Elementare Algebra und Analysis¶
Sage kann viele zur elementaren Algebra und Analysis gehörende Probleme lösen. Zum Beispiel: Lösungen von Gleichungen finden, Differentiation, Integration, und Laplace-Transformationen berechnen. Lesen Sie die Sage Constructions Dokumentation um weitere Beispiele zu finden.
Lösen von Gleichungen¶
Gleichungen exakt lösen¶
Die solve
Funktion löst Gleichungen. Legen Sie zunächst Variablen
an, bevor Sie diese benutzen; Die Argumente von solve
sind eine
Gleichung (oder ein System von Gleichungen) zusammen mit den
Variablen, nach welchen Sie auflösen möchten:
sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]
>>> from sage.all import *
>>> x = var('x')
>>> solve(x**Integer(2) + Integer(3)*x + Integer(2), x)
[x == -2, x == -1]
x = var('x') solve(x^2 + 3*x + 2, x)
Sie können eine Gleichung nach einer Variablen, in Abhängigkeit von den anderen, auflösen:
sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
>>> from sage.all import *
>>> x, b, c = var('x b c')
>>> solve([x**Integer(2) + b*x + c == Integer(0)],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
x, b, c = var('x b c') solve([x^2 + b*x + c == 0],x)
Sie können auch nach mehreren Variablen auflösen:
sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
>>> from sage.all import *
>>> x, y = var('x, y')
>>> solve([x+y==Integer(6), x-y==Integer(4)], x, y)
[[x == 5, y == 1]]
x, y = var('x, y') solve([x+y==6, x-y==4], x, y)
Das folgende Beispiel, in dem Sage benutzt wird um ein System von nichtlinearen Gleichungen zu lösen, stammt von Jason Grout. Zunächst lösen wir das System symbolisch:
sage: var('x y p q')
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q*y+p*x==-6
sage: eq3 = q*y^2+p*x^2==24
sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
>>> from sage.all import *
>>> var('x y p q')
(x, y, p, q)
>>> eq1 = p+q==Integer(9)
>>> eq2 = q*y+p*x==-Integer(6)
>>> eq3 = q*y**Integer(2)+p*x**Integer(2)==Integer(24)
>>> solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
var('x y p q') eq1 = p+q==9 eq2 = q*y+p*x==-6 eq3 = q*y^2+p*x^2==24 solve([eq1,eq2,eq3,p==1],p,q,x,y)
Um eine numerische Approximation der Lösungen zu erhalten können Sie stattdessen wie folgt vorgehen:
sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
>>> from sage.all import *
>>> solns = solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y, solution_dict=True)
>>> [[s[p].n(Integer(30)), s[q].n(Integer(30)), s[x].n(Integer(30)), s[y].n(Integer(30))] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True) [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
(Die Funktion n
gibt eine numerische Approximation zurück, ihr
Argument ist die Anzahl der Bits an Genauigkeit.)
Gleichungen numerisch lösen¶
Oftmals kann solve
keine exakte Lösung der angegebenen Gleichung
bzw. Gleichungen finden. Wenn dies passiert können Sie find_root
verwenden um eine numerische Approximation zu finden. Beispielsweise
gibt solve
bei folgender Gleichung nichts brauchbares zurück:
sage: theta = var('theta')
sage: solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
>>> from sage.all import *
>>> theta = var('theta')
>>> solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
theta = var('theta') solve(cos(theta)==sin(theta), theta)
Wir können jedoch find_root
verwenden um eine Lösung der obigen
Gleichung im Bereich \(0 < \phi < \pi/2\) zu finden:
sage: phi = var('phi')
sage: find_root(cos(phi)==sin(phi),0,pi/2)
0.785398163397448...
>>> from sage.all import *
>>> phi = var('phi')
>>> find_root(cos(phi)==sin(phi),Integer(0),pi/Integer(2))
0.785398163397448...
phi = var('phi') find_root(cos(phi)==sin(phi),0,pi/2)
Differentiation, Integration, etc.¶
Sage weiß wie man viele Funktionen differenziert und integriert. Zum Beispiel können Sie folgendes eingeben um \(\sin(u)\) nach \(u\) abzuleiten:
sage: u = var('u')
sage: diff(sin(u), u)
cos(u)
>>> from sage.all import *
>>> u = var('u')
>>> diff(sin(u), u)
cos(u)
u = var('u') diff(sin(u), u)
Um die vierte Ableitung \(\sin(x^2)\) zu berechnen:
sage: diff(sin(x^2), x, 4)
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
>>> from sage.all import *
>>> diff(sin(x**Integer(2)), x, Integer(4))
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
diff(sin(x^2), x, 4)
Um die partiellen Ableitungen von \(x^2+17y^2\) nach \(x\) beziehungsweise \(y\) zu berechnen:
sage: x, y = var('x,y')
sage: f = x^2 + 17*y^2
sage: f.diff(x)
2*x
sage: f.diff(y)
34*y
>>> from sage.all import *
>>> x, y = var('x,y')
>>> f = x**Integer(2) + Integer(17)*y**Integer(2)
>>> f.diff(x)
2*x
>>> f.diff(y)
34*y
x, y = var('x,y') f = x^2 + 17*y^2 f.diff(x) f.diff(y)
Wir machen weiter mit Integralen, sowohl bestimmt als auch unbestimmt. Die Berechnung von \(\int x\sin(x^2)\, dx\) und \(\int_0^1 \frac{x}{x^2+1}\, dx\):
sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)
sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)
>>> from sage.all import *
>>> integral(x*sin(x**Integer(2)), x)
-1/2*cos(x^2)
>>> integral(x/(x**Integer(2)+Integer(1)), x, Integer(0), Integer(1))
1/2*log(2)
integral(x*sin(x^2), x) integral(x/(x^2+1), x, 0, 1)
Die Partialbruchzerlegung von \(\frac{1}{x^2-1}\):
sage: f = 1/((1+x)*(x-1))
sage: f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
>>> from sage.all import *
>>> f = Integer(1)/((Integer(1)+x)*(x-Integer(1)))
>>> f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
f = 1/((1+x)*(x-1)) f.partial_fraction(x)
Lösen von Differentialgleichungen¶
Sie können Sage verwenden um gewöhnliche Differentialgleichungen zu berechnen. Die Gleichung \(x'+x-1=0\) berechnen Sie wie folgt:
sage: t = var('t') # definiere die Variable t
sage: x = function('x')(t) # definiere x als Funktion dieser Variablen
sage: DE = diff(x, t) + x - 1
sage: desolve(DE, [x,t])
(_C + e^t)*e^(-t)
>>> from sage.all import *
>>> t = var('t') # definiere die Variable t
>>> x = function('x')(t) # definiere x als Funktion dieser Variablen
>>> DE = diff(x, t) + x - Integer(1)
>>> desolve(DE, [x,t])
(_C + e^t)*e^(-t)
t = var('t') # definiere die Variable t x = function('x')(t) # definiere x als Funktion dieser Variablen DE = diff(x, t) + x - 1 desolve(DE, [x,t])
Dies benutzt Sages Schnittstelle zu Maxima [Max], daher kann sich die Ausgabe ein wenig von anderen Ausgaben in Sage unterscheiden. In diesem Fall wird mitgeteilt, dass \(x(t) = e^{-t}(e^{t}+c)\) die allgemeine Lösung der Differentialgleichung ist.
Sie können auch Laplace-Transformationen berechnen: Die Laplace-Transformation von \(t^2e^t -\sin(t)\) wird wie folgt berechnet:
sage: s = var("s")
sage: t = var("t")
sage: f = t^2*exp(t) - sin(t)
sage: f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
>>> from sage.all import *
>>> s = var("s")
>>> t = var("t")
>>> f = t**Integer(2)*exp(t) - sin(t)
>>> f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
s = var("s") t = var("t") f = t^2*exp(t) - sin(t) f.laplace(t,s)
Hier ist ein komplizierteres Beispiel. Die Verschiebung des Gleichgewichts einer verkoppelten Feder, die an der linken Wand befestigt ist,
|------\/\/\/\/\---|Masse1|----\/\/\/\/\/----|Masse2|
Feder1 Feder2
wird durch dieses System der Differentialgleichungen zweiter Ordnung modelliert,
wobei \(m_{i}\) die Masse des Objekts i, \(x_{i}\) die Verschiebung des Gleichgewichts der Masse i und \(k_{i}\) die Federkonstante der Feder i ist.
Beispiel: Benutzen Sie Sage um das obige Problem mit folgenden Werten zu lösen: \(m_{1}=2\), \(m_{2}=1\), \(k_{1}=4\), \(k_{2}=2\), \(x_{1}(0)=3\), \(x_{1}'(0)=0\), \(x_{2}(0)=3\), \(x_{2}'(0)=0\).
Lösung: Berechnen Sie die Laplace-Transformierte der ersten Gleichung (mit der Notation \(x=x_{1}\), \(y=x_{2}\)):
sage: t,s = SR.var('t,s')
sage: x = function('x')
sage: y = function('y')
sage: f = 2*x(t).diff(t,2) + 6*x(t) - 2*y(t)
sage: f.laplace(t,s)
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
>>> from sage.all import *
>>> t,s = SR.var('t,s')
>>> x = function('x')
>>> y = function('y')
>>> f = Integer(2)*x(t).diff(t,Integer(2)) + Integer(6)*x(t) - Integer(2)*y(t)
>>> f.laplace(t,s)
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
t,s = SR.var('t,s') x = function('x') y = function('y') f = 2*x(t).diff(t,2) + 6*x(t) - 2*y(t) f.laplace(t,s)
Das ist schwierig zu lesen, es besagt jedoch, dass
(wobei die Laplace-Transformierte der Funktion mit kleinem Anfangsbuchstaben \(x(t)\) die Funktion mit großem Anfangsbuchstaben \(X(s)\) ist). Berechnen Sie die Laplace-Transformierte der zweiten Gleichung:
sage: de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")
sage: lde2 = de2.laplace("t","s"); lde2.sage()
s^2*laplace(y(t), t, s) - s*y(0) - 2*laplace(x(t), t, s) + 2*laplace(y(t), t, s) - D[0](y)(0)
>>> from sage.all import *
>>> de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)")
>>> lde2 = de2.laplace("t","s"); lde2.sage()
s^2*laplace(y(t), t, s) - s*y(0) - 2*laplace(x(t), t, s) + 2*laplace(y(t), t, s) - D[0](y)(0)
de2 = maxima("diff(y(t),t, 2) + 2*y(t) - 2*x(t)") lde2 = de2.laplace("t","s"); lde2.sage()
Dies besagt
Setzen Sie die Anfangsbedingungen für \(x(0)\), \(x'(0)\), \(y(0)\) und \(y'(0)\) ein, und lösen die beiden Gleichungen, die Sie so erhalten:
sage: var('s X Y')
(s, X, Y)
sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]
sage: solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
>>> from sage.all import *
>>> var('s X Y')
(s, X, Y)
>>> eqns = [(Integer(2)*s**Integer(2)+Integer(6))*X-Integer(2)*Y == Integer(6)*s, -Integer(2)*X +(s**Integer(2)+Integer(2))*Y == Integer(3)*s]
>>> solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
var('s X Y') eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s] solve(eqns, X,Y)
Berechnen Sie jetzt die inverse Laplace-Transformierte um die Antwort zu erhalten:
sage: var('s t')
(s, t)
sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)
cos(2*t) + 2*cos(t)
sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
-cos(2*t) + 4*cos(t)
>>> from sage.all import *
>>> var('s t')
(s, t)
>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(9)*s)/(s**Integer(4) + Integer(5)*s**Integer(2) + Integer(4)),s,t)
cos(2*t) + 2*cos(t)
>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(15)*s)/(s**Integer(4) + Integer(5)*s**Integer(2) + Integer(4)),s,t)
-cos(2*t) + 4*cos(t)
var('s t') inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t) inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
Also ist die Lösung:
Die kann folgenderweise parametrisiert geplottet werden:
sage: t = var('t')
sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),
....: (t, 0, 2*pi), rgbcolor=hue(0.9))
sage: show(P)
>>> from sage.all import *
>>> t = var('t')
>>> P = parametric_plot((cos(Integer(2)*t) + Integer(2)*cos(t), Integer(4)*cos(t) - cos(Integer(2)*t) ),
... (t, Integer(0), Integer(2)*pi), rgbcolor=hue(RealNumber('0.9')))
>>> show(P)
t = var('t') P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ), (t, 0, 2*pi), rgbcolor=hue(0.9)) show(P)
Die einzelnen Komponenten können so geplottet werden:
sage: t = var('t')
sage: p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3))
sage: p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6))
sage: show(p1 + p2)
>>> from sage.all import *
>>> t = var('t')
>>> p1 = plot(cos(Integer(2)*t) + Integer(2)*cos(t), (t,Integer(0), Integer(2)*pi), rgbcolor=hue(RealNumber('0.3')))
>>> p2 = plot(Integer(4)*cos(t) - cos(Integer(2)*t), (t,Integer(0), Integer(2)*pi), rgbcolor=hue(RealNumber('0.6')))
>>> show(p1 + p2)
t = var('t') p1 = plot(cos(2*t) + 2*cos(t), (t,0, 2*pi), rgbcolor=hue(0.3)) p2 = plot(4*cos(t) - cos(2*t), (t,0, 2*pi), rgbcolor=hue(0.6)) show(p1 + p2)
Um mehr über das Plotten zu erfahren lesen Sie Plotten. Lesen Sie Abschnitt 5.5 von [NagleEtAl2004] um weitere Informationen über Differentialgleichungen zu erhalten.
Das Euler-Verfahren zur Lösung von Systemen von Differentialgleichungen¶
Im nächsten Beispiel illustrieren wir das Euler-Verfahren für ODEs erster und zweiter Ordnung. Wir rufen zunächst die grundlegende Idee für Differentialgleichungen erster Ordnung in Erinnerung. Sei ein Anfangswertproblem der Form
gegeben. Wir möchten eine Approximation des Wertes der Lösung bei \(x=b\) mit \(b>a\) finden.
Machen Sie sich anhand der Definition der Ableitung klar, dass
wobei \(h>0\) vorgegeben und klein ist. Zusammen mit der Differentialgleichung gibt dies \(f(x,y(x))\approx \frac{y(x+h)-y(x)}{h}\). Jetzt lösen wir nach \(y(x+h)\) auf:
Wenn wir \(h\cdot f(x,y(x))\) den „Korrekturterm“, \(y(x)\) den „alten Wert von \(y\)“ und \(y(x+h)\) den „neuen Wert von \(y\)“ nennen, kann diese Approximation neu ausgedrückt werden als:
Wenn wir das Intervall von \(a\) bis \(b\) in \(n\) Teilintervalle aufteilen, so dass \(h=\frac{b-a}{n}\) gilt, können wir die Information in folgender Tabelle festhalten.
\(x\) |
\(y\) |
\(h\cdot f(x,y)\) |
---|---|---|
\(a\) |
\(c\) |
\(h\cdot f(a,c)\) |
\(a+h\) |
\(c+h\cdot f(a,c)\) |
… |
\(a+2h\) |
… |
|
… |
||
\(b=a+nh\) |
??? |
… |
Unser Ziel ist zeilenweise alle leeren Einträge der Tabelle auszufüllen, bis wir den Eintrag ??? erreichen, welcher die Approximation des Euler-Verfahrens für \(y(b)\) ist.
Die Idee für Systeme von ODEs ist ähnlich.
- Beispiel: Approximiere \(z(t)\), mit 4 Schritten der
Eulermethode numerisch bei \(t=1\) , wobei \(z''+tz'+z=0\), \(z(0)=1\) und \(z'(0)=0\) ist.
Wir müssen die ODE zweiter Ordnung auf ein System von zwei Differentialgleichungen erster Ordnung reduzieren (wobei \(x=z\), \(y=z'\)) und das Euler-Verfahren anwenden:
sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()
sage: f = y; g = -x - y * t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
>>> from sage.all import *
>>> t,x,y = PolynomialRing(RealField(Integer(10)),Integer(3),"txy").gens()
>>> f = y; g = -x - y * t
>>> eulers_method_2x2(f,g, Integer(0), Integer(1), Integer(0), Integer(1)/Integer(4), Integer(1))
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
t,x,y = PolynomialRing(RealField(10),3,"txy").gens() f = y; g = -x - y * t eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
Also ist \(z(1)\approx 0.75\).
Wir können auch die Punkte \((x,y)\) plotten um ein ungefähres
Bild der Kurve zu erhalten. Die Funktion eulers_method_2x2_plot
macht dies; um sie zu benutzen, müssen wir die Funktionen \(f\) und \(g\)
definieren, welche ein Argument mit drei Koordinaten (\(t\), \(x\), \(y\))
erwarten.
sage: f = lambda z: z[2] # f(t,x,y) = y
sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
>>> from sage.all import *
>>> f = lambda z: z[Integer(2)] # f(t,x,y) = y
>>> g = lambda z: -sin(z[Integer(1)]) # g(t,x,y) = -sin(x)
>>> P = eulers_method_2x2_plot(f,g, RealNumber('0.0'), RealNumber('0.75'), RealNumber('0.0'), RealNumber('0.1'), RealNumber('1.0'))
f = lambda z: z[2] # f(t,x,y) = y g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x) P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
Zu diesem Zeitpunkt enthält P
die beiden Plots P[0]
(der Plot
von \(x\) nach \(t\)) und P[1]
(der Plot von \(y\) nach \(t\)). Wir können
beide wie folgt anzeigen:
sage: show(P[0] + P[1])
>>> from sage.all import *
>>> show(P[Integer(0)] + P[Integer(1)])
show(P[0] + P[1])
(Um mehr über das Plotten zu erfahren, lesen Sie Plotten.)
Spezielle Funktionen¶
Mehrere orthogonale Polynome und spezielle Funktionen sind implementiert, wobei sowohl PARI [GP] als auch Maxima [Max] verwendet wird. Sie sind in den dazugehörigen Abschnitten („Orthogonal polynomials“ beziehungsweise „Special functions“) des Sage Referenzhandbuchs dokumentiert.
sage: x = polygen(QQ, 'x')
sage: chebyshev_U(2,x)
4*x^2 - 1
sage: bessel_I(1,1).n(250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1).n()
0.565159103992485
sage: bessel_I(2,1.1).n()
0.167089499251049
>>> from sage.all import *
>>> x = polygen(QQ, 'x')
>>> chebyshev_U(Integer(2),x)
4*x^2 - 1
>>> bessel_I(Integer(1),Integer(1)).n(Integer(250))
0.56515910399248502720769602760986330732889962162109200948029448947925564096
>>> bessel_I(Integer(1),Integer(1)).n()
0.565159103992485
>>> bessel_I(Integer(2),RealNumber('1.1')).n()
0.167089499251049
x = polygen(QQ, 'x') chebyshev_U(2,x) bessel_I(1,1).n(250) bessel_I(1,1).n() bessel_I(2,1.1).n()
Zum jetzigen Zeitpunkt, enthält Sage nur Wrapper-Funktionen für numerische Berechnungen. Um symbolisch zu rechen, rufen Sie die Maxima-Schnittstelle bitte, wie im folgenden Beispiel, direkt auf
sage: maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
sage: maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'
>>> from sage.all import *
>>> maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
>>> maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'
maxima.eval("f:bessel_y(v, w)") maxima.eval("diff(f,w)")