Incidence structures (i.e. hypergraphs, i.e. set systems)¶
An incidence structure is specified by a list of points, blocks, or an incidence
matrix ([1], [2]). IncidenceStructure
instances have the following methods:
Return the subgroup of the automorphism group of the incidence graph which respects the P B partition. It is (isomorphic to) the automorphism group of the block design, although the degrees differ. |
|
Return the set of block sizes. |
|
Return the list of blocks. |
|
Return a canonical label for the incidence structure. |
|
Compute a (weak) \(k\)-coloring of the hypergraph. |
|
Return the complement of the incidence structure. |
|
Return a copy of the incidence structure. |
|
Return the degree of a point |
|
Return the degree of all sets of given size, or the degree of all points. |
|
Return the dual of the incidence structure. |
|
Compute a proper edge-coloring. |
|
Return the ground set (i.e the list of points). |
|
Return the incidence graph of the incidence structure. |
|
Return the incidence matrix \(A\) of the design. A is a \((v \times b)\) matrix defined by: |
|
Return the substructure induced by a set of points. |
|
Return the intersection graph of the incidence structure. |
|
Check whether |
|
Test whether the design is connected. |
|
Test if the incidence structure is a generalized quadrangle. |
|
Return whether the two incidence structures are isomorphic. |
|
Test whether the incidence structure is \(r\)-regular. |
|
Test whether the hypergraph is resolvable. |
|
Test whether this design is simple (i.e. no repeated block). |
|
Check whether the input is a spread for |
|
Test whether |
|
Test whether the incidence structure is \(k\)-uniform |
|
Iterate over all copies of |
|
Return the number of blocks. |
|
Return the size of the ground set. |
|
Return a maximum packing. |
|
Return the rank of the hypergraph (the maximum size of a block). |
|
Relabel the ground set. |
|
Return the trace of a set of points. |
REFERENCES:
AUTHORS:
Peter Dobcsanyi and David Joyner (2007-2008)
This is a significantly modified form of part of the module block_design.py (version 0.6) written by Peter Dobcsanyi peter@designtheory.org.
Vincent Delecroix (2014): major rewrite
Methods¶
- class sage.combinat.designs.incidence_structures.IncidenceStructure(points=None, blocks=None, incidence_matrix=None, name=None, check=True, copy=True)[source]¶
Bases:
object
A base class for incidence structures (i.e. hypergraphs, i.e. set systems)
An incidence structure (i.e. hypergraph, i.e. set system) can be defined from a collection of blocks (i.e. sets, i.e. edges), optionally with an explicit ground set (i.e. point set, i.e. vertex set). Alternatively they can be defined from a binary incidence matrix.
INPUT:
points
– (i.e. ground set, i.e. vertex set) the underlying set. Ifpoints
is an integer \(v\), then the set is considered to be \(\{0, ..., v-1\}\).Note
The following syntax, where
points
is omitted, automatically defines the ground set as the union of the blocks:sage: H = IncidenceStructure([['a','b','c'],['c','d','e']]) sage: sorted(H.ground_set()) ['a', 'b', 'c', 'd', 'e']
>>> from sage.all import * >>> H = IncidenceStructure([['a','b','c'],['c','d','e']]) >>> sorted(H.ground_set()) ['a', 'b', 'c', 'd', 'e']
H = IncidenceStructure([['a','b','c'],['c','d','e']]) sorted(H.ground_set())
blocks
– (i.e. edges, i.e. sets) the blocks defining the incidence structure; can be any iterableincidence_matrix
– a binary incidence matrix; each column represents a setname
– string (such as “Fano plane”)check
– whether to check the inputcopy
– (use with caution) if set toFalse
thenblocks
must be a list of lists of integers. The list will not be copied but will be modified in place (each block is sorted, and the whole list is sorted). Yourblocks
object will become theIncidenceStructure
instance’s internal data.
EXAMPLES:
An incidence structure can be constructed by giving the number of points and the list of blocks:
sage: IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) Incidence structure with 7 points and 7 blocks
>>> from sage.all import * >>> IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)],[Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]]) Incidence structure with 7 points and 7 blocks
IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]])
Only providing the set of blocks is sufficient. In this case, the ground set is defined as the union of the blocks:
sage: IncidenceStructure([[1,2,3],[2,3,4]]) Incidence structure with 4 points and 2 blocks
>>> from sage.all import * >>> IncidenceStructure([[Integer(1),Integer(2),Integer(3)],[Integer(2),Integer(3),Integer(4)]]) Incidence structure with 4 points and 2 blocks
IncidenceStructure([[1,2,3],[2,3,4]])
Or by its adjacency matrix (a \(\{0,1\}\)-matrix in which rows are indexed by points and columns by blocks):
sage: m = matrix([[0,1,0],[0,0,1],[1,0,1],[1,1,1]]) # needs sage.modules sage: IncidenceStructure(m) # needs sage.modules Incidence structure with 4 points and 3 blocks
>>> from sage.all import * >>> m = matrix([[Integer(0),Integer(1),Integer(0)],[Integer(0),Integer(0),Integer(1)],[Integer(1),Integer(0),Integer(1)],[Integer(1),Integer(1),Integer(1)]]) # needs sage.modules >>> IncidenceStructure(m) # needs sage.modules Incidence structure with 4 points and 3 blocks
m = matrix([[0,1,0],[0,0,1],[1,0,1],[1,1,1]]) # needs sage.modules IncidenceStructure(m) # needs sage.modules
The points can be any (hashable) object:
sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] sage: B = [(V[0],V[1],V[2]), (V[1],V[2]), (V[0],V[2])] sage: I = IncidenceStructure(V, B) sage: I.ground_set() [(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')] sage: I.blocks() [[(0, 'a'), (0, 'b'), (1, 'a')], [(0, 'a'), (1, 'a')], [(0, 'b'), (1, 'a')]]
>>> from sage.all import * >>> V = [(Integer(0),'a'),(Integer(0),'b'),(Integer(1),'a'),(Integer(1),'b')] >>> B = [(V[Integer(0)],V[Integer(1)],V[Integer(2)]), (V[Integer(1)],V[Integer(2)]), (V[Integer(0)],V[Integer(2)])] >>> I = IncidenceStructure(V, B) >>> I.ground_set() [(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')] >>> I.blocks() [[(0, 'a'), (0, 'b'), (1, 'a')], [(0, 'a'), (1, 'a')], [(0, 'b'), (1, 'a')]]
V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] B = [(V[0],V[1],V[2]), (V[1],V[2]), (V[0],V[2])] I = IncidenceStructure(V, B) I.ground_set() I.blocks()
The order of the points and blocks does not matter as they are sorted on input (see Issue #11333):
sage: A = IncidenceStructure([0,1,2], [[0],[0,2]]) sage: B = IncidenceStructure([1,0,2], [[0],[2,0]]) sage: B == A True sage: C = BlockDesign(2, [[0], [1,0]]) sage: D = BlockDesign(2, [[0,1], [0]]) sage: C == D True
>>> from sage.all import * >>> A = IncidenceStructure([Integer(0),Integer(1),Integer(2)], [[Integer(0)],[Integer(0),Integer(2)]]) >>> B = IncidenceStructure([Integer(1),Integer(0),Integer(2)], [[Integer(0)],[Integer(2),Integer(0)]]) >>> B == A True >>> C = BlockDesign(Integer(2), [[Integer(0)], [Integer(1),Integer(0)]]) >>> D = BlockDesign(Integer(2), [[Integer(0),Integer(1)], [Integer(0)]]) >>> C == D True
A = IncidenceStructure([0,1,2], [[0],[0,2]]) B = IncidenceStructure([1,0,2], [[0],[2,0]]) B == A C = BlockDesign(2, [[0], [1,0]]) D = BlockDesign(2, [[0,1], [0]]) C == D
If you care for speed, you can set
copy
toFalse
, but in that case, your input must be a list of lists and the ground set must be \({0, ..., v-1}\):sage: blocks = [[0,1],[2,0],[1,2]] # a list of lists of integers sage: I = IncidenceStructure(3, blocks, copy=False) sage: I._blocks is blocks True
>>> from sage.all import * >>> blocks = [[Integer(0),Integer(1)],[Integer(2),Integer(0)],[Integer(1),Integer(2)]] # a list of lists of integers >>> I = IncidenceStructure(Integer(3), blocks, copy=False) >>> I._blocks is blocks True
blocks = [[0,1],[2,0],[1,2]] # a list of lists of integers I = IncidenceStructure(3, blocks, copy=False) I._blocks is blocks
- automorphism_group()[source]¶
Return the subgroup of the automorphism group of the incidence graph which respects the P B partition. It is (isomorphic to) the automorphism group of the block design, although the degrees differ.
EXAMPLES:
sage: # needs sage.groups sage.rings.finite_rings sage: P = designs.DesarguesianProjectivePlaneDesign(2); P (7,3,1)-Balanced Incomplete Block Design sage: G = P.automorphism_group() sage: G.is_isomorphic(PGL(3,2)) True sage: G Permutation Group with generators [...] sage: G.cardinality() 168
>>> from sage.all import * >>> # needs sage.groups sage.rings.finite_rings >>> P = designs.DesarguesianProjectivePlaneDesign(Integer(2)); P (7,3,1)-Balanced Incomplete Block Design >>> G = P.automorphism_group() >>> G.is_isomorphic(PGL(Integer(3),Integer(2))) True >>> G Permutation Group with generators [...] >>> G.cardinality() 168
# needs sage.groups sage.rings.finite_rings P = designs.DesarguesianProjectivePlaneDesign(2); P G = P.automorphism_group() G.is_isomorphic(PGL(3,2)) G G.cardinality()
A non self-dual example:
sage: IS = IncidenceStructure(list(range(4)), [[0,1,2,3],[1,2,3]]) sage: IS.automorphism_group().cardinality() # needs sage.groups 6 sage: IS.dual().automorphism_group().cardinality() # needs sage.groups sage.modules 1
>>> from sage.all import * >>> IS = IncidenceStructure(list(range(Integer(4))), [[Integer(0),Integer(1),Integer(2),Integer(3)],[Integer(1),Integer(2),Integer(3)]]) >>> IS.automorphism_group().cardinality() # needs sage.groups 6 >>> IS.dual().automorphism_group().cardinality() # needs sage.groups sage.modules 1
IS = IncidenceStructure(list(range(4)), [[0,1,2,3],[1,2,3]]) IS.automorphism_group().cardinality() # needs sage.groups IS.dual().automorphism_group().cardinality() # needs sage.groups sage.modules
Examples with non-integer points:
sage: I = IncidenceStructure('abc', ('ab','ac','bc')) sage: I.automorphism_group() # needs sage.groups Permutation Group with generators [('b','c'), ('a','b')] sage: IncidenceStructure([[(1,2),(3,4)]]).automorphism_group() # needs sage.groups Permutation Group with generators [((1,2),(3,4))]
>>> from sage.all import * >>> I = IncidenceStructure('abc', ('ab','ac','bc')) >>> I.automorphism_group() # needs sage.groups Permutation Group with generators [('b','c'), ('a','b')] >>> IncidenceStructure([[(Integer(1),Integer(2)),(Integer(3),Integer(4))]]).automorphism_group() # needs sage.groups Permutation Group with generators [((1,2),(3,4))]
I = IncidenceStructure('abc', ('ab','ac','bc')) I.automorphism_group() # needs sage.groups IncidenceStructure([[(1,2),(3,4)]]).automorphism_group() # needs sage.groups
- block_sizes()[source]¶
Return the set of block sizes.
EXAMPLES:
sage: BD = IncidenceStructure(8, [[0,1,3],[1,4,5,6],[1,2],[5,6,7]]) sage: BD.block_sizes() [3, 2, 4, 3] sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.block_sizes() [3, 3, 3, 3, 3, 3, 3]
>>> from sage.all import * >>> BD = IncidenceStructure(Integer(8), [[Integer(0),Integer(1),Integer(3)],[Integer(1),Integer(4),Integer(5),Integer(6)],[Integer(1),Integer(2)],[Integer(5),Integer(6),Integer(7)]]) >>> BD.block_sizes() [3, 2, 4, 3] >>> BD = IncidenceStructure(Integer(7),[[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)],[Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]]) >>> BD.block_sizes() [3, 3, 3, 3, 3, 3, 3]
BD = IncidenceStructure(8, [[0,1,3],[1,4,5,6],[1,2],[5,6,7]]) BD.block_sizes() BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) BD.block_sizes()
- blocks()[source]¶
Return the list of blocks.
EXAMPLES:
sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.blocks() [[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]]
>>> from sage.all import * >>> BD = IncidenceStructure(Integer(7),[[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)],[Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]]) >>> BD.blocks() [[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]]
BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) BD.blocks()
- canonical_label()[source]¶
Return a canonical label for the incidence structure.
A canonical label is relabeling of the points into integers \(\{0,...,n-1\}\) such that isomorphic incidence structures are relabelled to equal objects.
EXAMPLES:
sage: # needs sage.schemes sage: fano1 = designs.balanced_incomplete_block_design(7,3) sage: fano2 = designs.projective_plane(2) sage: fano1 == fano2 False sage: fano1.relabel(fano1.canonical_label()) sage: fano2.relabel(fano2.canonical_label()) sage: fano1 == fano2 True
>>> from sage.all import * >>> # needs sage.schemes >>> fano1 = designs.balanced_incomplete_block_design(Integer(7),Integer(3)) >>> fano2 = designs.projective_plane(Integer(2)) >>> fano1 == fano2 False >>> fano1.relabel(fano1.canonical_label()) >>> fano2.relabel(fano2.canonical_label()) >>> fano1 == fano2 True
# needs sage.schemes fano1 = designs.balanced_incomplete_block_design(7,3) fano2 = designs.projective_plane(2) fano1 == fano2 fano1.relabel(fano1.canonical_label()) fano2.relabel(fano2.canonical_label()) fano1 == fano2
- coloring(k, solver=None, verbose=None, integrality_tolerance=0)[source]¶
Compute a (weak) \(k\)-coloring of the hypergraph.
A weak coloring of a hypergraph \(\mathcal H\) is an assignment of colors to its vertices such that no set is monochromatic.
INPUT:
k
– integer; compute a coloring with \(k\) colors if an integer is provided, otherwise returns an optimal coloring (i.e. with the minimum possible number of colors).solver
– (default:None
) specify a Mixed Integer Linear Programming (MILP) solver to be used. If set toNone
, the default one is used. For more information on MILP solvers and which default solver is used, see the methodsolve
of the classMixedIntegerLinearProgram
.verbose
– nonnegative integer (default: \(0\)); set the level of verbosity you want from the linear program solver. Since the problem is \(NP\)-complete, its solving may take some time depending on the graph. A value of \(0\) means that there will be no message printed by the solver.integrality_tolerance
– parameter for use with MILP solvers over an inexact base ring; seeMixedIntegerLinearProgram.get_values()
EXAMPLES:
The Fano plane has chromatic number 3:
sage: len(designs.steiner_triple_system(7).coloring()) # needs sage.numerical.mip 3
>>> from sage.all import * >>> len(designs.steiner_triple_system(Integer(7)).coloring()) # needs sage.numerical.mip 3
len(designs.steiner_triple_system(7).coloring()) # needs sage.numerical.mip
One admissible 3-coloring:
sage: designs.steiner_triple_system(7).coloring() # not tested # needs sage.numerical.mip [[0, 2, 5, 1], [4, 3], [6]]
>>> from sage.all import * >>> designs.steiner_triple_system(Integer(7)).coloring() # not tested # needs sage.numerical.mip [[0, 2, 5, 1], [4, 3], [6]]
designs.steiner_triple_system(7).coloring() # not tested # needs sage.numerical.mip
The chromatic number of a graph is equal to the chromatic number of its 2-uniform corresponding hypergraph:
sage: g = graphs.PetersenGraph() sage: H = IncidenceStructure(g.edges(sort=True, labels=False)) sage: len(g.coloring()) 3 sage: len(H.coloring()) # needs sage.numerical.mip 3
>>> from sage.all import * >>> g = graphs.PetersenGraph() >>> H = IncidenceStructure(g.edges(sort=True, labels=False)) >>> len(g.coloring()) 3 >>> len(H.coloring()) # needs sage.numerical.mip 3
g = graphs.PetersenGraph() H = IncidenceStructure(g.edges(sort=True, labels=False)) len(g.coloring()) len(H.coloring()) # needs sage.numerical.mip
- complement(uniform=False)[source]¶
Return the complement of the incidence structure.
Two different definitions of “complement” are made available, according to the value of
uniform
.INPUT:
uniform
– booleanif set to
False
(default), returns the incidence structure whose blocks are the complements of all blocks of the incidence structure.If set to
True
and the incidence structure is \(k\)-uniform, returns the incidence structure whose blocks are all \(k\)-sets of the ground set that do not appear inself
.
EXAMPLES:
The complement of a
BalancedIncompleteBlockDesign
is also a \(2\)-design:sage: bibd = designs.balanced_incomplete_block_design(13,4) # needs sage.schemes sage: bibd.is_t_design(return_parameters=True) # needs sage.schemes (True, (2, 13, 4, 1)) sage: bibd.complement().is_t_design(return_parameters=True) # needs sage.schemes (True, (2, 13, 9, 6))
>>> from sage.all import * >>> bibd = designs.balanced_incomplete_block_design(Integer(13),Integer(4)) # needs sage.schemes >>> bibd.is_t_design(return_parameters=True) # needs sage.schemes (True, (2, 13, 4, 1)) >>> bibd.complement().is_t_design(return_parameters=True) # needs sage.schemes (True, (2, 13, 9, 6))
bibd = designs.balanced_incomplete_block_design(13,4) # needs sage.schemes bibd.is_t_design(return_parameters=True) # needs sage.schemes bibd.complement().is_t_design(return_parameters=True) # needs sage.schemes
The “uniform” complement of a graph is a graph:
sage: g = graphs.PetersenGraph() sage: G = IncidenceStructure(g.edges(sort=True, labels=False)) sage: H = G.complement(uniform=True) sage: h = Graph(H.blocks()) sage: g == h False sage: g == h.complement() True
>>> from sage.all import * >>> g = graphs.PetersenGraph() >>> G = IncidenceStructure(g.edges(sort=True, labels=False)) >>> H = G.complement(uniform=True) >>> h = Graph(H.blocks()) >>> g == h False >>> g == h.complement() True
g = graphs.PetersenGraph() G = IncidenceStructure(g.edges(sort=True, labels=False)) H = G.complement(uniform=True) h = Graph(H.blocks()) g == h g == h.complement()
- copy()[source]¶
Return a copy of the incidence structure.
EXAMPLES:
sage: IS = IncidenceStructure([[1,2,3,"e"]], name='Test') sage: IS Incidence structure with 4 points and 1 blocks sage: copy(IS) Incidence structure with 4 points and 1 blocks sage: [1, 2, 3, 'e'] in copy(IS) True sage: copy(IS)._name 'Test'
>>> from sage.all import * >>> IS = IncidenceStructure([[Integer(1),Integer(2),Integer(3),"e"]], name='Test') >>> IS Incidence structure with 4 points and 1 blocks >>> copy(IS) Incidence structure with 4 points and 1 blocks >>> [Integer(1), Integer(2), Integer(3), 'e'] in copy(IS) True >>> copy(IS)._name 'Test'
IS = IncidenceStructure([[1,2,3,"e"]], name='Test') IS copy(IS) [1, 2, 3, 'e'] in copy(IS) copy(IS)._name
- degree(p=None, subset=False)[source]¶
Return the degree of a point
p
(or a set of points).The degree of a point (or set of points) is the number of blocks that contain it.
INPUT:
p
– a point (or a set of points) of the incidence structuresubset
– boolean (default:False
); whether to interpret the argument as a set of point or as a point (default)
EXAMPLES:
sage: designs.steiner_triple_system(9).degree(3) 4 sage: designs.steiner_triple_system(9).degree({1,2},subset=True) 1
>>> from sage.all import * >>> designs.steiner_triple_system(Integer(9)).degree(Integer(3)) 4 >>> designs.steiner_triple_system(Integer(9)).degree({Integer(1),Integer(2)},subset=True) 1
designs.steiner_triple_system(9).degree(3) designs.steiner_triple_system(9).degree({1,2},subset=True)
- degrees(size=None)[source]¶
Return the degree of all sets of given size, or the degree of all points.
The degree of a point (or set of point) is the number of blocks that contain it.
INPUT:
size
– integer; return the degree of all subsets of points of cardinalitysize
. Whensize=None
, the function outputs the degree of all points.Note
When
size=None
the output is indexed by the points. Whensize=1
it is indexed by tuples of size 1. This is the same information, stored slightly differently.
OUTPUT: a dictionary whose values are degrees and keys are either:
the points of the incidence structure if
size=None
(default)the subsets of size
size
of the points stored as tuples
EXAMPLES:
sage: IncidenceStructure([[1,2,3],[1,4]]).degrees(2) {(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0}
>>> from sage.all import * >>> IncidenceStructure([[Integer(1),Integer(2),Integer(3)],[Integer(1),Integer(4)]]).degrees(Integer(2)) {(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0}
IncidenceStructure([[1,2,3],[1,4]]).degrees(2)
In a Steiner triple system, all pairs have degree 1:
sage: S13 = designs.steiner_triple_system(13) sage: all(v == 1 for v in S13.degrees(2).values()) True
>>> from sage.all import * >>> S13 = designs.steiner_triple_system(Integer(13)) >>> all(v == Integer(1) for v in S13.degrees(Integer(2)).values()) True
S13 = designs.steiner_triple_system(13) all(v == 1 for v in S13.degrees(2).values())
- dual(algorithm=None)[source]¶
Return the dual of the incidence structure.
INPUT:
algorithm
– whether to use Sage’s implementation (algorithm=None
, default) or use GAP’s (algorithm='gap'
)Note
The
algorithm='gap'
option requires GAP’s Design package (included in thegap_packages
Sage spkg).
EXAMPLES:
The dual of a projective plane is a projective plane:
sage: PP = designs.DesarguesianProjectivePlaneDesign(4) # needs sage.rings.finite_rings sage: PP.dual().is_t_design(return_parameters=True) # needs sage.modules sage.rings.finite_rings (True, (2, 21, 5, 1))
>>> from sage.all import * >>> PP = designs.DesarguesianProjectivePlaneDesign(Integer(4)) # needs sage.rings.finite_rings >>> PP.dual().is_t_design(return_parameters=True) # needs sage.modules sage.rings.finite_rings (True, (2, 21, 5, 1))
PP = designs.DesarguesianProjectivePlaneDesign(4) # needs sage.rings.finite_rings PP.dual().is_t_design(return_parameters=True) # needs sage.modules sage.rings.finite_rings
REFERENCE:
Leonard Soicher, Design package manual
- edge_coloring()[source]¶
Compute a proper edge-coloring.
A proper edge-coloring is an assignment of colors to the sets of the incidence structure such that two sets with non-empty intersection receive different colors. The coloring returned minimizes the number of colors.
OUTPUT: a partition of the sets into color classes
EXAMPLES:
sage: H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H Incidence structure with 6 points and 4 blocks sage: C = H.edge_coloring() sage: C # random [[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]] sage: Set(map(Set,sum(C,[]))) == Set(map(Set,H.blocks())) True
>>> from sage.all import * >>> H = Hypergraph([{Integer(1),Integer(2),Integer(3)},{Integer(2),Integer(3),Integer(4)},{Integer(3),Integer(4),Integer(5)},{Integer(4),Integer(5),Integer(6)}]); H Incidence structure with 6 points and 4 blocks >>> C = H.edge_coloring() >>> C # random [[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]] >>> Set(map(Set,sum(C,[]))) == Set(map(Set,H.blocks())) True
H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H C = H.edge_coloring() C # random Set(map(Set,sum(C,[]))) == Set(map(Set,H.blocks()))
- ground_set()[source]¶
Return the ground set (i.e the list of points).
EXAMPLES:
sage: IncidenceStructure(3, [[0,1],[0,2]]).ground_set() [0, 1, 2]
>>> from sage.all import * >>> IncidenceStructure(Integer(3), [[Integer(0),Integer(1)],[Integer(0),Integer(2)]]).ground_set() [0, 1, 2]
IncidenceStructure(3, [[0,1],[0,2]]).ground_set()
- incidence_graph(labels=False)[source]¶
Return the incidence graph of the incidence structure.
A point and a block are adjacent in this graph whenever they are incident.
INPUT:
labels
– boolean; whether to return a graph whose vertices are integers, or labelled elementslabels is False
– default; in this case the first vertices of the graphs are the elements ofground_set()
, and appear in the same order. Similarly, the following vertices represent the elements ofblocks()
, and appear in the same order.labels is True
, the points keep their original labels, and the blocks areSet
objects.Note that the labelled incidence graph can be incorrect when blocks are repeated, and on some (rare) occasions when the elements of
ground_set()
mixSet()
and non-Set
objects.
EXAMPLES:
sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5], ....: [1,4,6],[2,3,6],[2,4,5]]) sage: BD.incidence_graph() # needs sage.modules Bipartite graph on 14 vertices sage: A = BD.incidence_matrix() # needs sage.modules sage: Graph(block_matrix([[A*0, A], # needs sage.modules ....: [A.transpose(),A*0]])) == BD.incidence_graph() True
>>> from sage.all import * >>> BD = IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)], ... [Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]]) >>> BD.incidence_graph() # needs sage.modules Bipartite graph on 14 vertices >>> A = BD.incidence_matrix() # needs sage.modules >>> Graph(block_matrix([[A*Integer(0), A], # needs sage.modules ... [A.transpose(),A*Integer(0)]])) == BD.incidence_graph() True
BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5], [1,4,6],[2,3,6],[2,4,5]]) BD.incidence_graph() # needs sage.modules A = BD.incidence_matrix() # needs sage.modules Graph(block_matrix([[A*0, A], # needs sage.modules [A.transpose(),A*0]])) == BD.incidence_graph()
- incidence_matrix()[source]¶
Return the incidence matrix \(A\) of the design. A is a \((v \times b)\) matrix defined by:
A[i,j] = 1
ifi
is in blockB_j
and 0 otherwise.EXAMPLES:
sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5], ....: [1,4,6],[2,3,6],[2,4,5]]) sage: BD.block_sizes() [3, 3, 3, 3, 3, 3, 3] sage: BD.incidence_matrix() # needs sage.modules [1 1 1 0 0 0 0] [1 0 0 1 1 0 0] [1 0 0 0 0 1 1] [0 1 0 1 0 1 0] [0 1 0 0 1 0 1] [0 0 1 1 0 0 1] [0 0 1 0 1 1 0] sage: I = IncidenceStructure('abc', ('ab','abc','ac','c')) sage: I.incidence_matrix() # needs sage.modules [1 1 1 0] [1 1 0 0] [0 1 1 1]
>>> from sage.all import * >>> BD = IncidenceStructure(Integer(7), [[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)], ... [Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]]) >>> BD.block_sizes() [3, 3, 3, 3, 3, 3, 3] >>> BD.incidence_matrix() # needs sage.modules [1 1 1 0 0 0 0] [1 0 0 1 1 0 0] [1 0 0 0 0 1 1] [0 1 0 1 0 1 0] [0 1 0 0 1 0 1] [0 0 1 1 0 0 1] [0 0 1 0 1 1 0] >>> I = IncidenceStructure('abc', ('ab','abc','ac','c')) >>> I.incidence_matrix() # needs sage.modules [1 1 1 0] [1 1 0 0] [0 1 1 1]
BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5], [1,4,6],[2,3,6],[2,4,5]]) BD.block_sizes() BD.incidence_matrix() # needs sage.modules I = IncidenceStructure('abc', ('ab','abc','ac','c')) I.incidence_matrix() # needs sage.modules
- induced_substructure(points)[source]¶
Return the substructure induced by a set of points.
The substructure induced in \(\mathcal H\) by a set \(X\subseteq V(\mathcal H)\) of points is the incidence structure \(\mathcal H_X\) defined on \(X\) whose sets are all \(S\in \mathcal H\) such that \(S\subseteq X\).
INPUT:
points
– set of points
Note
This method goes over all sets of
self
before building a newIncidenceStructure
(which involves some relabelling and sorting). It probably should not be called in a performance-critical code.EXAMPLES:
A Fano plane with one point removed:
sage: F = designs.steiner_triple_system(7) sage: F.induced_substructure([0..5]) Incidence structure with 6 points and 4 blocks
>>> from sage.all import * >>> F = designs.steiner_triple_system(Integer(7)) >>> F.induced_substructure((ellipsis_range(Integer(0),Ellipsis,Integer(5)))) Incidence structure with 6 points and 4 blocks
F = designs.steiner_triple_system(7) F.induced_substructure([0..5])
- intersection_graph(sizes=None)[source]¶
Return the intersection graph of the incidence structure.
The vertices of this graph are the
blocks()
of the incidence structure. Two of them are adjacent if the size of their intersection belongs to the setsizes
.INPUT:
sizes
– list/set of integers; for convenience, settingsizes
to5
has the same effect assizes=[5]
. When set toNone
(default), behaves assizes=PositiveIntegers()
.
EXAMPLES:
The intersection graph of a
balanced_incomplete_block_design()
is astrongly regular graph
(when it is not trivial):sage: BIBD = designs.balanced_incomplete_block_design(19,3) sage: G = BIBD.intersection_graph(1) sage: G.is_strongly_regular(parameters=True) (57, 24, 11, 9)
>>> from sage.all import * >>> BIBD = designs.balanced_incomplete_block_design(Integer(19),Integer(3)) >>> G = BIBD.intersection_graph(Integer(1)) >>> G.is_strongly_regular(parameters=True) (57, 24, 11, 9)
BIBD = designs.balanced_incomplete_block_design(19,3) G = BIBD.intersection_graph(1) G.is_strongly_regular(parameters=True)
- is_berge_cyclic()[source]¶
Check whether
self
is a Berge-Cyclic uniform hypergraph.A \(k\)-uniform Berge cycle (named after Claude Berge) of length \(\ell\) is a cyclic list of distinct \(k\)-sets \(F_1,\ldots,F_\ell\), \(\ell>1\), and distinct vertices \(C = \{v_1,\ldots,v_\ell\}\) such that for each \(1\le i\le \ell\), \(F_i\) contains \(v_i\) and \(v_{i+1}\) (where \(v_{l+1} = v_1\)).
A uniform hypergraph is Berge-cyclic if its incidence graph is cyclic. It is called “Berge-acyclic” otherwise.
For more information, see [Fag1983] and Wikipedia article Hypergraph.
EXAMPLES:
sage: Hypergraph(5, [[1, 2, 3], [2, 3, 4]]).is_berge_cyclic() # needs sage.modules True sage: Hypergraph(6, [[1, 2, 3], [3, 4, 5]]).is_berge_cyclic() # needs sage.modules False
>>> from sage.all import * >>> Hypergraph(Integer(5), [[Integer(1), Integer(2), Integer(3)], [Integer(2), Integer(3), Integer(4)]]).is_berge_cyclic() # needs sage.modules True >>> Hypergraph(Integer(6), [[Integer(1), Integer(2), Integer(3)], [Integer(3), Integer(4), Integer(5)]]).is_berge_cyclic() # needs sage.modules False
Hypergraph(5, [[1, 2, 3], [2, 3, 4]]).is_berge_cyclic() # needs sage.modules Hypergraph(6, [[1, 2, 3], [3, 4, 5]]).is_berge_cyclic() # needs sage.modules
- is_connected()[source]¶
Test whether the design is connected.
EXAMPLES:
sage: IncidenceStructure(3, [[0,1],[0,2]]).is_connected() True sage: IncidenceStructure(4, [[0,1],[2,3]]).is_connected() False
>>> from sage.all import * >>> IncidenceStructure(Integer(3), [[Integer(0),Integer(1)],[Integer(0),Integer(2)]]).is_connected() True >>> IncidenceStructure(Integer(4), [[Integer(0),Integer(1)],[Integer(2),Integer(3)]]).is_connected() False
IncidenceStructure(3, [[0,1],[0,2]]).is_connected() IncidenceStructure(4, [[0,1],[2,3]]).is_connected()
- is_generalized_quadrangle(verbose=False, parameters=False)[source]¶
Test if the incidence structure is a generalized quadrangle.
An incidence structure is a generalized quadrangle iff (see [BH2012], section 9.6):
two blocks intersect on at most one point.
For every point \(p\) not in a block \(B\), there is a unique block \(B'\) intersecting both \(\{p\}\) and \(B\)
It is a regular generalized quadrangle if furthermore:
it is \(s+1\)-
uniform
for some positive integer \(s\).it is \(t+1\)-
regular
for some positive integer \(t\).
For more information, see the Wikipedia article Generalized_quadrangle.
Note
Some references (e.g. [PT2009] or Wikipedia article Generalized_quadrangle) only allow regular generalized quadrangles. To use such a definition, see the
parameters
optional argument described below, or the methodsis_regular()
andis_uniform()
.INPUT:
verbose
– boolean; whether to print an explanation when the instance is not a generalized quadrangleparameters
– (boolean;False
); if set toTrue
, the function returns a pair(s,t)
instead ofTrue
answers. In this case, \(s\) and \(t\) are the integers defined above if they exist (each can be set toFalse
otherwise).
EXAMPLES:
sage: h = designs.CremonaRichmondConfiguration() # needs networkx sage: h.is_generalized_quadrangle() # needs networkx True
>>> from sage.all import * >>> h = designs.CremonaRichmondConfiguration() # needs networkx >>> h.is_generalized_quadrangle() # needs networkx True
h = designs.CremonaRichmondConfiguration() # needs networkx h.is_generalized_quadrangle() # needs networkx
This is actually a regular generalized quadrangle:
sage: h.is_generalized_quadrangle(parameters=True) # needs networkx (2, 2)
>>> from sage.all import * >>> h.is_generalized_quadrangle(parameters=True) # needs networkx (2, 2)
h.is_generalized_quadrangle(parameters=True) # needs networkx
- is_isomorphic(other, certificate=False)[source]¶
Return whether the two incidence structures are isomorphic.
INPUT:
other
– an incidence structurecertificate
– boolean (default:False
); whether to return an isomorphism fromself
toother
instead of a boolean answer
EXAMPLES:
sage: # needs sage.schemes sage: fano1 = designs.balanced_incomplete_block_design(7,3) sage: fano2 = designs.projective_plane(2) sage: fano1.is_isomorphic(fano2) True sage: fano1.is_isomorphic(fano2,certificate=True) {0: 0, 1: 1, 2: 2, 3: 6, 4: 4, 5: 3, 6: 5}
>>> from sage.all import * >>> # needs sage.schemes >>> fano1 = designs.balanced_incomplete_block_design(Integer(7),Integer(3)) >>> fano2 = designs.projective_plane(Integer(2)) >>> fano1.is_isomorphic(fano2) True >>> fano1.is_isomorphic(fano2,certificate=True) {0: 0, 1: 1, 2: 2, 3: 6, 4: 4, 5: 3, 6: 5}
# needs sage.schemes fano1 = designs.balanced_incomplete_block_design(7,3) fano2 = designs.projective_plane(2) fano1.is_isomorphic(fano2) fano1.is_isomorphic(fano2,certificate=True)
- is_regular(r=None)[source]¶
Test whether the incidence structure is \(r\)-regular.
An incidence structure is said to be \(r\)-regular if all its points are incident with exactly \(r\) blocks.
INPUT:
r
– integer
OUTPUT:
If
r
is defined, a boolean is returned. Ifr
is set toNone
(default), the method returns eitherFalse
or the integerr
such that the incidence structure is \(r\)-regular.Warning
In case of \(0\)-regular incidence structure, beware that
if not H.is_regular()
is a satisfied condition.EXAMPLES:
sage: designs.balanced_incomplete_block_design(7,3).is_regular() # needs sage.schemes 3 sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=3) # needs sage.schemes True sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=4) # needs sage.schemes False
>>> from sage.all import * >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular() # needs sage.schemes 3 >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular(r=Integer(3)) # needs sage.schemes True >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_regular(r=Integer(4)) # needs sage.schemes False
designs.balanced_incomplete_block_design(7,3).is_regular() # needs sage.schemes designs.balanced_incomplete_block_design(7,3).is_regular(r=3) # needs sage.schemes designs.balanced_incomplete_block_design(7,3).is_regular(r=4) # needs sage.schemes
- is_resolvable(certificate, solver=False, verbose=None, check=0, integrality_tolerance=True)[source]¶
Test whether the hypergraph is resolvable.
A hypergraph is said to be resolvable if its sets can be partitionned into classes, each of which is a partition of the ground set.
Note
This problem is solved using an Integer Linear Program, and GLPK (the default LP solver) has been reported to be very slow on some instances. If you hit this wall, consider installing a more powerful MILP solver (CPLEX, Gurobi, …).
INPUT:
certificate
– boolean; whether to return the classes along with the binary answer (see examples below)solver
– (default:None
) specify a Mixed Integer Linear Programming (MILP) solver to be used. If set toNone
, the default one is used. For more information on MILP solvers and which default solver is used, see the methodsolve
of the classMixedIntegerLinearProgram
.verbose
– integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.check
– boolean (default:True
); whether to check that output is correct before returning it. As this is expected to be useless, you may want to disable it whenever you want speed.integrality_tolerance
– parameter for use with MILP solvers over an inexact base ring; seeMixedIntegerLinearProgram.get_values()
EXAMPLES:
Some resolvable designs:
sage: TD = designs.transversal_design(2,2,resolvable=True) sage: TD.is_resolvable() True sage: AG = designs.AffineGeometryDesign(3,1,GF(2)) # needs sage.combinat sage: AG.is_resolvable() # needs sage.combinat True
>>> from sage.all import * >>> TD = designs.transversal_design(Integer(2),Integer(2),resolvable=True) >>> TD.is_resolvable() True >>> AG = designs.AffineGeometryDesign(Integer(3),Integer(1),GF(Integer(2))) # needs sage.combinat >>> AG.is_resolvable() # needs sage.combinat True
TD = designs.transversal_design(2,2,resolvable=True) TD.is_resolvable() AG = designs.AffineGeometryDesign(3,1,GF(2)) # needs sage.combinat AG.is_resolvable() # needs sage.combinat
Their classes:
sage: b, cls = TD.is_resolvable(True) sage: b True sage: cls # random [[[0, 3], [1, 2]], [[1, 3], [0, 2]]] sage: # needs sage.combinat sage: b, cls = AG.is_resolvable(True) sage: b True sage: cls # random [[[6, 7], [4, 5], [0, 1], [2, 3]], [[5, 7], [0, 4], [3, 6], [1, 2]], [[0, 2], [4, 7], [1, 3], [5, 6]], [[3, 4], [0, 7], [1, 5], [2, 6]], [[3, 7], [1, 6], [0, 5], [2, 4]], [[0, 6], [2, 7], [1, 4], [3, 5]], [[4, 6], [0, 3], [2, 5], [1, 7]]]
>>> from sage.all import * >>> b, cls = TD.is_resolvable(True) >>> b True >>> cls # random [[[0, 3], [1, 2]], [[1, 3], [0, 2]]] >>> # needs sage.combinat >>> b, cls = AG.is_resolvable(True) >>> b True >>> cls # random [[[6, 7], [4, 5], [0, 1], [2, 3]], [[5, 7], [0, 4], [3, 6], [1, 2]], [[0, 2], [4, 7], [1, 3], [5, 6]], [[3, 4], [0, 7], [1, 5], [2, 6]], [[3, 7], [1, 6], [0, 5], [2, 4]], [[0, 6], [2, 7], [1, 4], [3, 5]], [[4, 6], [0, 3], [2, 5], [1, 7]]]
b, cls = TD.is_resolvable(True) b cls # random # needs sage.combinat b, cls = AG.is_resolvable(True) b cls # random
A non-resolvable design:
sage: Fano = designs.balanced_incomplete_block_design(7,3) # needs sage.schemes sage: Fano.is_resolvable() # needs sage.schemes False sage: Fano.is_resolvable(True) # needs sage.schemes (False, [])
>>> from sage.all import * >>> Fano = designs.balanced_incomplete_block_design(Integer(7),Integer(3)) # needs sage.schemes >>> Fano.is_resolvable() # needs sage.schemes False >>> Fano.is_resolvable(True) # needs sage.schemes (False, [])
Fano = designs.balanced_incomplete_block_design(7,3) # needs sage.schemes Fano.is_resolvable() # needs sage.schemes Fano.is_resolvable(True) # needs sage.schemes
- is_simple()[source]¶
Test whether this design is simple (i.e. no repeated block).
EXAMPLES:
sage: IncidenceStructure(3, [[0,1],[1,2],[0,2]]).is_simple() True sage: IncidenceStructure(3, [[0],[0]]).is_simple() False sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] sage: B = [[V[0],V[1]], [V[1],V[2]]] sage: I = IncidenceStructure(V, B) sage: I.is_simple() True sage: I2 = IncidenceStructure(V, B*2) sage: I2.is_simple() False
>>> from sage.all import * >>> IncidenceStructure(Integer(3), [[Integer(0),Integer(1)],[Integer(1),Integer(2)],[Integer(0),Integer(2)]]).is_simple() True >>> IncidenceStructure(Integer(3), [[Integer(0)],[Integer(0)]]).is_simple() False >>> V = [(Integer(0),'a'),(Integer(0),'b'),(Integer(1),'a'),(Integer(1),'b')] >>> B = [[V[Integer(0)],V[Integer(1)]], [V[Integer(1)],V[Integer(2)]]] >>> I = IncidenceStructure(V, B) >>> I.is_simple() True >>> I2 = IncidenceStructure(V, B*Integer(2)) >>> I2.is_simple() False
IncidenceStructure(3, [[0,1],[1,2],[0,2]]).is_simple() IncidenceStructure(3, [[0],[0]]).is_simple() V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] B = [[V[0],V[1]], [V[1],V[2]]] I = IncidenceStructure(V, B) I.is_simple() I2 = IncidenceStructure(V, B*2) I2.is_simple()
- is_spread(spread)[source]¶
Check whether the input is a spread for
self
.A spread of an incidence structure \((P, B)\) is a subset of \(B\) which forms a partition of \(P\).
INPUT:
spread
– iterable; defines the spread
EXAMPLES:
sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]]) sage: E.is_spread([[1, 2, 3], [4, 5, 6]]) True sage: E.is_spread([1, 2, 3, 4, 5, 6]) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable sage: E.is_spread([[1, 2, 3, 4], [5, 6]]) False
>>> from sage.all import * >>> E = IncidenceStructure([[Integer(1), Integer(2), Integer(3)], [Integer(4), Integer(5), Integer(6)], [Integer(1), Integer(5), Integer(6)]]) >>> E.is_spread([[Integer(1), Integer(2), Integer(3)], [Integer(4), Integer(5), Integer(6)]]) True >>> E.is_spread([Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)]) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable >>> E.is_spread([[Integer(1), Integer(2), Integer(3), Integer(4)], [Integer(5), Integer(6)]]) False
E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]]) E.is_spread([[1, 2, 3], [4, 5, 6]]) E.is_spread([1, 2, 3, 4, 5, 6]) E.is_spread([[1, 2, 3, 4], [5, 6]])
Order of blocks or of points within each block doesn’t matter:
sage: E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]]) sage: E.is_spread([[5, 6, 4], [3, 1, 2]]) True
>>> from sage.all import * >>> E = IncidenceStructure([[Integer(1), Integer(2), Integer(3)], [Integer(4), Integer(5), Integer(6)], [Integer(1), Integer(5), Integer(6)]]) >>> E.is_spread([[Integer(5), Integer(6), Integer(4)], [Integer(3), Integer(1), Integer(2)]]) True
E = IncidenceStructure([[1, 2, 3], [4, 5, 6], [1, 5, 6]]) E.is_spread([[5, 6, 4], [3, 1, 2]])
- is_t_design(t=None, v=None, k=None, l=None, return_parameters=False)[source]¶
Test whether
self
is a \(t-(v,k,l)\) design.A \(t-(v,k,\lambda)\) (sometimes called \(t\)-design for short) is a block design in which:
the underlying set has cardinality \(v\)
the blocks have size \(k\)
each \(t\)-subset of points is covered by \(\lambda\) blocks
INPUT:
t
,v
,k
,l
– integers; their value is set toNone
by default. The function tests whether the design is a \(t-(v,k,l)\) design using the provided values and guesses the others. Note thatl
cannot be specified ift
is not.return_parameters
– boolean; whether to return the parameters of the \(t\)-design. If set toTrue
, the function returns a pair(boolean_answer,(t,v,k,l))
.
EXAMPLES:
sage: fano_blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]] sage: BD = IncidenceStructure(7, fano_blocks) sage: BD.is_t_design() True sage: BD.is_t_design(return_parameters=True) (True, (2, 7, 3, 1)) sage: BD.is_t_design(2, 7, 3, 1) True sage: BD.is_t_design(1, 7, 3, 3) True sage: BD.is_t_design(0, 7, 3, 7) True sage: BD.is_t_design(0,6,3,7) or BD.is_t_design(0,7,4,7) or BD.is_t_design(0,7,3,8) False sage: BD = designs.AffineGeometryDesign(3, 1, GF(2)) # needs sage.combinat sage: BD.is_t_design(1) # needs sage.combinat True sage: BD.is_t_design(2) # needs sage.combinat True
>>> from sage.all import * >>> fano_blocks = [[Integer(0),Integer(1),Integer(2)],[Integer(0),Integer(3),Integer(4)],[Integer(0),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5)],[Integer(1),Integer(4),Integer(6)],[Integer(2),Integer(3),Integer(6)],[Integer(2),Integer(4),Integer(5)]] >>> BD = IncidenceStructure(Integer(7), fano_blocks) >>> BD.is_t_design() True >>> BD.is_t_design(return_parameters=True) (True, (2, 7, 3, 1)) >>> BD.is_t_design(Integer(2), Integer(7), Integer(3), Integer(1)) True >>> BD.is_t_design(Integer(1), Integer(7), Integer(3), Integer(3)) True >>> BD.is_t_design(Integer(0), Integer(7), Integer(3), Integer(7)) True >>> BD.is_t_design(Integer(0),Integer(6),Integer(3),Integer(7)) or BD.is_t_design(Integer(0),Integer(7),Integer(4),Integer(7)) or BD.is_t_design(Integer(0),Integer(7),Integer(3),Integer(8)) False >>> BD = designs.AffineGeometryDesign(Integer(3), Integer(1), GF(Integer(2))) # needs sage.combinat >>> BD.is_t_design(Integer(1)) # needs sage.combinat True >>> BD.is_t_design(Integer(2)) # needs sage.combinat True
fano_blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]] BD = IncidenceStructure(7, fano_blocks) BD.is_t_design() BD.is_t_design(return_parameters=True) BD.is_t_design(2, 7, 3, 1) BD.is_t_design(1, 7, 3, 3) BD.is_t_design(0, 7, 3, 7) BD.is_t_design(0,6,3,7) or BD.is_t_design(0,7,4,7) or BD.is_t_design(0,7,3,8) BD = designs.AffineGeometryDesign(3, 1, GF(2)) # needs sage.combinat BD.is_t_design(1) # needs sage.combinat BD.is_t_design(2) # needs sage.combinat
Steiner triple and quadruple systems are other names for \(2-(v,3,1)\) and \(3-(v,4,1)\) designs:
sage: S3_9 = designs.steiner_triple_system(9) sage: S3_9.is_t_design(2,9,3,1) True sage: blocks = designs.steiner_quadruple_system(8) sage: S4_8 = IncidenceStructure(8, blocks) sage: S4_8.is_t_design(3,8,4,1) True sage: blocks = designs.steiner_quadruple_system(14) sage: S4_14 = IncidenceStructure(14, blocks) sage: S4_14.is_t_design(3,14,4,1) True
>>> from sage.all import * >>> S3_9 = designs.steiner_triple_system(Integer(9)) >>> S3_9.is_t_design(Integer(2),Integer(9),Integer(3),Integer(1)) True >>> blocks = designs.steiner_quadruple_system(Integer(8)) >>> S4_8 = IncidenceStructure(Integer(8), blocks) >>> S4_8.is_t_design(Integer(3),Integer(8),Integer(4),Integer(1)) True >>> blocks = designs.steiner_quadruple_system(Integer(14)) >>> S4_14 = IncidenceStructure(Integer(14), blocks) >>> S4_14.is_t_design(Integer(3),Integer(14),Integer(4),Integer(1)) True
S3_9 = designs.steiner_triple_system(9) S3_9.is_t_design(2,9,3,1) blocks = designs.steiner_quadruple_system(8) S4_8 = IncidenceStructure(8, blocks) S4_8.is_t_design(3,8,4,1) blocks = designs.steiner_quadruple_system(14) S4_14 = IncidenceStructure(14, blocks) S4_14.is_t_design(3,14,4,1)
Some examples of Witt designs that need the gap database:
sage: # optional - gap_package_design sage: BD = designs.WittDesign(9) sage: BD.is_t_design(2,9,3,1) True sage: W12 = designs.WittDesign(12) sage: W12.is_t_design(5,12,6,1) True sage: W12.is_t_design(4) True
>>> from sage.all import * >>> # optional - gap_package_design >>> BD = designs.WittDesign(Integer(9)) >>> BD.is_t_design(Integer(2),Integer(9),Integer(3),Integer(1)) True >>> W12 = designs.WittDesign(Integer(12)) >>> W12.is_t_design(Integer(5),Integer(12),Integer(6),Integer(1)) True >>> W12.is_t_design(Integer(4)) True
# optional - gap_package_design BD = designs.WittDesign(9) BD.is_t_design(2,9,3,1) W12 = designs.WittDesign(12) W12.is_t_design(5,12,6,1) W12.is_t_design(4)
Further examples:
sage: D = IncidenceStructure(4,[[],[]]) sage: D.is_t_design(return_parameters=True) (True, (0, 4, 0, 2)) sage: D = IncidenceStructure(4, [[0,1],[0,2],[0,3]]) sage: D.is_t_design(return_parameters=True) (True, (0, 4, 2, 3)) sage: D = IncidenceStructure(4, [[0],[1],[2],[3]]) sage: D.is_t_design(return_parameters=True) (True, (1, 4, 1, 1)) sage: D = IncidenceStructure(4,[[0,1],[2,3]]) sage: D.is_t_design(return_parameters=True) (True, (1, 4, 2, 1)) sage: D = IncidenceStructure(4, [list(range(4))]) sage: D.is_t_design(return_parameters=True) (True, (4, 4, 4, 1))
>>> from sage.all import * >>> D = IncidenceStructure(Integer(4),[[],[]]) >>> D.is_t_design(return_parameters=True) (True, (0, 4, 0, 2)) >>> D = IncidenceStructure(Integer(4), [[Integer(0),Integer(1)],[Integer(0),Integer(2)],[Integer(0),Integer(3)]]) >>> D.is_t_design(return_parameters=True) (True, (0, 4, 2, 3)) >>> D = IncidenceStructure(Integer(4), [[Integer(0)],[Integer(1)],[Integer(2)],[Integer(3)]]) >>> D.is_t_design(return_parameters=True) (True, (1, 4, 1, 1)) >>> D = IncidenceStructure(Integer(4),[[Integer(0),Integer(1)],[Integer(2),Integer(3)]]) >>> D.is_t_design(return_parameters=True) (True, (1, 4, 2, 1)) >>> D = IncidenceStructure(Integer(4), [list(range(Integer(4)))]) >>> D.is_t_design(return_parameters=True) (True, (4, 4, 4, 1))
D = IncidenceStructure(4,[[],[]]) D.is_t_design(return_parameters=True) D = IncidenceStructure(4, [[0,1],[0,2],[0,3]]) D.is_t_design(return_parameters=True) D = IncidenceStructure(4, [[0],[1],[2],[3]]) D.is_t_design(return_parameters=True) D = IncidenceStructure(4,[[0,1],[2,3]]) D.is_t_design(return_parameters=True) D = IncidenceStructure(4, [list(range(4))]) D.is_t_design(return_parameters=True)
- is_uniform(k=None)[source]¶
Test whether the incidence structure is \(k\)-uniform
An incidence structure is said to be \(k\)-uniform if all its blocks have size \(k\).
INPUT:
k
– integer
OUTPUT:
If
k
is defined, a boolean is returned. Ifk
is set toNone
(default), the method returns eitherFalse
or the integerk
such that the incidence structure is \(k\)-uniform.Warning
In case of \(0\)-uniform incidence structure, beware that
if not H.is_uniform()
is a satisfied condition.EXAMPLES:
sage: designs.balanced_incomplete_block_design(7,3).is_uniform() # needs sage.schemes 3 sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=3) # needs sage.schemes True sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=4) # needs sage.schemes False
>>> from sage.all import * >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_uniform() # needs sage.schemes 3 >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_uniform(k=Integer(3)) # needs sage.schemes True >>> designs.balanced_incomplete_block_design(Integer(7),Integer(3)).is_uniform(k=Integer(4)) # needs sage.schemes False
designs.balanced_incomplete_block_design(7,3).is_uniform() # needs sage.schemes designs.balanced_incomplete_block_design(7,3).is_uniform(k=3) # needs sage.schemes designs.balanced_incomplete_block_design(7,3).is_uniform(k=4) # needs sage.schemes
- isomorphic_substructures_iterator(H2, induced=False)[source]¶
Iterate over all copies of
H2
contained inself
.A hypergraph \(H_1\) contains an isomorphic copy of a hypergraph \(H_2\) if there exists an injection \(f:V(H_2)\mapsto V(H_1)\) such that for any set \(S_2\in E(H_2)\) the set \(S_1=f(S2)\) belongs to \(E(H_1)\).
It is an induced copy if no other set of \(E(H_1)\) is contained in \(f(V(H_2))\), i.e. \(|E(H_2)|=\{S:S\in E(H_1)\text{ and }f(V(H_2))\}\).
This function lists all such injections. In particular, the number of copies of \(H\) in itself is equal to the size of its automorphism group.
See
subhypergraph_search
for more information.INPUT:
H2
– anIncidenceStructure
objectinduced
– boolean (default:False
); whether to require the copies to be induced
EXAMPLES:
How many distinct \(C_5\) in Petersen’s graph ?
sage: P = graphs.PetersenGraph() sage: C = graphs.CycleGraph(5) sage: IP = IncidenceStructure(P.edges(sort=True, labels=False)) sage: IC = IncidenceStructure(C.edges(sort=True, labels=False)) sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC)) 120
>>> from sage.all import * >>> P = graphs.PetersenGraph() >>> C = graphs.CycleGraph(Integer(5)) >>> IP = IncidenceStructure(P.edges(sort=True, labels=False)) >>> IC = IncidenceStructure(C.edges(sort=True, labels=False)) >>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC)) 120
P = graphs.PetersenGraph() C = graphs.CycleGraph(5) IP = IncidenceStructure(P.edges(sort=True, labels=False)) IC = IncidenceStructure(C.edges(sort=True, labels=False)) sum(1 for _ in IP.isomorphic_substructures_iterator(IC))
As the automorphism group of \(C_5\) has size 10, the number of distinct unlabelled copies is 12. Let us check that all functions returned correspond to an actual \(C_5\) subgraph:
sage: for f in IP.isomorphic_substructures_iterator(IC): ....: assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(sort=True, labels=False))
>>> from sage.all import * >>> for f in IP.isomorphic_substructures_iterator(IC): ... assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(sort=True, labels=False))
for f in IP.isomorphic_substructures_iterator(IC): assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(sort=True, labels=False))
The number of induced copies, in this case, is the same:
sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 120
>>> from sage.all import * >>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 120
sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True))
They begin to differ if we make one vertex universal:
sage: P.add_edges([(0,x) for x in P], loops=False) sage: IP = IncidenceStructure(P.edges(sort=True, labels=False)) sage: IC = IncidenceStructure(C.edges(sort=True, labels=False)) sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC)) 420 sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 60
>>> from sage.all import * >>> P.add_edges([(Integer(0),x) for x in P], loops=False) >>> IP = IncidenceStructure(P.edges(sort=True, labels=False)) >>> IC = IncidenceStructure(C.edges(sort=True, labels=False)) >>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC)) 420 >>> sum(Integer(1) for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 60
P.add_edges([(0,x) for x in P], loops=False) IP = IncidenceStructure(P.edges(sort=True, labels=False)) IC = IncidenceStructure(C.edges(sort=True, labels=False)) sum(1 for _ in IP.isomorphic_substructures_iterator(IC)) sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True))
The number of copies of \(H\) in itself is the size of its automorphism group:
sage: H = designs.projective_plane(3) # needs sage.schemes sage: sum(1 for _ in H.isomorphic_substructures_iterator(H)) # needs sage.schemes 5616 sage: H.automorphism_group().cardinality() # needs sage.groups sage.schemes 5616
>>> from sage.all import * >>> H = designs.projective_plane(Integer(3)) # needs sage.schemes >>> sum(Integer(1) for _ in H.isomorphic_substructures_iterator(H)) # needs sage.schemes 5616 >>> H.automorphism_group().cardinality() # needs sage.groups sage.schemes 5616
H = designs.projective_plane(3) # needs sage.schemes sum(1 for _ in H.isomorphic_substructures_iterator(H)) # needs sage.schemes H.automorphism_group().cardinality() # needs sage.groups sage.schemes
- num_blocks()[source]¶
Return the number of blocks.
EXAMPLES:
sage: designs.DesarguesianProjectivePlaneDesign(2).num_blocks() 7 sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) sage: B.num_blocks() 5
>>> from sage.all import * >>> designs.DesarguesianProjectivePlaneDesign(Integer(2)).num_blocks() 7 >>> B = IncidenceStructure(Integer(4), [[Integer(0),Integer(1)],[Integer(0),Integer(2)],[Integer(0),Integer(3)],[Integer(1),Integer(2)], [Integer(1),Integer(2),Integer(3)]]) >>> B.num_blocks() 5
designs.DesarguesianProjectivePlaneDesign(2).num_blocks() B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) B.num_blocks()
- num_points()[source]¶
Return the size of the ground set.
EXAMPLES:
sage: designs.DesarguesianProjectivePlaneDesign(2).num_points() 7 sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) sage: B.num_points() 4
>>> from sage.all import * >>> designs.DesarguesianProjectivePlaneDesign(Integer(2)).num_points() 7 >>> B = IncidenceStructure(Integer(4), [[Integer(0),Integer(1)],[Integer(0),Integer(2)],[Integer(0),Integer(3)],[Integer(1),Integer(2)], [Integer(1),Integer(2),Integer(3)]]) >>> B.num_points() 4
designs.DesarguesianProjectivePlaneDesign(2).num_points() B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) B.num_points()
- packing(solver, verbose=None, integrality_tolerance=0)[source]¶
Return a maximum packing.
A maximum packing in a hypergraph is collection of disjoint sets/blocks of maximal cardinality. This problem is NP-complete in general, and in particular on 3-uniform hypergraphs. It is solved here with an Integer Linear Program.
For more information, see the Wikipedia article Packing_in_a_hypergraph.
INPUT:
solver
– (default:None
) specify a Mixed Integer Linear Programming (MILP) solver to be used. If set toNone
, the default one is used. For more information on LP solvers and which default solver is used, see the methodsolve
of the classMixedIntegerLinearProgram
.verbose
– integer (default: 0); sets the level of verbosity. Set to 0 by default, which means quiet.integrality_tolerance
– parameter for use with MILP solvers over an inexact base ring; seeMixedIntegerLinearProgram.get_values()
.
EXAMPLES:
sage: P = IncidenceStructure([[1,2],[3,4],[2,3]]).packing() # needs sage.numerical.mip sage: sorted(sorted(b) for b in P) # needs sage.numerical.mip [[1, 2], [3, 4]] sage: len(designs.steiner_triple_system(9).packing()) # needs sage.numerical.mip 3
>>> from sage.all import * >>> P = IncidenceStructure([[Integer(1),Integer(2)],[Integer(3),Integer(4)],[Integer(2),Integer(3)]]).packing() # needs sage.numerical.mip >>> sorted(sorted(b) for b in P) # needs sage.numerical.mip [[1, 2], [3, 4]] >>> len(designs.steiner_triple_system(Integer(9)).packing()) # needs sage.numerical.mip 3
P = IncidenceStructure([[1,2],[3,4],[2,3]]).packing() # needs sage.numerical.mip sorted(sorted(b) for b in P) # needs sage.numerical.mip len(designs.steiner_triple_system(9).packing()) # needs sage.numerical.mip
- rank()[source]¶
Return the rank of the hypergraph (the maximum size of a block).
EXAMPLES:
sage: h = Hypergraph(8, [[0,1,3],[1,4,5,6],[1,2]]) sage: h.rank() 4
>>> from sage.all import * >>> h = Hypergraph(Integer(8), [[Integer(0),Integer(1),Integer(3)],[Integer(1),Integer(4),Integer(5),Integer(6)],[Integer(1),Integer(2)]]) >>> h.rank() 4
h = Hypergraph(8, [[0,1,3],[1,4,5,6],[1,2]]) h.rank()
- relabel(perm=None, inplace=True)[source]¶
Relabel the ground set.
INPUT:
perm
– can be one ofa dictionary – then each point
p
(which should be a key ofd
) is relabeled tod[p]
a list or a tuple of length
n
– the first point returned byground_set()
is relabeled tol[0]
, the second tol[1]
, …None
– the incidence structure is relabeled to be on \(\{0,1,...,n-1\}\) in the ordering given byground_set()
inplace
– boolean (default:False
); ifTrue
then return a relabeled graph and does not touchself
EXAMPLES:
sage: # needs sage.schemes sage: TD = designs.transversal_design(5,5) sage: TD.relabel({i: chr(97+i) for i in range(25)}) sage: TD.ground_set() ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y'] sage: TD.blocks()[:3] [['a', 'f', 'k', 'p', 'u'], ['a', 'g', 'm', 's', 'y'], ['a', 'h', 'o', 'q', 'x']]
>>> from sage.all import * >>> # needs sage.schemes >>> TD = designs.transversal_design(Integer(5),Integer(5)) >>> TD.relabel({i: chr(Integer(97)+i) for i in range(Integer(25))}) >>> TD.ground_set() ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y'] >>> TD.blocks()[:Integer(3)] [['a', 'f', 'k', 'p', 'u'], ['a', 'g', 'm', 's', 'y'], ['a', 'h', 'o', 'q', 'x']]
# needs sage.schemes TD = designs.transversal_design(5,5) TD.relabel({i: chr(97+i) for i in range(25)}) TD.ground_set() TD.blocks()[:3]
Relabel to integer points:
sage: TD.relabel() # needs sage.schemes sage: TD.blocks()[:3] # needs sage.schemes [[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23]]
>>> from sage.all import * >>> TD.relabel() # needs sage.schemes >>> TD.blocks()[:Integer(3)] # needs sage.schemes [[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23]]
TD.relabel() # needs sage.schemes TD.blocks()[:3] # needs sage.schemes
- trace(points, min_size=1, multiset=True)[source]¶
Return the trace of a set of points.
Given an hypergraph \(\mathcal H\), the trace of a set \(X\) of points in \(\mathcal H\) is the hypergraph whose blocks are all non-empty \(S \cap X\) where \(S \in \mathcal H\).
INPUT:
points
– set of pointsmin_size
– integer (default: 1); minimum size of the sets to keep. By default all empty sets are discarded, i.e.min_size=1
multiset
– boolean (default:True
); whether to keep multiple copies of the same set
Note
This method goes over all sets of
self
before building a newIncidenceStructure
(which involves some relabelling and sorting). It probably should not be called in a performance-critical code.EXAMPLES:
A Baer subplane of order 2 (i.e. a Fano plane) in a projective plane of order 4:
sage: # needs sage.schemes sage: P4 = designs.projective_plane(4) sage: F = designs.projective_plane(2) sage: for x in Subsets(P4.ground_set(),7): ....: if P4.trace(x,min_size=2).is_isomorphic(F): ....: break sage: subplane = P4.trace(x,min_size=2); subplane Incidence structure with 7 points and 7 blocks sage: subplane.is_isomorphic(F) True
>>> from sage.all import * >>> # needs sage.schemes >>> P4 = designs.projective_plane(Integer(4)) >>> F = designs.projective_plane(Integer(2)) >>> for x in Subsets(P4.ground_set(),Integer(7)): ... if P4.trace(x,min_size=Integer(2)).is_isomorphic(F): ... break >>> subplane = P4.trace(x,min_size=Integer(2)); subplane Incidence structure with 7 points and 7 blocks >>> subplane.is_isomorphic(F) True
# needs sage.schemes P4 = designs.projective_plane(4) F = designs.projective_plane(2) for x in Subsets(P4.ground_set(),7): if P4.trace(x,min_size=2).is_isomorphic(F): break subplane = P4.trace(x,min_size=2); subplane subplane.is_isomorphic(F)