x, y, z'")

("x'y, ty', tz')

sage: nn (2, 'ab')

('a', 'b")

sage: nn (2, 'x0")

('x00', 'x01")

sage: nn(3, ('a ', " bb ', ' ccc "))
('a', 'bb', 'ccc')

sage: nn((4, ['al', 'a2', 'bl', 'bll'])
('al', 'a2', 'bl', 'bil1l'")

1.2. Base class for objects of a category

11

Parents and Elements, Release 10.5.rc0

Arguments are converted to strings:

sage: nn(l, u'a')

("a',)

sage: var ('alpha') #_
—needs sage.symbolic

alpha

sage: nn (2, alpha) #_

—needs sage.symbolic
('alphaO', 'alphal')

sage: nn(l, [alphal) #_
—needs sage.symbolic
('alpha',)

.

With an unknown number of generators:

(sage: nn(-1, 'a')
(ta',)

sage: nn(-1, 'x, y, z'")
('X', lyl’ IZI)

Test errors:

)
sage: nn(3, ["x", "y"1)

Traceback (most recent call last):

IndexError: the number of names must equal the number of generators
sage: nn (None, "a")
Traceback (most recent call last):

TypeError: 'NoneType' object cannot be interpreted as an integer
sage: nn((l, "")
Traceback (most recent call last):

ValueError: variable name must be nonempty
sage: nn(l, "foo@")
Traceback (most recent call last):

ValueError: variable name 'foo@' is not alphanumeric
sage: nn(2, "_foo")
Traceback (most recent call last):

ValueError: variable name '_foo0O' does not start with a letter
sage: nn(l, 3/2)

Traceback (most recent call last):

ValueError: variable name '3/2' is not alphanumeric

.

12

Chapter 1. Sage Objects

CHAPTER
TWO

PARENTS

2.1 Parents

2.1.1 Base class for parent objects

CLASS HIERARCHY:

SageObject
CategoryObject
Parent

A simple example of registering coercions:

sage: class A_class (Parent):

e def _ init_ (self, name):

e Parent.__init__ (self)

e self._populate_coercion_lists_ ()
et self.rename (name)

el def category(self):

e return Sets ()

e def _element_constructor_(self, 1i):
e assert (isinstance (i, (int, Integer)))
e return ElementWrapper (self, 1)
sage: A = A_class("A")

sage: B = A_class("B")

A_class("C")

(0]
(V)
Q
()

Q
Il

sage: def f(a):

50008 return B(a.value+l)

sage: class MyMorphism (Morphism) :

e def _ init__ (self, domain, codomain) :

e Morphism.__init__ (self, Hom(domain, codomain))
e def _call_(self, x):

28005 return self.codomain () (x.value)

sage: f = MyMorphism(A, B)

sage: f
Generic morphism:
From: A
To: B

sage: B.register_coercion (f)

(continues on next page)

13

Parents and Elements, Release 10.5.rc0

sage: C.register_coercion (MyMorphism(B,C))
sage: A(A(1)) == A(1)

True

sage: B(A(1l)) == B(1)

True

sage: C(A(1)) == C(1)

True

sage: A(B(1))

Traceback (most recent call last):
AssertionError

(continued from previous page)

When implementing an element of a ring, one would typically provide the element class with _rmul_ and/or _1mul_
methods for the action of a base ring, and with _mul__ for the ring multiplication. However, prior to Issue #14249, it
would have been necessary to additionally define a method _an_element_ () for the parent. But now, the following

example works:

from sage.structure.element import RingElement
class MyElement (RingElement) :
def _ init__ (self, parent,
RingElement.__init__ (self,
def _mul_(self, other):
return self
rmul(self,
return self
Imul(self,
return self
class MyParent (Parent) :
Element = MyElement

X, y):

parent)

def other) :

def other) :

Now, we define

sage: P = MyParent (base=72Z, category=Rings())
sage: a = P(1,2)

sage: a*a is a

True

sage: a*2 is a

True

sage: 2*a is a

True

class sage.structure.parent.EltPair

Bases: object
short_repr ()
class sage.structure.parent.Parent
Bases: CategoryObject
Base class for all parents.
Parents are the Sage/mathematical analogues of container objects in computer science.

INPUT:

* base —an algebraic structure considered to be the “base” of this parent (e.g. the base field for a vector space)

14

Chapter 2. Parents

https://github.com/sagemath/sage/issues/14249

Parents and Elements, Release 10.5.rc0

* category — a category or list/tuple of categories. The category in which this parent lies (or list or tuple
thereof). Since categories support more general super-categories, this should be the most specific category
possible. If category is a list or tuple, a JoinCategory is created out of them. If category is not specified,
the category will be guessed (see CategoryOb ject), but will not be used to inherit parent’s or element’s
code from this category.

* names —names of generators
* normalize — whether to standardize the names (remove punctuation, etc.)
* facade —a parent, or tuple thereof, or True

If facade is specified, then Sets () .Facade () is added to the categories of the parent. Furthermore, if
facade is not True, the internal attribute _facade_for is set accordingly for use by Sets.Facade.
ParentMethods.facade_for ().

Internal invariants:

e self._element_init_pass_parent == guess_pass_parent (self, self.
_element_constructor) Ensures that _ _call () passes down the parent properly to _ele—
ment_constructor (). See Issue #5979.

Todo

Eventually, category should be Set s by default.

__call__ (x=0, *args, **kwds)

This is the generic call method for all parents.

When called, it will find a map based on the Parent (or type) of x. If a coercion exists, it will always be
chosen. This map will then be called (with the arguments and keywords if any).

By default this will dispatch as quickly as possible to _element_constructor_ () though faster path-
ways are possible if so desired.

_populate_coercion_lists_ (coerce_list=[], action_list=[], convert_list=[], embedding=None,
convert_method_name=None, element_constructor=None,
init_no_parent=None, unpickling=False)

This function allows one to specify coercions, actions, conversions and embeddings involving this parent.
IT SHOULD ONLY BE CALLED DURING THE __INIT__ method, often at the end.
INPUT:
e coerce_list - list of coercion Morphisms to self and parents with canonical coercions to self
e action_list —list of actions on and by self
* convert_1list —list of conversion Maps to self and parents with conversions to self
¢ embedding — a single Morphism from self

e convert_method_name —aname to look for that other elements can implement to create elements
of self (e.g. _integer_)

* init_no_parent —if True omit passing self in as the first argument of element_constructor for
conversion. This is useful if parents are unique, or element_constructor is a bound method (this latter
case can be detected automatically).

2.1. Parents 15

https://github.com/sagemath/sage/issues/5979
../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.Sets

Parents and Elements, Release 10.5.rc0

_mul__ (x)

This is a multiplication method that more or less directly calls another attribute _mul_ (single underscore).
This is because __mul__ cannot be implemented via inheritance from the parent methods of the category,
but _mul_ can be inherited. This is, e.g., used when creating twosided ideals of matrix algebras. See Issue
#7797.

EXAMPLES:

sage: MS = MatrixSpace (QQ, 2, 2) #_
—needs sage.modules

This matrix space is in fact an algebra, and in particular it is a ring, from the point of view of categories:

sage: MS.category () #
—needs sage.modules
Category of infinite finite dimensional algebras with basis

over (number fields and quotient fields and metric spaces)

sage: MS in Rings () #
—needs sage.modules
True

However, its class does not inherit from the base class Ring:

sage: isinstance (MS, Ring) #_
—needs sage.modules
False

Its _mul_ method is inherited from the category, and can be used to create a left or right ideal:

sage: # needs sage.modules
sage: MS. _mul_._ module_
'sage.categories.rings'
sage: MS * MS.1 # indirect doctest
Left Ideal
(
[0 1]
[0 0]
)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS * [MS.1, 2]
Left Ideal
(
[0 1]
[0 01,

[2 0]

[0 2]
)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: MS.1 * MS
Right Ideal
(

[0 1]

[0 0]
)
of Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: [MS.1, 2] * MS
Right Ideal

(continues on next page)

16

Chapter 2. Parents

https://github.com/sagemath/sage/issues/7797
https://github.com/sagemath/sage/issues/7797

Parents and Elements, Release 10.5.rc0

(continued from previous page)

[0 1]
[0 0],

(2 0]
[0 2]
)

of Full MatrixSpace of 2 by 2 dense matrices over Rational Field

__contains__ (x)

True if there is an element of self that is equal to x under ==, or if x is already an element of self.
Also, True in other cases involving the Symbolic Ring, which is handled specially.

For many structures we test this by using __call__ () and then testing equality between x and the result.

The Symbolic Ring is treated differently because it is ultra-permissive about letting other rings coerce in, but
ultra-strict about doing comparisons.

EXAMPLES:

sage: 2 in Integers(7)

True

sage: 2 in ZZ

True

sage: Integers(7) (3) in ZZ

True

sage: 3/1 in ZZ

True

sage: 5 in QQ

True

sage: I in RR #o
—needs sage.rings.real_mpfr sage.symbolic

False

sage: RIF (1, 2) in RIF #_

—needs sage.rings.real_interval_ field
True

sage: # needs sage.symbolic

sage: SR(2) in ZZ

True

sage: pi in RIF # there is no element of RIF equal to pi

False

sage: sgrt(2) in CC
True

sage: pi in RR
True

sage: pi in CC
True

sage: pi in RDF
True

sage: pi in CDF
True

Note that we have

sage: 3/2 in RIF #o
—needs sage.rings.real_interval_ field
True

2.1. Parents 17

Parents and Elements, Release 10.5.rc0

because 3/2 has an exact representation in RIF (i.e. can be represented as an interval that contains exactly
one value):

sage: RIF (3/2).1is_exact () #_
—needs sage.rings.real_interval_ field
True

On the other hand, we have

sage: 2/3 in RIF #
—needs sage.rings.real_interval_ field
False

because 2/ 3 has no exact representation in RIF. Since RIF (2/3) is a nontrivial interval, it cannot be equal
to anything (not even itself):

sage: RIF(2/3) .is_exact () #.
—needs sage.rings.real_interval_ field

False

sage: RIF(2/3) .endpoints () #.

—needs sage.rings.real_interval_ field
(0.666666666666666, 0.666666666666667)

sage: RIF(2/3) == RIF(2/3) #.
—needs sage.rings.real_interval_ field
False

_coerce_map_from_ (S)

Override this method to specify coercions beyond those specified in coerce_list.

If no such coercion exists, return None or False. Otherwise, it may return either an actual Map to use for
the coercion, a callable (in which case it will be wrapped in a Map), or True (in which case a generic map
will be provided).

_convert_map_from_ (S5)

Override this method to provide additional conversions beyond those given in convert_list.

This function is called after coercions are attempted. If there is a coercion morphism in the opposite direction,
one should consider adding a section method to that.

This MUST return a Map from S to se1f, or None. If None is returned then a generic map will be provided.

_get_action_ (S, op, self_on_left)

Override this method to provide an action of self on S or S on self beyond what was specified in ac—
tion_list.

This must return an action which accepts an element of self and an element of S (in the order specified by
self_on_left).

_an_element_ ()

Return an element of self.

Want it in sufficient generality that poorly-written functions will not work when they are not supposed to. This
is cached so does not have to be super fast.

EXAMPLES:

sage: QQ._an_element_ ()

1/2

sage: ZZ['x,y,z']._an_element_ ()
X

18

Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

_repr_option (key)
Metadata about the _repr_ () output.
INPUT:
* key —string; a key for different metadata informations that can be inquired about
Valid key arguments are:

e 'ascii_art': The _repr_ () outputis multi-line ascii art and each line must be printed starting at
the same column, or the meaning is lost.

* 'element_ascii_art': same but for the output of the elements. Used in sage.repl.
display.formatter.

e 'element_is_atomic': the elements print atomically, that is, parenthesis are not required when
printing out any of — y, z + y, ¥ and x /y.

OUTPUT: boolean
EXAMPLES:

sage: ZZ._repr_option('ascii_art')

False

sage: MatrixSpace(ZZ, 2)._repr_option('element_ascii_art') #
—needs sage.modules

True

_init_category_ (category)

Initialize the category framework.

Most parents initialize their category upon construction, and this is the recommended behavior. For example,

this happens when the constructor calls Parent .__init__ () directly or indirectly. However, some par-
ents defer this for performance reasons. For example, sage .matrix.matrix_space.MatrixSpace
does not.

EXAMPLES:

sage: P = Parent ()

sage: P.category ()

Category of sets

sage: class MyParent (Parent) :

e def _ init_ (self):

e self._init_category_ (Groups())
sage: MyParent () .category ()

Category of groups

_is_coercion_cached (domain)

Test whether the coercion from domain is already cached.

EXAMPLES:

sage: R.<XX> = QQ
sage: R._remove_from_coerce_cache (QQ)
sage: R._is_coercion_cached (QQ)

False
sage: _ = R.coerce_map_from(QQ)
sage: R._is_coercion_cached (QQ)
True

2.1,

Parents 19

../../../../../../html/en/reference/repl/sage/repl/display/formatter.html#module-sage.repl.display.formatter
../../../../../../html/en/reference/repl/sage/repl/display/formatter.html#module-sage.repl.display.formatter

Parents and Elements, Release 10.5.rc0

_is_conversion_cached (domain)

Test whether the conversion from domain is already set.

EXAMPLES:

sage: P = Parent ()

sage: P._is_conversion_cached(P)

False

sage: P.convert_map_from(P)

Identity endomorphism of <sage.structure.parent.Parent object at ...>
sage: P._is_conversion_cached(P)

True

Hom (codomain, category=None)

Return the homspace Hom (self, codomain, category).
INPUT:
* codomain —a parent

e category — a category or None (default: None) If None, the meet of the category of self and
codomain is used.

OUTPUT:

The homspace of all homomorphisms from self to codomain in the category category.

See also

Hom ()

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: R.Hom(QQ)

Set of Homomorphisms from Multivariate Polynomial Ring in x, y over Rational.
—Field to Rational Field

Homspaces are defined for very general Sage objects, even elements of familiar rings:

sage: n = 5; Hom(n,7)

Set of Morphisms from 5 to 7 in Category of elements of Integer Ring
sage: z=(2/3); Hom(z,8/1)

Set of Morphisms from 2/3 to 8 in Category of elements of Rational Field

This example illustrates the optional third argument:

sage: QQ.Hom(ZZ, Sets())
Set of Morphisms from Rational Field to Integer Ring in Category of sets

A parent may specify how to construct certain homsets by implementing a method _Hom_" (codomain,
category) . See :func: ~sage.categories.homset.Hom () for details.

an_element ()

Return a (preferably typical) element of this parent.

This is used both for illustration and testing purposes. If the set self is empty, an_element () raises the
exception EmptySetError.

20

Chapter 2. Parents

../../../../../../html/en/reference/categories/sage/categories/homset.html#sage.categories.homset.Hom
../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.EmptySetError

Parents and Elements, Release 10.5.rc0

This calls _an_element_ () (which see), and caches the result. Parent are thus encouraged to override
_an_element_ ().

EXAMPLES:

sage: CDF.an_element () #_
—needs sage.rings.complex_double

1.0*I

sage: ZZ[['t']].an_element ()

t

In case the set is empty, an EmptySetError is raised:

sage: Set([]).an_element ()
Traceback (most recent call last):

EmptySetError

category ()
EXAMPLES:

sage: P = Parent ()

sage: P.category ()

Category of sets

sage: class MyParent (Parent) :
500083 def _ init__ (self): pass
sage: MyParent () .category ()
Category of sets

coerce (x)
Return x as an element of self, if and only if there is a canonical coercion from the parent of x to self.

EXAMPLES:

sage: QQ.coerce (ZZ(2))

2

sage: ZZ.coerce (QQ(2))

Traceback (most recent call last):

TypeError: no canonical coercion from Rational Field to Integer Ring

We make an exception for zero:

sage: V = GF (7)"7 #_
—needs sage.modules
sage: V.coerce (0) #

—needs sage.modules
(0, o, o, 0, 0, 0, 0)

coerce_embedding ()

Return the embedding of self into some other parent, if such a parent exists.

This does not mean that there are no coercion maps from self into other fields, this is simply a specific
morphism specified out of self and usually denotes a special relationship (e.g. sub-objects, choice of com-
pletion, etc.)

EXAMPLES:

2.1. Parents 21

../../../../../../html/en/reference/categories/sage/categories/sets_cat.html#sage.categories.sets_cat.EmptySetError

Parents and Elements, Release 10.5.rc0

sage: # needs sage.rings.number_field

sage: x = polygen(zz, 'x')

sage: K.<a> = NumberField(x"3 + x"2 + 1, embedding=1)
sage: K.coerce_embedding ()

Generic morphism:
From: Number Field in a with defining polynomial x"*3 + x"2 + 1
with a = -1.465571231876768?
To: Real Lazy Field
Defn: a -> -1.4655712318767687
sage: K.<a> = NumberField (x"3 + x"2 + 1, embedding=CC.gen())
sage: K.coerce_embedding ()
Generic morphism:
From: Number Field in a with defining polynomial x*3 + x"2 + 1
with a = 0.2327856159383841? + 0.7925519925154479?*1I
To: Complex Lazy Field
Defn: a —> 0.2327856159383841? + 0.79255199251544797?*I

coerce_map_£from (S)

Return a Map object to coerce from S to self if one exists, or None if no such coercion exists.
EXAMPLES:

By Issue #12313, a special kind of weak key dictionary is used to store coercion and conversion maps, namely
MonoDict. In that way, a memory leak was fixed that would occur in the following test:

sage: import gc

sage: _ = gc.collect ()

sage: K = GF (1<<55,'t") #.
—needs sage.rings.finite_rings

sage: for i in range (50) : #

—needs sage.rings.finite_rings sage.schemes

..... a = K.random_element ()

..... E = EllipticCurve (j=a)

..... b = K.has_coerce_map_from (E)

sage: _ = gc.collect ()

sage: len([x for x in gc.get_objects() if isinstance(x, type(E))]) #
—needs sage.rings.finite_rings sage.schemes

1

convert_map_from (S)

This function returns a Map from S to se1 £, which may or may not succeed on all inputs. If a coercion map
from S to self exists, then the it will be returned. If a coercion from self to S exists, then it will attempt
to return a section of that map.

Under the new coercion model, this is the fastest way to convert elements of S to elements of self (short
of manually constructing the elements) and isused by __call__ ().

EXAMPLES:

sage: m = ZZ.convert_map_from (QQ)
sage: m
Generic map:
From: Rational Field
To: Integer Ring
sage: m(-35/7)
=5
sage: parent (m(-35/7))
Integer Ring

22

Chapter 2. Parents

https://github.com/sagemath/sage/issues/12313
../../../../../../html/en/reference/coercion/sage/structure/coerce_dict.html#sage.structure.coerce_dict.MonoDict

Parents and Elements, Release 10.5.rc0

element_class ()

The (default) class for the elements of this parent.
FIXME’s and design issues:

o If self.Element is “trivial enough”, should we optimize it away with: self.element_class = dy-
namic_class(“%s.element_class”%self.__class__.__name__, (category.element_class,), self.Element)

¢ This should lookup for Element classes in all super classes

get_action (S, op=None, self_on_left=True, self_el=None, S_el=None)

Return an action of selfon Sor Sonself.

To provide additional actions, override _get_action_ ().

Warning

This is not the method that you typically want to call. Instead, call coercion_model.
get_action (...) which caches results (this Parent . get_action method does not).

has_coerce_map_from (S)

Return True if there is a natural map from S to self. Otherwise, return False.

EXAMPLES:

sage: RDF.has_coerce_map_from(QQ)

True

sage: RDF.has_coerce_map_from(QQ['x"])
False

sage: RDF['x'].has_coerce_map_from(QQ['x"'])
True

sage: RDF['x,vy'].has_coerce_map_from(QQ['x"'])
True

hom (im_gens, codomain=None, check=None, base_map=None, category=None, **kwds)

Return the unique homomorphism from self to codomain that sends self.gens () to the entries of
im_gens.

This raises a TypeError if there is no such homomorphism.

INPUT:
* im_gens —the images in the codomain of the generators of this object under the homomorphism
¢ codomain —the codomain of the homomorphism
* base_map —a map from the base ring to the codomain; if not given, coercion is used

* check — whether to verify that the images of generators extend to define a map (using only canonical
coercions)

OUTPUT: a homomorphism self --> codomain

Note

As a shortcut, one can also give an object X instead of im_gens, in which case return the (if it exists)
natural map to X.

2.1,

Parents 23

https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

EXAMPLES:

Polynomial Ring: We first illustrate construction of a few homomorphisms involving a polynomial ring:

sage: R.<x> = PolynomialRing(ZZ)
sage: £ = R.hom([5], QQ)

sage: f(x"2 - 19)

6

sage: R.<x> = PolynomialRing (QQ)
sage: f = R.hom([5], GF (7))
Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

sage: # needs sage.rings.finite_rings
sage: R.<x> = PolynomialRing (GF (7))
sage: f = R.hom([3], GF (49, 'a"))
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Finite Field of size 7

To: Finite Field in a of size 772
Defn: x |-—> 3

sage: f(x + 6)

2

sage: f(x"2 + 1)

3

Natural morphism:

sage: f = ZZ.hom(GF (5))

sage: £ (7)
2
sage: f

Natural morphism:
From: Integer Ring
To: Finite Field of size 5

There might not be a natural morphism, in which case a TypeError is raised:

sage: QQ.hom(ZZ)
Traceback (most recent call last):

TypeError: natural coercion morphism from Rational Field to Integer Ring not.
—defined

is_exact ()
Test whether the ring is exact.

Note

This defaults to true, so even if it does return True you have no guarantee (unless the ring has properly
overloaded this).

OUTPUT:

24 Chapter 2. Parents

https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

Return True if elements of this ring are represented exactly, i.e., there is no precision loss when doing

arithmetic.

EXAMPLES:

sage: QQ.is_exact ()

True

sage: ZZ.is_exact ()

True

sage: Qp(7) .1is_exact () #_
—needs sage.rings.padics

False

sage: Zp (7, type='capped-abs').is_exact () #
—needs sage.rings.padics

False

register_action (action)
Update the coercion model to use action toacton self.

action should be of type sage.categories.action.Action.

EXAMPLES:

sage: import sage.categories.action
sage: import operator

sage: class SymmetricGroupAction (sage.categories.action.Action):

et "Act on a multivariate polynomial ring by permuting the generators."
e def _ init_ (self, G, M, is_left=True) :

e sage.categories.action.Action.__init__ (self, G, M, is_left,.
—operator.mul)

e def _act_(self, g, a):

e D = {}

e for k, v in a.monomial_coefficients () .items () :
et nk = [0]*1len (k)

e for i in range(len(k)):

el nk[g(i+1)-11 = k[1i]

et D[tuple(nk)] = v

25043 return a.parent () (D)

sage: # needs sage.groups

sage: R.<x, vy, z> = QQ['x, vy, z']
sage: G = SymmetricGroup (3)

sage: act = SymmetricGroupAction (G, R)
sage: t = x + 2*y + 3*z

sage: # needs sage.groups
sage: act(G((1, 2)), t)

sage: act(G((2, 3)), t)

R o Iy + 2%z

sage: act(G((1, 2, 3)), t)
Iz + y + 2%z

This should fail, since we have not registered the left action:

sage: G((1,2)) * t #
—needs sage.groups

(continues on next page)

2.1. Parents 25

Parents and Elements, Release 10.5.rc0

Traceback (most recent call last):

TypeError:

(continued from previous page)

Now let’s make it work:

sage: # needs sage.groups

sage: R._unset_coercions_used()
sage: R.register_action (act)
sage: G((1, 2)) * t

2*x + y + 3*z

register_coercion (mor)

Update the coercion model to use mor : P — self to coerce from a parent P into self.

For safety, an error is raised if another coercion has already been registered or discovered between P and

self.

EXAMPLES:

sage: K.<a> = ZZ['a']

sage: L. = ZZ['b']

sage: L_into_K = L.hom([-a]) # non-trivial automorphism

sage: K.register_coercion(L_into_K)

sage: K(0) + b

-a

sage: a + b

0

sage: K(b) # check that convert calls coerce first; normally this is just a
-a

sage: L(0) + a in K # this goes through the coercion mechanism of K
True

sage: L(a) in L # this still goes through the convert mechanism of L
True

sage: K.register_coercion(L_into_K)

Traceback (most recent call last):

AssertionError: coercion from Univariate Polynomial Ring in b over Integer.
—Ring to Univariate Polynomial Ring in a over Integer Ring already.
—registered or discovered

register_conversion (mor)

Update the coercion model to use mor : P — self to convert from P into self.

EXAMPLES:

sage: K.<a> = ZZ['a']

sage: M.<c> = ZZ['c']

sage: M_into_K = M.hom([a]) # trivial automorphism
sage: K._unset_coercions_used()

sage: K.register_conversion (M_into_K)

sage: K(c)

a

(continues on next page)

26

Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: K(0) + c
Traceback (most recent call last):

TypeError:

register_embedding (embedding)

Add embedding to coercion model.
This method updates the coercion model to use embedding : self — P to embed self into the parent P.

There can only be one embedding registered; it can only be registered once; and it must be registered before
using this parent in the coercion model.

EXAMPLES:

sage: S3 = AlternatingGroup (3) #.
—needs sage.groups

sage: G SL(3, QQ) #
—needs sage.groups

sage: p = S3[2]; p.matrix() #
—needs sage.groups

[0 0 1]

[1 0 0]

[0 1 0]

In general one cannot mix matrices and permutations:

sage: # needs sage.groups
sage: G (p)
Traceback (most recent call last):

TypeError: unable to convert (1,3,2) to a rational
sage: phi = S3.hom(lambda p: G(p.matrix()), codomain=G)
sage: phi (p)

[0 0 1]

[1 0 0]

[0 1 0]

sage: S3._unset_coercions_used()

sage: S3.register_embedding (phi)

By Issue #14711, coerce maps should be copied when using outside of the coercion system:

sage: phi = copy(S3.coerce_embedding()); phi #o
—needs sage.groups
Generic morphism:
From: Alternating group of order 3!/2 as a permutation group
To: Special Linear Group of degree 3 over Rational Field
sage: phi (p) #o
—needs sage.groups
[0 0 1]
[1 0 0]
(0 1 0]

This does not work since matrix groups are still old-style parents (see Issue #14014):

sage: G(p) # not implemented #
—needs sage.groups

2.1. Parents 27

https://github.com/sagemath/sage/issues/14711
https://github.com/sagemath/sage/issues/14014

Parents and Elements, Release 10.5.rc0

Though one can have a permutation act on the rows of a matrix:

sage: G(1) * p #
—needs sage.groups

[0 0 1]

[1 0 0]

[0 1 0]

Some more advanced examples:

sage: # needs sage.rings.number_field

sage: x = Q0['x'].0

sage: t = abs(ZZ.random_element (1076))

sage: K = NumberField(x"2 + 2*3*7*11, "a"+str(t))

sage: a = K.gen()

sage: K_into_MS = K.hom([a.matrix()])

sage: K._unset_coercions_used()

sage: K.register_embedding (K_into_MS)

sage: # needs sage.rings.number_field

sage: L = NumberField(x"2 + 2*3*7*11*19%*31,

85043 "b" + str(abs(ZZ.random_element (1076))))

sage: b = L.gen()

sage: L_into_MS = L.hom([b.matrix()])

sage: L._unset_coercions_used()

sage: L.register_embedding(L_into_MS)

sage: K.coerce_embedding () (a) #o
—needs sage.rings.number_field

[0 1]

[-462 0]

sage: L.coerce_embedding () (b) #_
—needs sage.rings.number_ field

[0 1]

[-272118 0]

sage: a.matrix () * b.matrix() #
—needs sage.rings.number_ field

[-272118 0]

[0 -462]

sage: a.matrix () * b.matrix() #_
—needs sage.rings.number_field

[-272118 0]

[0 -462]

class sage.structure.parent.Set_generic

Bases: Parent
Abstract base class for sets.

object ()
Return the underlying object of self.

EXAMPLES:

sage: Set (QQ) .object ()
Rational Field

28

Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

sage.structure.parent.is_Parent (x)

Return True if X is a parent object, i.e., derives from sage.structure.parent.Parent and False otherwise.

EXAMPLES:

sage: from sage.structure.parent import is_Parent

sage: is_Parent (2/3)

doctest:warning. ..

DeprecationWarning: the function is_Parent is deprecated;

use 'isinstance(..., Parent)' instead

See https://github.com/sagemath/sage/issues/37922 for details.
False

sage: is_Parent (ZZ)

True

sage: is_Parent (Primes())
True

L

2.1.2 Indexed Generators

class sage.structure.indexed_generators.IndexedGenerators (indices, prefix="x', **kwds)
Bases: object

Abstract base class for parents whose elements consist of generators indexed by an arbitrary set.

Options controlling the printing of elements:

prefix —string, prefix used for printing elements of this module (default: 'x'). With the default, a mono-
mial indexed by ‘a’ would be printed as x ['a'].

latex_prefix —string or None, prefix used in the ISTEX representation of elements (default: None); if
this is anything except the empty string, it prints the index as a subscript. If this is None, it uses the setting
forprefix,soif prefix issetto “B”, then a monomial indexed by ‘a’ would be printed as B_{a}. If this
is the empty string, then don’t print monomials as subscripts: the monomial indexed by ‘a’ would be printed
as a,oras [a] if latex_bracket is True.

names — dictionary with strings as values or list of strings (optional); a mapping from the indices of the
generators to strings giving the generators explicit names. This is used instead of the print options prefix
and bracket when names is specified.

latex_names — dictionary with strings as values or list of strings (optional); same as name s except using
the ISTEX representation

bracket - None, boolean, string, or list or tuple of strings (default: None); if None, use the
value of the attribute self._repr_option_bracket, which has default value True. (self.
_repr_option_bracket is available for backwards compatibility. Users should set bracket instead.
If bracket is set to anything except None, it overrides the value of self._repr_option_bracket.)
If False, do not include brackets when printing elements: a monomial indexed by ‘a’ would be printed as
B'a', and a monomial indexed by (1,2,3) would be printed as B (1, 2, 3). If True, use “[” and “]” as
brackets. If it is one of “[”, “(”, or “{”, use it and its partner as brackets. If it is any other string, use it as both
brackets. If it is a list or tuple of strings, use the first entry as the left bracket and the second entry as the right
bracket.

latex_bracket — boolean, string, or list or tuple of strings (default: False);if False, do not include
brackets in the LaTeX representation of elements. This option is only relevant if latex_prefix is the
empty string; otherwise, brackets are not used regardless. If True, use “left[” and “right]” as brackets. If
this is one of “[”, “(”, “\{”, “I”, or “IlI”, use it and its partner, prepended with “left” and “right”, as brackets. If
this is any other string, use it as both brackets. If this is a list or tuple of strings, use the first entry as the left
bracket and the second entry as the right bracket.

2.1. Parents 29

Parents and Elements, Release 10.5.rc0

e scalar_mult - string to use for scalar multiplication in the print representation (default: ' * ')

e latex_scalar_mult - string or None (default: None); string to use for scalar multiplication in the
latex representation. If None, use the empty string if scalar_mult is set to “*”, otherwise use the value
of scalar_mult.

* tensor_symbol —string or None (default: None); string to use for tensor product in the print represen-
tation. If None, use sage.categories.tensor.symbol and sage.categories.tensor.
unicode_symbol.

e sorting_key —a key function (default: 1lambda x: x); to use for sorting elements in the output of
elements

* sorting_reverse —boolean (default: False);if True sort elements in reverse order in the output of
elements

* string_quotes — boolean (default: True);if True then display string indices with quotes

e iterate_key — boolean (default: False); iterate through the elements of the key and print the result as
comma separated objects for string output

Note

These print options may also be accessed and modified using the print_options () method, after the
parent has been defined.

EXAMPLES:

We demonstrate a variety of the input options:

sage: from sage.structure.indexed_generators import IndexedGenerators

sage: I = IndexedGenerators(ZZ, prefix='A")
sage: I._repr_generator(2)

IA[Z}I

sage: I._latex_generator(2)

IA_{Z}I

sage: I = IndexedGenerators(ZZ, bracket=' (")
sage: I._repr_generator (2)

IX(Z)I

sage: I._latex_generator(2)

'X_{Z}'

sage: I = IndexedGenerators(ZZ, prefix='"', latex_bracket="(")
sage: I._repr_generator (2)

1[2]]

sage: I._latex_generator(2)
\left (2 \right)

sage: I = IndexedGenerators(ZZ, bracket=['|', '>'])
sage: I._repr_generator(2)

'x|2>"

indices ()

Return the indices of self.

EXAMPLES:

30

Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

sage: F = CombinatorialFreeModule (QQ, ['a', 'b', 'c'l)
—needs sage.modules

sage: F.indices()

—needs sage.modules

{ra’, 'b', 'c'}

prefix ()

Return the prefix used when displaying elements of self.

EXAMPLES:

sage: F = CombinatorialFreeModule (QQ, ['a', 'b', 'c'l)
—needs sage.modules

sage: F.prefix()

—needs sage.modules

IBI

sage: X = SchubertPolynomialRing (QQ)
—needs sage.combinat sage.modules
sage: X.prefix/()

—needs sage.combinat sage.modules
IXI

print_options (**kwds)

Return the current print options, or set an option.

INPUT:
All of the input is optional; if present, it should be in the form of keyword pairs, such as
latex_bracket=" ('. The allowable keywords are:

e prefix

* latex_prefix

* names

e latex_names

* bracket

* latex_bracket

e scalar_mult

e latex_scalar_mult
* tensor_symbol

* string_quotes

* sorting_key

* sorting_reverse

* iterate_key

See the documentation for TndexedGenerators for descriptions of the effects of setting each of these

options.

OUTPUT: if the user provides any input, set the appropriate option(s) and return nothing. Otherwise, return

the dictionary of settings for print and LaTeX representations.

EXAMPLES:

2.1. Parents

31

Parents and Elements, Release 10.5.rc0

sage: # needs sage.modules

sage: F = CombinatorialFreeModule (Z2Z, [1,2,3], prefix='x")
sage: F.print_options()

{...'prefix': 'x'...}

sage: F.print_options (bracket="(")

sage: F.print_options()

{...'bracket': "('...}

sage.structure.indexed_generators.parse_indices_names (names, index_set, prefix,
kwds=None)

Parse the names, index set, and prefix input, along with setting default values for keyword arguments kwds.
OUTPUT:
The triple (N, I, p):

* N is the tuple of variable names,

¢ T is the index set, and

* p is the prefix.

This modifies the dictionary kwds.

Note

When the indices, names, or prefix have not been given, it should be passed to this function as None.

a
Note

For handling default prefixes, if the result will be None if it is not processed in this function.
.

EXAMPLES:

sage: from sage.structure.indexed_generators import parse_indices_names
sage: d = {}

sage: parse_indices_names('x,vy,z', ZZ, None, d)

(('x'y, 'y'y,
sage: d

{}

sage: d = {}
sage: parse_indices_names('x,y,z', None, None, d)
(('x', 'y', 'z"), {'x', 'y'y 'z'}, '")

sage: d

{'string_quotes': False}

sage: d = {}

sage: parse_indices_names (None, ZZ, None, d)
(None, Integer Ring, None)

'z'), Integer Ring, None)

sage: d

{}

-

sage: d = {'string quotes':True, 'bracket':'['}
sage: parse_indices_names(['a','b','c'], 2z, 'x', d)
(('a', 'b', 'c'), Integer Ring, 'x'")

sage: d

(continues on next page)

32 Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

(continued from previous page)

{'bracket': '"[', 'string_quotes': True}

sage: parse_indices_names('x,y,z', None, 'A', d)
(=", 'y', Tz, {'x", 'y', 'z"}, 'A’)

sage: d

{'bracket': '[', 'string_qguotes': True}

sage.structure.indexed_generators.split_index_keywords (kwds)

Split the dictionary kwds into two dictionaries, one containing keywords for TndexedGenerators, and the
other is everything else.

OUTPUT:

The dictionary containing only they keywords for TndexedGenerators. This modifies the dictionary kwds.

Warning

This modifies the input dictionary kwds.

EXAMPLES:

sage: from sage.structure.indexed_generators import split_index_keywords
sage: d = {'string_quotes': False, 'bracket': None, 'base': QQ}

sage: split_index_keywords (d)

{'bracket': None, 'string_qguotes': False}

sage: d

{'base': Rational Field}

sage.structure.indexed_generators.standardize_names_index_set (names=None,
index_set=None,
ngens=None)

Standardize the name s and index_set inputs.
INPUT:

* names — (optional) the variable names

e index_set — (optional) the index set

* ngens — (optional) the number of generators

If ngens is a negative number, then this does not check that the number of variable names matches the size of the
index set.

OUTPUT:

A pair (names_std, index_set_std), where names_stdis either None or a tuple of strings, and where
index_set_std is a finite enumerated set. The purpose of index_set_std is to index the generators of
some object (e.g., the basis of a module); the strings in names_std, when they exist, are used for printing these
indices. The ngens

If names contains exactly one name X and ngens is greater than 1, then names_std are Xi for i in
range (ngens).

2.1. Parents 33

Parents and Elements, Release 10.5.rc0

2.1.3 Precision management for non-exact objects

Manage the default precision for non-exact objects such as power series rings or Laurent series rings.

EXAMPLES:

sage: R.<x> = PowerSeriesRing (QQ)

sage: R.default_prec|()

20

sage: cos (x)

1 - 1/2*x"2 + 1/24*x"4 - 1/720*x"6 + 1/40320*x"8 — 1/3628800*x710 +
1/479001600*x712 - 1/87178291200*x"14 + 1/20922789888000*x"16 -
1/6402373705728000*x"18 + O (x"20)

sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)

sage: R.default_prec()

10

sage: cos (x)

1 - 1/2*x"2 + 1/24*x~4 - 1/720*x"6 + 1/40320*x"8 + 0O (x710)

Note

Subclasses of Nonexact which require to change the default precision should implement a method set_de-
fault_prec.

class sage.structure.nonexact.Nonexact (prec=20)

Bases: object
A non-exact object with default precision.
INPUT:
e prec — nonnegative integer representing the default precision of self (default: 20)

default_prec()

Return the default precision for self.

EXAMPLES:

sage: x = polygen(ZZ, 'x')
sage: R = Q0Q[[x]]

sage: R.default_prec()

20

sage: R.<x> = PowerSeriesRing(QQ, default_prec=10)
sage: R.default_prec()
10

34 Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

2.1.4 Global options

The GlobalOptions class provides a generic mechanism for setting and accessing global options for parents in one
or several related classes, typically for customizing the representation of their elements. This class will eventually also
support setting options on a parent by parent basis.

These options should be “attached” to one or more classes as an options method.

See also

For good examples of GlobalOptions in action see sage.combinat.partition.Partitions.
options and sage.combinat.tableau.Tableaux.options.

Construction of options classes

The general setup for creating a set of global options is:

sage: from sage.structure.global_options import GlobalOptions
sage: class MyOptions (GlobalOptions) :

et Nice options

et @OPTIONS(

et NAME = 'option name'

e module = 'sage.some_module.some_file'

e option_class = 'name_of_class_controlled_by_options'

e first_option = dict (default="'with_bells',
R description="'Changes the functionality of _repr_',
85033 values=dict (with_bells='causes _repr_ to print with bells

ceat with_whistles='causes _repr_ to print with.
e alias=dict (bells='optionl', whistles='option2'))

R # second_option = dict(...)
60008 # third_option = dict(...)

Note the syntax using the class keyword. However, because of some metaclass magic, the resulting MyOptions
object becomes an instance of GlobalOptions instead of a subclass. So, despite the class syntax, MyOptions is
not a class.

The options constructed by G1obalOptions have to be explicitly associated to the class that they control using the
following arguments:

e NAME - a descriptive name for the options class; this is optional. The default is the name of the constructed class.
* module — the sage module containing the options class (optional)
e option_class —the name of the options class; this is optional and defaults to NAME if not explicitly set

It is only possible to pickle a G1obalOptions class if the corresponding module is specified and if the options are
explicitly attached to the corresponding class as a options method.

Each option is specified as a dictionary which describes the possible values for the option and its documentation. The
possible entries in this dictionary are:

¢ alias — allows for several option values to do the same thing

2.1. Parents 35

../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partitions.options
../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partitions.options
../../../../../../html/en/reference/combinat/sage/combinat/tableau.html#sage.combinat.tableau.Tableaux.options

Parents and Elements, Release 10.5.rc0

e alt_name — an alternative name for this option

e checker — a validation function which returns whether a user supplied value is valid or not. This is typically
useful for large lists of legal values such as NN.

e default - gives the default value for the option
* description —a one line description of the option

e link_to - links this option to another one in another set of global options. This is used for example to allow
Partitions and Tableaux to share the same convention option.

¢ setter —a function which is called after the value of the option is changed
* values — dictionary assigning each valid value for the option to a short description of what it does
* case_sensitive —boolean (default: True); depending on whether the values of the option are case sensitive

For each option, either a complete list of possible values, via values, or a validation function, via checker, must
be given. The values can be quite arbitrary, including user-defined functions which customize the default behaviour of
the classes such as the output of _repr_ or latex (). See Dispatchers below, and _dispatcher (), for more
information.

The documentation for the options is automatically constructed from the docstring of the class by replacing the magic
word @QOPTIONS@ with a description of each option.

The basic structure for defining a G1obalOptions class is best illustrated by an example:

sage: from sage.structure.global_options import GlobalOptions
sage: class Menu() :
el class options (GlobalOptions) :

T

et Fancy documentation

50008 @OPTIONS(

The END[!|

T

00008 NAME = 'menu'
60008 entree = dict (default="'soup',
et description='The first course of a meal'’,
e values=dict (soup='soup of the day', bread='oven baked'),
000083 alias=dict (rye='bread'))
e appetizer = dict (alt_name='entree')
ceat main = dict (default='pizza', description='Main meal',
et values=dict (pizza='thick crust', pasta='penne arrabiata'),
e case_sensitive=False)
el dessert = dict (default='espresso', description='Dessert',
et values=dict (espresso='life begins again',
5000 & cake='waist begins again',
e cream="'fluffy, white stuff')
et tip = dict (default=10, description='Reward for good service',
e checker = lambda tip: tip in range (0,20))
sage: Menu.options
Current options for menu
— dessert: espresso

- entree: soup
— main: pizza
- tip: 10

36 Chapter 2. Parents

../../../../../../html/en/reference/combinat/sage/combinat/partition.html#sage.combinat.partition.Partitions
../../../../../../html/en/reference/combinat/sage/combinat/tableau.html#sage.combinat.tableau.Tableaux
../../../../../../html/en/reference/misc/sage/misc/latex.html#sage.misc.latex.latex

Parents and Elements, Release 10.5.rc0

In the examples above, the options are constructed when the opt i ons object is created. However, it is also possible to
construct the options dynamically using the G1obalOptions._add_to_options () methods.

For more details see G1obalOptions.

Accessing and setting option values

All options and their values, when they are strings, are forced to be lower case. The values of an options class can be set
and accessed by calling the class or by treating the class as an array.

Continuing the example from Construction of options classes:

sage: Menu.options
Current options for menu
— dessert: espresso

- entree: soup

- main: pizza

- tip: 10
sage: Menu.options.dessert
espresso
sage: Menu.options.dessert = 'cake'
sage: Menu.options.dessert

cake

Note that, provided there is no ambiguity, options and their values can be abbreviated:

sage: Menu.options('d'")
'cake'
sage: Menu.options('m', 't',des="'esp', ent='sou') # get and set several values at once
['pizza', 10]
sage: Menu.options (t=15)
sage: Menu.options('tip')
15
sage: Menu.options.tip
15
sage: Menu.options(e='s', m='Pi'); Menu.options/()
Current options for menu
— dessert: cake

- entree: soup
- main: pizza
- tip: 15

sage: Menu.options(m='P")
Traceback (most recent call last):

ValueError: P is not a valid value for main in the options for menu

Setter functions

Each option of a G1obalOptions can be equipped with an optional setter function which is called after the value
of the option is changed. In the following example, setting the option ‘add’ changes the state of the class by setting an
attribute in this class using a classmethod (). Note that the options object is inserted after the creation of the class
in order to access the classmethod () as A.setter:

sage: from sage.structure.global_options import GlobalOptions
sage: class A (SageObject) :

(continues on next page)

2.1. Parents 37

https://docs.python.org/library/functions.html#classmethod
https://docs.python.org/library/functions.html#classmethod

Parents and Elements, Release 10.5.rc0

(continued from previous page)

e state = 0

el @classmethod

e def setter(cls, option, wval):
60008 cls.state += int (val)
sage: class options (GlobalOptions) :
50008 NAME = "A"

e add = dict (default=1,

e checker=lambda v: int (v)>0,
e description='An option with a setter',
et setter=A.setter)
sage: A.options = options

sage: A.options

Current options for A

- add: 1

sage: a = A(); a.state

1

sage: a.options ()

Current options for A

- add: 1

sage: a.options (add=4)

sage: a.state

5

sage: a.options ()

Current options for A

- add: 4

Documentation for options

The documentation for a G1obalOptions is automatically generated from the supplied options. For example, the
generated documentation for the options menu defined in Construction of options classes is the following:

Fancy documentation

OPTIONS:
- " appetizer’® -- alternative name for " “entree’
- ““dessert’’ —-- (default: ' “espresso)
Dessert
- " Tcake’’ -— waist begins again
- " cream —-— fluffy, white stuff
- " “espresso’ —-- life begins again
- ““entree’ = -- (default: " “soup)

The first course of a meal

- ““bread’’ -- oven baked
- “rye " —-— alias for " “bread "
- ““soup’ ' -- soup of the day

- " "main’ "~ -- (default: "~ “pizza)

Main meal

- ' “pasta’’ -- penne arrabiata
(continues on next page)

38 Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

(continued from previous page)

- “'pizza ' -- thick crust
- “Ttip' " —-- (default: 710" ")
Reward for good service
The END!

See :class: ~sage.structure.global_options.GlobalOptions®™ for more features of these.
—options.

In addition, help on each option, and its list of possible values, can be obtained by (trying to) set the option equal to ‘?*:

sage: Menu.options.desserti # not tested
- " “dessert’’ -- (default: ' espresso)

Dessert

- " Tcake -— waist begins again

- "~ “cream —-— fluffy, white stuff

— "“espresso’ = —- life begins again

Dispatchers

The whole idea of a G1obalOptions class is that the options change the default behaviour of the associated classes.
This can be done either by simply checking what the current value of the relevant option is. Another possibility is to use
the options class as a dispatcher to associated methods. To use the dispatcher feature of a G1obalOptions class it is
necessary to implement separate methods for each value of the option where the naming convention for these methods is
that they start with a common prefix and finish with the value of the option.

If the value of a dispatchable option is set equal to a (user defined) function then this function is called instead of a class
method.

For example, the options MyOpt ions can be used to dispatch the _repr_ method of the associated class MyClass
as follows:

class MyClass(...):
def _repr_(self):
return self.options._dispatch(self,' _repr_ ', 'first_option')
def _repr_with_bells(self):
print ('Bell!")
def _repr_with_whistles (self):
print ('Whistles!")
class MyOptions (GlobalOptions) :

In this example, first_option is an option of MyOptions which takes values bells, whistles, and so on.
Note that it is necessary to make self, which is an instance of MyClass, an argument of the dispatcher because
_dispatch () is a method of GIobalOptions and not a method of MyClass. Apart from MyOptions, as it
is a method of this class, the arguments are the attached class (here MyClass), the prefix of the method of MyClass
being dispatched, the option of MyOpt i ons which controls the dispatching. All other arguments are passed through to
the corresponding methods of MyClass. In general, a dispatcher is invoked as:

[self.options._dispatch(self, dispatch_to, option, *args, **kargs)]

Usually this will result in the method dispatch_to + '_' + MyOptions (options) of self being called

2.1. Parents 39

Parents and Elements, Release 10.5.rc0

with arguments *args and **kargs (if dispatch_to[-1] == '_"' then the method dispatch_to + My-
Options (options) is called).

If MyOptions (options) is itself a function then the dispatcher will call this function instead. In this way, it is
possible to allow the user to customise the default behaviour of this method. See _dispatch () for an example of how
this can be achieved.

The dispatching capabilities of G1obalOptions allows options to be applied automatically without needing to parse
different values of the option (the cost is that there must be a method for each value). The dispatching capabilities can
also be used to make one option control several methods:

def _ le_ (self, other):

return self.options._dispatch(self, '_le_','cmp', other)
def _ ge_ (self, other):

return self.options._dispatch(self, '_ge_','cmp', other)
def _le_option_a(self, other):

return
def _ge_option_a(self, other):

return
def _le_option_b(self, other):

return
def _ge_option_b(self, other):

return

See _dispatch () for more details.

Doc testing
All of the options and their effects should be doc-tested. However, in order not to break other tests, all options should

be returned to their default state at the end of each test. To make this easier, every GlobalOptions class has a
_reset () method for doing exactly this.

Pickling

Options classes can only be pickled if they are the options for some standard sage class. In this case the class is specified
using the arguments to G1obalOpt ions. For example options () is defined as:

class Partitions (UniqueRepresentation, Parent) :

class options (GlobalOptions) :
NAME = 'Partitions'
module = 'sage.combinat.partition'

Here is an example to test the pickling of a G1obalOpt ions instance:

sage: TestSuite (Partitions.options) .run() #
—needs sage.combinat

AUTHORS:
¢ Andrew Mathas (2013): initial version

¢ Andrew Mathas (2016): overhaul making the options attributes, enabling
pickling and attaching the options to a class.

 Jeroen Demeyer (2017): use subclassing to create instances

40 Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

class sage.structure.global_options.GlobalOptions (NAME=None, module=", option_class="",
doc=", end_doc=", **options)

Bases: object
The GlobalOptions class is a generic class for setting and accessing global options for Sage objects.

While it is possible to create instances of G1obalOpt ions the usual way, the recommended syntax is to subclass
from GlobalOptions. Thanks to some metaclass magic, this actually creates an instance of GlobalOptions
instead of a subclass.

INPUT (as “attributes” of the class):
* NAME - specifies a name for the options class (optional; default: class name)
* module — gives the module that contains the associated options class
e option_class — gives the name of the associated module class (default: NAME)
e option =dict (...) — dictionary specifying an option

The options are specified by keyword arguments with their values being a dictionary which describes the option.
The allowed/expected keys in the dictionary are:

¢ alias — defines alias/synonym for option values

e alt_name - alternative name for an option

¢ checker — a function for checking whether a particular value for the option is valid

e default — the default value of the option

* description — documentation string

e link_to —links to an option for this set of options to an option in another G1obalOptions
* setter —afunction (class method) which is called whenever this option changes

e values — dictionary of the legal values for this option (this automatically defines the corresponding
checker); this dictionary gives the possible options, as keys, together with a brief description of them

* case_sensitive — boolean (default: True); depending on whether the values of the option are case
sensitive

Options and their values can be abbreviated provided that this abbreviation is a prefix of a unique option.

EXAMPLES:

sage: from sage.structure.global_options import GlobalOptions
sage: class Menu() :
e class options (GlobalOptions) :

cooo8 Fancy documentation

50008 QOPTIONSC(

cee End of Fancy documentation

cee NAME = 'menu'

Sa0 a5 entree = dict (default="soup',

et description='The first course of a meal',

et values=dict (soup='soup of the day', bread='oven baked'),
58095 alias=dict (rye='bread'))

e appetizer = dict (alt_name='entree')

(continues on next page)

2.1. Parents a

Parents and Elements, Release 10.5.rc0

(continued from previous page)

e main = dict (default='pizza', description='Main meal',
celt values=dict (pizza="'thick crust', pasta='penne arrabiata'),
e case_sensitive=False)
et dessert = dict (default='espresso', description='Dessert',
Lot values=dict (espresso='life begins again',
5000t cake='waist begins again',
P cream="'fluffy white stuff'))
Lol tip = dict (default=10, description='Reward for good service',
e checker=lambda tip: tip in range (0,20))
sage: Menu.options
Current options for menu
— dessert: espresso

— entree: soup
- main: pizza
- tip: 10
sage: Menu.options (entree='s') # unambiguous abbreviations are allowed

sage: Menu.options (t=15)
sage: (Menu.options['tip'], Menu.options('t'))
(15, 15)
sage: Menu.options()
Current options for menu
— dessert: espresso

— entree: soup
- main: pizza
- tip: 15

sage: Menu.options._reset (); Menu.options ()
Current options for menu
- dessert: espresso

- entree: soup
- main: pizza
- tip: 10

sage: Menu.options.tip=40
Traceback (most recent call last):

ValueError: 40 is not a valid value for tip in the options for menu
sage: Menu.options(m="'p') # ambiguous abbreviations are not allowed

Traceback (most recent call last):

ValueError: p is not a valid value for main in the options for menu

The documentation for the options class is automatically generated from the information which specifies the options:

Fancy documentation

OPTIONS:

— dessert: (default: espresso)
Dessert
- " cake " -— waist begins again
- " cream —— fluffy white stuff
— " “espresso = -- life begins again

— entree: (default: soup)

The first course of a meal

(continues on next page)

42

Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

See

L

- main:
Main meal

- tip:
Reward for good service

bread’® -- oven baked

rye " —-— alias for bread

soup = —— soup of the day
(default: pizza)

pasta’
pizza

—— penne arrabiata
—— thick crust

(default: 10)

End of Fancy documentation

:class: ~sage.structure.global_options.GlobalOptions"
—these options.

(continued from previous page)

for more features of.

The possible values for an individual option can be obtained by (trying to) set it equal to ‘?”:

-

Current wvalue:

sage: Menu.options(des='?")
- " “dessert’ —-- (default: " espresso)
Dessert

cake™ "’
cream =
espresso’

—-— waist begins again
—— fluffy white stuff
-— life begins again

espresso

class sage.structure.global_options.GlobalOptionsMeta (name, bases, dict)

Bases: type

Metaclass for G1obalOptions.

This class is itself an instance of G1obalOptionsMetaMeta, which implements the subclass magic.

class sage.structure.global_options.GlobalOptionsMetaMeta

Bases: type

class sage.structure.global_options.Option (options, name)

Bases: object

An option.

Each option for an options class is an instance of this class which implements the magic that allows the options to
the attributes of the options class that can be looked up, set and called.

By way of example, this class implements the following functionality.

EXAMPLES:

sage: # needs sage.combinat

sage: Partitions.options.display

list

sage: Partitions.options.display = 'compact'
sage: Partitions.options.display('list'")
sage: Partitions.options._reset ()

2.1. Parents

43

Parents and Elements, Release 10.5.rc0

2.2 Old-Style Parents (Deprecated)

2.2.1 Base class for old-style parent objects

CLASS HIERARCHY:
SageObject
Parent

ParentWithBase
ParentWithGens

class sage.structure.parent_old.Parent

Bases: Parent

Parents are the Sage / mathematical analogues of container objects in computer science.

2.2.2 Base class for old-style parent objects with a base ring

class sage.structure.parent_base.ParentWithBase

Bases: Parent
This class is being deprecated, see parent.Parent for the new model.

base_extend (X)

2.2.3 Base class for old-style parent objects with generators

Note

This class is being deprecated, see sage.structure.parent.Parent and sage.structure.
category_object.CategoryObject for the new model.

Many parent objects in Sage are equipped with generators, which are special elements of the object. For example, the
polynomial ring Z[z, y, 2] is generated by x, y, and z. In Sage the i-th generator of an object X is obtained using the
notation X . gen (i) . From the Sage interactive prompt, the shorthand notation X . i is also allowed.

REQUIRED: A class that derives from ParentWithGens must define the ngens() and gen(i) methods.
OPTIONAL.: It is also good if they define gens() to return all gens, but this is not necessary.
The gens function returns a tuple of all generators, the ngens function returns the number of generators.

The _assign_names functions is for internal use only, and is called when objects are created to set the generator
names. It can only be called once.

The following examples illustrate these functions in the context of multivariate polynomial rings and free modules.

EXAMPLES:

sage: R = PolynomialRing(Z2Z, 3, 'x')
sage: R.ngens|()
3
sage: R.gen(0)
(continues on next page)

44 Chapter 2. Parents

Parents and Elements, Release 10.5.rc0

(continued from previous page)

x0

sage: R.gens ()

(x0, x1, x2)

sage: R.variable_names ()
('x0', '"x1', 'x2")

This example illustrates generators for a free module over Z.

sage: # needs sage.modules

sage: M = FreeModule (ZZ, 4)

sage: M

Ambient free module of rank 4 over the principal ideal domain Integer Ring
sage: M.ngens ()

4

sage: M.gen (0)

(1, 0, 0, 0)

sage: M.gens ()

(¢, 0, o, 0), (0, 2, 0, 0), (0, 0, 2, 0), (O, O, 0O, 1))

class sage.structure.parent_gens.ParentWithGens

Bases: ParentWithBase

EXAMPLES:

g
sage: from sage.structure.parent_gens import ParentWithGens

sage: class MyParent (ParentWithGens) :

et def ngens(self): return 3

sage: P = MyParent (base=QQ, names='a,b,c', normalize=True, category=Groups ())
sage: P.category ()

Category of groups

sage: P._names

("aV, "B", "e@")

gen (i=0)
gens ()
Return a tuple whose entries are the generators for this object, in order.

hom (im_gens, codomain=None, base_map=None, category=None, check=True)

Return the unique homomorphism from self to codomain that sends self.gens () to the entries of
im_gens and induces the map base_map on the base ring.

This raises a TypeError if there is no such homomorphism.
INPUT:
* im_gens — the images in the codomain of the generators of this object under the homomorphism
* codomain —the codomain of the homomorphism
* base_map — a map from the base ring of the domain into something that coerces into the codomain
* category — the category of the resulting morphism

* check — whether to verify that the images of generators extend to define a map (using only canonical
coercions)

OUTPUT: a homomorphism self --> codomain

2.2. Old-Style Parents (Deprecated) 45

https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

Note

As a shortcut, one can also give an object X instead of im_gens, in which case return the (if it exists)
natural map to X.

EXAMPLES: Polynomial Ring We first illustrate construction of a few homomorphisms involving a polyno-
mial ring.

sage: R.<x> = PolynomialRing(ZZ)
sage: £ = R.hom([5], QQ)

sage: f(x"2 - 19)

6

sage: R.<x> = PolynomialRing (QQ)
sage: £ = R.hom([5], GF (7))
Traceback (most recent call last):

ValueError: relations do not all (canonically) map to O
under map determined by images of generators

sage: # needs sage.rings.finite rings
sage: R.<x> = PolynomialRing (GF (7))
sage: £ = R.hom([3], GF (49, 'a'))
sage: f
Ring morphism:
From: Univariate Polynomial Ring in x over Finite Field of size 7

To: Finite Field in a of size 772
Defn: x |-—> 3

sage: f(x + 6)

2

sage: f(x"2 + 1)

3

EXAMPLES: Natural morphism

sage: f = ZZ.hom(GF (5))

sage: £ (7)
2
sage: f

Natural morphism:
From: Integer Ring
To: Finite Field of size 5

There might not be a natural morphism, in which case a TypeError exception is raised.

sage: QQ.hom(ZZ)
Traceback (most recent call last):

TypeError: natural coercion morphism from Rational Field to Integer Ring not.
—defined

You can specify a map on the base ring:

sage: # needs sage.rings.finite_rings
sage: k = GF(2)
sage: R.<a> = k][]

(continues on next page)

46 Chapter 2. Parents

https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: l.<a> = k.extension(a”3 + a2 + 1)
sage: R. = 1[]

sage: m. = l.extension(b”2 + b + a)
sage: n.<z> = GF(276)

sage: m.hom([z"4 + z"3 + 1], base_map=l.hom([z"5 + 274 + z"2]))
Ring morphism:
From: Univariate Quotient Polynomial Ring in b over
Finite Field in a of size 27”3 with modulus b"2 + b + a
To: Finite Field in z of size 276
Defn: b |-—> z74 + z"3 + 1
with map of base ring

ngens ()
class sage.structure.parent_gens.localvars
Bases: object
Context manager for safely temporarily changing the variables names of an object with generators.

Objects with named generators are globally unique in Sage. Sometimes, though, it is very useful to be able to
temporarily display the generators differently. The new Python with statement and the localvars context manager
make this easy and safe (and fun!)

Suppose X is any object with generators. Write

with localvars (X, names|[, latex_names] [,normalize=False]):
some code

and the indented code will be run as if the names in X are changed to the new names. If you give normalize=True,
then the names are assumed to be a tuple of the correct number of strings.

EXAMPLES:

sage: R.<x,y> = PolynomialRing(QQ, 2)
sage: with localvars(R, 'z,w'):

50008 print (x*3 + y"3 - x*y)

z"3 + Wh3 — z*w

Note

I wrote this because it was needed to print elements of the quotient of a ring R by an ideal I using the print
function for elements of R. See the code in quotient_ring_element.pyx.

AUTHOR:
« William Stein (2006-10-31)

2.2. Old-Style Parents (Deprecated) 47

Parents and Elements, Release 10.5.rc0

2.2.4 Pure python code for abstract base class for objects with generators

sage.structure.gens_py.abelian_iterator (M)

sage.structure.gens_py.multiplicative_iterator (M)

48 Chapter 2. Parents

CHAPTER
THREE

ELEMENTS

3.1 Elements

AUTHORS:

» David Harvey (2006-10-16): changed Commutative AlgebraElement to derive from CommutativeRingElement in-
stead of AlgebraElement

 David Harvey (2006-10-29): implementation and documentation of new arithmetic architecture
e William Stein (2006-11): arithmetic architecture — pushing it through to completion.

¢ Gonzalo Tornaria (2007-06): recursive base extend for coercion — lots of tests

¢ Robert Bradshaw (2007-2010): arithmetic operators and coercion

¢ Maarten Derickx (2010-07): added architecture for is_square and sqrt

 Jeroen Demeyer (2016-08): moved all coercion to the base class E1ement, see Issue #20767

3.1.1 The Abstract Element Class Hierarchy

This is the abstract class hierarchy, i.e., these are all abstract base classes.

SageObject
Element
ModuleElement
RingElement
CommutativeRingElement
IntegralDomainElement
DedekindDomainElement
PrincipalIdealDomainElement
EuclideanDomainElement
FieldElement
CommutativeAlgebraElement
Expression
AlgebraElement
Matrix
InfinityElement
AdditiveGroupElement
Vector

MonoidElement
MultiplicativeGroupElement
ElementWithCachedMethod

49

https://github.com/sagemath/sage/issues/20767

Parents and Elements, Release 10.5.rc0

3.1.2 How to Define a New Element Class

Elements typically define a method _new_c, e.g.,

cdef _new_c(self, defining data):
cdef FreeModuleElement_generic_dense x
x = FreeModuleElement_generic_dense.__new__ (FreeModuleElement_generic_dense)
x._parent = self._parent
X._entries = v

that creates a new sibling very quickly from defining data with assumed properties.

Arithmetic for Elements

Sage has a special system for handling arithmetic operations on Sage elements (that is instances of E1ement), in particular
to manage uniformly mixed arithmetic operations using the coercion model. We describe here the rules that must
be followed by both arithmetic implementers and callers.

A quick summary for the impatient

To implement addition for any E1ement subclass, override the def _add_ (self, other) method instead of the
usual Python __add___ special method. Within _add_ (self, other), you may assume that self and other
have the same parent.

If the implementation is generic across all elements in a given category C, then this method can be put in C.
ElementMethods.

When writing Cython code, _add_ should be a cpdef method: cpdef _add_ (self, other).

When doing arithmetic with two elements having different parents, the coercion model is responsible for “coercing”
them to a common parent and performing arithmetic on the coerced elements.

Arithmetic in more detail

The aims of this system are to provide (1) an efficient calling protocol from both Python and Cython, (2) uniform coercion
semantics across Sage, (3) ease of use, (4) readability of code.

We will take addition as an example; all other operators are similar. There are two relevant functions, with differing names
(single vs. double underscores).

¢ def Element.__add__(left, right)

This function is called by Python or Cython when the binary “+” operator is encountered. It assumes that at least
one of its arguments is an Element.

It has a fast pathway to deal with the most common case where both arguments have the same parent. Otherwise,
it uses the coercion model to work out how to make them have the same parent. The coercion model then adds the
coerced elements (technically, it calls operator.add). Note that the result of coercion is not required to be a
Sage Element, it could be a plain Python type.

Note that, although this function is declared as def, it doesn’t have the usual overheads associated with Python
functions (either for the caller or for __add___itself). This is because Python has optimised calling protocols for
such special functions.

50 Chapter 3. Elements

../../../../../../html/en/reference/coercion/sage/structure/coerce.html#module-sage.structure.coerce
https://docs.python.org/release/3.10.12/reference/datamodel.html#special-method-names
../../../../../../html/en/reference/coercion/sage/structure/coerce.html#module-sage.structure.coerce

Parents and Elements, Release 10.5.rc0

¢ def Element._add_(self, other)
This is the function that you should override to implement addition in a subclass of Element.

The two arguments to this function are guaranteed to have the same parent, but not necessarily the same Python
type.
When implementing _add__ in a Cython extension type, use codef _add_ instead of def _add_.

In Cython code, if you want to add two elements and you know that their parents are identical, you are encouraged
to call this function directly, instead of using x + y. This only works if Cython knows that the left argument is an
Element. You can always cast explicitly: (<Element>x) ._add_ (y) to force this. In plain Python, x + y
is always the fastest way to add two elements because the special method __add___ is optimized unlike the normal
method _add_.

The difference in the names of the arguments (left, right versusself, other)isintentional: self is guaranteed
to be an instance of the class in which the method is defined. In Cython, we know that at least one of 1eft or right
is an instance of the class but we do not know a priori which one.

Powering is a special case: first of all, the 3-argument version of pow () is not supported. Second, the coercion model
checks whether the exponent looks like an integer. If so, the function _pow_int is called. If the exponent is not an
integer, the arguments are coerced to a common parent and _pow__is called. So, if your type only supports powering to
an integer exponent, you should implement only _pow_int. If you want to support arbitrary powering, implement both
_pow_and _pow_int.

For addition, multiplication and powering (not for other operators), there is a fast path for operations with a C 1ong. For
example, implement cdef _add_long(self, long n) with optimized code for self + n. The addition and
multiplication are assumed to be commutative, so they are also called forn + selforn * self. From Cython code,
youcanalsocall _add_longor_mul_long directly. This is strictly an optimization: there is a default implementation
falling back to the generic arithmetic function.

Examples

We need some Parent to work with:

sage: from sage.structure.parent import Parent
sage: class ExampleParent (Parent) :

e oo def _ init_ (self, name, **kwds):

Ce Parent._ init_ (self, **kwds)
e self.rename (name)

We start with a very basic example of a Python class implementing _add_:

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

et def _add_(self, other):

e return 42

= ExampleParent ("Some parent")

sage: x = MyElement (p)

sage: x + X

(7]

[\

Q

0

e}
|

When two different parents are involved, this no longer works since there is no coercion:

sage: g = ExampleParent ("Other parent")
sage: y = MyElement (q)
sage: x + y
Traceback (most recent call last):
(continues on next page)

3.1. Elements 51

Parents and Elements, Release 10.5.rc0

(continued from previous page)

TypeError: unsupported operand parent (s) for +: 'Some parent' and 'Other parent'

If _add_ is not defined, an error message is raised, referring to the parents:

sage: x = Element (p)
sage: x._add_ (x)
Traceback (most recent call last):

AttributeError: 'sage.structure.element.Element' object has no attribute '_add_'...
sage: x + x
Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +: 'Some parent' and 'Some parent'
sage: y = Element (q)

sage: x + y

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +: 'Some parent' and 'Other parent'

We can also implement arithmetic generically in categories:

sage: class MyCategory (Category) :

e def super_categories(self) :

I return [Sets ()]

ceat class ElementMethods:

e def _add_(self, other):

50008 return 42

sage: p = ExampleParent ("Parent in my category", category=MyCategory())
sage: x = Element (p)

sage: x + X

Implementation details

Implementing the above features actually takes a bit of magic. Casual callers and implementers can safely ignore it, but
here are the details for the curious.

To achieve fast arithmetic, it is critical to have a fast path in Cython to call the _add_ method of a Cython object. So
we would like to declare _add_ as a cpdef method of class £1ement. Remember however that the abstract classes
coming from categories come after £1ement in the method resolution order (or fake method resolution order in case of
a Cython class). Hence any generic implementation of _add__ in such an abstract class would in principle be shadowed
by Element ._add_. This is worked around by defining Element . _add_ as a cdef instead of a cpde £ method.
Concrete implementations in subclasses should be cpde £ or de £ methods.

Let us now see what happens upon evaluating x + y when x and y are instances of a class that does not implement _add_
but where _add__ is implemented in the category. First, x.___add__ (y) is called, where __add___is implemented
in Element. Assuming that x and y have the same parent, a Cython call to x._add_ (y) will be done. The latter is
implemented to trigger a Python level call to x . _add_ (y) which will succeed as desired.

In case that Python code calls x . _add_ (y) directly, Element ._add_ will be invisible, and the method lookup will
continue down the MRO and find the _add_ method in the category.

class sage.structure.element.AdditiveGroupElement

Bases: ModuleElement

52 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

Generic element of an additive group.

order ()
Return additive order of element

class sage.structure.element.AlgebraElement

Bases: RingElement

class sage.structure.element.CommutativeAlgebraElement

Bases: CommutativeRingElement

class sage.structure.element.CommutativeRingElement

Bases: RingElement
Base class for elements of commutative rings.

divides (x)
Return True if self divides x.

EXAMPLES:

sage: P.<x> = PolynomialRing (QQ)
sage: x.divides (x"2)

True

sage: x.divides (x"2 + 2)
False

sage: (x"2 + 2).divides (x)
False

sage: P.<x> = PolynomialRing(ZZ)
sage: x.divides (x"2)

True

sage: x.divides (x"2 + 2)
False

sage: (x"2 + 2).divides (x)
False

Issue #5347 has been fixed:

sage: K = GF (7)

sage: K(3) .divides (1)
True

sage: K(3) .divides (K (1))
True

sage: R = Integers(128)
sage: R(0) .divides (1)

False

sage: R(0) .divides (0)

True

sage: R(0) .divides (R(0))
True

sage: R(1) .divides (0)

True

sage: R(121) .divides (R(120))
True

sage: R(120) .divides (R(121))
False

3.1. Elements 53

https://github.com/sagemath/sage/issues/5347

Parents and Elements, Release 10.5.rc0

If x has different parent than self, they are first coerced to a common parent if possible. If this coercion
fails, it returns a TypeError. This fixes Issue #5759.

sage: zZmod(2) (0) .divides (Zmod (2) (0))
True

sage: Zmod(2) (0) .divides (Zmod (2) (1))
False

sage: Zmod(5) (1) .divides (Zmod(2) (1))
Traceback (most recent call last):

TypeError: no common canonical parent for objects with parents:
'Ring of integers modulo 5' and 'Ring of integers modulo 2'
sage: Zmod(35) (4) .divides (Zmod(7) (1))

True

sage: Zmod(35) (7) .divides (Zmod (7) (1))

False

inverse_mod (/)

Return an inverse of self modulo the ideal I, if defined, i.e., if [and self together generate the unit ideal.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: F = GF (25)

sage: x = F.gen|()

sage: z = F.zero()

sage: x.inverse_mod(F.ideal (z))

2*z2 + 3

sage: x.inverse_mod(F.ideal (1))

1

sage: z.inverse_mod(F.ideal (1))

1

sage: z.inverse_mod(F.ideal (z))
Traceback (most recent call last):

ValueError: an element of a proper ideal does not have an inverse modulo that.
—ideal

is_square (root=Fualse)

Return whether or not the ring element sel1f is a square.
If the optional argument root is True, then also return the square root (or None, if it is not a square).
INPUT:
¢ root —boolean (default: False); whether or not to also return a square root
OUTPUT:
* boolean; whether or not a square
* object; (optional) an actual square root if found, and None otherwise

EXAMPLES:

sage: R.<x> = PolynomialRing (QQ)
sage: f = 12*(x+1)"2 * (x+3)"2
sage: f.is_square ()
False
sage: f.is_square (root=True)
(continues on next page)

54

Chapter 3. Elements

https://docs.python.org/library/exceptions.html#TypeError
https://github.com/sagemath/sage/issues/5759

Parents and Elements, Release 10.5.rc0

(continued from previous page)

(False, None)

sage: h = f/3

sage: h.is_square ()

True

sage: h.is_square (root=True)
(True, 2*x"2 + 8*x + 6)

Note

This is the is_square implementation for general commutative ring elements. It’s implementation is to raise
aNotImplementedError. The function definition is here to show what functionality is expected and
provide a general framework.

mod (/)

Return a representative for se1f modulo the ideal I (or the ideal generated by the elements of I if I is not an
ideal.)

EXAMPLES: Integers Reduction of 5 modulo an ideal:

sage: n = 5
sage: n.mod (3*ZZ)
2

Reduction of 5 modulo the ideal generated by 3:

sage: n.mod (3)
2

Reduction of 5 modulo the ideal generated by 15 and 6, which is (3).

sage: n.mod([15,6])
2

EXAMPLES: Univariate polynomials

sage: R.<x> = PolynomialRing (QQ)
sage: f = x"3 + x + 1

sage: f.mod(x + 1)

=i

Reduction for Z|x]:

sage: R.<x> = PolynomialRing(ZZ)
sage: f = x"3 + x + 1

sage: f.mod(x + 1)

=il

When little is implemented about a given ring, then mod may simply return f.

EXAMPLES: Multivariate polynomials We reduce a polynomial in two variables modulo a polynomial and
an ideal:

sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: (x"2 + y"2 + z72).mod(x + y + 2) #
(continues on next page)

3.1. Elements 55

https://docs.python.org/library/exceptions.html#NotImplementedError

Parents and Elements, Release 10.5.rc0

(continued from previous page)

—needs sage.libs.singular
2GR 2 *+ 2¥y¥m + 2%8 2

Notice above that z is eliminated. In the next example, both y and z are eliminated:

sage: (x"2 + y"2 + z72).mod((x -y, v — z)) #
—needs sage.libs.singular

3%z 2

sage: f = (x"2 + y*2 + z"2)"2; £

XN 4 2FxN2*yN2 4+ vy A o+ 2*xN2%z7N2 + 2%yt 2%z72 + zh4

sage: f.mod((x -y, v — z)) #
—needs sage.libs.singular

9*z"4

In this example y is eliminated:

sage: (x"2 + y*2 + z72).mod((x"3, y - z)) #
—needs sage.libs.singular
X"2 + 2*z"2

sqgrt (extend=True, all=False, name=None)
Compute the square root.

INPUT:

* extend - boolean (default: True); whether to make a ring extension containing a square root if self
is not a square

e all - boolean (default: False); whether to return a list of all square roots or just a square root

* name —required when extend=True and self is not a square; this will be the name of the generator
of the extension

OUTPUT:

* if all=False, a square root; raises an error if extend=False and self is not a square

e if al1=True, alist of all the square roots (empty if extend=False and self is not a square)
ALGORITHM:

It uses is_square (root=true) for the hard part of the work, the rest is just wrapper code.

EXAMPLES:

sage: # needs sage.libs.pari
sage: R.<x> = ZZ[]

sage: (x"2).sqgrt ()

X

sage: f = x"2 - 4*x + 4; f.sqgrt (all=True)
2 = 2, =% + 2]

sage: sqgrtx = x.sqrt (name='y'); sqgrtx

Yy

sage: sqrtx”2

X

sage: x.sqrt (all=true, name='y')

[y, -vI

sage: x.sgrt (extend=False, all=True)

[]

sage: x.sqgrt ()

(continues on next page)

56

Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

(continued from previous page)

Traceback (most recent call last):

TypeError: Polynomial is not a square. You must specify the name
of the square root when using the default extend = True

sage: x.sgrt (extend=False)

Traceback (most recent call last):

ValueError: trying to take square root of non-square x with extend = False

class sage.structure.element .DedekindDomainElement

Bases: TntegralDomainElement

class sage.structure.element.Element

Bases: SageObject

Generic element of a structure. All other types of elements (RingElement, ModuleElement, etc) derive
from this type.

Subtypes must either call __init__ () toset _parent, or may set _parent themselves if that would be more
efficient.

richemp (left, right, op)

Basic default implementation of rich comparisons for elements with equal parents.

It does a comparison by id for == and !=. Calling this default method with <, <=, > or >= will return
NotImplemented.

EXAMPLES:

sage: from sage.structure.parent import Parent
sage: from sage.structure.element import Element

sage: P = Parent ()

sage: el = Element (P); e2 = Element (P)
sage: el == el # indirect doctest
True

sage: el == e2 # indirect doctest
False

sage: el < e2 # indirect doctest

Traceback (most recent call last):

TypeError: '<' not supported between instances of 'sage.structure.element.
—Element' and 'sage.structure.element.Element'

We now create an Element class where we define _richcmp_ and check that comparison works:

sage: # needs sage.misc.cython
sage: cython (

rr

....: from sage.structure.richcmp cimport rich_to_bool
....: from sage.structure.element cimport Element
....: cdef class FloatCmp (Element) :

et cdef float x

25043 def __init__ (self, float v):

co0o0083 self.x = v

e cpdef _richcmp_(self, other, int op):

25043 cdef float x1 = (<FloatCmp>self) .x

et cdef float x2 = (<FloatCmp>other) .x

(continues on next page)

3.1. Elements 57

Parents and Elements, Release 10.5.rc0

(continued from previous page)

et return rich_to_bool (op, (x1 > x2) - (x1 < x2))

sage: a = FloatCmp (1)
FloatCmp (2)
sage: a <= b, b <= a
(True, False)

n

W

Q
()

o
Il

__add__ (left, right)
Top-level addition operator for E1ement invoking the coercion model.
See Arithmetic for Elements.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _add_(self, other):

et return 42

sage: e = MyElement (Parent ())

sage: e + e

__sub___ (left, right)
Top-level subtraction operator for £1ement invoking the coercion model.
See Arithmetic for Elements.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _sub_(self, other):

e return 42

sage: e = MyElement (Parent ())

sage: e - e

__neg__ ()

Top-level negation operator for £lement.

EXAMPLES:

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _neg_(self):

e return 42

sage: e = MyElement (Parent ())

_mul__ (left, right)
Top-level multiplication operator for £1ement invoking the coercion model.
See Arithmetic for Elements.

EXAMPLES:

58 Chapter 3.

Elements

Parents and Elements, Release 10.5.rc0

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _mul_(self, other):

e return 42

sage: e = MyElement (Parent ())

sage: e * e

.

__truediv__ (left, right)
Top-level true division operator for £1ement invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: operator.truediv (2, 3)

2/3

sage: operator.truediv(pi, 3) #
—needs sage.symbolic

1/3*pi

sage: x = polygen(QQ, 'x'")

sage: K.<i> = NumberField(x"2 + 1) #.
—needs sage.rings.number_field

sage: operator.truediv (2, K.ideal(i + 1)) #
—needs sage.rings.number_ field

Fractional ideal (-i + 1)

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _div_(self, other):

50008 return 42

sage: e = MyElement (Parent ())

sage: operator.truediv(e, e)

__floordiv__ (left, right)

Top-level floor division operator for EIement invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: 7 // 3

2

sage: 7 // int (3)
2

sage: int(7) // 3
2

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _floordiv_ (self, other):

50008 return 42

sage: e = MyElement (Parent ())

sage: e // e

3.1. Elements 59

Parents and Elements, Release 10.5.rc0

__mod___(left, right)

Top-level modulo operator for E1ement invoking the coercion model.

See Arithmetic for Elements.

EXAMPLES:

sage: 7 % 3

1

sage: 7 % int (3)
1

sage: int(7) % 3
1

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _mod_(self, other):

e return 42

sage: e = MyElement (Parent ())
sage: e % e
42

base_extend (R)
base_ring()
Return the base ring of this element’s parent (if that makes sense).
category ()
is_zero()
Return True if self equals self.parent () (0).

The default implementation is to fall back to not self._ _bool__ .

Warning

Do not re-implement this method in your subclass but implement __bool___ instead.

n (prec=None, digits=None, algorithm=None)

Alias for numerical_ approx().

EXAMPLES:

sage: (2/3).n() #
—needs sage.rings.real_mpfr
0.666666666666667

numerical_approx (prec=None, digits=None, algorithm=None)

Return a numerical approximation of self with prec bits (or decimal digits) of precision.
No guarantee is made about the accuracy of the result.
INPUT:

* prec — precision in bits

e digits — precision in decimal digits (only used if prec is not given)

60 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

¢ algorithm— which algorithm to use to compute this approximation (the accepted algorithms depend
on the object)

If neither prec nor digits is given, the default precision is 53 bits (roughly 16 digits).
EXAMPLES:

sage: (2/3).numerical_approx() #.
—needs sage.rings.real_mpfr

0.666666666666667

sage: pi.n(digits=10) #o
—needs sage.symbolic

3.141592654

sage: pi.n(prec=20) #o
—needs sage.symbolic
3.1416

parent (x=None)

Return the parent of this element; or, if the optional argument x is supplied, the result of coercing x into the
parent of this element.

subs (in_dict=None, **kwds)

Substitutes given generators with given values while not touching other generators.

This is a generic wrapper around ___call__ . The syntax is meant to be compatible with the corresponding
method for symbolic expressions.

INPUT:

e in_dict — (optional) dictionary of inputs

* **kwds —named parameters
OUTPUT: new object if substitution is possible, otherwise self
EXAMPLES:

sage: x, y = PolynomialRing(ZZ,2, 'xy"') .gens ()
sage: f = x"2 + y + x"2*y"2 + 5
sage: £((5,y))

25*y"~2 + y + 30

sage: f.subs({x:5})

25*y"2 + y + 30

sage: f.subs (x=5)

25*y"2 + y + 30

sage: (1/f).subs (x=5)

1/(25*y*2 + y + 30)

sage: Integer (5) .subs (x=4)

5

substitute (*args, **kwds)
This calls self.subs ().

EXAMPLES:

sage: x, y = PolynomialRing(ZZ, 2, 'xy') .gens()
sage: f = x"2 + y + x"2*y"2 + 5

sage: f£((5,y))

25*y"2 + y + 30

sage: f.substitute({x: 5})

(continues on next page)

3.1. Elements 61

Parents and Elements, Release 10.5.rc0

(continued from previous page)
25*y"2 + y + 30
sage: f.substitute (x=5)
25*y"2 + y + 30
sage: (1/f).substitute (x=5)
1/(25*y*2 + y + 30)
sage: Integer (5) .substitute (x=4)
5

class sage.structure.element.ElementWithCachedMethod

Bases: Element
An element class that fully supports cached methods.
NOTE:

The cached_method decorator provides a convenient way to automatically cache the result of a computation.
Since Issue #11115, the cached method decorator applied to a method without optional arguments is faster than a
hand-written cache in Python, and a cached method without any arguments (except se1f) is actually faster than a
Python method that does nothing more but to return 1. A cached method can also be inherited from the parent or
element class of a category.

However, this holds true only if attribute assignment is supported. If you write an extension class in Cython that
does not accept attribute assignment then a cached method inherited from the category will be slower (for Parent)
or the cache would even break (for £1ement).

This class should be used if you write an element class, cannot provide it with attribute assignment, but want that it
inherits a cached method from the category. Under these conditions, your class should inherit from this class rather
than Element. Then, the cache will work, but certainly slower than with attribute assignment. Lazy attributes
work as well.

EXAMPLES:

We define three element extension classes. The first inherits from EIement, the second from this class, and the
third simply is a Python class. We also define a parent class and, in Python, a category whose element and parent
classes define cached methods.

sage: # needs sage.misc.cython
sage: cython_code = ["from sage.structure.element cimport Element,.
—ElementWithCachedMethod",
cee "from sage.structure.richcmp cimport richcmp",
SaB80s "cdef class MyBrokenElement (Element) :",
ol " cdef public object x",
060008 " def _ _init_ (self, P, x):",
cooo8 " self.x = x",
e " Element._init__ (self, P)",
et " def _ neg_ (self):",
e return MyBrokenElement (self.parent (), -self.x)",
e " def _repr_(self):",
et " return '<%s>' elf.x",
SaB80s " def _ _hash__ (self):",
e return hash(self.x)",
60008 cpdef _richcmp_(left, right, int op):",
et return richcmp (left.x, right.x, op)",
e " def raw_test (self):",
e return -self",
e "cdef class MyElement (ElementWithCachedMethod) : ",
el " cdef public object x",
60008 " def _ _init_ (self, P, x):",
(continues on next page)

62

Chapter 3. Elements

https://github.com/sagemath/sage/issues/11115

Parents and Elements, Release 10.5.rc0

sage:
sage:

.

(continued from previous page)

" self.x = x",
" Element.__init__ (self, P)",
" def _ neg_ (self):",
" return MyElement (self.parent (), -self.x)",
@ def _repr_(self):",
" return '<$%s>' % self.x",
" def _ _hash__ (self):",
" return hash(self.x)",
" cpdef _richcmp_ (left, right, int op):",
" return richcmp (left.x, right.x, op)",
" def raw_test (self):",
" return -self",
"class MyPythonElement (MyBrokenElement) : pass",
"from sage.structure.parent cimport Parent",
"cdef class MyParent (Parent) :",
" Element = MyElement"]
cython ('"\n'.Jjoin (cython_code))

cython_code = ["from sage.misc.cachefunc import cached_method",

"from sage.misc.cachefunc import cached_in_parent_method",
"from sage.categories.category import Category",
"from sage.categories.objects import Objects",
"class MyCategory (Category) :",
" @cached_method",
" def super_categories(self):",
@ return [Objects()]1",
" class ElementMethods:",
" @cached_method",
" def element_cache_test (self):",
" return -self",
" @cached_in_parent_method",
" def element_via_parent_test (self):",
" return -self",
" class ParentMethods:",
" @cached_method",
" def one(self):",
" return self.element_class (self,1)",
" @cached_method",
" def invert (self, x):",
" return -x"]
cython ('"\n'.join (cython_code))
C = MyCategory ()
P = MyParent (category=C)
ebroken = MyBrokenElement (P, 5)
e = MyElement (P, 5)

The cached methods inherited by MyElement works:

-
sage:

sage:
<-5>
sage:
True
sage:
<-=5>
sage:
True

needs sage.misc.cython
e.element_cache_test ()

e.element_cache_test () is e.element_cache_test ()
e.element_via_parent_test ()

e.element_via_parent_test () is e.element_via_parent_test ()

3.1. Elements

63

Parents and Elements, Release 10.5.rc0

The other element class can only inherit a cached_in_parent_method, since the cache is stored in the

parent. In fact, equal elements share the cache, even if they are of different types:

-
sage: e == ebroken

—needs sage.misc.cython

True

sage: type(e) == type (ebroken)

—needs sage.misc.cython

False

sage: ebroken.element_via_parent_test () is e.element_via_parent_test ()
—needs sage.misc.cython

True

#

However, the cache of the other inherited method breaks, although the method as such works:

sage: ebroken.element_cache_test ()

—needs sage.misc.cython

<-5>

sage: ebroken.element_cache_test () is ebroken.element_cache_test ()
—needs sage.misc.cython

False

Since e and ebroken share the cache, when we empty it for one element it is empty for the other as well:

sage: b = ebroken.element_via_parent_test ()
—needs sage.misc.cython

sage: e.element_via_parent_test.clear_cache ()
—needs sage.misc.cython

sage: b is ebroken.element_via_parent_test ()
—needs sage.misc.cython

False

Note that the cache only breaks for elements that do no allow attribute assignment. A Python version of MyBro-

kenElement therefore allows for cached methods:

sage: epython

MyPythonElement (P, 5)

—needs sage.misc.cython

sage: epython.element_cache_test ()

—needs sage.misc.cython

<=5>

sage: epython.element_cache_test () is epython.element_cache_test ()
—needs sage.misc.cython

True

.

class sage.structure.element .EuclideanDomainElement

Bases: PrincipalIdealDomainElement

degree ()
leading_coefficient ()

quo_rem (other)

class sage.structure.element .Expression

Bases: CommutativeRingElement
Abstract base class for Expression.

This class is defined for the purpose of isinstance () tests. It should not be instantiated.

64

Chapter 3. Elements

../../../../../../html/en/reference/calculus/sage/symbolic/expression.html#sage.symbolic.expression.Expression
https://docs.python.org/library/functions.html#isinstance

Parents and Elements, Release 10.5.rc0

EXAMPLES:

—needs sage.symbolic
True

sage: isinstance(SR.var('y'), sage.structure.element.Expression)

By design, there is a unique direct subclass:

sage: len(sage.structure.element.Expression.__subclasses__ ())
True

.

<= 1

class sage.structure.element .FieldElement
Bases: CommutativeRingElement

divides (other)
Check whether sel £ divides other, for field elements.

Since this is a field, all values divide all other values, except that zero does not divide any nonzero values.

EXAMPLES:
sage: # needs sage.rings.number_field sage.symbolic
sage: K.<rt3> = QQ[sqrt(3)]
sage: K(0).divides (rt3)
False
sage: rt3.divides (K (17))
True
sage: K(0) .divides (K(0))
True
sage: rt3.divides (K(0))
True

is_unit ()

Return True if self is a unit in its parent ring.

EXAMPLES:
sage: a = 2/3; a.is_unit ()
True

On the other hand, 2 is not a unit, since its parent is Z.

sage: a = 2; a.is_unit()
False

sage: parent (a)

Integer Ring

However, a is a unit when viewed as an element of QQ:

sage: a = 00(2); a.is_unit ()
True

quo_rem (right)

Return the quotient and remainder obtained by dividing se1f by right. Since this element lives in a field,

the remainder is always zero and the quotient is self/right.

class sage.structure.element.InfinityElement

Bases: RingElement

3.1. Elements

65

Parents and Elements, Release 10.5.rc0

class sage.structure.element.IntegralDomainElement

Bases: CommutativeRingElement
is_nilpotent ()

class sage.structure.element .Matrix
Bases: ModuleElement

class sage.structure.element .ModuleElement

Bases: Element
Generic element of a module.

additive_order ()

Return the additive order of self.

order ()

Return the additive order of self.

class sage.structure.element .ModuleElementWithMutability

Bases: ModuleElement
Generic element of a module with mutability.

is_immutable ()
Return True if this vector is immutable, i.e., the entries cannot be changed.

EXAMPLES:

sage: v = vector(QQ['x,v"']l, [1..5]); v.is_immutable () #_
—needs sage.modules

False

sage: v.set_immutable () #_
—needs sage.modules

sage: v.is_immutable () #_
—needs sage.modules

True

is_mutable ()

Return True if this vector is mutable, i.e., the entries can be changed.

EXAMPLES:

sage: v = vector(QQ['x,y']l, [1..5]); v.is_mutable() #
—needs sage.modules

True

sage: v.set_immutable () #
—needs sage.modules

sage: v.is_mutable () #_
—needs sage.modules

False

set_immutable ()

Make this vector immutable. This operation can’t be undone.

EXAMPLES:

66 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

sage: # needs sage.modules
sage: v = vector([1..5]); v
(1, 2, 3, 4, 5)

sage: v[1] = 10

sage: v.set_immutable ()
sage: v[1] = 10

Traceback (most recent call last):

ValueError: vector is immutable; please change a copy instead (use copy())

class sage.structure.element .MonoidElement

Bases: Element
Generic element of a monoid.

multiplicative_order ()

Return the multiplicative order of self.

order ()

Return the multiplicative order of self.

powers (n)
Return the list [z9, 2, ... 2"~ 1].

EXAMPLES:

sage: G = SymmetricGroup (4)

—needs sage.groups

sage: g = G([2, 3, 4, 11])

—needs sage.groups

sage: g.powers(4)

—needs sage.groups

(¢, (1,2,3,4), (1,3)(2,4), (1,4,3,2)]

class sage.structure.element .MultiplicativeGroupElement

Bases: MonoidElement
Generic element of a multiplicative group.

order ()

Return the multiplicative order of self.

class sage.structure.element.PrincipalIdealDomainElement

Bases: DedekindDomainElement
gcd (right)
Return the greatest common divisor of self and other.

lcm (right)

Return the least common multiple of self and right.

class sage.structure.element.RingElement

Bases: ModuleElement

abs ()

Return the absolute value of self. (This just calls the __abs__ method, so it is equivalent to the abs ()

built-in function.)

EXAMPLES:

3.1. Elements

67

Parents and Elements, Release 10.5.rc0

sage: RR(-1) .abs()

—needs sage.rings.real_mpfr
1.00000000000000

sage: ZZ(-1) .abs ()

1

sage: CC(I) .abs()

—needs sage.rings.real_mpfr sage.symbolic
1.00000000000000

sage: Mod(-15, 37) .abs()

Traceback (most recent call last):

ArithmeticError: absolute value not defined on integers modulo n.

additive_order ()

Return the additive order of self.

is_nilpotent ()

Return True if self is nilpotent, i.e., some power of self is 0.

is_one ()

is_prime ()

Check whether self is a prime element.

A prime element is a nonzero, non-unit element p such that, whenever p divides ab for some a and b, then p

divides a or p divides b.
EXAMPLES:

For polynomial rings, prime is the same as irreducible:

sage: # needs sage.libs.singular
sage: R.<x,y> = QQI[]

sage: x.is_prime ()

True

sage: (x"2 + y”3).is_prime()
True

sage: (x"2 - y"2).is_prime()
False

sage: R(0) .is_prime()

False

sage: R(2) .is_prime ()

False

For the Gaussian integers:

sage: # needs sage.rings.number_field

sage: K.<i> = QuadraticField(-1)
sage: ZI = K.ring_of_integers()
sage: ZI(3).is_prime ()

True

sage: ZI(5).is_prime ()

False

sage: ZI(2 + 1).is_prime()

True

sage: ZI(0).is_prime ()

False

sage: ZI(1l).is_prime ()

False

68

Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

In fields, an element is never prime:

sage: RR(0) .is_prime ()
False
sage: RR(2) .is_prime ()
False

For integers, is_prime () redefines prime numbers to be positive:

sage: (-2).is_prime()

False

sage: RingElement.is_prime (-2) #_
—needs sage.libs.pari

True

Similarly, NumberField redefines is_prime () to determine primality in the ring of integers:

sage: # needs sage.rings.number_field
sage: (1 + 1i).is_prime()

True

sage: K(5) .is_prime()

False

sage: K(7) .is_prime ()

True

sage: K(7/13) .is_prime ()

False

However, for rationals, is_prime () does follow the general definition of prime elements in a ring (i.e.,
always returns False) since the rationals are not a NumberField in Sage:

sage: QQ(7) .is_prime ()
False

multiplicative_order ()
Return the multiplicative order of self, if self is a unit.

This raises an ArithmeticError otherwise.

powers (n)

Return the list [z9, 2, ... 2"~ 1].

EXAMPLES:

sage: 5.powers (3)
(1, 5, 25]

class sage.structure.element .Vector
Bases: ModuleElementWithMutability

sage.structure.element .bin_op (x, y, op)

sage.structure.element.canonical_coercion (x,y)

canonical_coercion (x,y) is what is called before doing an arithmetic operation between x and y. It
returns a pair (z, w) such that z is got from x and w from y via canonical coercion and the parents of z and w are
identical.

EXAMPLES:

3.1. Elements 69

../../../../../../html/en/reference/number_fields/sage/rings/number_field/number_field_base.html#sage.rings.number_field.number_field_base.NumberField
../../../../../../html/en/reference/number_fields/sage/rings/number_field/number_field_base.html#sage.rings.number_field.number_field_base.NumberField
https://docs.python.org/library/exceptions.html#ArithmeticError

Parents and Elements, Release 10.5.rc0

-

sage: A = Matrix ([[0, 1], [1, 0]1])
—needs sage.modules

sage: canonical_coercion (A, 1)
—needs sage.modules

(

[0 1] [1 0]

[1 0], [0 1]

)

sage.structure.element .coerce_binop (method)

Decorator for a binary operator method for applying coercion to the arguments before calling the method.

Consider a parent class in the category framework, S, whose element class expose a method binop. If a and b are
elements of S, then a.binop(b) behaves as expected. If a and b are not elements of .S, but rather have a common
parent T' whose element class also exposes binop, we would rather expect a.binop(b) to compute aa.binop(bb),
where aa = T'(a) and bb = T'(b). This decorator ensures that behaviour without having to otherwise modify the

implementation of binop on the element class of A.

Since coercion will be attempted on the arguments of the decorated method, a T'ype Error will be thrown if there
is no common parent between the elements. An Attribute Error or NotI'mplemented Error or similar will be
thrown if there is a common parent of the arguments, but its element class does not implement a method of the

same name as the decorated method.
EXAMPLES:

Sparse polynomial rings uses @coerce,inop on ged:

sage: S.<x> = PolynomialRing(ZZ, sparse=True)

sage: f = x"2

sage: g = X

sage: f.gcd(g) #indirect doctest

X

sage: T = PolynomialRing (QQ, name='x', sparse=True)
sage: h = 1/2*T(x)

sage: u = f.gcd(h); u #indirect doctest

X

sage: u.parent() == T
True

L

Another real example:

sage: R1 = QQ['x,vy"]
sage: R2 = QQ['x,v,z"]

sage: f = R1(1)

sage: g = R1(2)

sage: h = R2(1)

sage: f.gcd(g)

1

sage: f.gcd(g, algorithm='modular')
1

sage: f.gcd(h)

1

sage: f.gcd(h, algorithm='modular')
1

sage: h.gcd(f)

1

sage: h.gcd(f, 'modular')

1

70

Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

We demonstrate a small class using @coerce,inop on a method:

sage: from sage.structure.element import coerce_binop
sage: class MyRational (Rational) :

e def _ init_ (self, wvalue):

e self.v = value

P @coerce_binop

e def test_add(self, other, keyword='z"):

60008 return (self.v, other, keyword)

Calls func directly if the two arguments have the same parent:

sage: x = MyRational (1)

sage: x.test_add(1/2)

(1, 1/2, 'z")

sage: x.test_add(1/2, keyword=3)
(i, 172, 3)

.

Passes through coercion and does a method lookup if the left operand is not the same. If the common parent’s
element class does not have a method of the same name, an exception is raised:

sage: x.test_add(2)

(1, 2, 'z")
sage: x.test_add (2, keyword=3)
(L, 2, 3)

sage: x.test_add(CC(2))
Traceback (most recent call last):

AttributeError: 'sage.rings.complex mpfr.ComplexNumber' object has no attribute
—'test_add'...

.

sage.structure.element.coercion_traceback (dump=True)

This function is very helpful in debugging coercion errors. It prints the tracebacks of all the errors caught in the
coercion detection. Note that failure is cached, so some errors may be omitted the second time around (as it
remembers not to retry failed paths for speed reasons.

For performance and caching reasons, exception recording must be explicitly enabled before using this function.

EXAMPLES:

sage: cm = sage.structure.element.get_coercion_model ()

sage: cm.record_exceptions ()

sage: 1 + 1/5

6/5

sage: coercion_traceback () # Should be empty, as all went well.
sage: 1/5 + GF(5).gen()

Traceback (most recent call last):

TypeError: unsupported operand parent (s) for +:
'Rational Field' and 'Finite Field of size 5'
sage: coercion_traceback ()

Traceback (most recent call last):

TypeError: no common canonical parent for objects with parents:
'Rational Field' and 'Finite Field of size 5'

sage.structure.element.get_coercion_model ()

Return the global coercion model.

3.1. Elements 4

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: import sage.structure.element as e
sage: cm = e.get_coercion_model ()

sage: cm

<sage.structure.coerce.CoercionModel object at ...>
sage: cm is coercion_model

True

sage.structure.element .have_same_parent (left, right)

Return True if and only if 1eft and right have the same parent.

Warning

parent (left) is parent (right) instead.

This function assumes that at least one of the arguments is a Sage £1ement. When in doubt, use the slower

EXAMPLES:

sage: from sage.structure.element import have_same_parent
sage: have_same_parent (1, 3)

True

sage: have_same_parent (1, 1/2)

False

sage: have_same_parent (gap(l), gap(l/2))

—needs sage.libs.gap

True
.

These have different types but the same parent:

-

sage: a = RLF (2)

sage: b = exp(a)

sage: type(a)

<... 'sage.rings.real_lazy.LazyWrapper'>
sage: type (b)

<... 'sage.rings.real_lazy.LazyNamedUnop'>
sage: have_same_parent (a, b)

True

sage.structure.element.is_AdditiveGroupElement (x)

Return True if x is of type AdditiveGroupElement.

sage.structure.element.is_AlgebraElement (x)

Return True if x is of type AlgebraElement.

sage.structure.element.is_CommutativeAlgebraElement (x)

Return True if x is of type CommutativeAlgebraElement.

sage.structure.element.is_CommutativeRingElement (x)

Return True if x is of type CommutativeRingElement.

sage.structure.element.is_DedekindDomainElement (x)

Return True if x is of type DedekindDomainElement.

sage.structure.element.is_Element (x)

Return True if x is of type Element.

72 Chapter 3.

Elements

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: from sage.structure.element import is_Element
sage: is_Element (2/3)
doctest:warning. ..

DeprecationWarning: The function is_Element is deprecated; use 'isinstance(...,.
—~Element)' instead.

See https://github.com/sagemath/sage/issues/38077 for details.

True

sage: is_Element (QQ"3) #_

—needs sage.modules
False

sage

sage

sage

sage

sage

sage

.structure.element.is_EuclideanDomainElement (x)

Return True if x is of type EuclideanDomainElement.

.structure.element.is_FieldElement (x)

Return True if x is of type FieldElement.

.structure.element.is_InfinityElement (x)

Return True if x is of type InfinityElement.

.structure.element.is_IntegralDomainElement (x)

Return True if x is of type IntegralDomainElement.
.structure.element.is_Matrix (x)
.structure.element.is_ModuleElement (x)
Return True if x is of type ModuleElement.

This is even faster than using isinstance inline.

EXAMPLES:

(

sage: from sage.structure.element import is_ModuleElement
sage: is_ModuleElement (2/3)

doctest:warning. ..

DeprecationWarning: The function is_ModuleElement is deprecated; use
.., ModuleElement)' instead.

See https://github.com/sagemath/sage/issues/38077 for details.
True

sage: is_ModuleElement ((Q0"3) .0)

—needs sage.modules

True

sage: is_ModuleElement ('a')

False

'isinstance (.

#

sage

sage

sage

sage

.structure.element.is_MonoidElement (x)

Return True if x is of type MonoidElement.

.structure.element.is_MultiplicativeGroupElement (x)
Return True if x is of type MultiplicativeGroupElement.
.structure.element.is_PrincipalIldealDomainElement (x)

Return True if x is of type PrincipalldealDomainElement.

.structure.element.is_RingElement (x)

Return True if x is of type RingElement.

3.1. Elements

73

Parents and Elements, Release 10.5.rc0

sage.structure.element.is_Vector (x)

sage.structure.element .make_element (_class, _dict, parent)

This function is only here to support old pickles.

Pickling functionality is moved to Element.{__getstate__,__setstate__} functions.

sage.structure.element.parent (x)

Return the parent of the element x.
Usually, this means the mathematical object of which x is an element.
INPUT:
¢ x —an element
OUTPUT:
e If x is a Sage Element, return x . parent ().

¢ Otherwise, return type (x) .

See also

Parents, Conversion and Coercion Section in the Sage Tutorial

EXAMPLES:

sage: a = 42

sage: parent (a)

Integer Ring

sage: b = 42/1

sage: parent (b)

Rational Field

sage: c = 42.0

sage: parent (c)

—needs sage.rings.real_mpfr

Real Field with 53 bits of precision

Some more complicated examples:

sage: x = Partition([3,2,1,1,1])

—needs sage.combinat

sage: parent (x)

—needs sage.combinat

Partitions

sage: v = vector (RDF, [1,2,3])

—needs sage.modules

sage: parent (v)

—needs sage.modules

Vector space of dimension 3 over Real Double Field

The following are not considered to be elements, so the type is returned:

sage: d = int (42) # Python int
sage: parent (d)

<... 'int'>

sage: L = list(range(10))

(continues on next page)

74

Chapter 3. Elements

http://doc.sagemath.org/html/en/tutorial/tour_coercion.html

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: parent (L)
<... 'list'>

3.2 Element Wrapper

Wrapping Sage or Python objects as Sage elements.
AUTHORS:

* Nicolas Thiery (2008-2010): Initial version

e Travis Scrimshaw (2013-05-04): Cythonized version

class sage.structure.element_wrapper.DummyParent (name)

Bases: UniqueRepresentation, Parent
A class for creating dummy parents for testing £ElementWrapper

class sage.structure.element_wrapper.ElementWrapper

Bases: Element

A class for wrapping Sage or Python objects as Sage elements.

EXAMPLES:

sage: from sage.structure.element_wrapper import DummyParent
sage: parent = DummyParent ("A parent")

sage: o = ElementWrapper (parent, "bla"); o

'bla’

sage: isinstance (o, sage.structure.element.Element)

True

sage: o.parent ()

A parent
sage: o.value
'bla’

Note that o is not an instance of str, but rather contains a st r. Therefore, o does not inherit the string methods.
On the other hand, it is provided with reasonable default implementations for equality testing, hashing, etc.

The typical use case of ElementWrapper is for trivially constructing new element classes from pre-existing
Sage or Python classes, with a containment relation. Here we construct the tropical monoid of integers endowed
with min as multiplication. There, it is desirable not to inherit the factor method from Integer:

sage: class MinMonoid (Parent) :

5o 805 def _repr_(self):

e return "The min monoid"

sage: M = MinMonoid()

sage: class MinMonoidElement (ElementWrapper) :

et wrapped_class = Integer

e def _ mul__ (self, other):

e return MinMonoidElement (self.parent (), min(self.value, other.value))
sage: x = MinMonoidElement (M, 5); x

sage: Xx.parent ()

(continues on next page)

3.2. Element Wrapper 75

Parents and Elements, Release 10.5.rc0

(continued from previous page)

The min monoid

sage: x.value

5

sage: y = MinMonoidElement (M, 3)
sage: x * y

3

This example was voluntarily kept to a bare minimum. See the examples in the categories (e.g. Semigroups () .
example ()) for several full featured applications.

Warning

Versions before Issue #14519 had parent as the second argument and the value as the first.

value
class sage.structure.element_wrapper.ElementWrapperCheckWrappedClass
Bases: ElementWrapper
An element wrapper such that comparison operations are done against subclasses of wrapped_class.

wrapped_class
alias of object

class sage.structure.element_wrapper.ElementWrapperTester

Bases: ElementWrapper
Test class for the default __copy () method of subclasses of ElementWrapper.

append (x)

3.3 Elements, Array and Lists With Clone Protocol

This module defines several classes which are subclasses of E1ement and which roughly implement the “prototype”
design pattern (see [Prototype_pattern], [GHIV1994]). Those classes are intended to be used to model mathematical
objects, which are by essence immutable. However, in many occasions, one wants to construct the data-structure encoding
of a new mathematical object by small modifications of the data structure encoding some already built object. For the
resulting data-structure to correctly encode the mathematical object, some structural invariants must hold. One problem
is that, in many cases, during the modification process, there is no possibility but to break the invariants.

For example, in a list modeling a permutation of {1, ..., n}, the integers must be distinct. A very common operation is
to take a permutation to make a copy with some small modifications, like exchanging two consecutive values in the list
or cycling some values. Though the result is clearly a permutations there’s no way to avoid breaking the permutations
invariants at some point during the modifications.

The main purpose of this module is to define the class
e ClonableElement as an abstract super class,

and its subclasses:
* ClonableArray for arrays (lists of fixed length) of objects;
e ClonableList for (resizable) lists of objects;

* NormalizedClonablelList for lists of objects with a normalization method;

76 Chapter 3. Elements

https://github.com/sagemath/sage/issues/14519

Parents and Elements, Release 10.5.rc0

e ClonableIntArray for arrays of int.

See also

The following parents from sage. st ructure. 1ist_clone_demo demonstrate how to use them:
e IncreasingArrays () (see IncreasingArray and the parent class TncreasingArrays)
e IncreasingLists () (see IncreasingList and the parent class TncreasingLists)
* SortedLists () (see SortedList and the parent class SortedLists)

e IncreasingIntArrays () (see IncreasingIntArray andthe parentclass TncreasingIntAr—
rays)

EXAMPLES:

We now demonstrate how TncreasingArray works, creating an instance el through its parent IncreasingAr—
rays():

sage: from sage.structure.list_clone_demo import IncreasingArrays

sage: P = IncreasingArrays()
sage: P ([1, 4 ,8])
[1, 4, 8]

If one tries to create this way a list which in not increasing, an error is raised:

sage: IncreasingArrays() ([5, 4 ,81)
Traceback (most recent call last):

ValueError: array is not increasing

Once created modifying e 1 is forbidden:

sage: el = P([1, 4 ,8])
sage: el[1] = 3
Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

However, you can modify a temporarily mutable clone:

sage: with el.clone() as elc:
et elc[l] = 3
sage: [el, elc]

rry, 4, 81, 1, 3, 811

We check that the original and the modified copy now are in a proper immutable state:

sage: el.is_immutable (), elc.is_immutable ()
(True, True)

sage: elc[l] =5

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

You can break the property that the list is increasing during the modification:

3.3. Elements, Array and Lists With Clone Protocol 77

Parents and Elements, Release 10.5.rc0

sage: with el.clone() as elc2:
et elc2([1] = 12

506008 print (elc2)

25005 elc2([2] = 25

But this property must be restored at the end of the with block; otherwise an error is raised:

sage: with elc2.clone() as el3:
e el3[1] = 100
Traceback (most recent call last):

ValueError: array is not increasing

Finally, as an alternative to the with syntax one can use:

sage: eld4 = copy(elc2)
sage: el4[1] = 10

sage: eld.set_immutable ()
sage: el4.check()

REFERENCES:
* [Prototype_pattern]
* [GHIV1994]
AUTHORS:
¢ Florent Hivert (2010-03): initial revision

class sage.structure.list_clone.ClonableArray

Bases: ClonableElement
Array with clone protocol.

The class of objects which are Element behave as arrays (i.e. lists of fixed length) and implement the clone
protocol. See ClonableElement for details about clone protocol.

INPUT:
* parent —a Parent
e 1lst —list
¢ check — boolean specifying if the invariant must be checked using method check ()

e immutable — boolean (default: True); whether the created element is immutable

See also

IncreasingArray for an example of usage.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: IA = IncreasingArrays ()
(continues on next page)

78 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: ial = IA([1, 4, 6]); ial

[1, 4, 6]

sage: with ial.clone() as iaZ2:
el ia2[1] = 5

sage: iaz2

[1, 5, 6]

sage: with ial.clone() as iaZ2:
e ia2[1]1 = 7

Traceback (most recent call last):

ValueError: array 1s not increasing
.

check ()
Check that self fulfill the invariants.

This is an abstract method. Subclasses are supposed to overload check.

EXAMPLES:

sage: from sage.structure.list_clone import ClonableArray
sage: ClonableArray(Parent (), [1,2,3]) # indirect doctest
Traceback (most recent call last):

—method
sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays() ([1,2,4]) # indirect doctest

NotImplementedError: this should never be called, please overload the check.

count (key)

Return number of i’s for which s [1] == key

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: ¢ = IncreasingArrays() ([1,2,2,4])

sage: c.count (1)

1

sage: c.count (2)

2

sage: c.count (3)

0

index (x, start=None, stop=None)

Return the smallest k such that s [k] == xandi <= k < jJ

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: c¢ = IncreasingArrays() ([1,2,4])

sage: c.index (1)

0

sage: c.index (4)

2

sage: c.index(5)
Traceback (most recent call last):

ValueError: 5 is not in list

3.3. Elements, Array and Lists With Clone Protocol

Parents and Elements, Release 10.5.rc0

class sage.structure.list_clone.ClonableElement

Bases: Element
Abstract class for elements with clone protocol.

This class is a subclass of £1ement and implements the “prototype” design pattern (see [Prototype_pattern],
[GHIV1994]). The role of this class is:

¢ to manage copy and mutability and hashing of elements

* to ensure that at the end of a piece of code an object is restored in a meaningful mathematical state.
A class C inheriting from ClonableElement must implement the following two methods

e obj.__copy__ () —returns a fresh copy of obj

* obj.check () —returns nothing, raise an exception if obj doesn’t satisfy the data structure invariants
and ensure to call obj._require_mutable () atthe beginning of any modifying method.
Additionally, one can also implement

* 0obj._hash_ () —return the hash value of ob7j

Then, given an instance ob] of C, the following sequences of instructions ensures that the invariants of new_obj
are properly restored at the end:

-
with obj.clone() as new_obj:
lot of invariant breaking modifications on new_obj

invariants are ensured to be fulfilled

The following equivalent sequence of instructions can be used if speed is needed, in particular in Cython code:

-

new_obj = obj.__copy__ ()
lot of invariant breaking modifications on new_obj
new_obj.set_immutable ()

new_obj.check ()
invariants are ensured to be fulfilled

.

Finally, if the class implements the _hash_ method, then ClonableElement ensures that the hash value can
only be computed on an immutable object. It furthermore caches it so that it is only computed once.

Warning

for the hash caching mechanism to work correctly, the hash value cannot be 0.

EXAMPLES:

The following code shows a minimal example of usage of ClonableElement. We implement a class or pairs
(x,y) such that x < y:

sage: from sage.structure.list_clone import ClonableElement
sage: class IntPair (ClonableElement) :

e def _ init_ (self, parent, x, y):
e ClonableElement.__init__ (self, parent=parent)
e self._x = x

(continues on next page)

80

Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

(continued from previous page)

50008 self. y =y

e self.set_immutable ()

e self.check ()

e def _repr_(self):

85505 return " (x=3%s, y=%s)"%(self._x, self._y)

e def check(self):

e if self._x >= self._y:

e raise ValueError ("Incorrectly ordered pair")
e def get_x(self): return self._x

et def get_y(self): return self._y

e def set_x(self, v): self._require_mutable(); self._x =
e def set_y(self, v): self._require_mutable(); self._y

Il
< <

Note

we don’t need to define ___copy___since it is properly inherited from Element.

We now demonstrate the behavior. Let’s create an IntPair:

-
sage: myParent = Parent ()

sage: el = IntPair (myParent, 1, 3); el
(X:]-r y:3)

sage: el.get_x()

1

Modifying it is forbidden:

sage: el.set_x(4)
Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

However, you can modify a mutable copy:

sage: with el.clone() as ell:
et ell.set_x(2)

sage: [el, ell]

[(x=1, y=3), (x=2, y=3)]

We check that the original and the modified copy are in a proper immutable state:

sage: el.is_immutable(), ell.is_immutable ()
(True, True)

sage: ell.set_x(4)

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

A modification which doesn’t restore the invariant 2 < y at the end is illegal and raise an exception:

sage: with el.clone() as elc2:
e elc2.set_x(5)
Traceback (most recent call last):

ValueError: Incorrectly ordered pair

3.3. Elements, Array and Lists With Clone Protocol 81

Parents and Elements, Release 10.5.rc0

clone (check=True)

Return a clone that is mutable copy of self.

INPUT:

¢ check — boolean indicating if self.check () must be called after modifications

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays() ([1,2,3])

sage: with el.clone() as ell:

e ell[2] = 5

sage: ell
(1, 2, 5]

is_immutable ()
Return True if self is immutable (cannot be changed) and False if it is not.

To make self immutable use self.set_immutable ().

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays() ([1,2,3])

sage: el.is_immutable ()

True

sage: copy(el) .is_immutable ()

False

sage: with el.clone() as ell:

50003 print ([el.is_immutable(), ell.is_immutable()])

[True, False]

is_mutable ()

Return True if self is mutable (can be changed) and False if it is not.

To make this object immutable use self.set_immutable ().

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays() ([1,2,3])

sage: el.is_mutable()

False

sage: copy(el) .is_mutable ()

True

sage: with el.clone() as ell:

56003 print ([el.is_mutable (), ell.is_mutable()])

[False, True]

set_immutable ()

Makes self immutable, so it can never again be changed.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: el = IncreasingArrays() ([1,2,3])

sage: ell = copy(el); ell.is_mutable()

True

(continues on next page)

82 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: ell.set_immutable(); ell.is_mutable()
False
sage: ell[2] = 4
Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

class sage.structure.list_clone.ClonableIntArray
Bases: ClonableElement

Array of integers with clone protocol.

The class of objects which are E1ement behave as list of int and implement the clone protocol. See Clon-—
ableElement for details about clone protocol.

INPUT:
* parent —a Parent
e 1st —list
¢ check - boolean specifying if the invariant must be checked using method check ()

e immutable — boolean (default: True); whether the created element is immutable

See also

IncreasingIntArray for an example of usage.

check ()
Check that sel £ fulfill the invariants.

This is an abstract method. Subclasses are supposed to overload check.

EXAMPLES:

sage: from sage.structure.list_clone import ClonableArray
sage: ClonableArray(Parent (), [1,2,3]) # indirect doctest
Traceback (most recent call last):

NotImplementedError: this should never be called, please overload the check.

—method
sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: el = IncreasingIntArrays() ([1,2,4]1) # indirect doctest

index (item)

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: ¢ = IncreasingIntArrays() ([1,2,4])

sage: c.index (1)

0

sage: c.index (4)

2

sage: c.index(5)
Traceback (most recent call last):

ValueError: list.index(x): x not in list

3.3. Elements, Array and Lists With Clone Protocol 83

Parents and Elements, Release 10.5.rc0

list ()

Convert self into a Python list.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: I = IncreasingIntArrays() (range(5))

sage: I == list (range(5))

False

sage: I.list() == list (range(5))

True

sage: I = IncreasingIntArrays() (range (1000))

sage: I.list() == list (range(1000))

True

class sage.structure.list_clone.Clonablelist

Bases: ClonableArray
List with clone protocol.

The class of objects which are E1ement behave as lists and implement the clone protocol. See ClonableEle—
ment for details about clone protocol.

See also

IncreasingList for an example of usage.

append (el)
Appends el to self.

INPUT:
* el —any object

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasinglLists () ([1])

sage: el.append(3)

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:

20083 elc.append(4)

e elc.append (6)

[1, 4, 6]

sage: with el.clone() as elc:
50008 elc.append(4)

20083 elc.append(2)

Traceback (most recent call last):

ValueError: array is not increasing

extend (it)
Extend self by the content of the iterable it.

INPUT:

84 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

e it —any iterable

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasinglLists
sage: el = IncreasingLists() ([1, 4, 5, 8, 91])

sage: el.extend((10,11))

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

sage: with el.clone() as elc:
25083 elc.extend ((10,11))

(1, 4, 5, 8, 9, 10, 11]

sage: el2 = IncreasingLists() ([15, 16])
sage: with el.clone() as elc:

28083 elc.extend (el2)

(1, 4, 5, 8, 9, 15, 16]

sage: with el.clone() as elc:

e elc.extend ((6,7))
Traceback (most recent call last):

ValueError: array is not increasing

insert (index, el)

Inserts el in self at position index.
INPUT:

e el —any object

¢ index —any int

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasinglLists
sage: el = IncreasinglLists() ([1, 4, 5, 8, 91)

sage: el.insert (3, 6)

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
el elc.insert (3, 6)

[1, 4, 5, 6, 8, 9]

sage: with el.clone() as elc:
e elc.insert (2, 6)
Traceback (most recent call last):

ValueError: array 1is not increasing

pop (index=-1)
Remove self [index] from self and returns it.

INPUT:

e index — integer (default: -1)

3.3. Elements, Array and Lists With Clone Protocol 85

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasinglLists() ([1, 4, 5, 8, 91])

sage: el.pop ()

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
e print (elc.pop())

sage: elc

(1, 4, 5, 8]

sage: with el.clone() as elc:
e print (elc.pop(2))

remove (el)

Remove the first occurrence of el from self.
INPUT:
* el —any object

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingLists
sage: el = IncreasinglLists() ([1, 4, 5, 8, 9])

sage: el.remove (4)

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: with el.clone() as elc:
25043 elc.remove (4)

i1, 5, 8, 9I

sage: with el.clone() as elc:
e elc.remove (10)
Traceback (most recent call last):

ValueError: list.remove(x): x not in list

class sage.structure.list_clone.NormalizedClonablelist

Bases: ClonableList
List with clone protocol and normal form.

This is a subclass of Clonablelist which call amethod normalize () atcreation and after any modification
of its instance.

See also

SortedList for an example of usage.

EXAMPLES:

We construct a sorted list through its parent:

86

Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

-
sage: from sage.structure.list_clone_demo import SortedLists

sage: SL = SortedLists()
sage: sll = SL([4,2,6,1]1); sl1
(1, 2, 4, 6]

.

Normalization is also performed atfer modification:

sage: with sll.clone() as sl2:
ol sl2[1] = 12

sage: sl2

[1, 4, 6, 12]

normalize ()

Normalize self.

This is an abstract method. Subclasses are supposed to overload normalize (). The call self.

normalize () issupposed to
e call self._require_mutable () tocheck that self isin a proper mutable state
* modify self to put it in a normal form

EXAMPLES:

sage: 1 = SortedList (SortedLists (), [2,3,2], False, False)
sage: 1

[2, 2, 3]

sage: 1l.check()

Traceback (most recent call last):

ValueError: list is not strictly increasing

sage: from sage.structure.list_clone_demo import SortedList, SortedLists

3.4 Elements, Array and Lists With Clone Protocol, demonstration

classes

This module demonstrate the usage of the various classes defined in 1 ist_clone

class sage.structure.list_clone_demo.IncreasingArray
Bases: ClonableArray

A small extension class for testing ClonableArray.

check ()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingArrays
sage: IncreasingArrays () ([1,2,3]) # indirect doctest

(1, 2, 3]

sage: IncreasingArrays() ([3,2,1]) # indirect doctest

Traceback (most recent call last):

ValueError: array is not increasing

3.4. Elements, Array and Lists With Clone Protocol, demonstration classes

Parents and Elements, Release 10.5.rc0

class sage.structure.list_clone_demo.IncreasingArrays

Bases: UniqueRepresentation, Parent
A small (incomplete) parent for testing ClonableArray
Element

alias of TncreasingArray

class sage.structure.list_clone_demo.IncreasingIntArray
Bases: ClonablelIntArray

A small extension class for testing ClonableIntArray.

check ()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasingIntArrays
sage: IncreasingIntArrays() ([1,2,3]) # indirect doctest

(1, 2, 3]

sage: IncreasingIntArrays() ([3,2,1]) # indirect doctest

Traceback (most recent call last):

ValueError: array is not increasing

class sage.structure.list_clone_demo.IncreasingIntArrays

Bases: TncreasingArrays
A small (incomplete) parent for testing ClonableIntArray

Element

alias of TncreasingIntArray

class sage.structure.list_clone_demo.IncreasingList

Bases: ClonableList
A small extension class for testing ClonablelList

check ()

Check that self is increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import IncreasinglLists
sage: IncreasingLists() ([1,2,3]) # indirect doctest

(1, 2, 3]

sage: Increasinglists () ([3,2,1]) # indirect doctest

Traceback (most recent call last):

ValueError: array is not increasing

class sage.structure.list_clone_demo.IncreasinglLists

Bases: TncreasingArrays
A small (incomplete) parent for testing ClonableList

Element

alias of TncreasingList

88 Chapter 3. Elements

Parents and Elements, Release 10.5.rc0

class sage.structure.list_clone_demo.SortedList

Bases: NormalizedClonableList
A small extension class for testing NormalizedClonableList.

check ()

Check that self is strictly increasing.

EXAMPLES:

sage: from sage.structure.list_clone_demo import SortedList, SortedLists
sage: SortedLists() ([1,2,3]) # indirect doctest

(1, 2, 3]

sage: SortedLists () ([3,2,2]) # indirect doctest

Traceback (most recent call last):

ValueError: list is not strictly increasing

normalize ()

Normalize self.

Sort the list stored in self.

EXAMPLES:

sage: from sage.structure.list_clone_demo import SortedList, SortedLists
sage: 1 = SortedList (SortedLists (), [3,1,2], False, False)

sage: 1 # indirect doctest

(1, 2, 31

sage: 1[1] = 5; 1

(1, 5, 3]

sage: l.normalize(); 1

(1, 3, 5]

class sage.structure.list_clone_demo.SortedLists

Bases: TncreasingLists
A small (incomplete) parent for testing NormalizedClonableList

Element

alias of SortedList

3.4. Elements, Array and Lists With Clone Protocol, demonstration classes 89

Parents and Elements, Release 10.5.rc0

90

Chapter 3. Elements

CHAPTER
FOUR

MATHEMATICAL DATA STRUCTURES

4.1 Formal sums

AUTHORS:

* David Harvey (2006-09-20): changed FormalSum not to derive from “list” anymore, because that breaks new
Element interface

¢ Nick Alexander (2006-12-06): added test cases.
¢ William Stein (2006, 2009): wrote the first version in 2006, documented it in 2009.

* Volker Braun (2010-07-19): new-style coercions, documentation added. FormalSums now derives from Uni-
queRepresentation.

FUNCTIONS:
e FormalSums (ring) — create the module of formal finite sums with coefficients in the given ring
e FormalSum(list of pairs (coeff, number)) — create a formal sum

EXAMPLES:

sage: A = FormalSum([(1, 2/3)]); A
2/3

sage: B = FormalSum([(3, 1/5)]1); B
3*1/5

sage: -B

=3%1/5

sage: A + B

2/3 + 3*1/5

sage: A - B

2/3 - 3*1/5

sage: B*3

9*1/5

sage: 2*A

2*2/3

sage: list (2*A + A)
[(3, 2/3)]1

class sage.structure.formal_sum.FormalSum (x, parent=None, check=True, reduce=True)

Bases: ModuleElement
A formal sum over a ring.

reduce ()
EXAMPLES:

91

Parents and Elements, Release 10.5.rc0

sage: a = FormalSum([(-2,3), (2,3)], reduce=False); a
=2%3 + 2%3

sage: a.reduce ()

sage: a

0

class sage.structure.formal_ sum.FormalSums

Bases: UniqueRepresentation,Module
The R-module of finite formal sums with coefficients in some ring R.

EXAMPLES:

sage: FormalSums ()
Abelian Group of all Formal Finite Sums over Integer Ring
sage: FormalSums (ZZ)
Abelian Group of all Formal Finite Sums over Integer Ring
sage: FormalSums (GF (7))
Abelian Group of all Formal Finite Sums over Finite Field of size 7
sage: FormalSums (ZZ[sqgrt (2)]) #
—needs sage.rings.number_field sage.symbolic
Abelian Group of all Formal Finite Sums over
Maximal Order generated by sqgrt2 in Number Field in sqgrt2
with defining polynomial x"2 - 2 with sqgrt2 = 1.4142135623730957
sage: FormalSums (GF (9, 'a')) #_
—needs sage.rings.finite_rings
Abelian Group of all Formal Finite Sums over Finite Field in a of size 372

Element

alias of FormalSum

base_extend (R)
EXAMPLES:

sage: F7 = FormalSums (ZZ) .base_extend(GF (7)); F7
Abelian Group of all Formal Finite Sums over Finite Field of size 7

The following tests against a bug that was fixed at Issue #18795:

sage: isinstance (F7, F7.category () .parent_class)
True

4.2 Factorizations

The Factorization class provides a structure for holding quite general lists of objects with integer multiplicities.
These may hold the results of an arithmetic or algebraic factorization, where the objects may be primes or irreducible
polynomials and the multiplicities are the (nonzero) exponents in the factorization. For other types of examples, see
below.

Factorizationclassobjectscontaina 11ist, socan be printed nicely and be manipulated like a list of prime-exponent
pairs, or easily turned into a plain list. For example, we factor the integer —45:

[sage: F = factor (-45)

This returns an object of type Factorization:

92 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/modules/sage/modules/module.html#sage.modules.module.Module
https://github.com/sagemath/sage/issues/18795

Parents and Elements, Release 10.5.rc0

sage: type (F)
<class 'sage.structure.factorization_integer.IntegerFactorization'>

It prints in a nice factored form:

sage: F
=i % 32 ¥ 5

There is an underlying list representation, which ignores the unit part:

sage: list (F)
[(3, 2), (5, 1)]

A Factorizationisnot actually a list:

sage: isinstance(F, list)
False

However, we can access the Factorization F itself as if it were a list:

sage: F[0]
(3, 2)
sage: F[1]
(5, 1)

To get at the unit part, use the Factorization.unit () function:

sage: F.unit ()
=i

All factorizations are immutable, up to ordering with sort () and simplifying with simplify (). Thus if you write a
function that returns a cached version of a factorization, you do not have to return a copy.

sage: F = factor(-12); F

=1 w 222 % 3

sage: F[0] = (5,4)

Traceback (most recent call last):

TypeError: 'Factorization' object does not support item assignment

EXAMPLES:

This more complicated example involving polynomials also illustrates that the unit part is not discarded from factorizations:

sage: # needs sage.libs.pari
sage: x = Q0['x'].0

sage: f = -5*(x-2)* (x-3)
sage:
-5*x72 + 25*x — 30

sage: F = f.factor(); F
(=B) * (% = 3) * (x = 2)
sage: F.unit ()

=5

sage: F.value()

—5*x72 + 25*x — 30

h

The underlying list is the list of pairs (p;, e;), where each p; is a ‘prime’ and each e; is an integer. The unit part is discarded
by the list:

4.2. Factorizations 93

Parents and Elements, Release 10.5.rc0

sage: # needs sage.libs.pari
sage: list (F)

[(x =3, 1), (x -2, 1)]
sage: len (F)

2

sage: F[1]

(x - 2, 1)

In the ring Z[z], the integer —5 is not a unit, so the factorization has three factors:

sage: # needs sage.libs.pari
sage: x = Z2Z['x'].0

sage: f = -5*(x-2)* (x-3)

sage: f

-5*x72 + 25*x — 30

sage: F = f.factor(); F

(=1) * 5 =* (2 =3) % (x = 2)
sage: F.universe()

Univariate Polynomial Ring in x over Integer Ring
sage: F.unit ()

=i

sage: list (F)

[(5, 1), (x -3, 1), (x-2, 1)]
sage: F.value()

=5%x* 2 * 25%x% = 30

sage: len (F)

3

On the other hand, -1 is a unit in Z, so it is included in the unit:

sage: # needs sage.libs.pari
sage: x = 72Z2['x'].0

sage: £ = -1 * (x-2) * (x-3)
sage: F = f.factor(); F

(=1) * (= = 3) # (x = 2)
sage: F.unit ()

=i

sage: list (F)

[(x = 3, 1), (x -2, 1)]

Factorizations can involve fairly abstract mathematical objects:

sage: # needs sage.modular
sage: F = ModularSymbols(11,4).factorization(); F
(Modular Symbols subspace of dimension 2 of Modular Symbols space

of dimension 6 for Gamma_0(11) of weight 4 with sign 0 over Rational Field) *
(Modular Symbols subspace of dimension 2 of Modular Symbols space

of dimension 6 for Gamma_0(11) of weight 4 with sign 0 over Rational Field) *
(Modular Symbols subspace of dimension 2 of Modular Symbols space

of dimension 6 for Gamma_0(11) of weight 4 with sign 0 over Rational Field)
sage: type (F)
<class 'sage.structure.factorization.Factorization'>

sage: # needs sage.rings.number_field
sage: x = 72Z2['x'].0
sage: K.<a> = NumberField(x"2 + 3); K
(continues on next page)

94 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

(continued from previous page)
Number Field in a with defining polynomial x*2 + 3
sage: f = K.factor(15); £
(Fractional ideal (1/2*a + 3/2))72 * (Fractional ideal (5))
sage: f.universe()
Monoid of ideals of Number Field in a with defining polynomial x"2 + 3
sage: f.unit ()
Fractional ideal (1)
sage: g = K.factor(9); g
(Fractional ideal (1/2*a + 3/2))"4
sage: f.lcm(qg)
(Fractional ideal (1/2*a + 3/2))74 * (Fractional ideal (5))
sage: f.gcd(g)
(Fractional ideal (1/2*a + 3/2))"2
sage: f.is_integral()
True

AUTHORS:
e William Stein (2006-01-22): added unit part as suggested by David Kohel.
¢ William Stein (2008-01-17): wrote much of the documentation and fixed a couple of bugs.
* Nick Alexander (2008-01-19): added support for non-commuting factors.
¢ John Cremona (2008-08-22): added division, lem, gcd, is_integral and universe functions

class sage.structure.factorization.Factorization (x, unit=None, cr=False, sort=True,
simplify=True)
Bases: SageObject
A formal factorization of an object.

EXAMPLES:

sage: N = 2006

sage: F = N.factor(); F

2 * 17 * 59

sage: F.unit ()

1

sage: F = factor(-2006); F
=il ®* 2 % 47 ® 5Y

sage: F.unit ()

-1

sage: loads(F.dumps()) == F

True

sage: F = Factorization([(x, 1/3)1) #_

—needs sage.symbolic
Traceback (most recent call last):

TypeError: no conversion of this rational to integer

L

base_change (U)
Return the factorization self, with its factors (including the unit part) coerced into the universe U.

EXAMPLES:

sage: F = factor(2006)
sage: F.universe ()
Integer Ring

(continues on next page)

4.2. Factorizations 95

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: P.<x> = ZZ[]
sage: F.base_change (P) .universe ()
Univariate Polynomial Ring in x over Integer Ring

This method will return a TypeError if the coercion is not possible:

sage: g = x72 - 1

sage: F = factor(g); F #
—needs sage.libs.pari

(x — 1) * (x + 1)

sage: F.universe() #_

—needs sage.libs.pari

Univariate Polynomial Ring in x over Integer Ring

sage: F.base_change(Z2Z) #_
—needs sage.libs.pari

Traceback (most recent call last):

TypeError: Impossible to coerce the factors of (x - 1) * (x + 1) into Integer.
—Ring

expand ()

Return the product of the factors in the factorization, multiplied out.

EXAMPLES:

sage: F = factor(-2006); F
=1 % 2 % 47 * 5Y
sage: F.value()

-2006

sage: R.<x,y> = FreeAlgebra (zz, 2) #
—needs sage.combinat sage.modules

sage: F = Factorization([(x,3), (v, 2), (x,1)1); F #o

—needs sage.combinat sage.modules

X3 K yr2 *ox

sage: F.value () #
—needs sage.combinat sage.modules

XA3FyN2xx

gcd (other)

Return the ged of two factorizations.

If the two factorizations have different universes, this method will attempt to find a common universe for the
ged. A TypeError is raised if this is impossible.

EXAMPLES:

sage: factor (-30) .gcd(factor(-160))

2 % 5

sage: factor(gcd(-30,160))

2 % 5

sage: R.<x> = ZZ[]

sage: (factor (-20).gcd(factor (5*x+10))) .universe () #

—needs sage.libs.pari
Univariate Polynomial Ring in x over Integer Ring

96

Chapter 4. Mathematical Data Structures

https://docs.python.org/library/exceptions.html#TypeError
https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

is_commutative ()

Return whether the factors commute.

EXAMPLES:

sage: F = factor(2006)

sage: F.is_commutative ()

True

sage: # needs sage.rings.number_field
sage: K = QuadraticField (23, 'a')
sage: F = K.factor (13)

sage: F.is_commutative ()

True

sage: # needs sage.combinat sage.modules
sage: R.<x,y,z> = FreeAlgebra (QQ, 3)
sage: F = Factorization([(z, 2)]1, 3)
sage: F.is_commutative ()

False

sage: (F*F"-1).is_commutative ()

False

is_integral ()
Return whether all exponents of this Factorization are nonnegative.

EXAMPLES:

sage: F = factor(-10); F
_1 * 2 * 5

sage: F.is_integral()
True

sage: F = factor(-10) / factor(16); F
=i w 2%=3 % 5

sage: F.is_integral()

False

lcm (other)

Return the lcm of two factorizations.

If the two factorizations have different universes, this method will attempt to find a common universe for the
lcm. A TypeError is raised if this is impossible.

EXAMPLES:

sage: factor (-10).lcm(factor(-16))

274 * 5

sage: factor(lcm(-10,16))

274 * 5

sage: R.<x> = ZZ[]

sage: (factor(-20).lcm(factor(5*x + 10))) .universe() #.
—needs sage.libs.pari

Univariate Polynomial Ring in x over Integer Ring

prod ()
Return the product of the factors in the factorization, multiplied out.

4.2. Factorizations 97

https://docs.python.org/library/exceptions.html#TypeError

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: F = factor(-2006); F
=i ® 2 % 417 * 5§
sage: F.value()

-2006

sage: R.<x,y> = FreeAlgebra (zz, 2) #
—needs sage.combinat sage.modules

sage: F = Factorization([(x,3), (y, 2), (x,1)1); F #e

—needs sage.combinat sage.modules

X"3 * yt2 *ox

sage: F.value() #_
—needs sage.combinat sage.modules

X3 yN2Fx

radical ()

Return the factorization of the radical of the value of self.

First, check that all exponents in the factorization are positive, raise Va lueError otherwise. If all exponents
are positive, return self with all exponents set to 1 and with the unit set to 1.

EXAMPLES:

sage: F = factor(-100); F

=i % 272 * 5?2

sage: F.radical()

2 % 5

sage: factor (1/2) .radical ()
Traceback (most recent call last):

ValueError: all exponents in the factorization must be positive

radical_value ()
Return the product of the prime factors in self.
First, check that all exponents in the factorization are positive, raise Va l ueEr ror otherwise. If all exponents

are positive, return the product of the prime factors in se 1 £. This should be functionally equivalentto se1f.
radical () .value ().

EXAMPLES:

sage: F = factor(-100); F

=i * 2722 ¥ 5?2

sage: F.radical_value()

10

sage: factor(1/2) .radical_value ()
Traceback (most recent call last):

ValueError: all exponents in the factorization must be positive

simplify ()
Combine adjacent products as much as possible.

sort (key=None)
Sort the factors in this factorization.

INPUT:

* key — (default: None) comparison key

98 Chapter 4. Mathematical Data Structures

https://docs.python.org/library/exceptions.html#ValueError
https://docs.python.org/library/exceptions.html#ValueError

Parents and Elements, Release 10.5.rc0

OUTPUT: changes this factorization to be sorted (inplace)
If key is None, we determine the comparison key as follows:

If the prime in the first factor has a dimension method, then we sort based first on dimension then on the
exponent.

If there is no dimension method, we next attempt to sort based on a degree method, in which case, we sort
based first on degree, then exponent to break ties when two factors have the same degree, and if those match
break ties based on the actual prime itself.

Otherwise, we sort according to the prime itself.

EXAMPLES:

We create a factored polynomial:

sage: x = polygen(QQ, 'x')

sage: F = factor(x"3 + 1); F #_
—needs sage.libs.pari

(x + 1) * (x*2 - x + 1)

We sort it by decreasing degree:

sage: F.sort (key=lambda x: (-x[0].degree(), x)) #
—needs sage.libs.pari
sage: F #

—needs sage.libs.pari
(x"2 - x + 1) * (x + 1)

subs (*args, **kwds)

Implement the substitution.
This is assuming that each term can be substituted.
There is another mechanism for substitution in symbolic products.

EXAMPLES:

sage: # needs sage.combinat sage.modules

sage: R.<x,y> = FreeAlgebra (QQ, 2)

sage: F = Factorization([(x,3), (v, 2), (x,1)1)
sage: F (x=4)

473 * yr2 x4

sage: F.subs ({y:2})

23 w272 ¥ =

sage: R.<x,y> = PolynomialRing(QQ, 2)

sage: F = Factorization([(x,3), (y, 2), (x,1)1)
sage: F (x=4)

4 * 473 * yh2

sage: F.subs({y:x})

X * x"2 * x"3

sage: F (x=y+x)

(x +vy) *y*2 * (x +y)"3

unit ()

Return the unit part of this factorization.
EXAMPLES:

We create a polynomial over the real double field and factor it:

Factorizations 99

Parents and Elements, Release 10.5.rc0

sage: x = polygen(RDF, 'x'")

value ()

sage: F = factor(-2*x"2 - 1); F #.
—needs numpy
(-2.0) * (x*2 + 0.5000000000000001)
Note that the unit part of the factorization is —2.0:
sage: F.unit () #
—needs numpy
-2.0
sage: F = factor(-2006); F
=i % 2 * 47 * 5§
sage: F.unit ()
-1
universe ()
Return the parent structure of my factors.
Note
This used to be called base_ring, but the universe of a factorization need not be a ring.
EXAMPLES:
sage: F = factor(2006)
sage: F.universe ()
Integer Ring
sage: R.<x,y,z> = FreeAlgebra (QQ, 3) #
—needs sage.combinat sage.modules
sage: F = Factorization([(z, 2)1, 3) #.
—needs sage.combinat sage.modules
sage: (F*F”"-1).universe /() #
—needs sage.combinat sage.modules
Free Algebra on 3 generators (x, y, z) over Rational Field
sage: F = ModularSymbols (11,4).factorization () #.
—needs sage.modular
sage: F.universe () #
—needs sage.modular
Return the product of the factors in the factorization, multiplied out.
EXAMPLES:
sage: F = factor(-2006); F
=i ® 2 * 47 * 5§
sage: F.value()
-2006
sage: R.<x,y> = FreeAlgebra (zz, 2) #-
—needs sage.combinat sage.modules
sage: F = Factorization([(x,3), (y, 2), (x,1)1); F #.

(continues on next page)

100 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

(continued from previous page)
—needs sage.combinat sage.modules
RN Yr2 W =
sage: F.value() #_
—needs sage.combinat sage.modules
X3 yN2Fx

4.3 IntegerFactorization objects

class sage.structure.factorization_integer.IntegerFactorization (x, unit=None,
cr=False, sort=True,
simplify=True,
unsafe=False)

Bases: Factorization

A lightweight class for an IntegerFactorization object, inheriting from the more general Factoriza-
tion class.

In the Factorization class the user has to create a list containing the factorization data, which is then passed
to the actual Factorization object upon initialization.

However, for the typical use of integer factorization via the Integer.factor () method in sage.rings.
integer this is noticeably too much overhead, slowing down the factorization of integers of up to about 40 bits
by a factor of around 10. Moreover, the initialization done in the Factorization class is typically unnecessary:
the caller can guarantee that the list contains pairs of an Integer and an int, as well as that the list is sorted.

AUTHOR:
¢ Sebastian Pancratz (2010-01-10)

4.4 Finite Homogeneous Sequences

A mutable sequence of elements with a common guaranteed category, which can be set immutable.

Sequence derives from list, so has all the functionality of lists and can be used wherever lists are used. When a sequence
is created without explicitly given the common universe of the elements, the constructor coerces the first and second
element to some canonical common parent, if possible, then the second and third, etc. If this is possible, it then coerces
everything into the canonical parent at the end. (Note that canonical coercion is very restrictive.) The sequence then has
a function universe () which returns either the common canonical parent (if the coercion succeeded), or the category
of all objects (Objects()). So if you have a list v and type:

sage: v = [1, 2/3, 5]
sage: w = Sequence (V)
sage: w.universe ()
Rational Field

then since w.universe () is Q, you're guaranteed that all elements of w are rationals:

sage: v[0].parent ()
Integer Ring

sage: w([0].parent ()
Rational Field

If you do assignment to w this property of being rationals is guaranteed to be preserved:

4.3. IntegerFactorization objects 101

Parents and Elements, Release 10.5.rc0

sage: w[0] = 2

sage: w[0].parent ()

Rational Field

sage: w[0] = 'hi'

Traceback (most recent call last):

TypeError: unable to convert 'hi' to

a rational

However, if youdow = Sequence (v) and the resulting universe is Objects (), the elements are not guaranteed
to have any special parent. This is what should happen, e.g., with finite field elements of different characteristics:

sage: v = Sequence ([GF (3) (1), GF(7) (1)])

sage: v.universe ()
Category of objects

You can make a list immutable with v. freeze (). Assignment is never again allowed on an immutable list.

Creation of a sequence involves making a copy of the input list, and substantial coercions. It can be greatly sped up by

explicitly specifying the universe of the sequence:

[sage: v = Sequence (range (10000), universe=ZZ)

sage.structure.sequence.Sequence (x, universe=None, check="True, immutable=False, cr=False,

cr_str=None, use_sage_types=False)

A mutable list of elements with a common guaranteed universe, which can be set immutable.

A universe is either an object that supports coercion (e.g., a parent), or a category.

INPUT:

e x — list or tuple instance

e universe — (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects () of all objects.

¢ check —boolean (default: True); whether to coerce the elements of X into the universe

e immutable — boolean (default: True); whether or not this sequence is immutable

e cr —boolean (default: False);if True, then print a carriage return after each comma when printing this

sequence

e cr_str —boolean (default: False); if True, then print a carriage return after each comma when calling

str () on this sequence

* use_sage_types — boolean (default: False); if True, coerce the built-in Python numerical types int,
float, complex to the corresponding Sage types (this makes functions like vector () more flexible)

OUTPUT: a sequence
EXAMPLES:

sage: v = Sequence (range (10))
sage: v.universe ()

<class 'int'>

sage: Vv

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We can request that the built-in Python numerical types be coerced to Sage objects:

102

Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

-
sage: v = Sequence (range (10), use_sage_types=True)

sage: v.universe()

Integer Ring

sage: Vv

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also use seq for “Sequence”, which is identical to using Sequence:

sage: v = seq([1,2,1/11); v
(1, 2, 1]

sage: v.universe()

Rational Field

Note that assignment coerces if possible,:

sage: v = Sequence (range (10), 27Z)
sage: a = QQ(5)

sage: v[3] = a

sage: parent (v[3])

Integer Ring

sage: parent (a)

Rational Field

sage: v[3] = 2/3

Traceback (most recent call last) :

TypeError: no conversion of this rational to integer
.

Sequences can be used absolutely anywhere lists or tuples can be used:

-
sage: isinstance (v, list)

True
.-

Sequence can be immutable, so entries can’t be changed:

P
sage: v = Sequence([1,2,3], immutable=True)

sage: v.is_immutable ()

True

sage: v[0] = 5

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
.

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.:

sage: v = Sequence (range (10), ZZ, immutable=True)
sage: hash(v) == hash (tuple(range(10)))

True
.

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

-

sage: list._ _setitem (v, int (1), 2/3) # bad circumvention

sage: Vv

(o, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

sage: list._ _setitem__ (v, int (1), int(2)) # not so bad circumvention
.-

You can make a sequence with a new universe from an old sequence.:

4.4. Finite Homogeneous Sequences 103

Parents and Elements, Release 10.5.rc0

rsage: w = Sequence (v, QOQ)
sage: w

[o, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe ()

Rational Field

sage: w[l] = 2/3

sage: w

[o, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.:

sage: v = Sequence([1l, 7, 6, GF(5)(3)]); v
[1, 2, 1, 3]

sage: v.universe ()

Finite Field of size 5

class sage.structure.sequence.Sequence_generic (x, universe=None, check=True,
immutable=False, cr=False, cr_str=None,
use_sage_types=False)

Bases: SageObject, list
A mutable list of elements with a common guaranteed universe, which can be set immutable.
A universe is either an object that supports coercion (e.g., a parent), or a category.
INPUT:
e x — list or tuple instance

e universe — (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects () of all objects.

¢ check —boolean (default: True); whether to coerce the elements of x into the universe
e immutable — boolean (default: True); whether or not this sequence is immutable

* cr — boolean (default: False);if True, then print a carriage return after each comma when printing this
sequence

* use_sage_types — boolean (default: False); if True, coerce the built-in Python numerical types int,
float, complex to the corresponding Sage types (this makes functions like vector () more flexible)

OUTPUT: a sequence
EXAMPLES:

sage: v = Sequence (range (10))
sage: v.universe()

<class 'int'>

sage: Vv

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

L

We can request that the built-in Python numerical types be coerced to Sage objects:

g
sage: v = Sequence (range (10), use_sage_types=True)
sage: v.universe()

Integer Ring

(continues on next page)

104 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: Vv
to, 1, 2, 3, 4, 5, 6, 7, 8, 9]

.

You can also use seq for “Sequence”, which is identical to using Sequence:

-

sage: v = seq([1,2,1/11); v
(1, 2, 11

sage: v.universe ()

Rational Field

.

Note that assignment coerces if possible,

-
sage: v = Sequence (range (10), ZZ)

sage: a = QQ(5)

sage: v[3] = a

sage: parent (v[3])

Integer Ring

sage: parent (a)

Rational Field

sage: v[3] = 2/3

Traceback (most recent call last):

TypeError: no conversion of this rational to integer

Sequences can be used absolutely anywhere lists or tuples can be used:

sage: isinstance(v, list)
True

Sequence can be immutable, so entries can’t be changed:

sage: v = Sequence([1,2,3], immutable=True)
sage: v.is_immutable ()

True

sage: v[0] = 5

Traceback (most recent call last) :

ValueError: object is immutable; please change a copy instead.

L

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.

-
sage: v = Sequence (range (10), ZZ, immutable=True)

sage: hash(v) == hash(tuple(range (10)))
True

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

sage: list._ setitem__ (v, int (1), 2/3) # bad circumvention

sage: Vv

[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

sage: list._ _setitem__ (v, int(l), int(2)) # not so bad circumvention

You can make a sequence with a new universe from an old sequence.

4.4. Finite Homogeneous Sequences 105

Parents and Elements, Release 10.5.rc0

-

sage: w = Sequence (v, QQ)
sage: w

o, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe ()

Rational Field

sage: w[l] = 2/3

sage: w

[0, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.

sage: v = Sequence([l, 7, 6, GF(5) (3)]); v
[1, 2, 1, 3]

sage: v.universe ()

Finite Field of size 5

append (x)
EXAMPLES:

sage: v = Sequence([1,2,3,4], immutable=True)
sage: v.append(34)
Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: v = Sequence([1/3,2,3,4])

sage: v.append(4)

sage: type(v[4])

<class 'sage.rings.rational.Rational'>

extend (iterable)

Extend list by appending elements from the iterable.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.extend(range (4))
sage: B

(1, 2, 3, 0, 1, 2, 3]

insert (index, object)

Insert object before index.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.insert (10, 5)

sage: B

i1, 2, 3, 5]

is_immutable ()
Return True if this object is immutable (can not be changed) and False if it is not.
To make this object immutable use set_immutable ().

EXAMPLES:

106 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

sage: v = Sequence([1l, 2, 3, 4/5])
sage: v[0] = 5

sage: v

[5, 2, 3, 4/5]

sage: v.is_immutable ()

False

sage: v.set_immutable ()

sage: v.is_immutable ()

True

is_mutable ()
EXAMPLES:

sage: a = Sequence([1, 2/3, -2/5])
sage: a.is_mutable ()

True

sage: a[0] = 100

sage: type(al0])

<class 'sage.rings.rational.Rational'>
sage: a.set_immutable ()

sage: a[0] = 50

Traceback (most recent call last):

sage: a.is_mutable ()
False

ValueError: object is immutable; please change a copy instead.

pop (index=-1)

Remove and return item at index index (default: last).

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.pop (1)

2

sage: B

[1, 31

remove (value)

Remove first occurrence of value.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.remove (2)

sage: B

(1, 31

reverse ()

Reverse the elements of self, in place.

EXAMPLES:

sage: B = Sequence([1,2,3])
sage: B.reverse(); B
(3, 2, 1]

4.4. Finite Homogeneous Sequences

107

Parents and Elements, Release 10.5.rc0

set_immutable ()

Make this object immutable, so it can never again be changed.

EXAMPLES:

sage: v = Sequence([1l, 2, 3, 4/5])
sage: v[0] = 5

sage: Vv

[5, 2, 3, 4/5]

sage: v.set_immutable ()

sage: v[3] = 7

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

sort (key=None, reverse=False)
Sort this list /N PLACE.

INPUT:
e key —see Python 1ist sort

e reverse —see Python 1ist sort

EXAMPLES:

sage: B = Sequence([3,2,1/5])
sage: B.sort ()

sage: B

[1/5, 2, 3]

sage: B.sort (reverse=True); B
[3, 2, 1/5]

universe ()

Return the universe of the sequence.

EXAMPLES:

sage: Sequence([1l, 2/3, -2/5]) .universe ()
Rational Field

sage: Sequence([1l, 2/3,
Category of objects

'-2/5"]) .universe ()

sage.structure.sequence. seq (x, universe=None, check=True, immutable=False, cr=False, cr_str=None,

use_sage_types=False)
A mutable list of elements with a common guaranteed universe, which can be set immutable.
A universe is either an object that supports coercion (e.g., a parent), or a category.

INPUT:

e x —list or tuple instance

e universe — (default: None) the universe of elements; if None determined using canonical coercions and
the entire list of elements. If list is empty, is category Objects () of all objects.

¢ check —boolean (default: True); whether to coerce the elements of x into the universe
e immutable — boolean (default: True); whether or not this sequence is immutable

e cr —boolean (default: False); if True, then print a carriage return after each comma when printing this
sequence

108

Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

e cr_str — boolean (default: False); if True, then print a carriage return after each comma when calling
str () on this sequence

* use_sage_types — boolean (default: False); if True, coerce the built-in Python numerical types int,
float, complex to the corresponding Sage types (this makes functions like vector () more flexible)

OUTPUT: a sequence
EXAMPLES:

-
sage: v = Sequence (range (10))

sage: v.universe()

<class 'int'>

sage: Vv

[o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

We can request that the built-in Python numerical types be coerced to Sage objects:

sage: v = Sequence (range (10), use_sage_types=True)
sage: v.universe ()

Integer Ring

sage: Vv

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

You can also use seq for “Sequence”, which is identical to using Sequence:

sage: v = seq([1,2,1/1]); v
[1, 2, 11

sage: v.universe()

Rational Field

Note that assignment coerces if possible,:

sage: v = Sequence (range (10), 27)
sage: a = QQ(5)

sage: v[3] = a

sage: parent (v[3])

Integer Ring

sage: parent (a)

Rational Field

sage: v[3] = 2/3

Traceback (most recent call last):

TypeError: no conversion of this rational to integer

.

Sequences can be used absolutely anywhere lists or tuples can be used:

p
sage: isinstance(v, list)

True

Sequence can be immutable, so entries can’t be changed:

sage: v = Sequence([1,2,3], immutable=True)
sage: v.is_immutable ()

True

sage: v[0] = 5

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

4.4. Finite Homogeneous Sequences 109

Parents and Elements, Release 10.5.rc0

Only immutable sequences are hashable (unlike Python lists), though the hashing is potentially slow, since it first
involves conversion of the sequence to a tuple, and returning the hash of that.:

sage: v = Sequence (range (10), ZZ, immutable=True)
sage: hash(v) == hash (tuple(range (10)))
True

If you really know what you are doing, you can circumvent the type checking (for an efficiency gain):

sage: list._ setitem_ (v, int (1), 2/3) # bad circumvention

sage: Vv

[o, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

sage: list._ _setitem__ (v, int (1), int(2)) # not so bad circumvention

You can make a sequence with a new universe from an old sequence.:

sage: w = Sequence (v, QQ)
sage: w

o, 2, 2, 3, 4, 5, 6, 7, 8, 9]
sage: w.universe ()

Rational Field

sage: w[l] = 2/3

sage: w

(o, 2/3, 2, 3, 4, 5, 6, 7, 8, 9]

L

The default universe for any sequence, if no compatible parent structure can be found, is the universe of all Sage
objects.

This example illustrates how every element of a list is taken into account when constructing a sequence.:

sage: v = Sequence([1, 7, 6, GF(5)(3)]1); Vv
(1, 2, 1, 31

sage: v.universe()

Finite Field of size 5

4.5 Set factories

A set factory F' is a device for constructing some Parent P that models subsets of a big set S. Typically, each such
parent is constructed as the subset of S of all elements satisfying a certain collection of constraints cons. In such a
hierarchy of subsets, one needs an easy and flexible control on how elements are constructed. For example, one may want
to construct the elements of P in some subclass of the class of the elements of S. On other occasions, one also often
needs P to be a facade parent, whose elements are represented as elements of S (see FacadeSets).

The role of a set factory is twofold:

* Manage a database of constructors for the different parents P = F'(cons) depending on the various kinds of
constraints cons. Note: currently there is no real support for that. We are gathering use cases before fixing the
interface.

* Ensure that the elements e = P(...) created by the different parents follows a consistent policy concerning their
class and parent.

110 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/categories/sage/categories/facade_sets.html#sage.categories.facade_sets.FacadeSets

Parents and Elements, Release 10.5.rc0

Basic usage: constructing parents through a factory

Thefile sage.structure.set_rfactories_example showsanexample of a Set Factory together with typ-
ical implementation. Note that the written code is intentionally kept minimal, many things and in particular several
iterators could be written in a more efficient way.

Consider the set .S of couples (z,y) with z and y in I := {0, 1,2,3,4}. We represent an element of .S as a 2-elements
tuple, wrapped in a class XYPa i r deriving from ElementWrapper. You can create a XYPair with any Parent:

sage: from sage.structure.set_factories import *

sage: from sage.structure.set_factories_example import *
sage: p = XYPair (Parent (), (0,1)); p

(0, 1)

Now, given (a, b) € S we want to consider the following subsets of .S

Se :i={(z,y) € S| x =a},
S*:={(x,y) € S|y =0},
SY:={(z,y) €S|z =a,y=">b}

The constraints considered here are admittedly trivial. In a realistic example, there would be much more of them. And
for some sets of constraints no good enumeration algorithms would be known.

In Sage, those sets are constructed by passing the constraints to the factory. We first create the set with no constraints at
all:

sage: XYPairs
Factory for XY pairs
sage: S = XYPairs(); S.list()

(o, 0, 1, 0), ..., (4, 0), (0, 1), (1, 1), ..., (3, 4), (4, 4)]
sage: S.cardinality ()
25

Let us construct Sz, S® and S3:

sage: Sx2 = XYPairs(x=2); Sx2.list ()

[z, 0y, 2, 1y, 2, 2), (2, 3), (2, 4)]
sage: Sy3 = XYPairs(y=3); Sy3.list ()

(¢, 3), 1, 3), (2, 3), (3, 3), (4, 3)]
sage: S23 = XYPairs(x=2, y=3); S23.1list()
(25, 3]

Set factories provide an alternative way to build subsets of an already constructed set: each set constructed by a factory
has a method subset () which accept new constraints. Sets constructed by the factory or the subset () methods are
identical:

sage: Sx2s = S.subset (x=2); Sx2 is Sx2s
True

sage: Sx2.subset (y=3) is S23

True

It is not possible to change an already given constraint:

sage: S23.subset (y=5)
Traceback (most recent call last):

ValueError: Duplicate value for constraints 'y': was 3 now 5

4.5. Set factories 111

Parents and Elements, Release 10.5.rc0

Constructing custom elements: policies

We now come to the point of factories: constructing custom elements. The writer of XYPairs () decided that, by
default, the parents Sx2, Sy3 and S23 are facade for parent S. This means that each element constructed by those
subsets behaves as if they where directly constructed by S itself:

sage: Sx2.an_element () .parent ()

AllPairs

sage: el = Sx2.an_element ()

sage: el.parent () is S

True

sage: type(el) is S.element_class
True

This is not always desirable. The device which decides how to construct an element is called a policy (see SetFacto—
ryPolicy). Each factory should have a default policy. Here is the policy of XYPairs ():

sage: XYPairs._default_policy
Set factory policy for <class 'sage.structure.set_factories_example.XYPair'> with.
—parent AllPairs|[=Factory for XY pairs(())]

This means that with the current policy, the parent builds elements with class XYPair and parent A11Pairs which is
itself constructed by calling the factory XYPairs () with constraints (). There is a lot of flexibility to change that. We
now illustrate how to make a few different choices.

1 - In a first use case, we want to add some methods to the constructed elements. As illustration, we add here a new
method sum which returns z + y. We therefore create a new class for the elements which inherits from XyPai r:

sage: class NewXYPair (XYPair):
e def sum(self):
e return sum(self.value)

Here is an instance of this class (with a dummy parent):

sage: el = NewXYPair (Parent (), (2,3))
sage: el.sum()
5

We now want to have subsets generating those new elements while still having a single real parent (the one with no
constraint) for each element. The corresponding policy is called TopMostParentPolicy. It takes three parameters:

* the factory;
* the parameters for void constraint;
« the class used for elements.

Calling the factory with this policy returns a new set which builds its elements with the new policy:

sage: new_policy = TopMostParentPolicy (XYPairs, (), NewXYPair)
sage: NewS = XYPairs (policy=new_policy)
sage: el = NewS.an_element(); el

(0, 0)

sage: el.sum()

0

sage: el.parent () is NewS

True

sage: isinstance(el, NewXYPair)
True

112 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

Newly constructed subsets inherit the policy:

sage: NewS2 = NewS.subset (x=2)

sage: el2 = NewS2.an_element (); el2
(2, 0)

sage: el2.sum()

2

sage: el2.parent () is NewS

True

2 - In a second use case, we want the elements to remember which parent created them. The corresponding policy is
called SelfParentPolicy. It takes only two parameters:

* the factory;
« the class used for elements.

Here is an example:

sage: selfpolicy = SelfParentPolicy (XYPairs, NewXYPair)
sage: SelfS = XYPairs(policy=selfpolicy)

sage: el = SelfS.an_element ()
sage: el.parent () is SelfS
True

Now all subsets are the parent of the elements that they create:

sage: SelfS2 = SelfS.subset (x=2)
sage: el2 = SelfS2.an_element ()

sage: el2.parent () is NewS
False

sage: el2.parent () is SelfS2
True

3 - Finally, a common use case is to construct simple python object which are not Sage sage . structure.Element.
As an example, we show how to build a parent TupleS which construct pairs as tuple. The corresponding policy is called
BareFunctionPolicy. It takes two parameters:

¢ the factory;
e the function called to construct the elements.

Here is how to do it:

sage: cons = lambda t, check: tuple(t) # ignore the check parameter
sage: tuplepolicy = BareFunctionPolicy (XYPairs, cons)

sage: P = XYPairs(x=2, policy=tuplepolicy)

sage: P.list ()

[z, 0), 2, 1), (2, 2), (2, 3), (2, 4)]

sage: el = P.an_element ()

sage: type(el)

<... 'tuple'>

Here are the currently implemented policies:
* FacadeParentPolicy: reuse an existing parent together with its element_class

e TopMostParentPolicy: use aparent created by the factory itself and provide a class Element for it. In this
case, we need to specify the set of constraints which build this parent taking the ownership of all elements and the
class which will be used for the Element.

4.5. Set factories 113

Parents and Elements, Release 10.5.rc0

e SelfParentPolicy: provide systematically Element and element_class and ensure that the parentis self.

e BareFunctionPolicy: instead of calling a class constructor element are passed to a function provided to the
policy.

Todo

Generalize TopMostParentPolicy to be able to have several topmost parents.

Technicalities: how policies inform parents

Parents built from factories should inherit from ParentWithSetFactory. This class provide a few methods re-
lated to factories and policies. The __init__ method of ParentWithSetFactory must be provided with the set
of constraints and the policy. A parent built from a factory must create elements through a call to the method _ele-
ment_constructor_. The current way in which policies inform parents how to builds their elements is set by a few
attributes. So the class must accept attribute adding. The precise details of which attributes are set may be subject to
change in the future.

How to write a set factory

See also

set_rfactories_example for an example of a factory.

Here are the specifications:
A parent built from a factory should

* inherit from ParentWithSetFactory. It should accept a policy argument and pass it verbatim to the
__init__ method of ParentWithSetFactory together with the set of constraints;

* create its elements through calls to the method _element_constructor_;

* defineamethod ParentiWithSetFactory.check_element which checks if a built element indeed belongs
to it. The method should accept an extra keyword parameter called check specifying which level of check should
be performed. It will only be called when bool (check) evaluates to True.

The constructor of the elements of a parent from a factory should:
* receive the parent as first mandatory argument;

* accept an extra optional keyword parameter called check which is meant to tell if the input must be checked or
not. The precise meaning of check is intentionally left vague. The only intent is that if bool (check) evaluates
to False, no check is performed at all.

A factory should
* defineamethod __call___whichisresponsible for calling the appropriate parent constructor given the constraints;

* define a method overloading SetFactory.add constraints () which is responsible of computing the
union of two sets of constraints;

* optionally define a method or an attribute _default_policy passed to the ParentWithSetFactory if
no policy is given to the factory.

114 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

Todo

There is currently no support for dealing with sets of constraints. The set factory and the parents must cooperate to
consistently handle them. More support, together with a generic mechanism to select the appropriate parent class
from the constraints, will be added as soon as we have gathered sufficiently enough use-cases.

AUTHORS:
¢ Florent Hivert (2011-2012): initial revision

class sage.structure.set_factories.BareFunctionPolicy (factory, constructor)

Bases: SetFactoryPolicy
Policy where element are constructed using a bare function.
INPUT:

e factory —aninstance of SetFactory

e constructor — a function

Given a factory F and a function c, returns a policy for parent P creating element using the function £.

EXAMPLES:

sage: from sage.structure.set_factories import BareFunctionPolicy
sage: from sage.structure.set_factories_example import XYPairs
sage: cons = lambda t, check: tuple(t) # ignore the check parameter
sage: tuplepolicy = BareFunctionPolicy (XYPairs, cons)

sage: P = XYPairs(x=2, policy=tuplepolicy)

sage: el = P.an_element ()

sage: type(el)

<... 'tuple'>

.

element_constructor_attributes (constraints)

Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes ().
INPUT:

e constraints —a bunch of constraints

class sage.structure.set_factories.FacadeParentPolicy (factory, parent)

Bases: SetFactoryPolicy

Policy for facade parent.

INPUT:
e factory —aninstance of SetFactory
e parent —an instance of Parent

Given a factory F and a class E, returns a policy for parent P creating elements as if they were created by parent.

EXAMPLES:

sage: from sage.structure.set_factories import SelfParentPolicy, .
—FacadeParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair

We create a custom standard parent P:

4.5. Set factories 115

Parents and Elements, Release 10.5.rc0

-

sage: selfpolicy = SelfParentPolicy (XYPairs, XYPair)
sage: P = XYPairs(x=2, policy=selfpolicy)
sage: pol = FacadeParentPolicy (XYPairs, P)

sage: P2 = XYPairs(x=2, y=3, policy=pol)
sage: el = P2.an_element ()

sage: el.parent () is P

True

sage: type(el) is P.element_class

True

If parent is itself a facade parent, then transitivity is correctly applied:

.

sage: P = XYPairs()

sage: P2 = XYPairs (x=2)

sage: P2.category ()

Category of facade finite enumerated sets

sage: pol = FacadeParentPolicy (XYPairs, P)
sage: P23 = XYPairs(x=2, y=3, policy=pol)

sage: el = P2.an_element ()

sage: el.parent () is P

True

sage: type(el) is P.element_class
True

clas

element_constructor_attributes (constraints)

Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes ().
INPUT:

e constraints —a bunch of constraints

s sage.structure.set_factories.ParentWithSetFactory (constraints, policy,
category=None)

Bases: Parent
Abstract class for parent belonging to a set factory.
INPUT:
e constraints - set of constraints
* policy - the policy for element construction
e category — the category of the parent (default: None)
Depending on the constraints and the policy, initialize the parent in a proper category to set up element construction.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, PairsX_
sage: P = PairsX_ (3, XYPairs._default_policy)

sage: P is XYPairs(3)

True

sage: P.category ()

Category of facade finite enumerated sets

check_element (x, check)
Check that x verifies the constraints of self.

INPUT:

116

Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

e x —aninstance of self.element_class
e check — the level of checking to be performed (usually a boolean)

This method may assume that x was properly constructed by se1 £ or a possible super-set of se 1 f for which
self is a facade. It should return nothing if x verifies the constraints and raise a ValueError explaining
which constraints x fails otherwise.

The method should accept an extra parameter check specifying which level of check should be performed. It
will only be called when bool (check) evaluates to True.

Todo

Should we always call check element and let it decide which check has to be performed ?

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: S = XYPairs()

sage: el = S((2,3))

sage: S.check_element (el, True)

sage: XYPairs (x=2) .check_element (el, True)

sage: XYPairs (x=3) .check_element (el, True)

Traceback (most recent call last):

ValueError: Wrong first coordinate
sage: XYPairs(y=4) .check_element (el, True)

Traceback (most recent call last):

ValueError: Wrong second coordinate

constraints ()

Return the constraints defining sel1f.

Note

Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs () .constraints()

0

sage: XYPairs (x=3) .constraints/()

(3, None)

sage: XYPairs (y=2) .constraints()

(None, 2)

facade_policy ()
Return the policy for parent facade for self.

EXAMPLES:

sage: from sage.structure.set_factories import SelfParentPolicy
sage: from sage.structure.set_factories_example import XYPairs, XYPair

4.5. Set factories 117

Parents and Elements, Release 10.5.rc0

We create a custom standard parent P:

sage: selfpolicy = SelfParentPolicy (XYPairs, XYPair)

sage: P = XYPairs (x=2, policy=selfpolicy)

sage: P.facade_policy()

Set factory policy for facade parent {(2, b) | b in range(5)}

Now passing P. facade_policy () creates parent which are facade for P:

sage: P3 = XYPairs(x=2, y=3, policy=P.facade_policy())

sage: P3.facade_for () == (P,)
True
sage: el = P3.an_element ()
sage: el.parent () is P
True

factory ()

Return the factory which built se1f.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs().factory() is XYPairs

True

sage: XYPairs (x=3).factory() is XYPairs
True

policy ()
Return the policy used when self was created.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs

sage: XYPairs () .policy ()

Set factory policy for <class 'sage.structure.set_factories_example.XYPair'>_
—with parent AllPairs[=Factory for XY pairs(())]

sage: XYPairs (x=3) .policy ()

Set factory policy for <class 'sage.structure.set_factories_example.XYPair'>_
—with parent AllPairs[=Factory for XY pairs(())]

subset (*args, **options)

Return a subset of self by adding more constraints.

Note

Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: S = XYPairs()

sage: S3 = S.subset (x=3)

sage: S3.list ()

(3, 0), (3, 1), (3, 2), (3, 3), (3, 4]

118 Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

class sage.structure.set_factories.SelfParentPolicy (factory, Element)

Bases: SetFactoryPolicy
Policy where each parent is a standard parent.
INPUT:
e factory —aninstance of SetFactory
* Element —asubclass of Element
Given a factory F and a class E, returns a policy for parent P creating elements in class E and parent P itself.

EXAMPLES:

sage: from sage.structure.set_factories import SelfParentPolicy

sage: from sage.structure.set_factories_example import XYPairs, XYPair, Pairs_Y
sage: pol = SelfParentPolicy (XYPairs, XYPair)

sage: S = Pairs_Y (3, pol)

sage: el = S.an_element ()
sage: el.parent () is S
True

sage: class Foo (XYPair): pass
sage: pol = SelfParentPolicy (XYPairs, Foo)
sage: S = Pairs_Y (3, pol)

sage: el = S.an_element ()
sage: isinstance(el, Foo)
True

.

element_constructor_attributes (constraints)

Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes ()
INPUT:

e constraints —a bunch of constraints

class sage.structure.set_factories.SetFactory

Bases: UniqueRepresentation, SageObject
This class is currently just a stub that we will be using to add more structures on factories.

add_constraints (cons, *args, **opts)

Add constraints to the set of constraints cons.

Should return a set of constraints.

Note

Currently there is no specification on how constraints are passed as arguments.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs.add_constraints((3,), ((None, 2), {}))

(3, 2)

sage: XYPairs.add_constraints((3,), ((None, None), {'y': 2}))
(3, 2)

4.5. Set factories 119

Parents and Elements, Release 10.5.rc0

class sage.structure.set_factories.SetFactoryPolicy (factory)

Bases: UniqueRepresentation, SageObject
Abstract base class for policies.

A policy is a device which is passed to a parent inheriting from ParentWithSetFactory in order to set-up
the element construction framework.

INPUT:

e factory—a SetFactory

Warning

This class is a base class for policies, one should not try to create instances.

element_constructor_attributes (constraints)

Element constructor attributes.
INPUT:
e constraints —a bunch of constraints

Should return the attributes that are prerequisite for element construction. This is coordinated with
ParentWithSetFactory._element_constructor_ (). Currently two standard attributes
are provided in facade_element_constructor_attributes () and self element_con-
structor_attributes (). You should return the one needed depending on the given constraints.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: pol = XYPairs._default_policy
sage: pol.element_constructor_attributes(())
{'Element': <class 'sage.structure.set_factories_example.XYPair'>,
' _parent_for': 'self'}
sage: pol.element_constructor_attributes ((1))
{'_facade_for': AllPairs,
'_parent_for': AllPairs,
'element_class': <class 'sage.structure.set_factories_example.AllPairs_with_
—category.element_class'>}

facade_element_constructor_attributes (parent)
Element Constructor Attributes for facade parent.

The list of attributes which must be set during the init of a facade parent with factory.

INPUT:

* parent — the actual parent for the elements

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: pol = XYPairs._default_policy
sage: pol.facade_element_constructor_attributes (XYPairs())
{'_facade_for': AllPairs,
'_parent_for': AllPairs,
'element_class': <class 'sage.structure.set_factories_example.AllPairs_with_
—category.element_class'>}

120

Chapter 4. Mathematical Data Structures

Parents and Elements, Release 10.5.rc0

factory ()
Return the factory for self.

EXAMPLES:

sage: from sage.structure.set_factories import SetFactoryPolicy,.
—SelfParentPolicy

sage: from sage.structure.set_factories_example import XYPairs, XYPair
sage: XYPairs._default_policy.factory()

Factory for XY pairs

sage: XYPairs._default_policy.factory() is XYPairs

True

self_element_constructor_attributes (Element)

Element Constructor Attributes for non facade parent.
The list of attributes which must be set during the init of a non facade parent with factory.
INPUT:

* Element — the class used for the elements

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair

sage: pol = XYPairs._default_policy

sage: pol.self_element_constructor_attributes (XYPair)

{'Element': <class 'sage.structure.set_factories_example.XYPair'>,
'_parent_for': 'self'}

class sage.structure.set_factories.TopMostParentPolicy (factory, top_constraints, Element)

Bases: SetFactoryPolicy
Policy where the parent of the elements is the topmost parent.
INPUT:

e factory —aninstance of SetFactory

* top_constraints — the empty set of constraints

* Element —asubclass of Element

Given a factory F and a class E, returns a policy for parent P creating element in class E and parent
factory (*top_constraints, policy).

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs, XYPair

sage: P = XYPairs(); P.policy()

Set factory policy for <class 'sage.structure.set_factories_example.XYPair'> with.
—parent AllPairs[=Factory for XY pairs(())]

element_constructor_attributes (constraints)

Return the element constructor attributes as per SetFactoryPolicy.
element_constructor_attributes().
INPUT:

e constraints —a bunch of constraints

4.5. Set factories 121

Parents and Elements, Release 10.5.rc0

4.6 An example of set factory

The goal of this module is to exemplify the use of set factories. Note that the code is intentionally kept minimal; many
things and in particular several iterators could be written in a more efficient way.

See also

set_factories for an introduction to set factories, their specifications, and examples of their use and imple-
mentation based on this module.

We describe here a factory used to construct the set S of couples (x, y) with z and y in I := {0, 1, 2, 3,4}, together with
the following subsets, where (a,b) € S

Sa:={(z,y) € S|z =a},
S = {(x,y) € S |y =1},
St = {(z,y) € S| x=a,y=Db}.

class sage.structure.set_factories_example.AllPairs (policy)

Bases: ParentWithSetFactory,DisjointUnionEnumeratedSets
This parent shows how one can use set factories together with DisjointUnionEnumeratedSets.
It is constructed as the disjoint union (DisjointUnionEnumeratedSets)of Pairs_Y parents:

S = U SY

i=0,1,...,4

Warning

When writing a parent P as a disjoint union of a family of parents P_ i, the parents P_i must be constructed
as facade parents for P. As a consequence, it should be passed P . facade_policy () as policy argument.
See the source code of pairs_y () for an example.

check_element (el, check)
pairs_y (letter)
Construct the parent for the disjoint union.
Construct a parent in Pairs_Y as a facade parent for self.

This is an internal function which should be hidden from the user (typically under the name _pairs_y. We
put it here for documentation.

class sage.structure.set_factories_example.PairsX_ (x, policy)

Bases: ParentWithSetFactory, UniqueRepresentation
The set of pairs (z,0), (x,1), ..., (x,4).

an_element ()

122 Chapter 4. Mathematical Data Structures

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Parents and Elements, Release 10.5.rc0

check_element (el, check)

class sage.structure.set_factories_example.Pairs_Y (y, policy)
Bases: ParentWithSetFactory,DisjointUnionEnumeratedSets
The set of pairs (0,y), (1,¥), ..., (4,).
It is constructed as the disjoint union (DisjointUnionEnumeratedSets)of SingletonPair parents:

sv=J
4

i=0,1,...,

See also

AllPairs for how to properly construct DisjointUnionEnumeratedSets using ParentWith—
SetFactory.

an_element ()
check_element (el, check)

single_pair (letter)

Construct the singleton pair parent.

Construct a singleton pair for (self.y, letter) asafacade parent for self.

See also

AllPairs for how to properly construct DisjointUnionEnumeratedSets using Paren-—
twWithSetFactory.

class sage.structure.set_factories_example.SingletonPair (x,y, policy)

Bases: ParentWithSetFactory, UniqueRepresentation
check_element (el, check)

class sage.structure.set_factories_example.XYPair (parent, value, check=True)
Bases: ElementWrapper

A class for Elements (x, y) with « and y in {0, 1,2, 3,4}.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPair
sage: p = XYPair (Parent (), (0,1)); p

(0, 1)

sage: p = XYPair (Parent (), (0,8))

Traceback (most recent call last) :

ValueError: numbers must be in range (5)

sage.structure.set_factories_example.XYPairs (x=None, y=None, policy=None)
Construct the subset from constraints.

Consider the set .S' of couples (z,y) with z and y in I := {0,1,2,3,4}. Returns the subsets of element of S
satisfying some constraints.

4.6. An example of set factory 123

../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets
../../../../../../html/en/reference/sets/sage/sets/disjoint_union_enumerated_sets.html#sage.sets.disjoint_union_enumerated_sets.DisjointUnionEnumeratedSets

Parents and Elements, Release 10.5.rc0

INPUT:
e x=a — where a is an integer (default: None)
e y=b — where b is an integer (default: None)

* policy - the policy passed to the created set

See also

set_factories.SetFactoryPolicy

EXAMPLES:

Let us first create the set factory:

sage: from sage.structure.set_factories_example import XYPairsFactory
sage: XYPairs = XYPairsFactory ()

.

One can then use the set factory to construct a set:

-

sage: P = XYPairs(); P.list()

(e, 0y, (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1),
(0, 2), (1, 2), (2, 2), (3, 2), (4, 2), (0, 3), (1, 3), (2, 3), (3, 3), (4, 3),-
(0, 4), (1, 4), (2, 4), (3, 4), (4, 4)]

Note

This function is actually the __call__ method of XYPairsFactory.

class sage.structure.set_factories_example.XYPairsFactory

Bases: SetFactory

An example of set factory, for sets of pairs of integers.

See also

set_factories for an introduction to set factories.

add_constraints (cons, args_opts)

Add constraints to the set cons as per SetFactory.add _constraints.
This is a crude implementation for the sake of the demonstration which should not be taken as an example.

EXAMPLES:

sage: from sage.structure.set_factories_example import XYPairs
sage: XYPairs.add_constraints((3,None), ((2,), {}))
Traceback (most recent call last):

ValueError: Duplicate value for constraints 'x': was 3 now 2

sage: XYPairs.add_constraints((), ((2,), {}))

(2, None)

sage: XYPairs.add_constraints((), ((2,), {'yv':3}))
(2, 3)

124 Chapter 4. Mathematical Data Structures

CHAPTER
FIVE

5.1

USE OF HEURISTIC AND PROBABILISTIC ALGORITHMS

Global proof preferences

class sage.structure.proof.proof.WithProof (subsystem,t)

Bases: object

Use WithProof to temporarily set the value of one of the proof systems for a block of code, with a guarantee
that it will be set back to how it was before after the block is done, even if there is an error.

EXAMPLES:

This would hang “forever” if attempted with proof=True:

r

L

sage: proof.arithmetic (True)

sage: with proof.WithProof ('arithmetic', False): #_
—needs sage.libs.pari

e print ((1071000 + 453) .is_prime())

o008 print (1/0)

Traceback (most recent call last):

ZeroDivisionError: rational division by zero
sage: proof.arithmetic()
True

sage

.structure.proof.proof.get_£flag (t=None, subsystem=None)

Used for easily determining the correct proof flag to use.

EXAMPLES:

-

L

sage: from sage.structure.proof.proof import get_flag
sage: get_flag(False)

False

sage: get_flag(True)
True

sage: get_flag()
True

sage: proof.all (False)
sage: get_flag()
False

125

Parents and Elements, Release 10.5.rc0

5.2 Whether or not computations are provably correct by default

126 Chapter 5. Use of Heuristic and Probabilistic Algorithms

CHAPTER
SIX

UTILITIES

6.1 Cython-like rich comparisons in Python

With “rich comparisons”, we mean the Python 3 comparisons which are usually implemented in Python using methods
like_ _eq and__1t_ . Internally in Python, there is only one rich comparison slot tp_richcompare. The actual
operator is passed as an integer constant (defined in this module as op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE).

Cython exposes rich comparisons in cde f classes as the __richcmp__ special method. The Sage coercion model also
supports rich comparisons this way: for two instances x and y of Element, x._richcmp_ (y, op) is called when
the user does something like x <=y (possibly after coercion if x and y have different parents).

Various helper functions exist to make it easier to implement rich comparison: the most important one is the richcmp ()
function. This is analogous to the Python 2 function cmp () but implements rich comparison, with the comparison
operator (e.g. op_GE) as third argument. There is also richcmp_not_equal () which is like richcmp () but it
is optimized assuming that the compared objects are not equal.

The functions rich_to_bool () and rich_to_bool_sgn () can be used to convert results of cmp () (i.e. -1,0
or 1) to a boolean True/False for rich comparisons.

AUTHORS:
 Jeroen Demeyer

sage.structure.richcmp.revop (op)

Return the reverse operation of op.
For example, <= becomes >=, etc.

EXAMPLES:

sage: from sage.structure.richcmp import revop
sage: [revop(i) for i in range(6)]
(4, s, 2, 3, 0, 1]

sage.structure.richcmp.rich_to_bool (op, c)

Return the corresponding True or False value for a rich comparison, given the result of an old-style comparison.
INPUT:

* op — arich comparison operation (e.g. Py_EQ)

¢ c — the result of an old-style comparison: -1, 0 or 1

OUTPUT: 1 or O (corresponding to True and False)

127

Parents and Elements, Release 10.5.rc0

See also

rich_to_bool_sgn () if c could be outside the [-1, 0, 1] range.

EXAMPLES:

&

sage: from sage.structure.richcmp import (rich_to_bool,
e op_EQ, op_NE, op_LT, op_LE, op_GT, op_GE)

sage: for op in (op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE):

e for ¢ in (-1,0,1):

50001 print (rich_to_bool (op, c))
True False False

True True False

False True False

True False True

False False True

False True True

Indirect tests using integers:

~

sage: 0 < 5, 5 <5, 5 < -8
(True, False, False)

sage: 0 <=5, 5 <=5, 5 <= -8
(True, True, False)

sage: 0 >= 5, 5 >= 5, 5 >= -8
(False, True, True)

sage: 0 > 5, 5> 5, 5 > -8
(False, False, True

)
sage: 0 == 5, == 5, 5 == -8
(False, True, False)
sage: 0 != 5, 5 !=5, 5 I= -8

(True, False, True)

sage.structure.richcmp.rich_to_bool_sgn (op,c)

Same as rich_to_bool, but allow any ¢ < 0 and ¢ > 0 instead of only —1 and 1.

Note

This is in particular needed for mpz_cmp () .

sage.structure.richcmp.richemp (x, y, op)

Return the result of the rich comparison of x and y with operator op.
INPUT:

* x,y — arbitrary Python objects

e op — comparison operator (one of op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE)

EXAMPLES:

sage: from sage.structure.richcmp import *
sage: richcmp (3, 4, op_LT)

True

sage: richcmp (x, x"2, op_EQ)

#

(continues on next page)

128

Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

(continued from previous page)

—needs sage.symbolic
X == x"2

The two examples above are completely equivalentto 3 < 4 and x == x”2. For this reason, it only makes sense
in practice to call richcmp with a non-constant value for op.

We can write a custom Element class which shows a more realistic example of how to use this:

sage: from sage.structure.element import Element
sage: class MyElement (Element) :

e def _ init__ (self, parent, value):
e Element.__init__ (self, parent)
e self.v = value

e def _richcmp_(self, other, op):
et return richcmp(self.v, other.v, op)

sage: P = Parent ()

sage: x = MyElement (P, 3)
sage: y = MyElement (P, 3)
sage: x < y

False

sage: X ==y

True

sage.structure.richcmp.richemp_by eq _and_1t (eq_attr, It_attr)

Create a rich comparison method for a partial order, where the order is specified by methods called eq_attr and
1lt_attr.

INPUT when creating the method:

* eqg_attr — attribute name for equality comparison

e 1t_attr — attribute name for less-than comparison
INPUT when calling the method:

e self —objects having methods eq_attrand 1t_attr

e other —arbitrary object. If it does have eq_attr and 1t_attr methods, these are used for the compar-
ison. Otherwise, the comparison is undefined.

* op —arich comparison operation (e.g. op_EQ)

Note

For efficiency, identical objects (when self is other) always compare equal.

Note

The order is partial, so x <= vy isimplemented as x == y or x < vy. Itisnotrequired that this is the
negationof y < x.

6.1. Cython-like rich comparisons in Python 129

Parents and Elements, Release 10.5.rc0

Note

This function is intended to be used as a method _richcmp_ in a class derived from sage. st ructure.
element .Element or amethod ___richcmp__ inaclass using richcmp_method ().

EXAMPLES:

sage: from sage.structure.richcmp import richcmp_by_eq_and_1t
sage: from sage.structure.element import Element

sage: class C(Element) :
e def _ init_ (self, a, b):

e super () .__init__ (ZZ)

e self.a = a

e self.b = b

e _richcmp_ = richcmp_by_eq_and_1t ("eg", "1t")

e def eqg(self, other):

e return self.a == other.a and self.b == other.b

e def 1t (self, other):
e return self.a < other.a and self.b < other.b

sage: x = C(1,2); yv = C(2,1); z = C(3,3)

sage: x == x, x <= x, x == C(1,2), x <= C(1,2) # Indirect doctest
(True, True, True, True)
sage: y ==z, y != z

(False, True)

sage: x <y, y <X, X >V, V¥ > X, X<=y, Vv <=X, X>V, Yy > X
(False, False, False, False, False, False, False, False)

sage: y <z, z <y, VY >2, 2 >Y, Y <=2, 2<=y,YyY>12z, z2>Y
(True, False, False, True, True, False, False, True)

sage: z < x, x <z, z > X, X >z, z <=1Xx, Xx <=1z, z > X, X >= 7
(False, True, True, False, False, True, True, False)

A simple example using richcmp_method:

sage: from sage.structure.richcmp import richcmp_method, richcmp_by_eq_and_1t
sage: @richcmp_method

....: class C():

e __richcmp__ = richcmp_by_eqg and_1lt ("_eqg", "_1t")

e def _eg(self, other):

et return True

e def _1t (self, other):

Cet return True

=CQ0O; b=2cC()

X
sage: a == x # Does not call a._eq(x) because x does not have _eq

sage.structure.richcmp.richcmp_item(x, y, op)

This function is meant to implement lexicographic rich comparison of sequences (lists, vectors, polynomials, ...).

130

Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

The inputs x and y are corresponding items of such lists which should compared.
INPUT:
* x,y — arbitrary Python objects; typically, these are X [1] and Y [1] for sequences X and Y
e op — comparison operator (one of op_LT, op_LE, op_EQ, op_NE, op_GT, op_GE)
OUTPUT: assuming that x = X[i]Jandy = Y[i]:

e if the comparison X {op} Y (where op is the given operation) could not be decided yet (i.e. we should
compare the next items in the list): return Not Implemented

* otherwise, if the comparison X {op} Y could be decided: return x {op} vy, which should then also be
the result for X {op} Y.

Note

Since x {op} y cannot return Not Implemented, the two cases above are mutually exclusive.

The semantics of the comparison is different from Python lists or tuples in the case that the order is not total.
Assume that A and B are lists whose rich comparison is implemented using richcmp_1item (as in EXAMPLES
below). Then

e A == Biff A[i] == BJ[1i] for all indices 7.
B[1

< Biff A{i] < B[1i] forsomeindex ¢ andforall j <, A[J] <= B[]].

e A !=BiffA[i] !'=] for some index i.

<= Biff A < BorA[i] <= B[i] foralls.

L]
=

> Biff A{i] > B[i] for someindex ¢ and forall j <+4,A[J] >= B[]].
e A >= BiffA > BorA[i] >= B[i] forallzs.
See below for a detailed description of the exact semantics of richcmp_1item in general.

EXAMPLES:

sage: from sage.structure.richcmp import *

sage: @richcmp_method

....: class Listcmp(list):

e def _ richcmp__ (self, other, op):

e for i in range(len(self)): # Assume equal lengths

e res = richcmp_item(self[i], other[i], op)

et if res is not NotImplemented:

et return res

e return rich_to_bool (op, 0) # Consider the lists to be equal

sage: a = Listcmp ([0, 1, 3])
sage: b = Listcmp ([0, 2, 11])
sage: a == a

True

sage: a != a

False

sage: a < a

False

sage: a <= a

True

sage: a > a

False

(continues on next page)

6.1. Cython-like rich comparisons in Python 131

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: a >= a

True

sage: a == b, b == a
(False, False)

sage: a != b, b !'= a

(True, True)

sage: a < b, b > a
(True, True)

sage: a <= b, b >= a
(True, True)

sage: a > b, b < a
(False, False)

sage: a >= b, b <= a
(False, False)

L

The above tests used a list of integers, where the result of comparisons are the same as for Python lists.

If we want to see the difference, we need more general entries in the list. The comparison rules are made to be
consistent with setwise operations. If A and B are sets, we define A {op} Btobetrueif a {op} Bis true for
every a in A and b in B. Interval comparisons are a special case of this. For lists of non-empty(!) sets, we want
that [A1, A2] {op} [B1l, B2]istrueifandonlyif [al, a2] {op} [bl, b2] istrue for all elements.
We verify this:

sage: @richcmp_method

....: class Setcmp (tuple):
e def _ richcmp__ (self, other, op):
e return all (richcmp(x, y, op) for x in self for y in other)

sage: sym = {op_EQ: "==", op_NE: "!=", op_LT: "<", op_GT: ">", op_LE: "<=", op_
—GE: ">="}

sage: for Al in Set (range(4)) .subsets(): # long time

ot if not Al: continue

e for Bl in Set (range (4)) .subsets() :

el if not Bl: continue

e for A2 in Set (range (4)) .subsets():

et if not A2: continue

e for B2 in Set (range (3)) .subsets|() :

ot if not B2: continue

e L1l = Listcmp([Setcmp (Al), Setcmp (A2)])
e L2 = Listcmp([Setcmp(Bl), Setcmp(B2)])
ol for op in range(6):

et reslist = richcmp(Ll, L2, op)
60008 reselt = all(richcmp([al, a2], [bl, b2], op) for al in.
—~Al for a2 in A2 for bl in B1 for b2 in B2)

ce assert reslist is reselt

EXACT SEMANTICS:

Above, we only described how richcmp_item behaves when it is used to compare sequences. Here, we specify
the exact semantics. First of all, recall that the result of richcmp_item(x, y, op) iseither Not Imple-
mentedorx {op} v.

e if opis ==: return Not Implementedif x == y.If x == vy is false, then return x ==

e if opis !=: return NotImplementedifnotx != y.If x != yistrue,thenreturnx != vy.

e if opis <: return Not Implementedif x == y.If x < yornotx <= y,return x < y. Otherwise
(if both x == yand x < vy are false but x <= vy is true), return Not Implemented.

Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

e if opis <=: return Not Implementedif x == y.If x < yornotx <= y,returnx <= y. Otherwise
(if both x == yand x < y are false but x <= vy is true), return Not Implemented.

 the > and >= operators are analogous to < and <=.

sage.structure.richcmp.richemp_method (cls)

Class decorator to implement rich comparison using the special method ___richcmp__ (analogous to Cython)
instead of the 6 methods ___eq__ and friends.

This changes the class in-place and returns the given class.

EXAMPLES:

sage: from sage.structure.richcmp import *

sage: sym = {op_EQ: "==", op_NE: "!=", op_LT: "<", op_GT: ">", op_LE: "<=", op_
—GE: ">="}

sage: @richcmp_method

....: class A(str):

e def _ richcmp__ (self, other, op):

e print ("%s %s %s" % (self, sym[op], other))
sage: A("left") < A("right")

left < right

sage: object () <= A("right")

right >= <object object at ...>

|\

We can call this comparison with the usual Python special methods:

-

sage: x = A("left"); y = A("right")
sage: x.__eq_ (y)

left == right
sage: A.__eq_ (x, V)
left == right

Everything still works in subclasses:

sage: class B(A):
P pass

sage: x = B("left"); y = B("right")
sage: x !=y

left != right

sage: x.__ne__ (y)

left != right

sage: B. ne (x, V)

left != right

We can override ___richcmp___ with standard Python rich comparison methods and conversely:

sage: class C(A):
e def _ ne_ (self, other):
e return False

sage: C("left") != C("right")

False

sage: C("left") == C("right") # Calls __eq__ from class A
left == right

sage: class Base():

e def _ eq_ (self, other):
et return False

sage: @richcmp_method

(continues on next page)

6.1. Cython-like rich comparisons in Python 133

Parents an

d Elements, Release 10.5.rcO

sage:

class Derived (Base) :
def _ richcmp__ (self,
return True
Derived () Derived ()

other,

op) :

(continued from previous page)

True

sage.structure.richcmp.richemp_not_equal (x, y, op)

Like richecmp (x,

INPUT:

y, op) but assuming that x is not equal to y.

* op —arich comparison operation (e.g. Py_EQ)
OUTPUT:

If op is not op_EQ or op_NE, the result of richcmp (x,
op_NE, return True.

y, op).If opis op_EQ, return False. If op is

This is useful to compare lazily two objects A and B according to 2 (or more) different parameters, say width and
height for example. One could use:

[return richcmp ((A.width (), A.height()), (B.width(), B.height()), op)

)

but this will compute both width and height in all cases, even if A.width() and B.width() are enough to decide the
comparison.

Instead one can do:

wA = A.width ()
wB = B.width ()
if wA != wB:

return richcmp_not_equal (wA, wB, op)
return richcmp (A.height (), B.height (), op)

The difference with richcmp is that richcmp_not_equal assumes that its arguments are not equal, which
is excluding the case where the comparison cannot be decided so far, without knowing the rest of the parameters.

EXAMPLES:

from sage.structure.richcmp import
op_EQ, op_NE, op_LT, op_LE,
for op in (op_LT, op_LE, op_EQ,
print (richcmp_not_equal (3,

(richcmp_not_equal,
op_GT, op_GE)
op_NE, op_GT,
4, op))

op_GE) :

for op in (op_LT, op_LE, op_EQ,
print (richcmp_not_equal (5,

op_NE,
4, op))

op_GT, op_GE) :

134

Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

6.2 Unique Representation

Abstract classes for cached and unique representation behavior.

See also

sage.structure.factory.UniqueFactory

AUTHORS:
* Nicolas M. Thiery (2008): Original version.
« Simon A. King (2013-02): Separate cached and unique representation.
» Simon A. King (2013-08): Extended documentation.

6.2.1 What is a cached representation?

Instances of a class have a cached representation behavior when several instances constructed with the same arguments
share the same memory representation. For example, calling twice:

sage: G = SymmetricGroup (6) #.
—needs sage.groups
sage: H = SymmetricGroup (6) #o

—needs sage.groups

to create the symmetric group on six elements gives back the same object:

sage: G is H #o
—needs sage.groups
True

This is a standard design pattern. Besides saving memory, it allows for sharing cached data (say representation theoretical
information about a group). And of course a look-up in the cache is faster than the creation of a new object.

Implementing a cached representation

Sage provides two standard ways to create a cached representation: CachedRepresentation and UniqueFac—
tory. Note that, in spite of its name, UniqueFactory does not ensure unique representation behaviour, which will
be explained below.

Using CachedRepresentation

It is often very easy to use CachedRepresentat ion: One simply writes a Python class and adds CachedRepre-—
sentation to the list of base classes. If one does so, then the arguments used to create an instance of this class will by
default also be used as keys for the cache:

sage: from sage.structure.unique_representation import CachedRepresentation
sage: class C(CachedRepresentation) :

e def _ init_ (self, a, b=0):

L self.a = a

et self.b = b

(continues on next page)

6.2. Unique Representation 135

Parents and Elements, Release 10.5.rc0

(continued from previous page)
e def _ repr__ (self):
Sn0 a8 return "C (,) "% (self.a, self.b)
sage: a = C(1)
sage: a is C(1)

In addition, pickling just works, provided that Python is able to look up the class. Hence, in the following two lines, we
explicitly put the class into the __main__ module. This is needed in doctests, but not in an interactive session:

sage: import _ main__
sage: _ main__ .C = C

sage: loads (dumps(a)) is a
True

Often, this very easy approach is sufficient for applications. However, there are some pitfalls. Since the arguments are
used for caching, all arguments must be hashable, i.e., must be valid as dictionary keys:

sage: C((1,2))

c((1, 2), 0)

sage: C([1,2])

Traceback (most recent call last):

TypeError: unhashable type: 'list'

In addition, equivalent ways of providing the arguments are not automatically normalised when forming the cache key,
and hence different but equivalent arguments may yield distinct instances:

sage: C(1) is C(1,0)

False

sage: C(1l) is C(a=1)

False

sage: repr(C(l)) == repr(C(a=1l))
True

It should also be noted that the arguments are compared by equality, not by identity. This is often desired, but can imply
subtle problems. For example, since C (1) already is in the cache, and since the unit elements in different finite fields are
all equal to the integer one, we find:

sage: GF(5) (1) == 1 == GF(3) (1)

True

sage: C(1l) is C(GF(3) (1)) is C(GF (5) (1))

True

But C (2) is not in the cache, and the number two is not equal in different finite fields (i. e., GF (5) (2) == GF (3) (2)
returns as False), even though it is equal to the number two in the ring of integers (GF (5) (2) == 2 == GF (3) (2)

returns as True; equality is not transitive when comparing elements of distinct algebraic structures!!). Hence, we have:

sage: GF (5) (2) == GF(3) (2)

False

sage: C(GF (3) (2)) is C(GF(5) (2))
False

136 Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

Normalising the arguments

CachedRepresentation uses the metaclass ClasscallMetaclass. Its _ classcall__ method is a
WeakCachedFunction. This function creates an instance of the given class using the given arguments, unless it
finds the result in the cache. This has the following implications:

» The arguments must be valid dictionary keys (i.e., they must be hashable; see above).

« It is a weak cache, hence, if the user does not keep a reference to the resulting instance, then it may be removed
from the cache during garbage collection.

* Itis possible to preprocess the input arguments by implementinga___classcall__ora__classcall_pri-
vate__ method, but in order to benefit from caching, CachedRepresentation.__classcall__ ()
should at some point be called.

Note

For technical reasons, it is needed that __classcall__ respectively __classcall_private_ are “static
methods”, i.e., they are callable objects that do not bind to an instance or class. For example, a cached_function
can be used here, because it is callable, but does not bind to an instance or class, because it has no __get__ ()

method. A usual Python function, however, hasa ___get__ () method and would thus under normal circumstances
bind to an instance or class, and thus the instance or class would be passed to the function as the first argument. To
prevent a callable object from being bound to the instance or class, one can prepend the @stat icmethod decorator
to the definition; see staticmethod.

For more on Python’s __get__ () method, see: https://docs.python.org/2/howto/descriptor.html

Warning

If there is preprocessing, then the preprocessed arguments passed to CachedRepresentation.
__classcall__ () must be invariant under the preprocessing. That is to say, preprocessing the input
arguments twice must have the same effect as preprocessing the input arguments only once. That is to say, the
preprocessing must be idempotent.

The reason for this warning lies in the way pickling is implemented. If the preprocessed arguments are passed to
CachedRepresentation.__classcall__ (), then the resulting instance will store the preprocessed arguments
in some attribute, and will use them for pickling. If the pickle is unpickled, then preprocessing is applied to the pre-
processed arguments—and this second round of preprocessing must not change the arguments further, since otherwise a
different instance would be created.

We illustrate the warning by an example. Imagine that one has instances that are created with an integer-valued argument,
but only depend on the square of the argument. It would be a mistake to square the given argument during preprocessing:

sage: class WrongUsage (CachedRepresentation) :

et @staticmethod

e def _ classcall_ (cls, n):

e return super()._ _classcall__ (cls, n"2)

e def _ init_ (self, n):

e self.n = n

e def _ repr_ (self):

e return "Something () "$self.n

sage: import _ main___

sage: main__ .WrongUsage = WrongUsage # This is only needed in doctests

sage: w = WrongUsage(3); w

(continues on next page)

6.2. Unique Representation 137

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/cachefunc.html#sage.misc.cachefunc.WeakCachedFunction
https://docs.python.org/2/howto/descriptor.html

Parents and Elements, Release 10.5.rc0

(continued from previous page)
Something (9)
sage: w._reduction
(<class '__main__ .WrongUsage'>, (9,), {})

Indeed, the reduction data are obtained from the preprocessed argument. By consequence, if the resulting instance is
pickled and unpickled, the argument gets squared again:

sage: loads (dumps (w))
Something (81)

Instead, the preprocessing should only take the absolute value of the given argument, while the squaring should happen
inside of the __init__ method, where it won’t mess with the cache:

sage: class BetterUsage (CachedRepresentation) :

et @staticmethod

e def _ classcall_ (cls, n):

PR return super().__classcall__ (cls, abs(n))
el def _ init_ (self, n):

et self.n = n"2

PR def _ repr__ (self):

e return "SomethingElse ()"%$self.n

sage: _ _main__ .BetterUsage = BetterUsage # This is only needed in doctests
sage: b = BetterUsage(3); b

SomethingElse (9)

sage: loads (dumps (b)) is b

True

sage: b is BetterUsage (-3)

True

In our next example, we create a cached representation class C that returns an instance of a sub-class C1 or C2 de-
pending on the given arguments. This is implemented in a static __classcall_private__ method of C, letting it
choose the sub-class according to the given arguments. Since a __classcall_private__ method will be ignored
on sub-classes, the caching of CachedRepresentation is available to both C1 and C2. But for illustration, we
overload the static __classcall__ method on C2, doing some argument preprocessing. We also create a sub-class
C2b of C2, demonstrating that the ___classcall__ method is used on the sub-class (in contrast to a __class-
call_private__ method!).

sage: class C(CachedRepresentation) :

S50 @staticmethod

e def _ classcall_private_ (cls, n, implementation=0):
e if not implementation:

28005 return C._ classcall_ (cls, n)

ceat if implementation==1:

et return Cl (n)

ceeat if implementation>1:

e return C2 (n, implementation)

e def _ init_ (self, n):

et self.n = n

e def _ repr (self):

60008 return "C (, 0)"%self.n

sage: class C1(C):
e def _ repr_ (self):

60008 return "CI1 () "$self.n
sage: class C2(C):
et @staticmethod

e def _ classcall__ (cls, n, implementation=0) :

(continues on next page)

138 Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

(continued from previous page)

S 08 if implementation:

e return super () .__classcall__ (cls, (n,)*implementation)
e return super().__classcall__ (cls, n)

et def _ init_ (self, t):

e self.t =t

el def _ repr (self):

e return "C2 (%s)"Srepr(self.t)

sage: class C2b(C2):

e def _ repr__ (self):

e return "C2b (%s) "Srepr(self.t)

sage: _ _main__ .C2 = C2 # not needed in an Iinteractive session
sage: __main__ .C2b = C2b

In the above example, C drops the argument implementation if it evaluates to False, and since the cached
__classcall__ is called in this case, we have:

sage: C(1)

c(1, 0)

sage: C(1l) is C(1,0)

True

sage: C(1) is C(1,0) is C(1,None) is C(1,1[1)
True

(Note that we were able to bypass the issue of arguments having to be hashable by catching the empty list [] during
preprocessing in the __classcall_private__ method. Similarly, unhashable arguments can be made hashable
—e. g., lists normalized to tuples — in the __classcall_private__ method before they are further delegated to
__classcall__. See TCrystal for an example.)

If we call C1 directly or if we provide implementation=1 to C, we obtain an instance of C1. Since it uses the
__classcall__ method inherited from CachedRepresentation, the resulting instances are cached:

sage: C1(2)

Cl(2)

sage: C(2, implementation=1)

C1(2)

sage: C(2, implementation=1) is C1(2)
True

The class C2 preprocesses the input arguments. Instances can, again, be obtained directly or by calling C:

sage: C(l, implementation=3)

c2((1, 1, 1))

sage: C(1, implementation=3) is C2 (1, 3)
True

The argument preprocessing of C2 is inherited by C2b, since __classcall__ and not __classcall_pri-
vate__ is used. Pickling works, since the preprocessing of arguments is idempotent:

sage: c2b = C2b(2,3); c2b
C2b((2, 2, 2))

sage: loads (dumps (c2b)) is c2b
True

6.2. Unique Representation 139

../../../../../../html/en/reference/combinat/sage/combinat/crystals/elementary_crystals.html#sage.combinat.crystals.elementary_crystals.TCrystal

Parents and Elements, Release 10.5.rc0

Using UniqueFactory

For creating a cached representation using a factory, one has to

* create a class separately from the factory. This class must inherit from object. Its instances must allow attribute
assignment.

» write amethod create_key (orcreate_key_and_extra_args) that creates the cache key from the given
arguments.

* write a method create_object that creates an instance of the class from a given cache key.
e create an instance of the factory with a name that allows to conclude where it is defined.

An example:

sage: class C():
e def _ init_ (self, t):

et self.t =t
e def _ repr (self):
e return "C¢s"Srepr (self.t)

sage: from sage.structure.factory import UniqueFactory

sage: class MyFactory (UniqueFactory) :

e def create_key(self, n, m=None) :

e if isinstance(n, (tuple,list)) and m is None:

Ce e return tuple (n)

50008 return (n,)*m

e def create_object (self, version, key, **extra_args):
5000 & # We ignore version and extra_args

e return C (key)

Now, we define an instance of the factory, stating that it can be found under the name 'F' in the __main__ module.
By consequence, pickling works:

sage: F = MyFactory("__main__ .F")

sage: _ main__ .F = F # not needed in an interactive session
sage: loads (dumps (F)) is F

True

We can now create cached instances of C by calling the factory. The cache only takes into account the key computed with
the method create_key that we provided. Hence, different given arguments may result in the same instance. Note
that, again, the cache is weak, hence, the instance might be removed from the cache during garbage collection, unless an
external reference is preserved.

sage: a = F(1, 2); a
c(1, 1)

sage: a is F((1,1))
True

If the class of the returned instances is a sub-class of object, and if the resulting instance allows attribute assignment,
then pickling of the resulting instances is automatically provided for, and respects the cache.

sage: loads (dumps(a)) is a
True

This is because an attribute is stored that explains how the instance was created:

sage: a._factory_data
(<_main__ .MyFactory object at ...>, (...), (1, 1), {})

140 Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

Note

If a class is used that does not inherit from object then unique pickling is not provided.

Caching is only available if the factory is called. If an instance of the class is directly created, then the cache is not used:

sage: C((1,1))

c(1, 1)

sage: C((1,1)) is a
False

Comparing the two ways of implementing a cached representation

In this sub-section, we discuss advantages and disadvantages of the two ways of implementing a cached representation,
depending on the type of application.

Simplicity and transparency

In many cases, turning a class into a cached representation requires nothing more than adding CachedRepresenta-—
tion to the list of base classes of this class. This is, of course, a very easy and convenient way. Writing a factory would
involve a lot more work.

If preprocessing of the arguments is needed, then we have seen how to do thisbya __classcall_private__ or
__classcall__ method. But these are double underscore methods and hence, for example, invisible in the automati-
cally created reference manual. Moreover, preprocessing and caching are implemented in the same method, which might
be confusing. In a unique factory, these two tasks are cleanly implemented in two separate methods. With a factory, it is
possible to create the resulting instance by arguments that are different from the key used for caching. This is significantly
restricted with CachedRepresentation due to the requirement that argument preprocessing be idempotent.

Hence, if advanced preprocessing is needed, then UnigueFactory might be easier and more transparent to use than
CachedRepresentation.

Class inheritance

Using CachedRepresentat ion has the advantage that one has a class and creates cached instances of this class by
the usual Python syntax:

sage: G = SymmetricGroup (6) -

— # needs sage.groups

sage: issubclass (SymmetricGroup, sage.structure.unique_representation.
—CachedRepresentation) # needs sage.groups

True

sage: isinstance (G, SymmetricGroup) -
— # needs sage.groups

True

In contrast, a factory is just a callable object that returns something that has absolutely nothing to do with the factory, and
may in fact return instances of quite different classes:

sage: isinstance (GF, sage.structure.factory.UniqueFactory)
True
sage: K5 = GF (D)
(continues on next page)

6.2. Unique Representation 141

Parents and Elements, Release 10.5.rc0

(continued from previous page)
sage: type (K5)
<class 'sage.rings.finite_rings.finite_field _prime_modn.FiniteField_prime_modn_with_
—category'>

sage: # needs sage.rings.finite rings

sage: K25 = GF (25, 'x'")

sage: type (K25) #
—needs sage.libs.linbox

<class 'sage.rings.finite_rings.finite_field givaro.FiniteField_givaro_with_category'>
sage: Kp = GF (next_prime_power (1000000) "2, 'x'")

sage: type (Kp)

<class 'sage.rings.finite_rings.finite_field_pari_ffelt.FiniteField pari_ffelt_with_
—category'>

This can be confusing to the user. Namely, the user might determine the class of an instance and try to create further
instances by calling the class rather than the factory—which is a mistake since it works around the cache (and also since
the class might be more restrictive than the factory —i. e., the type of K5 in the above doctest cannot be called on a prime
power which is not a prime). This mistake can more easily be avoided by using CachedRepresentation.

We have seen above that one can easily create new cached-representation classes by subclassing an existing
cached-representation class, even making use of an existing argument preprocess. This would be much more compli-
cated with a factory. Namely, one would need to rewrite old factories making them aware of the new classes, and/or write
new factories for the new classes.

Python versus extension classes

CachedRepresentation uses a metaclass, namely ClasscallMetaclass. Hence, it can currently not be a
Cython extension class. Moreover, it is supposed to be used by providing it as a base class. But in typical applications,
one also has another base class, say, Parent. Hence, one would like to create a class with at least two base classes,
which is currently impossible in Cython extension classes.

In other words, when using CachedRepresentat ion, one must work with Python classes. These can be defined in
Cython code (. pyx files) and can thus benefit from Cython’s speed inside of their methods, but they must not be cde £
class and can thus not use cdef attributes or methods.

Such restrictions do not exist when using a factory. However, if attribute assignment does not work, then the automatic
pickling provided by UniqueFactory will not be available.

6.2.2 What is a unique representation?

Instances of a class have a unique instance behavior when instances of this class evaluate equal if and only if they are
identical. Sage provides the base class WithEqualityById, which provides comparison by identity and a hash that
is determined by the memory address of the instance. Both the equality test and the hash are implemented in Cython and
are very fast, even when one has a Python class inheriting from WithEqualityById.

In many applications, one wants to combine unique instance and cached representation behaviour. This is called unique
representation behaviour. We have seen above that symmetric groups have a cached representation behaviour. However,
they do not show the unique representation behaviour, since they are equal to groups created in a totally different way,
namely to subgroups:

sage: # needs sage.groups
sage: G = SymmetricGroup (6)
sage: G3 = G.subgroup([G((1,2,3,4,5,6)), G((1,2))])
sage: G is G3
(continues on next page)

142 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 10.5.rc0

(continued from previous page)

False

sage: type(G) == type (G3)
False

sage: == G3

True

The unique representation behaviour can conveniently be implemented with a class that inherits from UnigqueRepre-
sentation: By adding UniqueRepresentation to the base classes, the class will simultaneously inherit from
CachedRepresentation and from WithEqualityById.

For example, a symmetric function algebra is uniquely determined by the base ring. Thus, it is reasonable to use Uni—
queRepresentation in this case:

sage: isinstance (SymmetricFunctions (CC), SymmetricFunctions) #.
—needs sage.combinat

True

sage: issubclass (SymmetricFunctions, UniqueRepresentation) #o
—needs sage.combinat

True

UniqueRepresentation differs from CachedRepresentation only by adding WithEqualityById asa
base class. Hence, the above examples of argument preprocessing work for UniqueRepresentation as well.

Note that a cached representation created with UniqueFactory does not automatically provide unique representation
behaviour, in spite of its name! Hence, for unique representation behaviour, one has to implement hash and equality test
accordingly, for example by inheriting from WithEqualityById.

class sage.structure.unique_representation.CachedRepresentation

Bases: WithPicklingByInitArgs

Classes derived from CachedRepresentation inherit a weak cache for their instances.

Note

If this class is used as a base class, then instances are (weakly) cached, according to the arguments used to
create the instance. Pickling is provided, of course by using the cache.

Note

Using this class, one can have arbitrary hash and comparison. Hence, unique representation behaviour is not
provided.

See also

UniqueRepresentation, unique_representation

EXAMPLES:

Providing a class with a weak cache for the instances is easy: Just inherit from CachedRepresentation:

sage: from sage.structure.unique_representation import CachedRepresentation
sage: class MyClass (CachedRepresentation):
(continues on next page)

6.2. Unique Representation 143

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 10.5.rc0

(continued from previous page)

I # all the rest as usual
- pass

We start with a simple class whose constructor takes a single value as argument (TODO: find a more meaningful
example):

sage: class MyClass (CachedRepresentation) :
e def _ init_ (self, wvalue):

R self.value = value

e def _ eq_ (self, other):

ol if type(self) != type (other):
e return False
et return self.value == other.value

Two coexisting instances of MyClass created with the same argument data are guaranteed to share the same
identity. Since Issue #12215, this is only the case if there is some strong reference to the returned instance, since
otherwise it may be garbage collected:

sage: x = MyClass (1)

sage: y = MyClass (1)
sage: x is y # There is a strong reference
True

sage: z = MyClass (2)
sage: x is z
False

In particular, modifying any one of them modifies the other (reference effect):

sage: x.value = 3
sage: x.value, y.value
(3, 3)

sage: y.value = 1
sage: x.value, y.value
(1, 1)

The arguments can consist of any combination of positional or keyword arguments, as taken by ausual __init___
function. However, all values passed in should be hashable:

sage: MyClass (value = [1,2,3])
Traceback (most recent call last):

TypeError: unhashable type: 'list'

Argument preprocessing

Sometimes, one wants to do some preprocessing on the arguments, to put them in some canonical form. The
following example illustrates how to achieve this; it takes as argument any iterable, and canonicalizes it into a tuple
(which is hashable!):

sage: class MyClass2 (CachedRepresentation) :

e @staticmethod

e def _ classcall_ (cls, iterable):

e t = tuple(iterable)

5o 805 return super().__classcall__ (cls, t)

(continues on next page)

144 Chapter 6. Utilities

https://github.com/sagemath/sage/issues/12215
https://docs.python.org/reference/datamodel.html#object.__init__

Parents and Elements, Release 10.5.rc0

(continued from previous page)

e def _ init_ (self, wvalue):
et self.value = value

sage: x = MyClass2([1,2,3])

sage: y = MyClass2 (tuple([1,2,31))
sage: z = MyClass2(i for i in [1,2,3])
sage: x.value

(1, 2, 3)

sage: x is y, y is z
(True, True)

A similar situation arises when the constructor accepts default values for some of its parameters. Alas, the obvious
implementation does not work:

sage: class MyClass3 (CachedRepresentation) :
e def _ init_ (self, value=3):
e self.value = value

sage: MyClass3(3) is MyClass3()

Instead, one should do:

sage: class MyClass3 (UniqueRepresentation) :

ot @staticmethod

et def _ classcall_ (cls, value=3):

e return super()._ _classcall__ (cls, wvalue)
e def _ init_ (self, wvalue):

et self.value = value
sage: MyClass3(3) is MyClass3()

A bit of explanation is in order. First, the call MyClass2([1,2,3]) triggers a call to MyClass2.
__classcall__ (MyClass2, [1,2,3]1). Thisis an extension of the standard Python behavior, needed
by CachedRepresentation, and implemented by the ClasscallMetaclass. Then, MyClass2.
__classcall__ does the desired transformations on the arguments. Finally, it uses super to call the default
implementation of __classcall__ provided by CachedRepresentation. This one in turn handles the
caching and, if needed, constructs and initializes a new object in the class using __new___and __init__ as
usual.

Constraints:

e _ classcall__ () isastaticmethod (like, implicitly, new__)

e the preprocessing on the arguments should be idempotent. That s, if
MyClass2._ classcall__ (<arguments>) calls CachedRepresentation.
__classcall__ (<preprocessed_arguments>), then MyClass2.
_ classcall__ (<preprocessed_arguments>) should also result in a call to
CachedRepresentation._ _classcall__ (<preprocessed_arguments>).

e MyClass2._ classcall__ should return the result of CachedRepresentation.

__classcall__ () without modifying it.

Other than that MyClass2.___classcall__ may play any tricks, like acting as a factory and returning objects
from other classes.

6.2.

Unique Representation 145

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__

Parents and Elements, Release 10.5.rc0

Warning

It is possible, but strongly discouraged, toletthe __classcall__ method of a class C return objects that are
not instances of C. Of course, instances of a subclass of C are fine. Compare the examples in unique_rep-—
resentation.

We illustrate what is meant by an “idempotent” preprocessing. Imagine that one has instances that are created with
an integer-valued argument, but only depend on the square of the argument. It would be a mistake to square the
given argument during preprocessing:

sage: class WrongUsage (CachedRepresentation) :

e @staticmethod
e def _ classcall_ (cls, n):
e return super().__classcall__ (cls, n”"2)

60008 def _ init_ (self, n):
e self.n = n
e def _ repr__ (self):

60008 return "Something (%d) "%self.n
sage: import _ main__
sage: _ _main__ .WrongUsage = WrongUsage # This is only needed in doctests

sage: w = WrongUsage(3); w

Something (9)

sage: w._reduction

(<class '__main__ .WrongUsage'>, (9,), {})

L

Indeed, the reduction data are obtained from the preprocessed arguments. By consequence, if the resulting instance
is pickled and unpickled, the argument gets squared again:

sage: loads (dumps (w))
Something (81)

Instead, the preprocessing should only take the absolute value of the given argument, while the squaring should
happen inside of the __init__ method, where it won’t mess with the cache:

sage: class BetterUsage (CachedRepresentation) :

e @staticmethod
e def _ classcall_ (cls, n):
e return super().__classcall__(cls, abs(n))

e def _ init_ (self, n):

ce self.n = n"2

e def _ repr__ (self):

88509 return "SomethingElse (5d) "%self.n
sage: _ _main__ .BetterUsage = BetterUsage # This is only needed in doctests
sage: b BetterUsage (3); b

SomethingElse (9)

sage: loads (dumps (b)) is b

True

sage: b is BetterUsage (-3)

True

146

Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

Cached representation and mutability

CachedRepresentation is primarily intended for implementing objects which are (at least semantically)
immutable. This is in particular assumed by the default implementations of copy and deepcopy:

sage: copy(x) is x

True

sage: from copy import deepcopy
sage: deepcopy(x) is x

True

However, in contrast to UniqueRepresentation, using CachedRepresentation allows for a compar-
ison that is not by identity:

sage: t = MyClass(3)
sage: z = MyClass(2)
sage: t.value = 2

Now t and z are non-identical, but equal:

sage: t.value == z.value
True

sage: t == z

True

sage: t is z

False

More on cached representation and identity

CachedRepresentation is implemented by means of a cache. This cache uses weak references in general,
but strong references to the most recently created objects. Hence, when all other references to, say, MyClass (1)
have been deleted, the instance is eventually deleted from memory (after enough other objects have been created
to remove the strong reference to MyClass (1)). A later call to MyClass (1) reconstructs the instance from
scratch:

sage: class SomeClass (UniqueRepresentation) :
e def _ init_ (self, 1i):

et print ("creating new instance for argument $s" % i)
el self.i = 1

T def _ del (self):

ot print ("deleting instance for argument %s" % self.i)

sage: class OtherClass (UniqueRepresentation) :
e def _ init_ (self, 1i):
50008 pass
sage: O = SomeClass (1)
creating new instance for argument 1
sage: O is SomeClass (1)
True
sage: O is SomeClass (2)
creating new instance for argument 2
False
sage: L = [OtherClass (i) for i in range (200)]
deleting instance for argument 2
sage: del O
deleting instance for argument 1
sage: O = SomeClass (1)
(continues on next page)

Unique Representation 147

Parents and Elements, Release 10.5.rc0

(continued from previous page)
creating new instance for argument 1
sage: del O
sage: del L
sage: L = [OtherClass (i) for i in range (200)]
deleting instance for argument 1

Cached representation and pickling

The default Python pickling implementation (by reconstructing an object from its class and dictionary, see “The
pickle protocol” in the Python Library Reference) does not preserve cached representation, as Python has no chance
to know whether and where the same object already exists.

CachedRepresentat ion tries to ensure appropriate pickling by implementing a __reduce___ method re-
turning the arguments passed to the constructor:

sage: import _ main_ # Fake MyClass being defined in a python module
sage: __main__ .MyClass = MyClass

sage: x = MyClass (1)

sage: loads (dumps(x)) is x

True

CachedRepresentation uses the __reduce__ pickle protocol rather than __getnewargs___ because
the latter does not handle keyword arguments:

sage: x = MyClass (value = 1)
sage: x.__reduce__ ()
(<function unreduce at ...>, (<class '__main__.MyClass'>, (), {'value': 1}))
sage: x is loads (dumps (x))
True
p
Note

The default implementation of __reduce__ in CachedRepresentat ion requires to store the construc-
tor’s arguments in the instance dictionary upon construction:

sage: x.__dict___
{'_reduction': (<class '__main__ .MyClass'>, (), {'value': 1}), 'value': 1}

It is often easy in a derived subclass to reconstruct the constructor’s arguments from the instance data structure.
When this is the case, __reduce___ should be overridden; automagically the arguments won’t be stored
anymore:

sage: class MyClass3 (UniqueRepresentation) :

e def _ init_ (self, wvalue):
et self.value = value
e def _ reduce_ (self):

e return (MyClass3, (self.value,))

sage: import _ main__; _ main__ .MyClass3 = MyClass3 # Fake MyClass3 being.
—~defined in a python module

sage: x = MyClass3(1)

sage: loads (dumps(x)) is x

True
sage: x.__dict___
{'value': 1}

148

Chapter 6. Utilities

https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__getnewargs__
https://docs.python.org/library/pickle.html#object.__reduce__
https://docs.python.org/library/pickle.html#object.__reduce__

Parents and Elements, Release 10.5.rc0

Migrating classes to CachedRepresentation and unpickling

We check that, when migrating a class to CachedRepresentation, older pickles can still be reasonably un-
pickled. Let us create a (new style) class, and pickle one of its instances:

sage: class MyClass4 () :

e def _ init_ (self, wvalue):

5000 & self.value = value

sage: import _ main_ ; _ main__ .MyClass4 = MyClass4 # Fake MyClass4 being.
—defined in a python module

sage: pickle = dumps (MyClass4 (1))

It can be unpickled:

sage: y = loads (pickle)
sage: y.value
1

Now, we upgrade the class to derive from UniqueRepresentation, which inherits from CachedRepre—
sentation:

sage: class MyClass4 (UniqueRepresentation, object):

R def _ init_ (self, wvalue):

50008 self.value = value

sage: import _ main_ ; _ main__ .MyClass4 = MyClass4 # Fake MyClass4 being.
—defined in a python module

sage: _ _main__ .MyClass4 = MyClass4

The pickle can still be unpickled:

sage: y = loads (pickle)
sage: y.value
1

.

Note however that, for the reasons explained above, unique representation is not guaranteed in this case:

sage: y is MyClass4 (1)
False

Todo

Illustrate how this can be fixed on a case by case basis.

Now, we redo the same test for a class deriving from SageObject:

sage: class MyClass4 (SageObject) :

e def _ init_ (self, wvalue):

50008 self.value = value

sage: import _ main_ ; _ main__ .MyClass4 = MyClass4 # Fake MyClass4 being.
—defined in a python module

sage: pickle = dumps (MyClass4 (1))

(continues on next page)

6.2. Unique Representation 149

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: class MyClass4 (UniqueRepresentation, SageObject) :
e def _ init_ (self, wvalue):

P self.value = value

sage: _ _main__ .MyClass4 = MyClass4

sage: y = loads (pickle)

sage: y.value

1

Caveat: unpickling instances of a formerly old-style class is not supported yet by default:

sage: class MyClass4:

e def _ init_ (self, wvalue):

et self.value = value

sage: import _ main__ ; _ main__ .MyClass4 = MyClass4 # Fake MyClass4 being.
—~defined in a python module

sage: pickle = dumps (MyClass4 (1))

sage: class MyClass4 (UniqueRepresentation, SageObject):
e def _ init_ (self, wvalue):
P self.value = value

sage: __main__ .MyClass4 = MyClass4

sage: y = loads(pickle) # todo: not implemented
sage: y.value # todo: not implemented
1

Rationale for the current implementation

CachedRepresentat ionandderived classes use the ClasscallMetaclass of the standard Python type.
The following example explains why.

We define a variant of MyClass where the callsto__init__ are traced:

sage: class MyClass (CachedRepresentation) :
e def _ init_ (self, wvalue):

85800 print ("initializing object")
et self.value = value

Let us create an object twice:

sage: x = MyClass (1)
initializing object
sage: z = MyClass (1)

As desired the __init___ method was only called the first time, which is an important feature.

As far as we can tell, this is not achievable while just using __new___and __init__ (as defined by type; see
Section Basic Customization in the Python Reference Manual). Indeed, __init__ is called systematically on the
result of new_ whenever the result is an instance of the class.

Another difficulty is that argument preprocessing (as in the example above) cannot be handled by _ _new__, since
the unprocessed arguments will be passed downto ___init__ .

class sage.structure.unique_representation.UniqueRepresentation

Bases: WithEqualityById, CachedRepresentation

Classes derived from UniqueRepresentation inherit a unique representation behavior for their instances.

150 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/release/3.10.12/reference/datamodel.html#basic-customization
https://docs.python.org/reference/datamodel.html#object.__init__
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__new__
https://docs.python.org/reference/datamodel.html#object.__init__
../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 10.5.rc0

See also

unique_representation

EXAMPLES:

The short story: to construct a class whose instances have a unique representation behavior one just has to do:

sage: class MyClass (UniqueRepresentation) :
- # all the rest as usual
e pass

Everything below is for the curious or for advanced usage.

What is unique representation?

Instances of a class have a unique representation behavior when instances evaluate equal if and only if they are
identical (i.e., share the same memory representation), if and only if they were created using equal arguments. For
example, calling twice:

sage: f = SymmetricFunctions (QQ) #.
—needs sage.combinat sage.modules
sage: g = SymmetricFunctions (QQ) #o

—needs sage.combinat sage.modules

to create the symmetric function algebra over Q actually gives back the same object:

sage: f == g #o
—needs sage.combinat sage.modules

True

sage: f is g #o

—needs sage.combinat sage.modules
True

.

This is a standard design pattern. It allows for sharing cached data (say representation theoretical information about
a group) as well as for very fast hashing and equality testing. This behaviour is typically desirable for parents and
categories. It can also be useful for intensive computations where one wants to cache all the operations on a small
set of elements (say the multiplication table of a small group), and access this cache as quickly as possible.

UniqueRepresentation is very easy to use: a class just needs to derive from it, or make sure some of its
super classes does. Also, it groups together the class and the factory in a single gadget:

-

sage: isinstance (SymmetricFunctions (CC), SymmetricFunctions) #_
—needs sage.combinat sage.modules

True

sage: issubclass (SymmetricFunctions, UniqueRepresentation) #

—needs sage.combinat sage.modules

True
.

This nice behaviour is not available when one just uses a factory:

r

sage: isinstance(GF(7), GF)
Traceback (most recent call last):

TypeError: isinstance() arg 2 must be a type...

(continues on next page)

6.2. Unique Representation 151

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: isinstance (GF, sage.structure.factory.UniqueFactory)
True

In addition, UnigqueFactory only provides the cached representation behaviour, but not the unique representa-
tion behaviour—the examples in unique_representation explain this difference.

On the other hand, the UniqueRepresentation class is more intrusive, as it imposes a behavior (and a
metaclass) on all the subclasses. In particular, the unique representation behaviour is imposed on all subclasses
(unless the __classcall__ method is overloaded and not called in the subclass, which is not recommended).
Its implementation is also more technical, which leads to some subtleties.

EXAMPLES:

We start with a simple class whose constructor takes a single value as argument. This pattern is similar to what is
done in sage.combinat.sf.sf.SymmetricFunctions:

sage: class MyClass (UniqueRepresentation) :
e def _ init_ (self, wvalue):
et self.value = value

Two coexisting instances of MyClass created with the same argument data are guaranteed to share the same
identity. Since Issue #12215, this is only the case if there is some strong reference to the returned instance, since
otherwise it may be garbage collected:

-

sage: x = MyClass (1)

sage: y = MyClass (1)

sage: x is y # There 1is a strong reference
True

sage: z = MyClass (2)
sage: x is z
False

.

In particular, modifying any one of them modifies the other (reference effect):

-

sage: x.value = 3
sage: x.value, y.value
(3, 3)

sage: y.value =1
sage: x.value, y.value
(1, 1)

L

When comparing two instances of a unique representation with == or ! = comparison by identity is used:

r

sage: x ==y
True

sage: x is y

True

sage: z = MyClass (2)
sage: x == z

False

sage: x is z

False

sage: x !=y

False

sage: x != z

True

L

152 Chapter 6. Utilities

../../../../../../html/en/reference/combinat/sage/combinat/sf/sf.html#sage.combinat.sf.sf.SymmetricFunctions
https://github.com/sagemath/sage/issues/12215

Parents and Elements, Release 10.5.rc0

A hash function equivalent to object .___hash__ () is used, which is compatible with comparison by identity.
However this means that the hash function may change in between Sage sessions, or even within the same Sage
session.
sage: hash(x) == object.__hash__ (x)
True

Warning

It is possible to inherit from UniqueRepresentation and then overload comparison in a way that destroys
the unique representation property. We strongly recommend against it! You should use CachedRepresen—
tation instead.

Mixing super types and super classes

class sage.structure.unique_representation.WithPicklingByInitArgs
Bases: object
Classes derived from wWithPicklingByInitArgs store the arguments passedto___init__ () toimplement
pickling.

This class is for objects that are semantically immutable and determined by the class and the arguments passed
to__init__ (). The class also provides implementations of __copy__ () and __deepcopy__ (), which
simply return the object.

sage.structure.unique_representation.unreduce (cls, args, keywords)

Calls a class on the given arguments:

sage: sage.structure.unique_representation.unreduce (Integer, (1,), {})
1

Todo

should reuse something preexisting ...

6.3 Factory for cached representations

See also

sage.structure.unique_representation

Using a UniqueFactory is one way of implementing a cached representation behaviour. In spite of its name, using
a UniqueFactory is not enough to ensure the unique representation behaviour. See unique_representation
for a detailed explanation.

With a UniqueFactory, one can preprocess the given arguments. There is special support for specifying a sub-
set of the arguments that serve as the unique key, so that still all given arguments are used to create a new instance,
but only the specified subset is used to look up in the cache. Typically, this is used to construct objects that accept

6.3. Factory for cached representations 153

https://docs.python.org/reference/datamodel.html#object.__hash__

Parents and Elements, Release 10.5.rc0

an optional check=[True|False] argument, but whose result should be unique regardless of said optional argu-
ment. (This use case should be handled with care, though: Any checking which isn’t done in the create_key or
create_key_and_extra_args method will be done only when a new object is generated, but not when a cached
object is retrieved from cache. Consequently, if the factory is once called with check=False, a subsequent call with
check=True cannot be expected to perform all checks unless these checks are all in the create_key or cre-
ate_key_and_extra_args method.)

For a class derived from CachedRepresentat ion, argument preprocessing can be obtained by providing a custom
static __classcall___or__classcall_private__ method, but this seems less transparent. When argument
preprocessing is not needed or the preprocess is not very sophisticated, then generally CachedRepresentation is
much easier to use than a factory.

AUTHORS:
¢ Robert Bradshaw (2008): initial version.
* Simon King (2013): extended documentation.
¢ Julian Rueth (2014-05-09): use _cache_key if parameters are unhashable

class sage.structure.factory.UniqueFactory

Bases: SageObject
This class is intended to make it easy to cache objects.

It is based on the idea that the object is uniquely defined by a set of defining data (the key). There is also the
possibility of some non-defining data (extra args) which will be used in initial creation, but not affect the caching.

Warning

This class only provides cached representation behaviour. Hence, using UnigqueFactory, it is still possible
to create distinct objects that evaluate equal. Unique representation behaviour can be added, for example, by
additionally inheriting from sage .misc.fast_methods.WithEqualityById.

The objects created are cached (using weakrefs) based on their key and returned directly rather than re-created if
requested again. Pickling is taken care of by the factory, and will return the same object for the same version of
Sage, and distinct (but hopefully equal) objects for different versions of Sage.

Warning

The objects returned by a UniqueFactory must be instances of new style classes (hence, they must be
instances of object) that must not only allow a weak reference, but must accept general attribute assignment.
Otherwise, pickling won’t work.

USAGE:

A unique factory provides a way to create objects from parameters (the type of these objects can depend on the
parameters, and is often determined only at runtime) and to cache them by a certain key derived from these pa-
rameters, so that when the factory is being called again with the same parameters (or just with parameters which
yield the same key), the object is being returned from cache rather than constructed anew.

An implementation of a unique factory consists of a factory class and an instance of this factory class.

The factory class has to be a class inheriting from UniqueFactory. Typically it only needs to implement cre—
ate_key () (a method that creates a key from the given parameters, under which key the object will be stored
in the cache) and create_object () (a method that returns the actual object from the key). Sometimes, one
would also implement create_key_and_extra_args () (this differs from create_key () in allowing

154 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/fast_methods.html#sage.misc.fast_methods.WithEqualityById

Parents and Elements, Release 10.5.rc0

to also create some additional arguments from the given parameters, which arguments then get passed to cre—
ate_object () and thus can have an effect on the initial creation of the object, but do not affect the key) or
other_keys (). Other methods are not supposed to be overloaded.

The factory class itself cannot be called to create objects. Instead, an instance of the factory class has to be created
first. For technical reasons, this instance has to be provided with a name that allows Sage to find its definition.
Specifically, the name of the factory instance (or the full path to it, if it is not in the global namespace) has to
be passed to the factory class as a string variable. So, if our factory class has been called A and is located in
sage/spam/battletoads.py, then we need to define an instance (say, B) of A by writingB = A ("sage.
spam.battletoads.B") (orB = A ("B") if this B will be imported into global namespace). This instance
can then be used to create objects (by calling B (*parameters)).

Notice that the objects created by the factory don’t inherit from the factory class. They do know about the factory
that created them (this information, along with the keys under which this factory caches them, is stored in the
_factory_data attributes of the objects), but not via inheritance.

EXAMPLES:

The below examples are rather artificial and illustrate particular aspects. For a “real-life” usage case of Unique—
Factory, see the finite field factoryin sage . rings.finite_rings.finite_field_constructor.

In many cases, a factory class is implemented by providing the two methods create key () and create_ob-
ject (). In our example, we want to demonstrate how to use “extra arguments” to choose a specific imple-
mentation, with preference given to an instance found in the cache, even if its implementation is different. Hence,
we implement create _key_and extra_args () rather than create_ key (), putting the chosen imple-
mentation into the extra arguments. Then, in the create_object () method, we create and return instances of
the specified implementation.

-
sage: from sage.structure.factory import UniqueFactory

sage: class MyFactory (UniqueFactory) :

e def create_key_and_extra_args(self, *args, **kwds):
e return args, {'impl':kwds.get('impl', None) }
et def create_object (self, version, key, **extra_args):
50008 impl = extra_args['impl']

P if impl == 'C':

e return C (*key)

ceaat if impl == 'D':

e return D (*key)

e return E (*key)

Now we can create a factory instance. It is supposed to be found under the name 'F' in the __main___ module.
Note that in an interactive session, F would automatically be in the __main__ module. Hence, the second and
third of the following four lines are only needed in doctests.

sage: F = MyFactory("__main__ .F")
sage: import _ main__

sage: _ main__ .F = F

sage: loads (dumps(F)) is F

True

Now we create three classes C, D and E. The first is a Cython extension-type class that does not allow weak references
nor attribute assignment. The second is a Python class that is not derived from object. The third allows attribute
assignment and is derived from object.

sage: cython("cdef class C: pass") #_
—needs sage.misc.cython
sage: class D:

(continues on next page)

Factory for cached representations 155

../../../../../../html/en/reference/finite_rings/sage/rings/finite_rings/finite_field_constructor.html#module-sage.rings.finite_rings.finite_field_constructor

Parents and Elements, Release 10.5.rc0

(continued from previous page)
e def _ init__ (self, *args):
celt self.t = args
e def _ repr__ (self):
e return "D%s"Srepr (self.t)

sage: class E(D, object): pass

Again, being in a doctest, we need to put the class D into the __main__ module, so that Python can find it:

p
sage: import main___
sage: main__.D = D

It is impossible to create an instance of C with our factory, since it does not allow weak references:

sage: F (1, impl='C") #_
—needs sage.misc.cython
Traceback (most recent call last):

TypeError: cannot create weak reference to '....C' object

Let us try again, with a Cython class that does allow weak references. Now, creation of an instance using the factory
works:

-

sage: cython (#_

—needs sage.misc.cython
rru

....: cdef class C:
50008 cdef __ _weakref_

sage: ¢ = F(1, impl='C") #o
—needs sage.misc.cython

sage: isinstance(c, C) #_
—needs sage.misc.cython

True

.

The cache is used when calling the factory again—even if it is suggested to use a different implementation. This is
because the implementation is only considered an “extra argument” that does not count for the key.

sage: c is F (1, impl='C') is F (1, impl='D') is F (1) #_
—needs sage.misc.cython
True

However, pickling and unpickling does not use the cache. This is because the factory has tried to assign an attribute
to the instance that provides information on the key used to create the instance, but failed:

sage: loads (dumps(c)) is c #_
—needs sage.misc.cython

False

sage: hasattr(c, '_factory_data') #
—needs sage.misc.cython

False

We have already seen that our factory will only take the requested implementation into account if the arguments
used as key have not been used yet. So, we use other arguments to create an instance of class D:

156 Chapter 6. Utilities

Parents and Elements, Release 10.5.rc0

sage: d = F(2, impl='D")
sage: isinstance(d, D)
True

The factory only knows about the pickling protocol used by new style classes. Hence, again, pickling and unpickling
fails to use the cache, even though the “factory data” are now available (this is not the case on Python 3 which only
has new style classes):

p
sage: loads (dumps(d)) is d
True
sage: d._factory_data
(<_main__ .MyFactory object at ...>,
(o00)y
(2,),
{'"impl': 'D'})

.

Only when we have a new style class that can be weak referenced and allows for attribute assignment, everything

works:
sage: e = F(3)
sage: isinstance(e, E)
True
sage: loads (dumps(e)) is e
True
sage: e._factory_data
(<_main__ .MyFactory object at ...>,
(...),
(3,),
{'impl': None})

create_key (*args, **kwds)
Given the parameters (arguments and keywords), create a key that uniquely determines this object.

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_key(l, 2, key=5)
(1, 2)

create_key_and_extra_args (*args, **kwds)
Return a tuple containing the key (uniquely defining data) and any extra arguments (empty by default).

Defaults to create _key ().
EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_key_and_extra_args(l, 2, key=5)

(1, 2), {}H)
sage: GF.create_key_and_extra_args(3)
((3, ('x',), None, 'modn', 3, 1, True, None, None, None, True, False), {})

create_obiject (version, key, **extra_args)
Create the object from the key and extra arguments. This is only called if the object was not found in the
cache.

EXAMPLES:

6.3. Factory for cached representations 157

Parents and Elements, Release 10.5.rc0

sage: from sage.structure.test_factory import test_factory
sage: test_factory.create_object (0, (1,2,3))

Making object (1, 2, 3)

<sage.structure.test_factory.A object at ...>

sage: test_factory('a')

Making object ('a',)

<sage.structure.test_factory.A object at ...>
sage: test_factory('a') # NOT called again
<sage.structure.test_factory.A object at ...>

get_object (version, key, extra_args)

Return the object corresponding to key, creating it with ext ra_args if necessary (for example, it isn’t in
the cache or it is unpickling from an older version of Sage).

EXAMPLES:

sage: from sage.structure.test_factory import test_factory

sage: a = test_factory.get_object (3.0, 'a', {}); a

Making object a

<sage.structure.test_factory.A object at ...>

sage: test_factory.get_object (3.0, 'a', {}) is test_factory.get_object (3.0, 'a
', {b)

True

sage: test_factory.get_object (3.0, 'a', {}) is test_factory.get_object (3.1, 'a
', {b)

Making object a

False

sage: test_factory.get_object (3.0, 'a', {}) is test_factory.get_object (3.0, 'b
="', {})

Making object b

False

get_version (sage_version)

This is provided to allow more or less granular control over pickle versioning. Objects pickled in the same
version of Sage will unpickle to the same rather than simply equal objects. This can provide significant gains
as arithmetic must be performed on objects with identical parents. However, if there has been an incompatible
change (e.g. in element representation) we want the version number to change so coercion is forced between
the two parents.

Defaults to the Sage version that is passed in, but coarser granularity can be provided.

EXAMPLES:

sage: from sage.structure.test_factory import test_factory
sage: test_factory.get_version((3,1,0))
(3, 1, 0)

other_keys (key, obj)

Sometimes during object creation, certain defaults are chosen which may result in a new (more specific) key.
This allows the more specific key to be regarded as equivalent to the original key returned by create_key ()
for the purpose of lookup in the cache, and is used for pickling.

EXAMPLES:

The GF factory used to have a custom other_keys () method, but this was removed in Issue #16934:

158

Chapter 6. Utilities

https://github.com/sagemath/sage/issues/16934

Parents and Elements, Release 10.5.rc0

sage: # needs sage.libs.linbox sage.rings.finite_rings

sage: key, _ = GF.create_key_and_extra_args (27, 'k'); key
(27, ('k',), x*3 + 2*x + 1, 'givaro', 3, 3, True, None, 'poly', True, True,.
—True)

sage: K = GF.create_object (0, key); K
Finite Field in k of size 3”73

sage: GF.other_keys (key, K)

[]

sage: K = GF (7740, 'a') #
—needs sage.rings.finite_rings

sage: loads (dumps (K)) is K #_
—needs sage.rings.finite_rings

True

reduce_data (obj)

The results of this function can be returned from ___reduce__ (). This is here so the factory internals can
change without having to re-write __reduce___ () methods that use it.
EXAMPLES:

sage: # needs sage.modules

sage: from sage.modules.free_module import FreeModuleFactory_with_standard_
—basis as F

sage: V = F(z2Z, 5)

sage: factory, data = F.reduce_data (V)

sage: factory(*data)

Ambient free module of rank 5 over the principal ideal domain Integer Ring
sage: factory(*data) is V

True

sage: from sage.structure.test_factory import test_factory
sage: a = test_factory (1, 2)

Making object (1, 2)

sage: test_factory.reduce_data(a)

(<built-in function generic_factory_unpickle>,

(<sage.structure.test_factory.UniqueFactoryTester object at ...>,
(I
(i 4 2) 4
{3))
Note that the ellipsis (. ..) here stands for the Sage version.

sage.structure.factory.generic_factory_reduce (self, proto)
Used to provide a ___reduce___ method if one does not already exist.

EXAMPLES:

sage: V = Q0”6 #_
—needs sage.modules

sage: sage.structure.factory.generic_factory_reduce(V, 1) == V.__reduce_ex__ (1) _
— # needs sage.modules

True

sage.structure.factory.generic_factory_unpickle (factory, *args)
Method used for unpickling the object.

The unpickling mechanism needs a plain Python function to call. It takes a factory as the first argument, passes the
rest of the arguments onto the factory’s UniqueFactory.get_object () method.

6.3. Factory for cached representations 159

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: # needs sage.modules

sage: from sage.modules.free_module import FreeModuleFactory_with_standard_basis.
—~as F

sage: V = F (22, 5)

sage: func, data = F.reduce_data (V)

sage: func is sage.structure.factory.generic_factory_unpickle

True

sage: sage.structure.factory.generic_factory_unpickle (*data) is V

True

sage.structure.factory.lookup_global (name)

Used in unpickling the factory itself.
EXAMPLES:

sage: from sage.structure.factory import lookup_global
sage: lookup_global ('ZZ")

Integer Ring

sage: lookup_global ('sage.rings.integer_ring.ZZ")
Integer Ring

sage.structure.factory.register_factory_unpickle (name, callable)

Register a callable to handle the unpickling from an old UnigqueFactory object.

UniqueFactory pickles use a global name through generic_factory_unpickle (),sotheusual reg—
ister_unpickle_override () cannot be used here.

See also

generic_factory_unpickle ()

6.4 Dynamic classes

Why dynamic classes?

The short answer:
» Multiple inheritance is a powerful tool for constructing new classes by combining preexisting building blocks.
* There is a combinatorial explosion in the number of potentially useful classes that can be produced this way.
¢ The implementation of standard mathematical constructions calls for producing such combinations automatically.
* Dynamic classes, i.e. classes created on the fly by the Python interpreter, are a natural mean to achieve this.
The long answer:

Say we want to construct a new class MyPermutation for permutations in a given set .S (in Sage, .S will be modelled
by a parent, but we won’t discuss this point here). First, we have to choose a data structure for the permutations, typically
among the following:

* Stored by cycle type
* Stored by code

160 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/persist.html#sage.misc.persist.register_unpickle_override
../../../../../../html/en/reference/misc/sage/misc/persist.html#sage.misc.persist.register_unpickle_override

Parents and Elements, Release 10.5.rc0

« Stored in list notation - C arrays of short ints (for small permutations) - python lists of ints (for huge permutations)

* Stored by reduced word
* Stored as a function

Luckily, the Sage library provides (or will provide) classes implementing each of those data structures. Those classes all
share a common interface (or possibly a common abstract base class). So we can just derive our class from the chosen
one:

class MyPermutation (PermutationCycleType) :

Then we may want to further choose a specific memory behavior (unique representation, copy-on-write) which (hopefully)
can again be achieved by inheritance:

class MyPermutation (UniqueRepresentation, PermutationCycleType) : ’

Finally, we may want to endow the permutations in .S with further operations coming from the (algebraic) structure of S
* group operations
* or just monoid operations (for a subset of permutations not stable by inverse)
* poset operations (for left/right/Bruhat order)
» word operations (searching for substrings, patterns, ...)

Or any combination thereof. Now, our class typically looks like:

class MyPermutation (UniqueRepresentation, PermutationCycleType, PosetElement,.
—GroupElement) :

Note the combinatorial explosion in the potential number of classes which can be created this way.

In practice, such classes will be used in mathematical constructions like:

[SymmetricGroup(S).subset(... TODO: find a good example in the context above ...) J

In such a construction, the structure of the result, and therefore the operations on its elements can only be determined at
execution time. Let us take another standard construction:

{A = cartesian_product(B, C)]

Depending on the structure of B and C, and possibly on further options passed down by the user, A may be:
¢ an enumerated set
e agroup
* an algebra
* aposet

Or any combination thereof.

6.4. Dynamic classes 161

Parents and Elements, Release 10.5.rc0

Hardcoding classes for all potential combinations would be at best tedious. Furthermore, this would require a cuambersome
mechanism to lookup the appropriate class depending on the desired combination.

Instead, one may use the ability of Python to create new classes dynamically:

[type("class name", tuple of base classes, dictionary of methods) J

This paradigm is powerful, but there are some technicalities to address. The purpose of this library is to standardize its use
within Sage, and in particular to ensure that the constructed classes are reused whenever possible (unique representation),
and can be pickled.

Combining dynamic classes and Cython classes

Cython classes cannot inherit from a dynamic class (there might be some partial support for this in the future). On
the other hand, such an inheritance can be partially emulated using __getattr__ (). See sage.categories.
examples.semigroups_cython for an example.

class sage.structure.dynamic_class.DynamicClasscallMetaclass

Bases: DynamicMetaclass, ClasscallMetaclass

class sage.structure.dynamic_class.DynamicInheritComparisonClasscallMetaclass

Bases: DynamicMetaclass, InheritComparisonClasscallMetaclass

class sage.structure.dynamic_class.DynamicInheritComparisonMetaclass

Bases: DynamicMetaclass, InheritComparisonMetaclass

class sage.structure.dynamic_class.DynamicMetaclass

Bases: type
A metaclass implementing an appropriate reduce-by-construction method

sage.structure.dynamic_class.M

alias of DynamicInheritComparisonClasscallMetaclass

class sage.structure.dynamic_class.TestClass

Bases: object
A class used for checking that introspection works

bla()
bla ...

sage.structure.dynamic_class.dynamic_class (name, bases, cls=None, reduction=None,
doccls=None, prepend_cls_bases=True, cache=True)

INPUT:
* name - string
* bases — tuple of classes
e cls—aclass or None
e reduction — tuple or None
e doccls —aclass or None
* prepend_cls_bases — boolean (default: True)

e cache —boolean or 'ignore_reduction' (default: True)

162 Chapter 6. Utilities

../../../../../../html/en/reference/misc/sage/misc/classcall_metaclass.html#sage.misc.classcall_metaclass.ClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/inherit_comparison.html#sage.misc.inherit_comparison.InheritComparisonClasscallMetaclass
../../../../../../html/en/reference/misc/sage/misc/inherit_comparison.html#sage.misc.inherit_comparison.InheritComparisonMetaclass

Parents and Elements, Release 10.5.rc0

Constructs dynamically a new class C with name name, and bases bases. If cls is provided, then its methods
will be inserted into C, and its bases will be prepended to bases (unless prepend_cls_bases isFalse).

The module, documentation and source introspection is taken from doccls, or cls if doccls is None, or
bases [0] if both are None (therefore bases should be non empty if c1s is None).

The constructed class can safely be pickled (assuming the arguments themselves can).
Unless cache is False, the result is cached, ensuring unique representation of dynamic classes.

See sage. structure.dynamic_class for adiscussion of the dynamic classes paradigm, and its relevance
to Sage.

EXAMPLES:

To setup the stage, we create a class Foo with some methods, cached methods, and lazy attributes, and a class Bar:

-
sage: from sage.misc.lazy_ attribute import lazy_attribute

sage: from sage.misc.cachefunc import cached_function
sage: from sage.structure.dynamic_class import dynamic_class
sage: class Foo():

et "The Foo class"

e def _ init_ (self, x):

e self._ x = x

P @cached_method

e def f(self):

e return self._x"2

e def g(self):

ce return self._x"2

P @lazy_attribute

e def x(self):

Cet return self._x

sage: class Bar:

e def bar(self):

e return self._x"2

We now create a class FooBar which is a copy of Foo, except that it also inherits from Bar:

sage: FooBar = dynamic_class("FooBar", (Bar,), Foo)
sage: x = FooBar (3)
sage: x.f ()

9

sage: x.f() is x.f()
True

sage: X.Xx

3

sage: x.bar ()

9

sage: FooBar.__ _name_
'FooBar'

sage: FooBar._ module_

' __main_ '

sage: Foo._ _bases_
(<class 'object'>,)
sage: FooBar._ bases_

(<class '__main__.Bar'>,)
sage: Foo.mro()
[<class '__main__ .Foo'>, <class 'object'>]

(continues on next page)

6.4. Dynamic classes 163

Parents and Elements, Release 10.5.rc0

(continued from previous page)

sage: FooBar.mro ()
[<class '__main__ .FooBar'>, <class '__main__ .Bar'>, <class 'object'>]

If all the base classes have a zero __dictoffset__, the dynamic class also has a zero __dictoffset_ .
This means that the instances of the class don’thave a _ dict__ (see Issue #23435):

sage: dyn = dynamic_class("dyn", (Integer,))
sage: dyn.__dictoffset_
0

Pickling

Dynamic classes are pickled by construction. Namely, upon unpickling, the class will be reconstructed by recalling
dynamic_class with the same arguments:

sage: type (FooBar) .__ reduce__ (FooBar)
(<function dynamic_class at ...>, ('FooBar', (<class '__main__.Bar'>,), <class '__
—main__ .Foo'>, None, None))

Technically, this is achieved by using a metaclass, since the Python pickling protocol for classes is to pickle by
name:

sage: type (FooBar)

<class 'sage.structure.dynamic_class.DynamicMetaclass'>
.

The following (meaningless) example illustrates how to customize the result of the reduction:

-
sage: BarFoo = dynamic_class('BarFoo', (Foo,), Bar, reduction = (str, (3,)))

sage: type (BarFoo) .__reduce__ (BarFoo)
(<class 'str'>, (3,))

sage: loads (dumps (BarFoo))

Y3V

.

Caching

By default, the built class is cached:

sage: dynamic_class ("FooBar", (Bar,), Foo) is FooBar
True
sage: dynamic_class ("FooBar", (Bar,), Foo, cache=True) is FooBar

True
.

and the result depends on the reduction:

~

sage: dynamic_class('BarFoo', (Foo,), Bar, reduction = (str, (3,))) is BarFoo
True

sage: dynamic_class('BarFoo', (Foo,), Bar, reduction = (str, (2,))) is BarFoo
False

L

With cache=False, a new class is created each time:

164 Chapter 6. Utilities

https://github.com/sagemath/sage/issues/23435

Parents and Elements, Release 10.5.rc0

-

sage: FooBarl = dynamic_class ("FooBar", (Bar,), Foo, cache=False); FooBarl
<class '_ _main__ .FooBar'>

sage: FooBar2 = dynamic_class ("FooBar", (Bar,), Foo, cache=False); FooBar2
<class '__main__ .FooBar'>

sage: FooBarl is FooBar

False

sage: FooBar2 is FooBarl

False

With cache="ignore_reduction", the class does not depend on the reduction:

sage: BarFoo = dynamic_class('BarFoo', (Foo,), Bar, reduction = (str, (3,)),o
—cache="ignore_reduction')

sage: dynamic_class('BarFoo', (Foo,), Bar, reduction = (str, (2,)), cache='ignore_
—reduction') is BarFoo

True

In particular, the reduction used is that provided upon creating the first class:

sage: dynamic_class ('BarFoo', (Foo,), Bar, reduction = (str, (2,)), cache='ignore_
—~reduction') ._reduction
(<class 'str'>, (3,))

Warning

The behaviour upon creating several dynamic classes from the same data but with different values for cache
option is currently left unspecified. In other words, for a given application, it is recommended to consistently
use the same value for that option.

sage.structure.dynamic_class.dynamic_class_internal (bases, cls=None, reduction=None,
doccls=None,
prepend_cls_bases=True)

See sage.structure.dynamic_class.dynamic_class? for indirect doctests.

6.5 Mutability Cython Implementation

class sage.structure.mutability.Mutability
Bases: object

Class to mix in mutability feature.

EXAMPLES:

sage: class A(SageObject, Mutability):
50001 def _ init_ (self, wval):
e self._val = val

e def change(self, val):

5o 805 self._require_mutable ()
e self._val = val

e def _ hash__ (self):

e self._require_immutable ()
e return hash(self._val)

(continues on next page)

6.5. Mutability Cython Implementation 165

Parents and Elements, Release 10.5.rc0

(continued from

sage: a = A(4)
a.

sage: _val

4

sage: a.change(6); a._val
6

sage: hash(a)
Traceback (most recent call last):

ValueError: object is mutable; please make it immutable first
sage: a.set_immutable ()

sage: a.change (4)

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead
sage: hash(a)
6

previous page)

is_immutable ()

Return True if this object is immutable (cannot be changed) and False if it is not.

To make this object immutable use self.set_immutable().

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5

sage: v

[5, 2, 3, 4/5]

sage: v.is_immutable ()
False

sage: v.set_immutable ()
sage: v.is_immutable ()
True

is_mutable ()

Return True if this object is mutable (can be changed) and False if it is not.

To make this object immutable use self.set_immutable ().

EXAMPLES:

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5

sage: v

[5, 2, 3, 4/5]

sage: v.is_mutable ()
True

sage: v.set_immutable ()
sage: v.is_mutable ()
False

set_immutable ()

Make this object immutable, so it can never again be changed.

EXAMPLES:

166

Chapter 6

. Utilities

Parents and Elements, Release 10.5.rc0

sage: v = Sequence([1,2,3,4/5])
sage: v[0] = 5

sage: Vv

[5, 2, 3, 4/5]

sage: v.set_immutable ()

sage: v[3] = 7

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

sage.structure.mutability.require_immutable (f)

A decorator that requires immutability for a method to be called.

Note

Objects whose methods use this decorator should have an attribute _is_immutable. Otherwise, the object

is assumed to be mutable.

EXAMPLES:

sage: class A():

....: def _ init_ (self, wval):
e self. m = val

....: (@require_mutable

....: def change(self, new_val):
et 'change self'

e self. m = new_val

....: (@require_immutable

....: def _ hash__ (self):

P 'implement hash'

e return hash (self._m)
sage: a = A(D)

sage: a.change (6)

sage: hash (a) # indirect doctest
Traceback (most recent call last):

—> must not be called

sage: from sage.misc.sageinspect import sage_getdoc
sage: print (sage_getdoc(a.__hash__))

implement hash

sage: from sage.structure.mutability import require_mutable,

ValueError: <class '_ main__ .A'> instance is mutable, <function

require_immutable

.__hash__ at
—> must not be called
sage: a._is_immutable = True
sage: hash (a)
6
sage: a.change(7)
Traceback (most recent call last):
ValueError: <class '__main__.A'> instance is immutable, <function ...change at

AUTHORS:
» Simon King <simon.king@uni-jena.de>

sage.structure.mutability.require_mutable (f)

A decorator that requires mutability for a method to be called.

6.5. Mutability Cython Implementation

167

mailto:simon.king@uni-jena.de

Parents and Elements, Release 10.5.rc0

Note

Objects whose methods use this decorator should have an attribute _is_immutable. Otherwise, the object

is assumed to be mutable.

EXAMPLES:

sage: from sage.structure.mutability import require_mutable,
sage: class A():

50001 def _ init__ (self, wval):
e self. m = val

5000 & @require_mutable

e def change (self, new_val):
- 'change self'

et self. m = new_val
P @require_immutable

e def _ hash_ (self):

60008 '"implement hash'

85800 return hash(self._m)
sage: a = A(D)

sage: a.change (6)

sage: hash (a)

Traceback (most recent call last):

—> must not be called

sage: a._is_immutable = True

sage: hash (a)

6

sage: a.change(7) # indirect doctest
Traceback (most recent call last):

—> must not be called

sage: from sage.misc.sageinspect import sage_getdoc
sage: print (sage_getdoc (a.change))

change self

.

require_immutable

ValueError: <class '_ _main__ .A'> instance is mutable, <function ..._ _hash__ at

ValueError: <class '__main__ .A'> instance is immutable, <function ...change at

AUTHORS:

¢ Simon King <simon.king@uni-jena.de>

168

Chapter 6. Utilities

mailto:simon.king@uni-jena.de

CHAPTER
SEVEN

INTERNALS

7.1 Debug options for the sage. structure modules

EXAMPLES:

sage: from sage.structure.debug_options import debug
sage: debug.unique_parent_warnings

False

sage: debug.refine_category_hash_check

True

class sage.structure.debug_options.DebugOptions_class
Bases: object

refine_category_hash_check

unique_parent_warnings

7.2 Performance Test for Clone Protocol

see sage.structure.list_clone.ClonableArray

EXAMPLES:

sage: from sage.structure.list_clone_timings import *
sage: cmd =["",

voook "e.__copy__ ()",

e "copy (e)",

et "e.clone ()",

S50 a8 "e.__class__(e.parent (), e._get_list())",
e "e._class__ _(e.parent(), el[:])",

et "e.check ()",
H",

e "addl_internal (e)",
et "addl_immutable (e)",
55098 "addl_mutable(e)",
ce "addl_with (e)",

nn
’

e "cy_addl_internal (e)",
e "cy_addl_immutable (e)",
e "cy_addl_mutable (e)",
e "cy_addl_with(e)"]

169

Parents and Elements, Release 10.5.rc0

Various timings using a Cython class:

sage: size = 5

sage: e = IncreasingArrays () (range (size))
sage: # random

....: for p in cmd:

e print ("{0:36} : ".format (p), end=""); timeit (p)

e.__copy__() : 625 loops, best of 3: 446 ns per loop
copy (e) : 625 loops, best of 3: 1.94 ps per loop
e.clone () : 625 loops, best of 3: 736 ns per loop
e.__class__(e.parent (), e._get_list()) : 625 loops, best of 3: 1.34 ps per loop
e.__class__(e.parent (), el:1]) : 625 loops, best of 3: 1.35 ps per loop
e.check () : 625 loops, best of 3: 342 ns per loop
addl_internal (e) : 625 loops, best of 3: 3.53 ps per loop
addl_immutable (e) : 625 loops, best of 3: 3.72 ps per loop
addl_mutable (e) : 625 loops, best of 3: 3.42 ps per loop
addl_with (e) : 625 loops, best of 3: 4.05 ps per loop
cy_addl_internal (e) : 625 loops, best of 3: 752 ns per loop
cy_addl_immutable (e) : 625 loops, best of 3: 1.28 ps per loop
cy_addl_mutable (e) : 625 loops, best of 3: 861 ns per loop
cy_addl_with (e) : 625 loops, best of 3: 1.51 ps per loop
Various timings using a Python class:

sage: e = IncreasingArraysPy () (range(size))

sage: # random

....: for p in cmd: print("{0:36} : ".format (p), end=""); timeit (p)

e.__copy__ () : 625 loops, best of 3: 869 ns per loop
copy (e) : 625 loops, best of 3: 2.13 ps per loop
e.clone () : 625 loops, best of 3: 1.86 pus per loop
e.__class__(e.parent (), e._get_list()) : 625 loops, best of 3: 7.52 ps per loop
e.__class__(e.parent (), el[:1]) : 625 loops, best of 3: 7.27 ps per loop
e.check () : 625 loops, best of 3: 4.02 ps per loop
addl_internal (e) : 625 loops, best of 3: 9.34 us per loop
addl_immutable (e) : 625 loops, best of 3: 9.91 ps per loop
addl_mutable (e) : 625 loops, best of 3: 12.6 ps per loop
addl_with (e) : 625 loops, best of 3: 15.9 ps per loop
cy_addl_internal (e) : 625 loops, best of 3: 7.13 ps per loop
cy_addl_immutable (e) : 625 loops, best of 3: 6.95 pus per loop
cy_addl_mutable (e) : 625 loops, best of 3: 14.1 ps per loop
cy_addl_with (e) : 625 loops, best of 3: 17.5 ps per loop

class sage.structure.list_clone_timings.IncreasingArraysPy

Bases: ITncreasingArrays

class Element
Bases: ClonableArray

A small class for testing C1onableArray: Increasing Lists.

check ()

Check that self is increasing.

170 Chapter 7. Internals

Parents and Elements, Release 10.5.rc0

EXAMPLES:

sage: from sage.structure.list_clone_timings import IncreasingArraysPy
sage: IncreasingArraysPy () ([1,2,3]) # indirect doctest

(1, 2, 3]

sage: IncreasingArraysPy () ([3,2,1]) # indirect doctest

Traceback (most recent call last):

ValueError: Lists 1s not increasing

sage.structure.list_clone_timings.addl_immutable (bla)
sage.structure.list_clone_timings.addl_internal (bla)
sage.structure.list_clone_timings.addl_mutable (bla)

sage.structure.list_clone_timings.addl_with (bla)

7.3 Cython Functions for Timing Clone Protocol

sage.structure.list_clone_timings_cy.cy_addl_immutable (bla)
sage.structure.list_clone_timings_cy.cy_addl_internal (bla)
sage.structure.list_clone_timings_cy.cy_addl_mutable (bla)

sage.structure.list_clone_timings_cy.cy_addl_with (bla)

7.4 Test of the factory module

class sage.structure.test_factory.A

Bases: object

class sage.structure.test_factory.UniqueFactoryTester

Bases: UniqueFactory

create_key (*args, **kwds)
EXAMPLES:

sage: from sage.structure.test_factory import UniqueFactoryTester
sage: test_factory = UniqueFactoryTester('foo')

sage: test_factory.create_key (1, 2, 3)

(1, 2, 3)

create_obiject (version, key, **extra_args)
EXAMPLES:

sage: from sage.structure.test_factory import UniqueFactoryTester
sage: test_factory = UniqueFactoryTester ('foo')

sage: test_factory.create_object ('version', key=(1, 2, 4))

Making object (1, 2, 4)

<sage.structure.test_factory.A object at ...>

7.3. Cython Functions for Timing Clone Protocol 171

Parents and Elements, Release 10.5.rc0

172 Chapter 7. Internals

CHAPTER
EIGHT

INDICES AND TABLES

¢ Index
¢ Module Index

» Search Page

173

../genindex.html
../py-modindex.html
../search.html

Parents and Elements, Release 10.5.rc0

174 Chapter 8. Indices and Tables

sage.

sage.
sage.
sage.
sage.
sage.
sage.
sage.

sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.

sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.
sage.

sage.
sage.

misc.proof, 126

Structure.
Structure.
structure.
structure.
.element_wrapper, 75
Structure.

structure

structure.

101

structure.
.formal_ sum, 91
structure.

structure

Structure.
structure.
structure.
.list_clone_demo, 87
structure.

structure

structure.

171

structure.
structure.
structure.
sStructure.
Structure.
sStructure.
structure.
structure.
structure.
Structure.
structure.
structure.

122

structure.

structure

135

category_object, 6
debug_options, 169
dynamic_class, 160
element, 49

factorization, 92
factorization_integer,

factory, 153

gens_py, 48
global_options, 35
indexed_generators, 29
list_clone, 76

list_clone_timings, 169
list_clone_timings_cy,

mutability, 165
nonexact, 34
parent, 13
parent_base, 44
parent_gens, 44
parent_old, 44
proof.proof, 125
richcmp, 127
sage_object, |
sequence, 101
set_factories, 110
set_factories_example,

test_factory, 171

.unique_representation,

PYTHON MODULE INDEX

175

Parents and Elements, Release 10.5.rc0

176 Python Module Index

Non-alphabetical

__add___ () (sage.structure.element. Element method), 58
__call__ () (sage.structure.parent.Parent method), 15
__contains__ () (sage.structure.parent. Parent

method), 17

__ _floordiv__ () (sage.structure.element. Element
method), 59

__mod___ () (sage.structure.element. Element method), 59

__mul__ () (sage.structure.element. Element method), 58

__mul__ () (sage.structure.parent.Parent method), 15

neg__ () (sage.structure.element. Element method), 58

__sub___ () (sage.structure.element. Element method), 58

__truediv__ () (sage.structure.element. Element
method), 59

_an_element_ () (sage.structure.parent. Parent
method), 18

_ascii_art_ () (sage.structure.sage_object.SageObject
method), 1

_cache_key () (sage.structure.sage_object.SageObject
method), 2

_coerce_map_~from_ () (sage.structure.parent.Parent
method), 18

_convert_map_from_ () (sage.structure.parent.Par-
ent method), 18
_get_action_ ()
method), 18
_init_category_ ()
method), 19
_is_coercion_cached()
ent.Parent method), 19
_is_conversion_cached()
ent.Parent method), 19
_populate_coercion_lists_ ()
ture.parent. Parent method), 15
_repr_option() (sage.structure.parent. Parent
method), 18
richcmp () (sage.structure.element.Element method),

57

(sage.structure.parent. Parent
(sage.structure.parent. Parent
(sage.structure.par-
(sage.structure.par-

(sage.struc-

A

A (class in sage.structure.test_factory), 171

INDEX

abelian_iterator () (in module
ture.gens_py), 48

abs () (sage.structure.element.RingElement method), 67

sage.struc-

addl_immutable () (in module sage.struc-
ture.list_clone_timings), 171

addl_internal () (in module sage.struc-
ture.list_clone_timings), 171

addl_mutable () (in module sage.struc-

ture.list_clone_timings), 171

addl_with () (in module sage.structure.list_clone_tim-
ings), 171

add_constraints () (sage.structure.set_factories_ex-
ample. XYPairsFactory method), 124

add_constraints () (sage.structure.set_factories.Set-
Factory method), 119

additive_order () (sage.structure.element. Mod-
uleElement method), 66

additive_order () (sage.structure.element.RingEle-
ment method), 68

AdditiveGroupElement (class in sage.structure.ele-
ment), 52

AlgebraElement (class in sage.structure.element), 53

Al1Pairs (class in sage.structure.set_factories_example),
122

an_element ()
20

an_element () (sage.structure.set_factories_exam-
ple.Pairs_Y method), 123

an_element () (sage.structure.set_factories_exam-
ple.PairsX_ method), 122

append () (sage.structure.element_wrapper. Elemen-
tWrapperTester method), 76

(sage.structure.parent. Parent method),

append () (sage.structure.list_clone.ClonableList
method), 84
append () (sage.structure.sequence.Sequence_generic

method), 106

B

BareFunctionPolicy (class in sage.structure.set_fac-
tories), 115

(sage.structure.category_object. CategoryObject
method), 7

base ()

177

Parents and Elements, Release 10.5.rc0

base_change () (sage.structure. factorization. Factoriza-
tion method), 95

base_extend()
method), 60

base_extend () (sage.structure.formal_sum.Formal-
Sums method), 92

base_extend() (sage.structure.parent_base. Paren-
tWithBase method), 44

base_ring () (sage.structure.category_object.Category-
Object method), 7

base_ring () (sage.structure.element.Element method),
60

bin_op () (in module sage.structure.element), 69

bla () (sage.structure.dynamic_class.TestClass method),
162

(sage.structure.element. Element

C

CachedRepresentation (class in
ture.unique_representation), 143

canonical_coercion () (in module sage.structure.el-
ement), 69

categories () (sage.structure.category_object.Catego-
ryObject method), 8

category () (sage.structure.category_object.Category-
Object method), 8

category () (sage.structure.element.Element method),
60

category () (sage.structure.parent.Parent method), 21

category () (sage.structure.sage_object.SageObject
method), 3

CategoryObject (class in sage.structure.category_ob-
Jject), 6

certify_names () (in module sage.structure.cate-
gory_object), 10

check () (sage.structure.list_clone_demo.IncreasingArray

method), 87

(sage.structure.list_clone_demo.Increasingln-
tArray method), 88

sage.struc-

check ()

check () (sage.structure.list_clone_demo.IncreasingList
method), 88

check () (sage.structure.list_clone_demo.SortedList
method), 89

check () (sage.structure.list_clone_timings.IncreasingAr-

raysPy.Element method), 170
(sage.structure.list_clone.ClonableArray

method), 79

(sage.structure.list_clone.ClonablelntArray

method), 83

check_default_category () (in module sage.struc-
ture.category_object), 11

check_element () (sage.structure.set_factories_exam-
ple. AllPairs method), 122

check_element () (sage.structure.set_factories_exam-
ple.Pairs_Y method), 123

check ()

check ()

check_element () (sage.structure.set_factories_exam-
ple.PairsX_ method), 122
check_element () (sage.structure.set_factories_exam-
ple.SingletonPair method), 123
check_element () (sage.structure.set_factories.Paren-
tWithSetFactory method), 116
ClonableArray (class in sage.structure.list_clone), 78
ClonableElement (class in sage.structure.list_clone),
79
ClonablelIntArray (class in sage.structure.list_clone),
83
ClonableList (class in sage.structure.list_clone), 84
clone () (sage.structure.list_clone.ClonableElement
method), 81
coerce () (sage.structure.parent.Parent method), 21
coerce_binop () (in module sage.structure.element),
70
coerce_embedding ()
method), 21
coerce_map_from()
method), 22
coercion_traceback () (in module sage.structure.el-
ement), 71
CommutativeAlgebraElement (class in sage.struc-
ture.element), 53
CommutativeRingElement (class
ture.element), 53
constraints () (sage.structure.set_factories. Paren-
tWithSetFactory method), 117
convert_map_~from() (sage.structure.parent.Parent
method), 22
(sage.structure.list_clone.ClonableArray
method), 79
create_key () (sage.structure.factory. UniqueFactory
method), 157
create_key () (sage.structure.test_factory.UniqueFac-
toryTester method), 171
create_key_and_extra_args () (sage.struc-
ture. factory. UniqueFactory method), 157
create_object () (sage.structure.factory. UniqueFac-
tory method), 157
create_object () (sage.structure.test_factory.Unique-
FactoryTester method), 171

(sage.structure.parent. Parent

(sage.structure.parent. Parent

in sage.struc-

count ()

cy_addl_immutable () (in module sage.struc-
ture.list_clone_timings_cy), 171
cy_addl_internal() (in module sage.struc-
ture.list_clone_timings_cy), 171
cy_addl_mutable () (in module sage.struc-
ture.list_clone_timings_cy), 171
cy_addl_with () (in module sage.struc-

ture.list_clone_timings_cy), 171

D

DebugOptions_class (class in sage.structure.de-

178

Index

Parents and Elements, Release 10.5.rc0

bug_options), 169

DedekindDomainElement (class in sage.structure.ele-
ment), 57

default_prec ()
method), 34

degree () (sage.structure.element. EuclideanDomainEle-
ment method), 64

divides () (sage.structure.element. CommutativeRingEle-
ment method), 53

divides () (sage.structure.element. FieldElement
method), 65

DummyParent (class in sage.structure.element_wrapper),
75

dump () (sage.structure.sage_object.SageObject method), 3

dumps () (sage.structure.sage_object.SageObject method),
3

dynamic_class () (in
namic_class), 162

dynamic_class_internal () (in module sage.struc-
ture.dynamic_class), 165

DynamicClasscallMetaclass (class in sage.struc-
ture.dynamic_class), 162

DynamicInheritComparisonClasscallMeta-—
class (class in sage.structure.dynamic_class),
162

(sage.structure.nonexact. Nonexact

module sage.structure.dy-

DynamicInheritComparisonMetaclass (class
in sage.structure.dynamic_class), 162
DynamicMetaclass (class in sage.structure.dy-

namic_class), 162

E

Element (class in sage.structure.element), 57

Element (sage.structure.formal_sum.FormalSums
tribute), 92

Element (sage.structure.list_clone_demo.IncreasingAr-
rays attribute), 88

Element (sage.structure.list_clone_demo.Increasingln-
tArrays attribute), 88

Element (sage.structure.list_clone_demo.IncreasingLists
attribute), 88

Element (sage.structure.list_clone_demo.SortedLists at-
tribute), 89

element_class ()
method), 22

element_constructor_attributes ()
(sage.structure.set_factories. BareFunctionPolicy
method), 115

element_constructor_attributes()
(sage.structure.set_factories. FacadeParentPolicy
method), 116

element_constructor_attributes ()
(sage.structure.set_factories.Self ParentPolicy
method), 119

at-

(sage.structure.parent. Parent

element_constructor_attributes ()
(sage.structure.set_factories.SetFactoryPolicy
method), 120

element_constructor_attributes ()
(sage.structure.set_factories. TopMostParent-
Policy method), 121

ElementWithCachedMethod (class in sage.struc-
ture.element), 62

ElementWrapper (class in
ment_wrapper), 75

ElementWrapperCheckWrappedClass (class in
sage.structure.element_wrapper), 76

ElementWrapperTester (class in sage.structure.ele-
ment_wrapper), 76

EltPair (class in sage.structure.parent), 14

EuclideanDomainElement (class in sage.struc-
ture.element), 64

expand () (sage.structure. factorization. Factorization
method), 96

Expression (class in sage.structure.element), 64

sage.structure.ele-

extend () (sage.structure.list_clone.ClonableList
method), 84
extend () (sage.structure.sequence.Sequence_generic

method), 106

F

facade_element_constructor_at-
tributes () (sage.structure.set_factories.Set-
FactoryPolicy method), 120

facade_policy () (sage.structure.set_factories.Paren-
tWithSetFactory method), 117

FacadeParentPolicy (class in sage.structure.set_fac-
tories), 115

Factorization (class in sage.structure.factorization),
95

factory () (sage.structure.set_factories. ParentWithSet-
Factory method), 118

factory () (sage.structure.set_factories.SetFactoryPolicy
method), 120

FieldElement (class in sage.structure.element), 65

FormalSum (class in sage.structure. formal_sum), 91

FormalSums (class in sage.structure. formal_sum), 92

G

gcd () (sage.structure.element. PrincipalldealDomainEle-
ment method), 67
gcd () (sage.structure. factorization. Factorization method),
96
(sage.structure.parent_gens. ParentWithGens
method), 45
generic_factory_reduce () (in module sage.struc-
ture. factory), 159
generic_factory_unpickle ()
sage.structure. factory), 159

gen ()

(in module

Index

179

Parents and Elements, Release 10.5.rc0

(sage.structure.parent_gens. ParentWithGens
method), 45
gens_dict () (sage.structure.category_object.Category-
Object method), 8
gens_dict_recursive() (sage.structure.cate-
gory_object.CategoryObject method), 8
get_action () (sage.structure.parent.Parent method),

gens ()

23
get_coercion_model () (in module sage.structure.el-
ement), 71

get_custom_name () (sage.structure.sage_ob-
Ject.SageObject method), 3

get_flag () (in module sage.structure.proof.proof), 125

get_object () (sage.structure.factory.UniqueFactory
method), 158

get_version () (sage.structure.factory.UniqueFactory
method), 158

GlobalOptions (class in sage.structure.global_options),

40
GlobalOptionsMeta (class in sage.struc-
ture.global_options), 43
GlobalOptionsMetaMeta (class in sage.struc-

ture.global_options), 43

H

has_coerce_map_from()
ent.Parent method), 23
have_same_parent () (in module sage.structure.ele-

(sage.structure.par-

ment), 72

Hom () (sage.structure.category_object. CategoryObject
method), 6

hom () (sage.structure.parent_gens.ParentWithGens
method), 45

Hom () (sage.structure.parent.Parent method), 20
hom () (sage.structure.parent. Parent method), 23

IncreasingArray (class in sage.struc-
ture.list_clone_demo), 87
IncreasingArrays (class in sage.struc-
ture.list_clone_demo), 87
IncreasingArraysPy (class in sage.struc-
ture.list_clone_timings), 170
IncreasingArraysPy.Element (class in

sage.structure.list_clone_timings), 170

IncreasingIntArray (class in sage.struc-
ture.list_clone_demo), 88

IncreasingIntArrays (class in sage.struc-
ture.list_clone_demo), 88

IncreasingList (class in sage.struc-
ture.list_clone_demo), 88

IncreasinglLists (class in sage.struc-

ture.list_clone_demo), 88

(sage.structure.list_clone.ClonableArray

method), 79
(sage.structure.list_clone.ClonableIntArray

method), 83
IndexedGenerators (class in

dexed_generators), 29
indices () (sage.structure.indexed_generators.Indexed-

Generators method), 30
InfinityElement (class in sage.structure.element), 65
inject_variables() (sage.structure.category_ob-
Ject.CategoryObject method), 9

index ()
index ()

sage.structure.in-

insert () (sage.structure.list_clone.ClonableList
method), 85
insert () (sage.structure.sequence.Sequence_generic

method), 106

IntegerFactorization (class in sage.structure.fac-
torization_integer), 101

IntegralDomainElement (class in sage.structure.ele-
ment), 65

inverse_mod () (sage.structure.element. Commuta-
tiveRingElement method), 54

is_AdditiveGroupElement () (in
sage.structure.element), 72

is_AlgebraElement () (in module sage.structure.ele-
ment), 72

is_commutative () (sage.structure.factorization.Fac-
torization method), 96

is_CommutativeAlgebraElement () (in module
sage.structure.element), 72

module

is_CommutativeRingElement () (in module
sage.structure.element), 72
is_DedekindDomainElement () (in module

sage.structure.element), 72

is_Element () (in module sage.structure.element), 72

is_FEuclideanDomainElement () (in module
sage.structure.element), 73

is_exact () (sage.structure.parent. Parent method), 24

is_FieldElement () (in module sage.structure.ele-
ment), 73

is_immutable () (sage.structure.element. ModuleEle-
ment WithMutability method), 66

is_immutable () (sage.structure.list_clone.Clon-
ableElement method), 82

is_immutable () (sage.structure.mutability. Mutability
method), 166

is_immutable () (sage.structure.sequence.Se-
quence_generic method), 106

is_InfinityElement () (in module sage.structure.el-
ement), 73

is_integral () (sage.structure.factorization.Factoriza-
tion method), 97

is_IntegralDomainElement ()
sage.structure.element), 73

is_Matrix () (in module sage.structure.element), 73

(in module

180

Index

Parents and Elements, Release 10.5.rc0

is_ModuleElement () (in module sage.structure.ele-
ment), 73

is_MonoidElement () (in module sage.structure.ele-
ment), 73

is_MultiplicativeGroupElement () (in module
sage.structure.element), 73

is_mutable () (sage.structure.element. ModuleElemen-
tWithMutability method), 66

is_mutable () (sage.structure.list_clone.ClonableEle-
ment method), 82

is_mutable () (sage.structure.mutability. Mutability
method), 166

is_mutable () (sage.structure.sequence.Se-
quence_generic method), 107

is_nilpotent () (sage.structure.element.IntegralDo-
mainElement method), 66

is_nilpotent () (sage.structure.element.RingElement
method), 68

is_one () (sage.structure.element.RingElement method),
68

is_Parent () (in module sage.structure.parent), 28

is_prime () (sage.structure.element. RingElement
method), 68

is_PrincipalldealDomainElement () (in mod-
ule sage.structure.element), 73

is_RingElement () (in module sage.structure.ele-
ment), 73

is_square () (sage.structure.element. Commuta-
tiveRingElement method), 54

is_unit () (sage.structure.element. FieldElement
method), 65

is_Vector () (in module sage.structure.element), 73

is_zero () (sage.structure.element.Element method), 60

L

latex_name () (sage.structure.category_object.Catego-
ryObject method), 9

latex_variable_names () (sage.structure.cate-

gory_object.CategoryObject method), 9

(sage.structure.element. PrincipalldealDomainEle-

ment method), 67

lcm () (sage.structure.factorization. Factorization method),
97

leading_coefficient () (sage.structure.ele-

ment. EuclideanDomainElement method), 64

(sage.structure.list_clone.ClonablelntArray

method), 83

localvars (class in sage.structure.parent_gens), 47

lookup_global () (in module sage.structure. factory),
160

lcm ()

list ()

M

M (in module sage.structure.dynamic_class), 162

make_element () (in module sage.structure.element),
74
Matrix (class in sage.structure.element), 66
mod () (sage.structure.element. CommutativeRingElement
method), 55
module
sage.misc.proof, 126
sage.structure.category_object, 6
sage.structure.debug_options, 169
sage.structure.dynamic_class, 160
sage.structure.element, 49
sage.structure.element_wrapper, 75
sage.structure.factorization, 92
sage.structure.factorization_inte-
ger, 101
sage.structure.factory, 153
sage.structure.formal_sum, 91
sage.structure.gens_py, 48
sage.structure.global_options, 35
sage.structure.indexed_generators,
29
sage.structure.list_clone, 76
sage.structure.list_clone_demo, 87
sage.structure.list_clone_timings,
169
sage.structure.list_clone_tim-
ings_cy, 171
sage.structure.mutability, 165
sage.structure.nonexact, 34
sage.structure.parent, 13
sage.structure.parent_base, 44
sage.structure.parent_gens, 44
sage.structure.parent_old, 44
sage.structure.proof.proof, 125
sage.structure.richcmp, 127
sage.structure.sage_object, |
sage.structure.sequence, 101
sage.structure.set_factories, 110
sage.structure.set_factories_exam—
ple, 122
sage.structure.test_factory, 171
sage.structure.unique_representa-—
tion, 135
ModuleElement (class in sage.structure.element), 66
ModuleElementWithMutability (class in
sage.structure.element), 66
MonoidElement (class in sage.structure.element), 67
multiplicative_iterator () (in module
sage.structure.gens_py), 48
multiplicative_order () (sage.structure.ele-
ment.MonoidElement method), 67
multiplicative_order () (sage.structure.ele-
ment.RingElement method), 69

Index

181

Parents and Elements, Release 10.5.rc0

MultiplicativeGroupElement (class in
sage.structure.element), 67

Mutability (class in sage.structure.mutability), 165

N

n () (sage.structure.element. Element method), 60

ngens () (sage.structure.parent_gens. ParentWithGens
method), 47

Nonexact (class in sage.structure.nonexact), 34

normalize () (sage.structure.list_clone_demo.SortedList
method), 89

normalize () (sage.structure.list_clone. Normalized-
ClonableList method), 87

normalize_names () (in module sage.structure.cate-
gory_object), 11

NormalizedClonableList (class
ture.list_clone), 86

numerical_approx()
ment method), 60

in sage.struc-

(sage.structure.element. Ele-

O

object () (sage.structure.parent.Set_generic method), 28

objgen () (sage.structure.category_object.CategoryObject
method), 9

objgens () (sage.structure.category_object.CategoryOb-
Ject method), 9

Option (class in sage.structure.global_options), 43

order () (sage.structure.element. AdditiveGroupElement
method), 53

order () (sage.structure.element. ModuleElement
method), 66

order () (sage.structure.element. MonoidElement
method), 67

order () (sage.structure.element. MultiplicativeGroupEle-

ment method), 67
other_keys () (sage.structure.factory. UniqueFactory
method), 158

P

Pairs_Y (class in sage.structure.set_factories_example),
123

pairs_y () (sage.structure.set_factories_example. All-
Pairs method), 122

PairsX_ (class in sage.structure.set_factories_example),
122

Parent (class in sage.structure.parent), 14

Parent (class in sage.structure.parent_old), 44

parent () (in module sage.structure.element), 74

parent () (sage.structure.element. Element method), 61

parent () (sage.structure.sage_object.SageObject
method), 4

ParentWithBase (class in sage.structure.parent_base),
44

ParentWithGens (class in sage.structure.parent_gens),
45

ParentWithSetFactory
ture.set_factories), 116

parse_indices_names () (in module sage.struc-
ture.indexed_generators), 32

policy () (sage.structure.set_factories. Parent WithSet-
Factory method), 118

pop () (sage.structure.list_clone.ClonableList method), 85

pop () (sage.structure.sequence.Sequence_generic
method), 107

powers () (sage.structure.element. MonoidElement
method), 67

powers () (sage.structure.element. RingElement method),
69

prefix () (sage.structure.indexed_generators.Indexed-
Generators method), 31

PrincipalIdealDomainElement
sage.structure.element), 67

print_options () (sage.structure.indexed_genera-

tors.IndexedGenerators method), 31

(sage.structure. factorization. Factorization
method), 97

(class in sage.struc-

(class in

prod()

Q

quo_rem () (sage.structure.element. EuclideanDo-
mainElement method), 64

quo_rem () (sage.structure.element. FieldElement
method), 65

R

radical () (sage.structure. factorization. Factorization
method), 98

radical_value () (sage.structure.factorization.Factor-
ization method), 98

reduce () (sage.structure. formal_sum. FormalSum
method), 91

reduce_data () (sage.structure.factory.UniqueFactory
method), 159

refine_category_hash_check (sage.structure.de-
bug_options. DebugOptions_class attribute), 169

register_action () (sage.structure.parent. Parent
method), 25

register_coercion()
method), 26

register_conversion ()
ent.Parent method), 26

register_embedding () (sage.structure.parent.Par-
ent method), 27

register_factory_unpickle ()
sage.structure. factory), 160

remove () (sage.structure.list_clone.ClonableList
method), 86

(sage.structure.parent. Parent

(sage.structure.par-

(in module

182

Index

Parents and Elements, Release 10.5.rc0

remove () (sage.structure.sequence.Sequence_generic sage.structure.indexed_generators
method), 107 module, 29
rename () (sage.structure.sage_object.SageObject sage.structure.list_clone
method), 4 module, 76
require_immutable () (in module sage.structure.mu- sage.structure.list_clone_demo
tability), 167 module, 87
require_mutable () (in module sage.structure.muta- sage.structure.list_clone_timings
bility), 167 module, 169
reset_name () (sage.structure.sage_object.SageObject sage.structure.list_clone_timings_cy
method), 5 module, 171
reverse () (sage.structure.sequence.Sequence_generic sage.structure.mutability
method), 107 module, 165
revop () (in module sage.structure.richcmp), 127 sage.structure.nonexact
rich_to_bool () (in module sage.structure.richcmp), module, 34
127 sage.structure.parent
rich_to_bool_sgn () (in module sage.struc- module, 13
ture.richcmp), 128 sage.structure.parent_base
richcmp () (in module sage.structure.richcmp), 128 module, 44
richcmp_by_eq _and_1t () (in module sage.struc- sage.structure.parent_gens
ture.richcmp), 129 module, 44
richecmp_item () (in module sage.structure.richcmp), sage.structure.parent_old
130 module, 44
richcmp_method () (in module sage.struc- sage.structure.proof.proof
ture.richcmp), 133 module, 125
richcmp_not_equal () (in module sage.struc- sage.structure.richcmp
ture.richcmp), 134 module, 127
RingElement (class in sage.structure.element), 67 sage.structure.sage_object
module, 1
S sage.structure.sequence
sage.misc.proof module, 101
module, 126 sage.structure.set_factories
SageObject (class in sage.structure.sage_object), 1 module, 110
sage.structure.category_object sage.structure.set_factories_example
module, 6 module, 122
sage.structure.debug_options sage.structure.test_factory
module, 169 module, 171
sage.structure.dynamic_class sage.structure.unique_representation
module, 160 module, 135
sage.structure.element save () (sage.structure.sage_object.SageObject method), 5
module, 49 self_element_constructor_attributes()
sage.structure.element_wrapper (sage.structure.set_factories.SetFactoryPolicy
module, 75 method), 121
sage.structure.factorization SelfParentPolicy (class in sage.structure.set_facto-
module, 92 ries), 118
sage.structure.factorization_integer seq () (in module sage.structure.sequence), 108
module, 101 Sequence () (in module sage.structure.sequence), 102
sage.structure.factory Sequence_generic (class in sage.structure.sequence),
module, 153 104
sage.structure.formal_sum Set_generic (class in sage.structure.parent), 28
module, 91 set_immutable () (sage.structure.element.ModuleEle-
sage.structure.gens_py ment WithMutability method), 66
module, 48 set_immutable () (sage.structure.list_clone.Clon-
sage.structure.global_options ableElement method), 82
module, 35
Index 183

Parents and Elements, Release 10.5.rc0

set_immutable () (sage.structure.mutability. Mutabil-
ity method), 166

set_immutable () (sage.structure.sequence.Se-
quence_generic method), 107

SetFactory (class in sage.structure.set_factories), 119

SetFactoryPolicy (class in sage.structure.set_facto-
ries), 119

short_repr () (sage.structure.parent. EltPair method),
14

simplify () (sage.structure.factorization.Factorization
method), 98

single_pair () (sage.structure.set_factories_exam-
ple.Pairs_Y method), 123

SingletonPair (class in sage.structure.set_facto-
ries_example), 123

sort () (sage.structure. factorization. Factorization
method), 98
sort () (sage.structure.sequence.Sequence_generic

method), 108

SortedList (class in sage.structure.list_clone_demo), 88

SortedLists (class in sage.structure.list_clone_demo),
89

split_index_keywords () (in module sage.struc-
ture.indexed_generators), 33

sqrt () (sage.structure.element.CommutativeRingElement
method), 56

standardize_names_index_set () (in module
sage.structure.indexed_generators), 33

subs () (sage.structure.element. Element method), 61

subs () (sage.structure. factorization. Factorization
method), 99
subset () (sage.structure.set_factories. Parent WithSet-

Factory method), 118
substitute () (sage.structure.element. Element
method), 61

T

TestClass (class in sage.structure.dynamic_class), 162
TopMostParentPolicy (class in sage.struc-
ture.set_factories), 121

U

unique_parent_warnings (sage.structure.de-
bug_options. DebugOptions_class attribute),
169

UniqueFactory (class in sage.structure. factory), 154

UniqueFactoryTester (class in sage.struc-
ture.test_factory), 171
UniqueRepresentation (class in sage.struc-

ture.unique_representation), 150
(sage.structure. factorization. Factorization
method), 99
universe () (sage.structure.factorization. Factorization
method), 100

unit ()

universe () (sage.structure.sequence.Sequence_generic
method), 108

unreduce () (in module sage.structure.unique_represen-
tation), 153

V

value (sage.structure.element_wrapper.Element Wrapper
attribute), 76
(sage.structure. factorization. Factorization
method), 100
variable_name () (sage.structure.category_object.Cat-
egoryObject method), 10
variable_names () (sage.structure.category_ob-
Jject.CategoryObject method), 10
Vector (class in sage.structure.element), 69

W

WithPicklingByInitArgs (class
ture.unique_representation), 153

WithProof (class in sage.structure.proof.proof), 125

wrapped_class (sage.structure.element_wrapper.El-
ementWrapperCheck WrappedClass attribute),
76

value ()

in sage.struc-

X

XYPair (class in sage.structure.set_factories_example),
123

XYPairs () (in module sage.structure.set_factories_exam-
ple), 123

XYPairsFactory (class in sage.structure.set_facto-
ries_example), 124

184

Index

	Sage Objects
	Abstract base class for Sage objects
	Base class for objects of a category

	Parents
	Parents
	Base class for parent objects
	Indexed Generators
	Precision management for non-exact objects
	Global options
	Construction of options classes
	Accessing and setting option values
	Setter functions
	Documentation for options
	Dispatchers
	Doc testing
	Pickling

	Old-Style Parents (Deprecated)
	Base class for old-style parent objects
	Base class for old-style parent objects with a base ring
	Base class for old-style parent objects with generators
	Pure python code for abstract base class for objects with generators

	Elements
	Elements
	The Abstract Element Class Hierarchy
	How to Define a New Element Class
	Arithmetic for Elements
	A quick summary for the impatient
	Arithmetic in more detail
	Examples
	Implementation details

	Element Wrapper
	Elements, Array and Lists With Clone Protocol
	Elements, Array and Lists With Clone Protocol, demonstration classes

	Mathematical Data Structures
	Formal sums
	Factorizations
	IntegerFactorization objects
	Finite Homogeneous Sequences
	Set factories
	An example of set factory

	Use of Heuristic and Probabilistic Algorithms
	Global proof preferences
	Whether or not computations are provably correct by default

	Utilities
	Cython-like rich comparisons in Python
	Unique Representation
	What is a cached representation?
	Implementing a cached representation
	Using CachedRepresentation
	Normalising the arguments

	Using UniqueFactory

	Comparing the two ways of implementing a cached representation
	Simplicity and transparency
	Class inheritance
	Python versus extension classes

	What is a unique representation?

	Factory for cached representations
	Dynamic classes
	Mutability Cython Implementation

	Internals
	Debug options for the sage.structure modules
	Performance Test for Clone Protocol
	Cython Functions for Timing Clone Protocol
	Test of the factory module

	Indices and Tables
	Python Module Index
	Index

