Cartesian products of Posets¶
AUTHORS:
Daniel Krenn (2015)
- class sage.combinat.posets.cartesian_product.CartesianProductPoset(sets, category, order=None, **kwargs)[source]¶
Bases:
CartesianProduct
A class implementing Cartesian products of posets (and elements thereof). Compared to
CartesianProduct
you are able to specify an order for comparison of the elements.INPUT:
sets
– tuple of parentscategory
– a subcategory ofSets().CartesianProducts() & Posets()
order
– string or function specifying an order less or equal; it can be one of the following:'native'
– elements are ordered by their native ordering, i.e., the order the wrapped elements (tuples) provide'lex'
– elements are ordered lexicographically'product'
– an element is less or equal to another element, if less or equal is true for all its components (Cartesian projections)a function which performs the comparison \(\leq\); it takes two input arguments and outputs a boolean
Other keyword arguments (
kwargs
) are passed to the constructor ofCartesianProduct
.EXAMPLES:
sage: P = Poset((srange(3), lambda left, right: left <= right)) sage: Cl = cartesian_product((P, P), order='lex') sage: Cl((1, 1)) <= Cl((2, 0)) True sage: Cp = cartesian_product((P, P), order='product') sage: Cp((1, 1)) <= Cp((2, 0)) False sage: def le_sum(left, right): ....: return (sum(left) < sum(right) or ....: sum(left) == sum(right) and left[0] <= right[0]) sage: Cs = cartesian_product((P, P), order=le_sum) sage: Cs((1, 1)) <= Cs((2, 0)) True
>>> from sage.all import * >>> P = Poset((srange(Integer(3)), lambda left, right: left <= right)) >>> Cl = cartesian_product((P, P), order='lex') >>> Cl((Integer(1), Integer(1))) <= Cl((Integer(2), Integer(0))) True >>> Cp = cartesian_product((P, P), order='product') >>> Cp((Integer(1), Integer(1))) <= Cp((Integer(2), Integer(0))) False >>> def le_sum(left, right): ... return (sum(left) < sum(right) or ... sum(left) == sum(right) and left[Integer(0)] <= right[Integer(0)]) >>> Cs = cartesian_product((P, P), order=le_sum) >>> Cs((Integer(1), Integer(1))) <= Cs((Integer(2), Integer(0))) True
P = Poset((srange(3), lambda left, right: left <= right)) Cl = cartesian_product((P, P), order='lex') Cl((1, 1)) <= Cl((2, 0)) Cp = cartesian_product((P, P), order='product') Cp((1, 1)) <= Cp((2, 0)) def le_sum(left, right): return (sum(left) < sum(right) or sum(left) == sum(right) and left[0] <= right[0]) Cs = cartesian_product((P, P), order=le_sum) Cs((1, 1)) <= Cs((2, 0))
See also
- le(left, right)[source]¶
Test whether
left
is less than or equal toright
.INPUT:
left
– an elementright
– an element
OUTPUT: boolean
Note
This method uses the order defined on creation of this Cartesian product. See
CartesianProductPoset
.EXAMPLES:
sage: P = posets.ChainPoset(10) sage: def le_sum(left, right): ....: return (sum(left) < sum(right) or ....: sum(left) == sum(right) and left[0] <= right[0]) sage: C = cartesian_product((P, P), order=le_sum) sage: C.le(C((1, 6)), C((6, 1))) True sage: C.le(C((6, 1)), C((1, 6))) False sage: C.le(C((1, 6)), C((6, 6))) True sage: C.le(C((6, 6)), C((1, 6))) False
>>> from sage.all import * >>> P = posets.ChainPoset(Integer(10)) >>> def le_sum(left, right): ... return (sum(left) < sum(right) or ... sum(left) == sum(right) and left[Integer(0)] <= right[Integer(0)]) >>> C = cartesian_product((P, P), order=le_sum) >>> C.le(C((Integer(1), Integer(6))), C((Integer(6), Integer(1)))) True >>> C.le(C((Integer(6), Integer(1))), C((Integer(1), Integer(6)))) False >>> C.le(C((Integer(1), Integer(6))), C((Integer(6), Integer(6)))) True >>> C.le(C((Integer(6), Integer(6))), C((Integer(1), Integer(6)))) False
P = posets.ChainPoset(10) def le_sum(left, right): return (sum(left) < sum(right) or sum(left) == sum(right) and left[0] <= right[0]) C = cartesian_product((P, P), order=le_sum) C.le(C((1, 6)), C((6, 1))) C.le(C((6, 1)), C((1, 6))) C.le(C((1, 6)), C((6, 6))) C.le(C((6, 6)), C((1, 6)))
- le_lex(left, right)[source]¶
Test whether
left
is lexicographically smaller or equal toright
.INPUT:
left
– an elementright
– an element
OUTPUT: boolean
EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='lex') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert Q.le(a, b) == (a <= b) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
>>> from sage.all import * >>> P = Poset((srange(Integer(2)), lambda left, right: left <= right)) >>> Q = cartesian_product((P, P), order='lex') >>> T = [Q((Integer(0), Integer(0))), Q((Integer(1), Integer(1))), Q((Integer(0), Integer(1))), Q((Integer(1), Integer(0)))] >>> for a in T: ... for b in T: ... assert Q.le(a, b) == (a <= b) ... print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
P = Poset((srange(2), lambda left, right: left <= right)) Q = cartesian_product((P, P), order='lex') T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] for a in T: for b in T: assert Q.le(a, b) == (a <= b) print('%s <= %s = %s' % (a, b, a <= b))
- le_native(left, right)[source]¶
Test whether
left
is smaller or equal toright
in the order provided by the elements themselves.INPUT:
left
– an elementright
– an element
OUTPUT: boolean
EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='native') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert Q.le(a, b) == (a <= b) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
>>> from sage.all import * >>> P = Poset((srange(Integer(2)), lambda left, right: left <= right)) >>> Q = cartesian_product((P, P), order='native') >>> T = [Q((Integer(0), Integer(0))), Q((Integer(1), Integer(1))), Q((Integer(0), Integer(1))), Q((Integer(1), Integer(0)))] >>> for a in T: ... for b in T: ... assert Q.le(a, b) == (a <= b) ... print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = True (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
P = Poset((srange(2), lambda left, right: left <= right)) Q = cartesian_product((P, P), order='native') T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] for a in T: for b in T: assert Q.le(a, b) == (a <= b) print('%s <= %s = %s' % (a, b, a <= b))
- le_product(left, right)[source]¶
Test whether
left
is component-wise smaller or equal toright
.INPUT:
left
– an elementright
– an element
OUTPUT: boolean
The comparison is
True
if the result of the comparison in each component isTrue
.EXAMPLES:
sage: P = Poset((srange(2), lambda left, right: left <= right)) sage: Q = cartesian_product((P, P), order='product') sage: T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] sage: for a in T: ....: for b in T: ....: assert Q.le(a, b) == (a <= b) ....: print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = False (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
>>> from sage.all import * >>> P = Poset((srange(Integer(2)), lambda left, right: left <= right)) >>> Q = cartesian_product((P, P), order='product') >>> T = [Q((Integer(0), Integer(0))), Q((Integer(1), Integer(1))), Q((Integer(0), Integer(1))), Q((Integer(1), Integer(0)))] >>> for a in T: ... for b in T: ... assert Q.le(a, b) == (a <= b) ... print('%s <= %s = %s' % (a, b, a <= b)) (0, 0) <= (0, 0) = True (0, 0) <= (1, 1) = True (0, 0) <= (0, 1) = True (0, 0) <= (1, 0) = True (1, 1) <= (0, 0) = False (1, 1) <= (1, 1) = True (1, 1) <= (0, 1) = False (1, 1) <= (1, 0) = False (0, 1) <= (0, 0) = False (0, 1) <= (1, 1) = True (0, 1) <= (0, 1) = True (0, 1) <= (1, 0) = False (1, 0) <= (0, 0) = False (1, 0) <= (1, 1) = True (1, 0) <= (0, 1) = False (1, 0) <= (1, 0) = True
P = Poset((srange(2), lambda left, right: left <= right)) Q = cartesian_product((P, P), order='product') T = [Q((0, 0)), Q((1, 1)), Q((0, 1)), Q((1, 0))] for a in T: for b in T: assert Q.le(a, b) == (a <= b) print('%s <= %s = %s' % (a, b, a <= b))