Unicode Art¶
This module implements ascii art using unicode characters. It is a
strict superset of ascii_art
.
- class sage.typeset.unicode_art.UnicodeArt(lines=[], breakpoints=[], baseline=None)[source]¶
Bases:
CharacterArt
An Ascii art object is an object with some specific representation for printing.
INPUT:
lines
– the list of lines of the representation of the ascii art objectbreakpoints
– the list of points where the representation can be splitbaseline
– the reference line (from the bottom)
EXAMPLES:
sage: i = var('i') # needs sage.symbolic sage: unicode_art(sum(pi^i/factorial(i)*x^i, i, 0, oo)) # needs sage.symbolic π⋅x ℯ
>>> from sage.all import * >>> i = var('i') # needs sage.symbolic >>> unicode_art(sum(pi**i/factorial(i)*x**i, i, Integer(0), oo)) # needs sage.symbolic π⋅x ℯ
i = var('i') # needs sage.symbolic unicode_art(sum(pi^i/factorial(i)*x^i, i, 0, oo)) # needs sage.symbolic
- sage.typeset.unicode_art.unicode_art(*obj, **kwds)[source]¶
Return an unicode art representation.
INPUT:
*obj
– any number of positional arguments, of arbitrary type. The objects whose ascii art representation we want.sep
– (optional)'sep=...'
keyword argument (or'separator'
). Anything that can be converted to unicode art (default: empty unicode art). The separator in-between a list of objects. Only used if more than one object given.baseline
– (default: 0) the baseline for the objectsep_baseline
– (default: 0) the baseline for the separator
OUTPUT:
UnicodeArt
instanceEXAMPLES:
sage: result = unicode_art(integral(exp(sqrt(x))/(x+pi), x)) # needs sage.symbolic ... sage: result # needs sage.symbolic ⌠ ⎮ √x ⎮ ℯ ⎮ ───── dx ⎮ x + π ⌡ sage: ident = lambda n: identity_matrix(ZZ, n) sage: unicode_art(ident(1), ident(2), ident(3), sep=' : ') # needs sage.modules ⎛1 0 0⎞ ⎛1 0⎞ ⎜0 1 0⎟ (1) : ⎝0 1⎠ : ⎝0 0 1⎠
>>> from sage.all import * >>> result = unicode_art(integral(exp(sqrt(x))/(x+pi), x)) # needs sage.symbolic ... >>> result # needs sage.symbolic ⌠ ⎮ √x ⎮ ℯ ⎮ ───── dx ⎮ x + π ⌡ >>> ident = lambda n: identity_matrix(ZZ, n) >>> unicode_art(ident(Integer(1)), ident(Integer(2)), ident(Integer(3)), sep=' : ') # needs sage.modules ⎛1 0 0⎞ ⎛1 0⎞ ⎜0 1 0⎟ (1) : ⎝0 1⎠ : ⎝0 0 1⎠
result = unicode_art(integral(exp(sqrt(x))/(x+pi), x)) # needs sage.symbolic result # needs sage.symbolic ident = lambda n: identity_matrix(ZZ, n) unicode_art(ident(1), ident(2), ident(3), sep=' : ') # needs sage.modules
If specified, the
sep_baseline
overrides the baseline of an unicode art separator:sage: sep_line = unicode_art('\n'.join(' ⎟ ' for _ in range(5)), baseline=5) sage: unicode_art(*AlternatingSignMatrices(3), # needs sage.combinat sage.modules ....: separator=sep_line, sep_baseline=1) ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎛1 0 0⎞ ⎟ ⎛0 1 0⎞ ⎟ ⎛1 0 0⎞ ⎟ ⎛ 0 1 0⎞ ⎟ ⎛0 0 1⎞ ⎟ ⎛0 1 0⎞ ⎟ ⎛0 0 1⎞ ⎜0 1 0⎟ ⎟ ⎜1 0 0⎟ ⎟ ⎜0 0 1⎟ ⎟ ⎜ 1 -1 1⎟ ⎟ ⎜1 0 0⎟ ⎟ ⎜0 0 1⎟ ⎟ ⎜0 1 0⎟ ⎝0 0 1⎠ ⎟ ⎝0 0 1⎠ ⎟ ⎝0 1 0⎠ ⎟ ⎝ 0 1 0⎠ ⎟ ⎝0 1 0⎠ ⎟ ⎝1 0 0⎠ ⎟ ⎝1 0 0⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
>>> from sage.all import * >>> sep_line = unicode_art('\n'.join(' ⎟ ' for _ in range(Integer(5))), baseline=Integer(5)) >>> unicode_art(*AlternatingSignMatrices(Integer(3)), # needs sage.combinat sage.modules ... separator=sep_line, sep_baseline=Integer(1)) ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎛1 0 0⎞ ⎟ ⎛0 1 0⎞ ⎟ ⎛1 0 0⎞ ⎟ ⎛ 0 1 0⎞ ⎟ ⎛0 0 1⎞ ⎟ ⎛0 1 0⎞ ⎟ ⎛0 0 1⎞ ⎜0 1 0⎟ ⎟ ⎜1 0 0⎟ ⎟ ⎜0 0 1⎟ ⎟ ⎜ 1 -1 1⎟ ⎟ ⎜1 0 0⎟ ⎟ ⎜0 0 1⎟ ⎟ ⎜0 1 0⎟ ⎝0 0 1⎠ ⎟ ⎝0 0 1⎠ ⎟ ⎝0 1 0⎠ ⎟ ⎝ 0 1 0⎠ ⎟ ⎝0 1 0⎠ ⎟ ⎝1 0 0⎠ ⎟ ⎝1 0 0⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟
sep_line = unicode_art('\n'.join(' ⎟ ' for _ in range(5)), baseline=5) unicode_art(*AlternatingSignMatrices(3), # needs sage.combinat sage.modules separator=sep_line, sep_baseline=1)
- sage.typeset.unicode_art.unicode_subscript(x)[source]¶
Return the integer
x
as a superscript.EXAMPLES:
sage: from sage.typeset.unicode_art import unicode_subscript sage: unicode_subscript(15123902) '₁₅₁₂₃₉₀₂' sage: unicode_subscript(-712) '₋₇₁₂'
>>> from sage.all import * >>> from sage.typeset.unicode_art import unicode_subscript >>> unicode_subscript(Integer(15123902)) '₁₅₁₂₃₉₀₂' >>> unicode_subscript(-Integer(712)) '₋₇₁₂'
from sage.typeset.unicode_art import unicode_subscript unicode_subscript(15123902) unicode_subscript(-712)
- sage.typeset.unicode_art.unicode_superscript(x)[source]¶
Return the rational number
x
as a superscript.EXAMPLES:
sage: from sage.typeset.unicode_art import unicode_superscript sage: unicode_superscript(15123902) '¹⁵¹²³⁹⁰²' sage: unicode_superscript(-712/5) '⁻⁷¹²ᐟ⁵'
>>> from sage.all import * >>> from sage.typeset.unicode_art import unicode_superscript >>> unicode_superscript(Integer(15123902)) '¹⁵¹²³⁹⁰²' >>> unicode_superscript(-Integer(712)/Integer(5)) '⁻⁷¹²ᐟ⁵'
from sage.typeset.unicode_art import unicode_superscript unicode_superscript(15123902) unicode_superscript(-712/5)