Functorial composition species

class sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies(F, G, min=None, max=None, weight=None)[source]

Bases: GenericCombinatorialSpecies

Return the functorial composition of two species.

EXAMPLES:

sage: E = species.SetSpecies()
sage: E2 = species.SetSpecies(size=2)
sage: WP = species.SubsetSpecies()
sage: P2 = E2*E
sage: G = WP.functorial_composition(P2)
sage: G.isotype_generating_series()[0:5]                                    # needs sage.modules
[1, 1, 2, 4, 11]

sage: G = species.SimpleGraphSpecies()
sage: c = G.generating_series()[0:2]
sage: type(G)
<class 'sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies'>
sage: G == loads(dumps(G))
True
sage: G._check()  # False due to isomorphism types not being implemented    # needs sage.modules
False
>>> from sage.all import *
>>> E = species.SetSpecies()
>>> E2 = species.SetSpecies(size=Integer(2))
>>> WP = species.SubsetSpecies()
>>> P2 = E2*E
>>> G = WP.functorial_composition(P2)
>>> G.isotype_generating_series()[Integer(0):Integer(5)]                                    # needs sage.modules
[1, 1, 2, 4, 11]

>>> G = species.SimpleGraphSpecies()
>>> c = G.generating_series()[Integer(0):Integer(2)]
>>> type(G)
<class 'sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies'>
>>> G == loads(dumps(G))
True
>>> G._check()  # False due to isomorphism types not being implemented    # needs sage.modules
False
E = species.SetSpecies()
E2 = species.SetSpecies(size=2)
WP = species.SubsetSpecies()
P2 = E2*E
G = WP.functorial_composition(P2)
G.isotype_generating_series()[0:5]                                    # needs sage.modules
G = species.SimpleGraphSpecies()
c = G.generating_series()[0:2]
type(G)
G == loads(dumps(G))
G._check()  # False due to isomorphism types not being implemented    # needs sage.modules
weight_ring()[source]

Return the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you multiply (and add) elements of the weight rings for each of the operands.

EXAMPLES:

sage: G = species.SimpleGraphSpecies()
sage: G.weight_ring()
Rational Field
>>> from sage.all import *
>>> G = species.SimpleGraphSpecies()
>>> G.weight_ring()
Rational Field
G = species.SimpleGraphSpecies()
G.weight_ring()
sage.combinat.species.functorial_composition_species.FunctorialCompositionSpecies_class[source]

alias of FunctorialCompositionSpecies

class sage.combinat.species.functorial_composition_species.FunctorialCompositionStructure(parent, labels, list)[source]

Bases: GenericSpeciesStructure