Static sparse graph backend¶
This module implement a immutable sparse graph backend using the data structure
from sage.graphs.base.static_sparse_graph
. It supports both directed and
undirected graphs, as well as vertex/edge labels, loops and multiple edges. As
it uses a very compact C structure it should be very small in memory.
As it is a sparse data structure, you can expect it to be very efficient when
you need to list the graph’s edge, or those incident to a vertex, but an
adjacency test can be much longer than in a dense data structure (i.e. like in
sage.graphs.base.static_dense_graph
)
For an overview of graph data structures in sage, see
overview
.
Two classes¶
This module implements two classes
StaticSparseCGraph
extendsCGraph
and is a Cython class that manages the definition/deallocation of theshort_digraph
structure. It does not know anything about labels on vertices.StaticSparseBackend
extendsCGraphBackend
and is a Python class that does know about vertex labels and contains an instance ofStaticSparseCGraph
as an internal variable. The input/output of its methods are labeled vertices, which it translates to integer id before forwarding them to theStaticSparseCGraph
instance.
Classes and methods¶
- class sage.graphs.base.static_sparse_backend.StaticSparseBackend[source]¶
Bases:
CGraphBackend
A graph
backend
for static sparse graphs.EXAMPLES:
sage: D = sage.graphs.base.sparse_graph.SparseGraphBackend(9) sage: D.add_edge(0, 1, None, False) sage: list(D.iterator_edges(range(9), True)) [(0, 1, None)]
>>> from sage.all import * >>> D = sage.graphs.base.sparse_graph.SparseGraphBackend(Integer(9)) >>> D.add_edge(Integer(0), Integer(1), None, False) >>> list(D.iterator_edges(range(Integer(9)), True)) [(0, 1, None)]
D = sage.graphs.base.sparse_graph.SparseGraphBackend(9) D.add_edge(0, 1, None, False) list(D.iterator_edges(range(9), True))
sage: from sage.graphs.base.static_sparse_backend import StaticSparseBackend sage: g = StaticSparseBackend(graphs.PetersenGraph()) sage: list(g.iterator_edges([0], 1)) [(0, 1, None), (0, 4, None), (0, 5, None)]
>>> from sage.all import * >>> from sage.graphs.base.static_sparse_backend import StaticSparseBackend >>> g = StaticSparseBackend(graphs.PetersenGraph()) >>> list(g.iterator_edges([Integer(0)], Integer(1))) [(0, 1, None), (0, 4, None), (0, 5, None)]
from sage.graphs.base.static_sparse_backend import StaticSparseBackend g = StaticSparseBackend(graphs.PetersenGraph()) list(g.iterator_edges([0], 1))
sage: # needs sage.combinat sage: g = DiGraph(digraphs.DeBruijn(4, 3), data_structure='static_sparse') sage: gi = DiGraph(g, data_structure='static_sparse') sage: gi.edges(sort=True)[0] ('000', '000', '0') sage: sorted(gi.edges_incident('111')) [('111', '110', '0'), ('111', '111', '1'), ('111', '112', '2'), ('111', '113', '3')] sage: set(g.edges(sort=False)) == set(gi.edges(sort=False)) # needs sage.combinat True
>>> from sage.all import * >>> # needs sage.combinat >>> g = DiGraph(digraphs.DeBruijn(Integer(4), Integer(3)), data_structure='static_sparse') >>> gi = DiGraph(g, data_structure='static_sparse') >>> gi.edges(sort=True)[Integer(0)] ('000', '000', '0') >>> sorted(gi.edges_incident('111')) [('111', '110', '0'), ('111', '111', '1'), ('111', '112', '2'), ('111', '113', '3')] >>> set(g.edges(sort=False)) == set(gi.edges(sort=False)) # needs sage.combinat True
# needs sage.combinat g = DiGraph(digraphs.DeBruijn(4, 3), data_structure='static_sparse') gi = DiGraph(g, data_structure='static_sparse') gi.edges(sort=True)[0] sorted(gi.edges_incident('111')) set(g.edges(sort=False)) == set(gi.edges(sort=False)) # needs sage.combinat
sage: g = graphs.PetersenGraph() sage: gi = Graph(g, data_structure='static_sparse') sage: g == gi True sage: set(g.edges(sort=False)) == set(gi.edges(sort=False)) True
>>> from sage.all import * >>> g = graphs.PetersenGraph() >>> gi = Graph(g, data_structure='static_sparse') >>> g == gi True >>> set(g.edges(sort=False)) == set(gi.edges(sort=False)) True
g = graphs.PetersenGraph() gi = Graph(g, data_structure='static_sparse') g == gi set(g.edges(sort=False)) == set(gi.edges(sort=False))
sage: gi = Graph({ 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}}, data_structure='static_sparse') sage: (0, 4, 2) in gi.edges(sort=False) True sage: gi.has_edge(0, 4) True
>>> from sage.all import * >>> gi = Graph({ Integer(0): {Integer(1): Integer(1)}, Integer(1): {Integer(2): Integer(1)}, Integer(2): {Integer(3): Integer(1)}, Integer(3): {Integer(4): Integer(2)}, Integer(4): {Integer(0): Integer(2)}}, data_structure='static_sparse') >>> (Integer(0), Integer(4), Integer(2)) in gi.edges(sort=False) True >>> gi.has_edge(Integer(0), Integer(4)) True
gi = Graph({ 0: {1: 1}, 1: {2: 1}, 2: {3: 1}, 3: {4: 2}, 4: {0: 2}}, data_structure='static_sparse') (0, 4, 2) in gi.edges(sort=False) gi.has_edge(0, 4)
sage: G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:{6:25, 7:24}}) sage: GI = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:{6:25, 7:24}}, data_structure='static_sparse') sage: G == GI True
>>> from sage.all import * >>> G = Graph({Integer(1):{Integer(2):Integer(28), Integer(6):Integer(10)}, Integer(2):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(3):{Integer(4):Integer(12)}, Integer(4):{Integer(5):Integer(22), Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25), Integer(7):Integer(24)}}) >>> GI = Graph({Integer(1):{Integer(2):Integer(28), Integer(6):Integer(10)}, Integer(2):{Integer(3):Integer(16), Integer(7):Integer(14)}, Integer(3):{Integer(4):Integer(12)}, Integer(4):{Integer(5):Integer(22), Integer(7):Integer(18)}, Integer(5):{Integer(6):Integer(25), Integer(7):Integer(24)}}, data_structure='static_sparse') >>> G == GI True
G = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:{6:25, 7:24}}) GI = Graph({1:{2:28, 6:10}, 2:{3:16, 7:14}, 3:{4:12}, 4:{5:22, 7:18}, 5:{6:25, 7:24}}, data_structure='static_sparse') G == GI
sage: G = graphs.OddGraph(4) sage: d = G.diameter() sage: H = G.distance_graph(list(range(d + 1))) sage: HI = Graph(H, data_structure='static_sparse') sage: HI.size() == len(HI.edges(sort=False)) True
>>> from sage.all import * >>> G = graphs.OddGraph(Integer(4)) >>> d = G.diameter() >>> H = G.distance_graph(list(range(d + Integer(1)))) >>> HI = Graph(H, data_structure='static_sparse') >>> HI.size() == len(HI.edges(sort=False)) True
G = graphs.OddGraph(4) d = G.diameter() H = G.distance_graph(list(range(d + 1))) HI = Graph(H, data_structure='static_sparse') HI.size() == len(HI.edges(sort=False))
sage: g = Graph({1: {1: [1, 2, 3]}}, data_structure='static_sparse') sage: g.size() 3 sage: g.order() 1 sage: g.vertices(sort=False) [1] sage: g.edges(sort=True) [(1, 1, 1), (1, 1, 2), (1, 1, 3)]
>>> from sage.all import * >>> g = Graph({Integer(1): {Integer(1): [Integer(1), Integer(2), Integer(3)]}}, data_structure='static_sparse') >>> g.size() 3 >>> g.order() 1 >>> g.vertices(sort=False) [1] >>> g.edges(sort=True) [(1, 1, 1), (1, 1, 2), (1, 1, 3)]
g = Graph({1: {1: [1, 2, 3]}}, data_structure='static_sparse') g.size() g.order() g.vertices(sort=False) g.edges(sort=True)
Issue #15810 is fixed:
sage: DiGraph({1: {2: ['a', 'b'], 3: ['c']}, 2: {3: ['d']}}, immutable=True).is_directed_acyclic() True
>>> from sage.all import * >>> DiGraph({Integer(1): {Integer(2): ['a', 'b'], Integer(3): ['c']}, Integer(2): {Integer(3): ['d']}}, immutable=True).is_directed_acyclic() True
DiGraph({1: {2: ['a', 'b'], 3: ['c']}, 2: {3: ['d']}}, immutable=True).is_directed_acyclic()
- add_vertex(v)[source]¶
Addition of vertices is not available on an immutable graph.
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.add_vertex(1) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy()) sage: g.add_vertices([1,2,3]) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy())
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.add_vertex(Integer(1)) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy()) >>> g.add_vertices([Integer(1),Integer(2),Integer(3)]) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy())
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.add_vertex(1) g.add_vertices([1,2,3])
- allows_loops(value=None)[source]¶
Return whether the graph allows loops.
INPUT:
value
– only useful for compatibility with other graph backends, where this method can be used to define this boolean. This method raises an exception ifvalue
is not equal toNone
.
- degree(v, directed)[source]¶
Return the degree of a vertex.
INPUT:
v
– a vertexdirected
– boolean; whether to take into account the orientation of this graph in counting the degree ofv
EXAMPLES:
sage: g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.degree(0) 3
>>> from sage.all import * >>> g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.degree(Integer(0)) 3
g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') g.degree(0)
Issue #17225 about the degree of a vertex with a loop:
sage: Graph({0: [0]}, immutable=True).degree(0) 2 sage: Graph({0: [0], 1: [0, 1, 1, 1]}, immutable=True).degree(1) 7
>>> from sage.all import * >>> Graph({Integer(0): [Integer(0)]}, immutable=True).degree(Integer(0)) 2 >>> Graph({Integer(0): [Integer(0)], Integer(1): [Integer(0), Integer(1), Integer(1), Integer(1)]}, immutable=True).degree(Integer(1)) 7
Graph({0: [0]}, immutable=True).degree(0) Graph({0: [0], 1: [0, 1, 1, 1]}, immutable=True).degree(1)
- del_vertex(v)[source]¶
Removal of vertices is not available on an immutable graph.
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.delete_vertex(1) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy()) sage: g.delete_vertices([1,2,3]) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy())
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.delete_vertex(Integer(1)) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy()) >>> g.delete_vertices([Integer(1),Integer(2),Integer(3)]) Traceback (most recent call last): ... ValueError: graph is immutable; please change a copy instead (use function copy())
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.delete_vertex(1) g.delete_vertices([1,2,3])
- has_edge(u, v, l)[source]¶
Return whether this graph has edge
(u, v)
with labell
.If
l
isNone
, return whether this graph has an edge(u, v)
with any label.INPUT:
u
,v
– two verticesl
– a label
- in_degree(v)[source]¶
Return the in-degree of a vertex.
INPUT:
v
– a vertex
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.in_degree(0) 3
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.in_degree(Integer(0)) 3
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.in_degree(0)
- iterator_edges(vertices, labels)[source]¶
Iterate over the graph’s edges.
INPUT:
vertices
– list; only returns the edges incident to at least one vertex ofvertices
labels
– boolean; whether to return edge labels too
- iterator_in_edges(vertices, labels)[source]¶
Iterate over the incoming edges incident to a sequence of vertices.
INPUT:
vertices
– list of verticeslabels
– whether to return labels too
- iterator_in_nbrs(v)[source]¶
Iterate over the in-neighbors of a vertex.
INPUT:
v
– a vertex
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.neighbors_in(0) [1, 4, 5]
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.neighbors_in(Integer(0)) [1, 4, 5]
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.neighbors_in(0)
- iterator_nbrs(v)[source]¶
Iterate over the neighbors of a vertex.
INPUT:
v
– a vertex
EXAMPLES:
sage: g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.neighbors(0) [1, 4, 5]
>>> from sage.all import * >>> g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.neighbors(Integer(0)) [1, 4, 5]
g = Graph(graphs.PetersenGraph(), data_structure='static_sparse') g.neighbors(0)
- iterator_out_edges(vertices, labels)[source]¶
Iterate over the outbound edges incident to a sequence of vertices.
INPUT:
vertices
– list of verticeslabels
– whether to return labels too
- iterator_out_nbrs(v)[source]¶
Iterate over the out-neighbors of a vertex.
INPUT:
v
– a vertex
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.neighbors_out(0) [1, 4, 5]
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.neighbors_out(Integer(0)) [1, 4, 5]
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.neighbors_out(0)
- iterator_unsorted_edges(vertices, labels)[source]¶
Iterate over the graph’s edges.
INPUT:
vertices
– list; only returns the edges incident to at least one vertex ofvertices
labels
– boolean; whether to return edge labels too
- iterator_verts(vertices)[source]¶
Iterate over the vertices.
INPUT:
vertices
– list of objects; the method will only return the elements of the graph which are contained invertices
. It’s not very efficient. Ifvertices
is equal toNone
, all the vertices are returned.
- multiple_edges(value=None)[source]¶
Return whether the graph allows multiple edges.
INPUT:
value
– only useful for compatibility with other graph backends, where this method can be used to define this boolean. This method raises an exception ifvalue
is not equal toNone
.
- num_edges(directed)[source]¶
Return the number of edges.
INPUT:
directed
– boolean; whether to consider the graph as directed or not
- out_degree(v)[source]¶
Return the out-degree of a vertex.
INPUT:
v
– a vertex
EXAMPLES:
sage: g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') sage: g.out_degree(0) 3
>>> from sage.all import * >>> g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') >>> g.out_degree(Integer(0)) 3
g = DiGraph(graphs.PetersenGraph(), data_structure='static_sparse') g.out_degree(0)
- class sage.graphs.base.static_sparse_backend.StaticSparseCGraph[source]¶
Bases:
CGraph
CGraph
class based on the sparse graph data structurestatic sparse graphs
.