Ideals of function fields: rational¶
- class sage.rings.function_field.ideal_rational.FunctionFieldIdealInfinite_rational(ring, gen)[source]¶
Bases:
FunctionFieldIdealInfinite
Fractional ideal of the maximal order of rational function field.
INPUT:
ring
– infinite maximal ordergen
– generator
Note that the infinite maximal order is a principal ideal domain.
EXAMPLES:
sage: K.<x> = FunctionField(GF(2)) sage: Oinf = K.maximal_order_infinite() sage: Oinf.ideal(x) Ideal (x) of Maximal infinite order of Rational function field in x over Finite Field of size 2
>>> from sage.all import * >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> Oinf = K.maximal_order_infinite() >>> Oinf.ideal(x) Ideal (x) of Maximal infinite order of Rational function field in x over Finite Field of size 2
K.<x> = FunctionField(GF(2)) Oinf = K.maximal_order_infinite() Oinf.ideal(x)
- gen()[source]¶
Return the generator of this principal ideal.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(2)) sage: Oinf = K.maximal_order_infinite() sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) sage: I.gen() 1/x^2
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> Oinf = K.maximal_order_infinite() >>> I = Oinf.ideal((x+Integer(1))/(x**Integer(3)+x), (x**Integer(2)+Integer(1))/x**Integer(4)) >>> I.gen() 1/x^2
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(2)) Oinf = K.maximal_order_infinite() I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) I.gen()
- gens()[source]¶
Return the generator of this principal ideal.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(2)) sage: Oinf = K.maximal_order_infinite() sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) sage: I.gens() (1/x^2,)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> Oinf = K.maximal_order_infinite() >>> I = Oinf.ideal((x+Integer(1))/(x**Integer(3)+x), (x**Integer(2)+Integer(1))/x**Integer(4)) >>> I.gens() (1/x^2,)
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(2)) Oinf = K.maximal_order_infinite() I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) I.gens()
- gens_over_base()[source]¶
Return the generator of this ideal as a rank one module over the infinite maximal order.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(2)) sage: Oinf = K.maximal_order_infinite() sage: I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) sage: I.gens_over_base() (1/x^2,)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> Oinf = K.maximal_order_infinite() >>> I = Oinf.ideal((x+Integer(1))/(x**Integer(3)+x), (x**Integer(2)+Integer(1))/x**Integer(4)) >>> I.gens_over_base() (1/x^2,)
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(2)) Oinf = K.maximal_order_infinite() I = Oinf.ideal((x+1)/(x^3+x), (x^2+1)/x^4) I.gens_over_base()
- is_prime()[source]¶
Return
True
if this ideal is a prime ideal.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(2)) sage: Oinf = K.maximal_order_infinite() sage: I = Oinf.ideal(x/(x^2 + 1)) sage: I.is_prime() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(2)), names=('x',)); (x,) = K._first_ngens(1) >>> Oinf = K.maximal_order_infinite() >>> I = Oinf.ideal(x/(x**Integer(2) + Integer(1))) >>> I.is_prime() True
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(2)) Oinf = K.maximal_order_infinite() I = Oinf.ideal(x/(x^2 + 1)) I.is_prime()
- valuation(ideal)[source]¶
Return the valuation of
ideal
at this prime ideal.INPUT:
ideal
– fractional ideal
EXAMPLES:
sage: F.<x> = FunctionField(QQ) sage: O = F.maximal_order_infinite() sage: p = O.ideal(1/x) sage: p.valuation(O.ideal(x/(x+1))) 0 sage: p.valuation(O.ideal(0)) +Infinity
>>> from sage.all import * >>> F = FunctionField(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> O = F.maximal_order_infinite() >>> p = O.ideal(Integer(1)/x) >>> p.valuation(O.ideal(x/(x+Integer(1)))) 0 >>> p.valuation(O.ideal(Integer(0))) +Infinity
F.<x> = FunctionField(QQ) O = F.maximal_order_infinite() p = O.ideal(1/x) p.valuation(O.ideal(x/(x+1))) p.valuation(O.ideal(0))
- class sage.rings.function_field.ideal_rational.FunctionFieldIdeal_rational(ring, gen)[source]¶
Bases:
FunctionFieldIdeal
Fractional ideals of the maximal order of a rational function field.
INPUT:
ring
– the maximal order of the rational function fieldgen
– generator of the ideal, an element of the function field
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: O = K.maximal_order() sage: I = O.ideal(1/(x^2+x)); I Ideal (1/(x^2 + x)) of Maximal order of Rational function field in x over Rational Field
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(Integer(1)/(x**Integer(2)+x)); I Ideal (1/(x^2 + x)) of Maximal order of Rational function field in x over Rational Field
K.<x> = FunctionField(QQ) O = K.maximal_order() I = O.ideal(1/(x^2+x)); I
- denominator()[source]¶
Return the denominator of this fractional ideal.
EXAMPLES:
sage: F.<x> = FunctionField(QQ) sage: O = F.maximal_order() sage: I = O.ideal(x/(x^2+1)) sage: I.denominator() x^2 + 1
>>> from sage.all import * >>> F = FunctionField(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> O = F.maximal_order() >>> I = O.ideal(x/(x**Integer(2)+Integer(1))) >>> I.denominator() x^2 + 1
F.<x> = FunctionField(QQ) O = F.maximal_order() I = O.ideal(x/(x^2+1)) I.denominator()
- gen()[source]¶
Return the unique generator of this ideal.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(4)) sage: O = K.maximal_order() sage: I = O.ideal(x^2 + x) sage: I.gen() x^2 + x
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(x**Integer(2) + x) >>> I.gen() x^2 + x
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(4)) O = K.maximal_order() I = O.ideal(x^2 + x) I.gen()
- gens()[source]¶
Return the tuple of the unique generator of this ideal.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(4)) sage: O = K.maximal_order() sage: I = O.ideal(x^2 + x) sage: I.gens() (x^2 + x,)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(x**Integer(2) + x) >>> I.gens() (x^2 + x,)
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(4)) O = K.maximal_order() I = O.ideal(x^2 + x) I.gens()
- gens_over_base()[source]¶
Return the generator of this ideal as a rank one module over the maximal order.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: K.<x> = FunctionField(GF(4)) sage: O = K.maximal_order() sage: I = O.ideal(x^2 + x) sage: I.gens_over_base() (x^2 + x,)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> K = FunctionField(GF(Integer(4)), names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(x**Integer(2) + x) >>> I.gens_over_base() (x^2 + x,)
# needs sage.rings.finite_rings K.<x> = FunctionField(GF(4)) O = K.maximal_order() I = O.ideal(x^2 + x) I.gens_over_base()
- is_prime()[source]¶
Return
True
if this is a prime ideal.EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: O = K.maximal_order() sage: I = O.ideal(x^3 + x^2) sage: [f.is_prime() for f,m in I.factor()] # needs sage.libs.pari [True, True]
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(x**Integer(3) + x**Integer(2)) >>> [f.is_prime() for f,m in I.factor()] # needs sage.libs.pari [True, True]
K.<x> = FunctionField(QQ) O = K.maximal_order() I = O.ideal(x^3 + x^2) [f.is_prime() for f,m in I.factor()] # needs sage.libs.pari
- module()[source]¶
Return the module, that is the ideal viewed as a module over the ring.
EXAMPLES:
sage: K.<x> = FunctionField(QQ) sage: O = K.maximal_order() sage: I = O.ideal(x^3 + x^2) sage: I.module() # needs sage.modules Free module of degree 1 and rank 1 over Maximal order of Rational function field in x over Rational Field Echelon basis matrix: [x^3 + x^2] sage: J = 0*I sage: J.module() # needs sage.modules Free module of degree 1 and rank 0 over Maximal order of Rational function field in x over Rational Field Echelon basis matrix: []
>>> from sage.all import * >>> K = FunctionField(QQ, names=('x',)); (x,) = K._first_ngens(1) >>> O = K.maximal_order() >>> I = O.ideal(x**Integer(3) + x**Integer(2)) >>> I.module() # needs sage.modules Free module of degree 1 and rank 1 over Maximal order of Rational function field in x over Rational Field Echelon basis matrix: [x^3 + x^2] >>> J = Integer(0)*I >>> J.module() # needs sage.modules Free module of degree 1 and rank 0 over Maximal order of Rational function field in x over Rational Field Echelon basis matrix: []
K.<x> = FunctionField(QQ) O = K.maximal_order() I = O.ideal(x^3 + x^2) I.module() # needs sage.modules J = 0*I J.module() # needs sage.modules
- valuation(ideal)[source]¶
Return the valuation of the ideal at this prime ideal.
INPUT:
ideal
– fractional ideal
EXAMPLES:
sage: F.<x> = FunctionField(QQ) sage: O = F.maximal_order() sage: I = O.ideal(x^2*(x^2+x+1)^3) sage: [f.valuation(I) for f,_ in I.factor()] # needs sage.libs.pari [2, 3]
>>> from sage.all import * >>> F = FunctionField(QQ, names=('x',)); (x,) = F._first_ngens(1) >>> O = F.maximal_order() >>> I = O.ideal(x**Integer(2)*(x**Integer(2)+x+Integer(1))**Integer(3)) >>> [f.valuation(I) for f,_ in I.factor()] # needs sage.libs.pari [2, 3]
F.<x> = FunctionField(QQ) O = F.maximal_order() I = O.ideal(x^2*(x^2+x+1)^3) [f.valuation(I) for f,_ in I.factor()] # needs sage.libs.pari