Univariate Ore polynomials¶
This module provides the
OrePolynomial
,
which constructs a single univariate Ore polynomial over a commutative
base equipped with an endomorphism and/or a derivation.
It provides generic implementation of standard arithmetical operations
on Ore polynomials as addition, multiplication, gcd, lcm, etc.
The generic implementation of dense Ore polynomials is
OrePolynomial_generic_dense
.
The classes
ConstantOrePolynomialSection
and OrePolynomialBaseringInjection
handle conversion from an Ore polynomial ring to its base ring and vice versa.
AUTHORS:
Xavier Caruso (2020-05)
- class sage.rings.polynomial.ore_polynomial_element.ConstantOrePolynomialSection[source]¶
Bases:
Map
Representation of the canonical homomorphism from the constants of an Ore polynomial ring to the base ring.
This class is necessary for automatic coercion from zero-degree Ore polynomial ring into the base ring.
EXAMPLES:
sage: from sage.rings.polynomial.ore_polynomial_element import ConstantOrePolynomialSection sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: m = ConstantOrePolynomialSection(S, R); m Generic map: From: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1 To: Univariate Polynomial Ring in t over Rational Field
>>> from sage.all import * >>> from sage.rings.polynomial.ore_polynomial_element import ConstantOrePolynomialSection >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> m = ConstantOrePolynomialSection(S, R); m Generic map: From: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1 To: Univariate Polynomial Ring in t over Rational Field
from sage.rings.polynomial.ore_polynomial_element import ConstantOrePolynomialSection R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] m = ConstantOrePolynomialSection(S, R); m
- class sage.rings.polynomial.ore_polynomial_element.OrePolynomial[source]¶
Bases:
AlgebraElement
Abstract base class for Ore polynomials.
This class must be inherited from and have key methods overridden.
Definition
Let \(R\) be a commutative ring equipped with an automorphism \(\sigma\) and a \(\sigma\)-derivation \(\partial\).
An Ore polynomial is given by the equation:
\[F(X) = a_{n} X^{n} + \cdots + a_0,\]where the coefficients \(a_i \in R\) and \(X\) is a formal variable.
Addition between two Ore polynomials is defined by the usual addition operation and the modified multiplication is defined by the rule \(X a = \sigma(a) X + \partial(a)\) for all \(a\) in \(R\). Ore polynomials are thus non-commutative and the degree of a product is equal to the sum of the degrees of the factors.
Let \(a\) and \(b\) be two Ore polynomials in the same ring \(S\). The right (resp. left) Euclidean division of \(a\) by \(b\) is a couple \((q,r)\) of elements in \(S\) such that
\(a = q b + r\) (resp. \(a = b q + r\))
the degree of \(r\) is less than the degree of \(b\)
\(q\) (resp. \(r\)) is called the quotient (resp. the remainder) of this Euclidean division.
Properties
Keeping the previous notation, if the leading coefficient of \(b\) is a unit (e.g. if \(b\) is monic) then the quotient and the remainder in the right Euclidean division exist and are unique.
The same result holds for the left Euclidean division if in addition the twisting morphism defining the Ore polynomial ring is invertible.
EXAMPLES:
We illustrate some functionalities implemented in this class.
We create the Ore polynomial ring (here the derivation is zero):
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma]; S Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1); S Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma]; S
and some elements in it:
sage: a = t + x + 1; a x + t + 1 sage: b = S([t^2,t+1,1]); b x^2 + (t + 1)*x + t^2 sage: c = S.random_element(degree=3,monic=True) sage: c.parent() is S True
>>> from sage.all import * >>> a = t + x + Integer(1); a x + t + 1 >>> b = S([t**Integer(2),t+Integer(1),Integer(1)]); b x^2 + (t + 1)*x + t^2 >>> c = S.random_element(degree=Integer(3),monic=True) >>> c.parent() is S True
a = t + x + 1; a b = S([t^2,t+1,1]); b c = S.random_element(degree=3,monic=True) c.parent() is S
Ring operations are supported:
sage: a + b x^2 + (t + 2)*x + t^2 + t + 1 sage: a - b -x^2 - t*x - t^2 + t + 1 sage: a * b x^3 + (2*t + 3)*x^2 + (2*t^2 + 4*t + 2)*x + t^3 + t^2 sage: b * a x^3 + (2*t + 4)*x^2 + (2*t^2 + 3*t + 2)*x + t^3 + t^2 sage: a * b == b * a False sage: b^2 x^4 + (2*t + 4)*x^3 + (3*t^2 + 7*t + 6)*x^2 + (2*t^3 + 4*t^2 + 3*t + 1)*x + t^4 sage: b^2 == b*b True
>>> from sage.all import * >>> a + b x^2 + (t + 2)*x + t^2 + t + 1 >>> a - b -x^2 - t*x - t^2 + t + 1 >>> a * b x^3 + (2*t + 3)*x^2 + (2*t^2 + 4*t + 2)*x + t^3 + t^2 >>> b * a x^3 + (2*t + 4)*x^2 + (2*t^2 + 3*t + 2)*x + t^3 + t^2 >>> a * b == b * a False >>> b**Integer(2) x^4 + (2*t + 4)*x^3 + (3*t^2 + 7*t + 6)*x^2 + (2*t^3 + 4*t^2 + 3*t + 1)*x + t^4 >>> b**Integer(2) == b*b True
a + b a - b a * b b * a a * b == b * a b^2 b^2 == b*b
Sage also implements arithmetic over Ore polynomial rings. You will find below a short panorama:
sage: q,r = c.right_quo_rem(b) sage: c == q*b + r True
>>> from sage.all import * >>> q,r = c.right_quo_rem(b) >>> c == q*b + r True
q,r = c.right_quo_rem(b) c == q*b + r
The operators
//
and%
give respectively the quotient and the remainder of the right Euclidean division:sage: q == c // b True sage: r == c % b True
>>> from sage.all import * >>> q == c // b True >>> r == c % b True
q == c // b r == c % b
Here we can see the effect of the operator evaluation compared to the usual polynomial evaluation:
sage: a = x^2 sage: a(t) doctest:...: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation. See https://github.com/sagemath/sage/issues/13215 for details. t + 2
>>> from sage.all import * >>> a = x**Integer(2) >>> a(t) doctest:...: FutureWarning: This class/method/function is marked as experimental. It, its functionality or its interface might change without a formal deprecation. See https://github.com/sagemath/sage/issues/13215 for details. t + 2
a = x^2 a(t)
Here is another example over a finite field:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = x^4 + (4*t + 1)*x^3 + (t^2 + 3*t + 3)*x^2 + (3*t^2 + 2*t + 2)*x + (3*t^2 + 3*t + 1) sage: b = (2*t^2 + 3)*x^2 + (3*t^2 + 1)*x + 4*t + 2 sage: q, r = a.left_quo_rem(b) sage: q (4*t^2 + t + 1)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 4*t + 3 sage: r (t + 2)*x + 3*t^2 + 2*t + 4 sage: a == b*q + r True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = x**Integer(4) + (Integer(4)*t + Integer(1))*x**Integer(3) + (t**Integer(2) + Integer(3)*t + Integer(3))*x**Integer(2) + (Integer(3)*t**Integer(2) + Integer(2)*t + Integer(2))*x + (Integer(3)*t**Integer(2) + Integer(3)*t + Integer(1)) >>> b = (Integer(2)*t**Integer(2) + Integer(3))*x**Integer(2) + (Integer(3)*t**Integer(2) + Integer(1))*x + Integer(4)*t + Integer(2) >>> q, r = a.left_quo_rem(b) >>> q (4*t^2 + t + 1)*x^2 + (2*t^2 + 2*t + 2)*x + 2*t^2 + 4*t + 3 >>> r (t + 2)*x + 3*t^2 + 2*t + 4 >>> a == b*q + r True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = x^4 + (4*t + 1)*x^3 + (t^2 + 3*t + 3)*x^2 + (3*t^2 + 2*t + 2)*x + (3*t^2 + 3*t + 1) b = (2*t^2 + 3)*x^2 + (3*t^2 + 1)*x + 4*t + 2 q, r = a.left_quo_rem(b) q r a == b*q + r
Once we have Euclidean divisions, we have for free gcd and lcm (at least if the base ring is a field):
sage: # needs sage.rings.finite_rings sage: a = (x + t) * (x + t^2)^2 sage: b = (x + t) * (t*x + t + 1) * (x + t^2) sage: a.right_gcd(b) x + t^2 sage: a.left_gcd(b) x + t
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> a = (x + t) * (x + t**Integer(2))**Integer(2) >>> b = (x + t) * (t*x + t + Integer(1)) * (x + t**Integer(2)) >>> a.right_gcd(b) x + t^2 >>> a.left_gcd(b) x + t
# needs sage.rings.finite_rings a = (x + t) * (x + t^2)^2 b = (x + t) * (t*x + t + 1) * (x + t^2) a.right_gcd(b) a.left_gcd(b)
The left lcm has the following meaning: given Ore polynomials \(a\) and \(b\), their left lcm is the least degree polynomial \(c = ua = vb\) for some Ore polynomials \(u, v\). Such a \(c\) always exist if the base ring is a field:
sage: c = a.left_lcm(b); c # needs sage.rings.finite_rings x^5 + (4*t^2 + t + 3)*x^4 + (3*t^2 + 4*t)*x^3 + 2*t^2*x^2 + (2*t^2 + t)*x + 4*t^2 + 4 sage: c.is_right_divisible_by(a) # needs sage.rings.finite_rings True sage: c.is_right_divisible_by(b) # needs sage.rings.finite_rings True
>>> from sage.all import * >>> c = a.left_lcm(b); c # needs sage.rings.finite_rings x^5 + (4*t^2 + t + 3)*x^4 + (3*t^2 + 4*t)*x^3 + 2*t^2*x^2 + (2*t^2 + t)*x + 4*t^2 + 4 >>> c.is_right_divisible_by(a) # needs sage.rings.finite_rings True >>> c.is_right_divisible_by(b) # needs sage.rings.finite_rings True
c = a.left_lcm(b); c # needs sage.rings.finite_rings c.is_right_divisible_by(a) # needs sage.rings.finite_rings c.is_right_divisible_by(b) # needs sage.rings.finite_rings
The right lcm is defined similarly as the least degree polynomial \(c = au = bv\) for some \(u,v\):
sage: d = a.right_lcm(b); d # needs sage.rings.finite_rings x^5 + (t^2 + 1)*x^4 + (3*t^2 + 3*t + 3)*x^3 + (3*t^2 + t + 2)*x^2 + (4*t^2 + 3*t)*x + 4*t + 4 sage: d.is_left_divisible_by(a) # needs sage.rings.finite_rings True sage: d.is_left_divisible_by(b) # needs sage.rings.finite_rings True
>>> from sage.all import * >>> d = a.right_lcm(b); d # needs sage.rings.finite_rings x^5 + (t^2 + 1)*x^4 + (3*t^2 + 3*t + 3)*x^3 + (3*t^2 + t + 2)*x^2 + (4*t^2 + 3*t)*x + 4*t + 4 >>> d.is_left_divisible_by(a) # needs sage.rings.finite_rings True >>> d.is_left_divisible_by(b) # needs sage.rings.finite_rings True
d = a.right_lcm(b); d # needs sage.rings.finite_rings d.is_left_divisible_by(a) # needs sage.rings.finite_rings d.is_left_divisible_by(b) # needs sage.rings.finite_rings
- base_ring()[source]¶
Return the base ring of
self
.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = S.random_element() sage: a.base_ring() Univariate Polynomial Ring in t over Integer Ring sage: a.base_ring() is R True
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = S.random_element() >>> a.base_ring() Univariate Polynomial Ring in t over Integer Ring >>> a.base_ring() is R True
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = S.random_element() a.base_ring() a.base_ring() is R
- change_variable_name(var)[source]¶
Change the name of the variable of
self
.This will create the Ore polynomial ring with the new name but same base ring, twisting morphism and twisting derivation. The returned Ore polynomial will be an element of that Ore polynomial ring.
INPUT:
var
– the name of the new variable
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x', sigma] sage: a = x^3 + (2*t + 1)*x + t^2 + 3*t + 5 sage: b = a.change_variable_name('y'); b y^3 + (2*t + 1)*y + t^2 + 3*t + 5
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x', sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(3) + (Integer(2)*t + Integer(1))*x + t**Integer(2) + Integer(3)*t + Integer(5) >>> b = a.change_variable_name('y'); b y^3 + (2*t + 1)*y + t^2 + 3*t + 5
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x', sigma] a = x^3 + (2*t + 1)*x + t^2 + 3*t + 5 b = a.change_variable_name('y'); b
Note that a new parent is created at the same time:
sage: b.parent() Ore Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1
>>> from sage.all import * >>> b.parent() Ore Polynomial Ring in y over Univariate Polynomial Ring in t over Integer Ring twisted by t |--> t + 1
b.parent()
- coefficients(sparse=True)[source]¶
Return the coefficients of the monomials appearing in
self
.If
sparse=True
(the default), return only the nonzero coefficients. Otherwise, return the same value asself.list()
.Note
This should be overridden in subclasses.
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: a.coefficients() [t^2 + 1, t + 1, 1] sage: a.coefficients(sparse=False) [t^2 + 1, 0, t + 1, 0, 1]
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> a.coefficients() [t^2 + 1, t + 1, 1] >>> a.coefficients(sparse=False) [t^2 + 1, 0, t + 1, 0, 1]
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 a.coefficients() a.coefficients(sparse=False)
- constant_coefficient()[source]¶
Return the constant coefficient (i.e., the coefficient of term of degree \(0\)) of
self
.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x + t^2 + 2 sage: a.constant_coefficient() t^2 + 2
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x + t**Integer(2) + Integer(2) >>> a.constant_coefficient() t^2 + 2
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + t^2 + 2 a.constant_coefficient()
- degree()[source]¶
Return the degree of
self
.By convention, the zero Ore polynomial has degree \(-1\).
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2 + t*x^3 + t^2*x + 1 sage: a.degree() 3 sage: S.zero().degree() -1 sage: S(5).degree() 0
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x**Integer(3) + t**Integer(2)*x + Integer(1) >>> a.degree() 3 >>> S.zero().degree() -1 >>> S(Integer(5)).degree() 0
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2 + t*x^3 + t^2*x + 1 a.degree() S.zero().degree() S(5).degree()
- exponents()[source]¶
Return the exponents of the monomials appearing in
self
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: a.exponents() [0, 2, 4]
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> a.exponents() [0, 2, 4]
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 a.exponents()
- hamming_weight()[source]¶
Return the number of nonzero coefficients of
self
.This is also known as the weight, hamming weight or sparsity.
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: a.number_of_terms() 3
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> a.number_of_terms() 3
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 a.number_of_terms()
This is also an alias for
hamming_weight
:sage: a.hamming_weight() 3
>>> from sage.all import * >>> a.hamming_weight() 3
a.hamming_weight()
- is_constant()[source]¶
Return whether
self
is a constant polynomial.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: R(2).is_constant() True sage: (x + 1).is_constant() False
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> R(Integer(2)).is_constant() True >>> (x + Integer(1)).is_constant() False
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] R(2).is_constant() (x + 1).is_constant()
- is_left_divisible_by(other)[source]¶
Check if
self
is divisible byother
on the left.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT: boolean
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = x^2 + t*x + t^2 + 3 sage: b = x^3 + (t + 1)*x^2 + 1 sage: c = a*b sage: c.is_left_divisible_by(a) True sage: c.is_left_divisible_by(b) False
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x + t**Integer(2) + Integer(3) >>> b = x**Integer(3) + (t + Integer(1))*x**Integer(2) + Integer(1) >>> c = a*b >>> c.is_left_divisible_by(a) True >>> c.is_left_divisible_by(b) False
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = x^2 + t*x + t^2 + 3 b = x^3 + (t + 1)*x^2 + 1 c = a*b c.is_left_divisible_by(a) c.is_left_divisible_by(b)
Divisibility by \(0\) does not make sense:
sage: c.is_left_divisible_by(S(0)) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
>>> from sage.all import * >>> c.is_left_divisible_by(S(Integer(0))) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
c.is_left_divisible_by(S(0)) # needs sage.rings.finite_rings
- is_monic()[source]¶
Return
True
if this Ore polynomial is monic.The zero polynomial is by definition not monic.
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x + t sage: a.is_monic() True sage: a = 0*x sage: a.is_monic() False sage: a = t*x^3 + x^4 + (t+1)*x^2 sage: a.is_monic() True sage: a = (t^2 + 2*t)*x^2 + x^3 + t^10*x^5 sage: a.is_monic() False
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x + t >>> a.is_monic() True >>> a = Integer(0)*x >>> a.is_monic() False >>> a = t*x**Integer(3) + x**Integer(4) + (t+Integer(1))*x**Integer(2) >>> a.is_monic() True >>> a = (t**Integer(2) + Integer(2)*t)*x**Integer(2) + x**Integer(3) + t**Integer(10)*x**Integer(5) >>> a.is_monic() False
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + t a.is_monic() a = 0*x a.is_monic() a = t*x^3 + x^4 + (t+1)*x^2 a.is_monic() a = (t^2 + 2*t)*x^2 + x^3 + t^10*x^5 a.is_monic()
- is_monomial()[source]¶
Return
True
ifself
is a monomial, i.e., a power of the generator.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: x.is_monomial() True sage: (x+1).is_monomial() False sage: (x^2).is_monomial() True sage: S(1).is_monomial() True
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> x.is_monomial() True >>> (x+Integer(1)).is_monomial() False >>> (x**Integer(2)).is_monomial() True >>> S(Integer(1)).is_monomial() True
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] x.is_monomial() (x+1).is_monomial() (x^2).is_monomial() S(1).is_monomial()
The coefficient must be 1:
sage: (2*x^5).is_monomial() False sage: S(t).is_monomial() False
>>> from sage.all import * >>> (Integer(2)*x**Integer(5)).is_monomial() False >>> S(t).is_monomial() False
(2*x^5).is_monomial() S(t).is_monomial()
To allow a non-1 leading coefficient, use is_term():
sage: (2*x^5).is_term() True sage: S(t).is_term() True
>>> from sage.all import * >>> (Integer(2)*x**Integer(5)).is_term() True >>> S(t).is_term() True
(2*x^5).is_term() S(t).is_term()
- is_nilpotent()[source]¶
Check if
self
is nilpotent.Note
The paper “Nilpotents and units in skew polynomial rings over commutative rings” by M. Rimmer and K.R. Pearson describes a method to check whether a given skew polynomial is nilpotent. That method however, requires one to know the order of the automorphism which is not available in Sage. This method is thus not yet implemented.
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: x.is_nilpotent() Traceback (most recent call last): ... NotImplementedError
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> x.is_nilpotent() Traceback (most recent call last): ... NotImplementedError
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] x.is_nilpotent()
- is_one()[source]¶
Test whether this polynomial is \(1\).
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: R(1).is_one() True sage: (x + 3).is_one() False
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> R(Integer(1)).is_one() True >>> (x + Integer(3)).is_one() False
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] R(1).is_one() (x + 3).is_one()
- is_right_divisible_by(other)[source]¶
Check if
self
is divisible byother
on the right.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT: boolean
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = x^2 + t*x + t^2 + 3 sage: b = x^3 + (t + 1)*x^2 + 1 sage: c = a*b sage: c.is_right_divisible_by(a) False sage: c.is_right_divisible_by(b) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x + t**Integer(2) + Integer(3) >>> b = x**Integer(3) + (t + Integer(1))*x**Integer(2) + Integer(1) >>> c = a*b >>> c.is_right_divisible_by(a) False >>> c.is_right_divisible_by(b) True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = x^2 + t*x + t^2 + 3 b = x^3 + (t + 1)*x^2 + 1 c = a*b c.is_right_divisible_by(a) c.is_right_divisible_by(b)
Divisibility by \(0\) does not make sense:
sage: c.is_right_divisible_by(S(0)) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
>>> from sage.all import * >>> c.is_right_divisible_by(S(Integer(0))) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
c.is_right_divisible_by(S(0)) # needs sage.rings.finite_rings
This function does not work if the leading coefficient of the divisor is not a unit:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2 + 2*x + t sage: b = (t+1)*x + t^2 sage: c = a*b sage: c.is_right_divisible_by(b) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + Integer(2)*x + t >>> b = (t+Integer(1))*x + t**Integer(2) >>> c = a*b >>> c.is_right_divisible_by(b) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2 + 2*x + t b = (t+1)*x + t^2 c = a*b c.is_right_divisible_by(b)
- is_term()[source]¶
Return
True
ifself
is an element of the base ring times a power of the generator.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: x.is_term() True sage: R(1).is_term() True sage: (3*x^5).is_term() True sage: (1+3*x^5).is_term() False
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> x.is_term() True >>> R(Integer(1)).is_term() True >>> (Integer(3)*x**Integer(5)).is_term() True >>> (Integer(1)+Integer(3)*x**Integer(5)).is_term() False
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] x.is_term() R(1).is_term() (3*x^5).is_term() (1+3*x^5).is_term()
If you want to test that
self
also has leading coefficient 1, useis_monomial()
instead:sage: (3*x^5).is_monomial() False
>>> from sage.all import * >>> (Integer(3)*x**Integer(5)).is_monomial() False
(3*x^5).is_monomial()
- is_unit()[source]¶
Return
True
if this Ore polynomial is a unit.When the base ring \(R\) is an integral domain, then an Ore polynomial \(f\) is a unit if and only if degree of \(f\) is \(0\) and \(f\) is then a unit in \(R\).
Note
The case when \(R\) is not an integral domain is not yet implemented.
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x + (t+1)*x^5 + t^2*x^3 - x^5 sage: a.is_unit() False
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x + (t+Integer(1))*x**Integer(5) + t**Integer(2)*x**Integer(3) - x**Integer(5) >>> a.is_unit() False
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + (t+1)*x^5 + t^2*x^3 - x^5 a.is_unit()
- is_zero()[source]¶
Return
True
ifself
is the zero polynomial.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x + 1 sage: a.is_zero() False sage: b = S.zero() sage: b.is_zero() True
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x + Integer(1) >>> a.is_zero() False >>> b = S.zero() >>> b.is_zero() True
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + 1 a.is_zero() b = S.zero() b.is_zero()
- leading_coefficient()[source]¶
Return the coefficient of the highest-degree monomial of
self
.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (t+1)*x^5 + t^2*x^3 + x sage: a.leading_coefficient() t + 1
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (t+Integer(1))*x**Integer(5) + t**Integer(2)*x**Integer(3) + x >>> a.leading_coefficient() t + 1
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (t+1)*x^5 + t^2*x^3 + x a.leading_coefficient()
By convention, the leading coefficient to the zero polynomial is zero:
sage: S(0).leading_coefficient() 0
>>> from sage.all import * >>> S(Integer(0)).leading_coefficient() 0
S(0).leading_coefficient()
- left_divides(other)[source]¶
Check if
self
dividesother
on the left.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT: boolean
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = x^2 + t*x + t^2 + 3 sage: b = x^3 + (t + 1)*x^2 + 1 sage: c = a * b sage: a.left_divides(c) True sage: b.left_divides(c) False
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x + t**Integer(2) + Integer(3) >>> b = x**Integer(3) + (t + Integer(1))*x**Integer(2) + Integer(1) >>> c = a * b >>> a.left_divides(c) True >>> b.left_divides(c) False
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = x^2 + t*x + t^2 + 3 b = x^3 + (t + 1)*x^2 + 1 c = a * b a.left_divides(c) b.left_divides(c)
Divisibility by \(0\) does not make sense:
sage: S(0).left_divides(c) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
>>> from sage.all import * >>> S(Integer(0)).left_divides(c) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
S(0).left_divides(c) # needs sage.rings.finite_rings
- left_gcd(other, monic=True)[source]¶
Return the left gcd of
self
andother
.INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the left gcd should be normalized to be monic
OUTPUT:
The left gcd of
self
andother
, that is an Ore polynomial \(g\) with the following property: any Ore polynomial is divisible on the left by \(g\) iff it is divisible on the left by bothself
andother
. If monic isTrue
, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)Note
Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twisting morphism is bijective.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: a.left_gcd(b) x + t
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> a.left_gcd(b) x + t
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) a.left_gcd(b)
Specifying
monic=False
, we can get a nonmonic gcd:sage: a.left_gcd(b,monic=False) # needs sage.rings.finite_rings 2*t*x + 4*t + 2
>>> from sage.all import * >>> a.left_gcd(b,monic=False) # needs sage.rings.finite_rings 2*t*x + 4*t + 2
a.left_gcd(b,monic=False) # needs sage.rings.finite_rings
The base ring needs to be a field:
sage: # needs sage.rings.finite_rings sage: R.<t> = QQ[] sage: sigma = R.hom([t + 1]) sage: S.<x> = R['x',sigma] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: a.left_gcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t + Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> a.left_gcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
# needs sage.rings.finite_rings R.<t> = QQ[] sigma = R.hom([t + 1]) S.<x> = R['x',sigma] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) a.left_gcd(b)
And the twisting morphism needs to be bijective:
sage: # needs sage.rings.finite_rings sage: FR = R.fraction_field() sage: f = FR.hom([FR(t)^2]) sage: S.<x> = FR['x',f] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: a.left_gcd(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> FR = R.fraction_field() >>> f = FR.hom([FR(t)**Integer(2)]) >>> S = FR['x',f]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> a.left_gcd(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
# needs sage.rings.finite_rings FR = R.fraction_field() f = FR.hom([FR(t)^2]) S.<x> = FR['x',f] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) a.left_gcd(b)
- left_lcm(other, monic=True)[source]¶
Return the left lcm of
self
andother
.INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the left lcm should be normalized to be monic
OUTPUT:
The left lcm of
self
andother
, that is an Ore polynomial \(l\) with the following property: any Ore polynomial is a left multiple of \(l\) (right divisible by \(l\)) iff it is a left multiple of bothself
andother
(right divisible byself
andother
). If monic isTrue
, \(l\) is in addition monic. (With this extra condition, it is uniquely determined.)Note
Works only if the base ring is a field (otherwise left lcm do not exist in general).
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x + t^2) * (x + t) sage: b = 2 * (x^2 + t + 1) * (x * t) sage: c = a.left_lcm(b); c x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x sage: c.is_right_divisible_by(a) True sage: c.is_right_divisible_by(b) True sage: a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x + t**Integer(2)) * (x + t) >>> b = Integer(2) * (x**Integer(2) + t + Integer(1)) * (x * t) >>> c = a.left_lcm(b); c x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x >>> c.is_right_divisible_by(a) True >>> c.is_right_divisible_by(b) True >>> a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree() True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x + t^2) * (x + t) b = 2 * (x^2 + t + 1) * (x * t) c = a.left_lcm(b); c c.is_right_divisible_by(a) c.is_right_divisible_by(b) a.degree() + b.degree() == c.degree() + a.right_gcd(b).degree()
Specifying
monic=False
, we can get a nonmonic lcm:sage: a.left_lcm(b,monic=False) # needs sage.rings.finite_rings (t^2 + t)*x^5 + (4*t^2 + 4*t + 1)*x^4 + (t + 1)*x^3 + (t^2 + 2)*x^2 + (3*t + 4)*x
>>> from sage.all import * >>> a.left_lcm(b,monic=False) # needs sage.rings.finite_rings (t^2 + t)*x^5 + (4*t^2 + 4*t + 1)*x^4 + (t + 1)*x^3 + (t^2 + 2)*x^2 + (3*t + 4)*x
a.left_lcm(b,monic=False) # needs sage.rings.finite_rings
The base ring needs to be a field:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (x + t^2) * (x + t) sage: b = 2 * (x^2 + t + 1) * (x * t) sage: a.left_lcm(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x + t**Integer(2)) * (x + t) >>> b = Integer(2) * (x**Integer(2) + t + Integer(1)) * (x * t) >>> a.left_lcm(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (x + t^2) * (x + t) b = 2 * (x^2 + t + 1) * (x * t) a.left_lcm(b)
- left_mod(other)[source]¶
Return the remainder of left division of
self
byother
.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = 1 + t*x^2 sage: b = x + 1 sage: a.left_mod(b) 2*t^2 + 4*t
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = Integer(1) + t*x**Integer(2) >>> b = x + Integer(1) >>> a.left_mod(b) 2*t^2 + 4*t
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = 1 + t*x^2 b = x + 1 a.left_mod(b)
- left_monic()[source]¶
Return the unique monic Ore polynomial \(m\) which divides this polynomial on the left and has the same degree.
Given an Ore polynomial \(P\) of degree \(n\), its left monic is given by \(P \cdot \sigma^{-n}(1/k)\), where \(k\) is the leading coefficient of \(P\) and \(\sigma\) is the twisting morphism.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 sage: b = a.left_monic(); b x^3 + (4*t^2 + 3*t)*x^2 + (4*t + 2)*x + 2*t^2 + 4*t + 3
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (Integer(3)*t**Integer(2) + Integer(3)*t + Integer(2))*x**Integer(3) + (Integer(2)*t**Integer(2) + Integer(3))*x**Integer(2) + (Integer(4)*t**Integer(2) + t + Integer(4))*x + Integer(2)*t**Integer(2) + Integer(2) >>> b = a.left_monic(); b x^3 + (4*t^2 + 3*t)*x^2 + (4*t + 2)*x + 2*t^2 + 4*t + 3
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 b = a.left_monic(); b
Check list:
sage: # needs sage.rings.finite_rings sage: b.degree() == a.degree() True sage: a.is_left_divisible_by(b) True sage: twist = S.twisting_morphism(-a.degree()) sage: a == b * twist(a.leading_coefficient()) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> b.degree() == a.degree() True >>> a.is_left_divisible_by(b) True >>> twist = S.twisting_morphism(-a.degree()) >>> a == b * twist(a.leading_coefficient()) True
# needs sage.rings.finite_rings b.degree() == a.degree() a.is_left_divisible_by(b) twist = S.twisting_morphism(-a.degree()) a == b * twist(a.leading_coefficient())
Note that \(b\) does not divide \(a\) on the right:
sage: a.is_right_divisible_by(b) # needs sage.rings.finite_rings False
>>> from sage.all import * >>> a.is_right_divisible_by(b) # needs sage.rings.finite_rings False
a.is_right_divisible_by(b) # needs sage.rings.finite_rings
This function does not work if the leading coefficient is not a unit:
sage: R.<t> = QQ[] sage: der = R.derivation() sage: S.<x> = R['x', der] sage: a = t*x sage: a.left_monic() Traceback (most recent call last): ... NotImplementedError: the leading coefficient is not a unit
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> der = R.derivation() >>> S = R['x', der]; (x,) = S._first_ngens(1) >>> a = t*x >>> a.left_monic() Traceback (most recent call last): ... NotImplementedError: the leading coefficient is not a unit
R.<t> = QQ[] der = R.derivation() S.<x> = R['x', der] a = t*x a.left_monic()
- left_quo_rem(other)[source]¶
Return the quotient and remainder of the left Euclidean division of
self
byother
.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT:
the quotient and the remainder of the left Euclidean division of this Ore polynomial by
other
Note
This will fail if the leading coefficient of
other
is not a unit or if Sage can’t invert the twisting morphism.EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 sage: b = (3*t^2 + 4*t + 2)*x^2 + (2*t^2 + 4*t + 3)*x + 2*t^2 + t + 1 sage: q,r = a.left_quo_rem(b) sage: a == b*q + r True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (Integer(3)*t**Integer(2) + Integer(3)*t + Integer(2))*x**Integer(3) + (Integer(2)*t**Integer(2) + Integer(3))*x**Integer(2) + (Integer(4)*t**Integer(2) + t + Integer(4))*x + Integer(2)*t**Integer(2) + Integer(2) >>> b = (Integer(3)*t**Integer(2) + Integer(4)*t + Integer(2))*x**Integer(2) + (Integer(2)*t**Integer(2) + Integer(4)*t + Integer(3))*x + Integer(2)*t**Integer(2) + t + Integer(1) >>> q,r = a.left_quo_rem(b) >>> a == b*q + r True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 b = (3*t^2 + 4*t + 2)*x^2 + (2*t^2 + 4*t + 3)*x + 2*t^2 + t + 1 q,r = a.left_quo_rem(b) a == b*q + r
In the following example, Sage does not know the inverse of the twisting morphism:
sage: R.<t> = QQ[] sage: K = R.fraction_field() sage: sigma = K.hom([(t+1)/(t-1)]) sage: S.<x> = K['x',sigma] sage: a = (-2*t^2 - t + 1)*x^3 + (-t^2 + t)*x^2 + (-12*t - 2)*x - t^2 - 95*t + 1 sage: b = x^2 + (5*t - 6)*x - 4*t^2 + 4*t - 1 sage: a.left_quo_rem(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> (t + 1)/(t - 1)
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> K = R.fraction_field() >>> sigma = K.hom([(t+Integer(1))/(t-Integer(1))]) >>> S = K['x',sigma]; (x,) = S._first_ngens(1) >>> a = (-Integer(2)*t**Integer(2) - t + Integer(1))*x**Integer(3) + (-t**Integer(2) + t)*x**Integer(2) + (-Integer(12)*t - Integer(2))*x - t**Integer(2) - Integer(95)*t + Integer(1) >>> b = x**Integer(2) + (Integer(5)*t - Integer(6))*x - Integer(4)*t**Integer(2) + Integer(4)*t - Integer(1) >>> a.left_quo_rem(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> (t + 1)/(t - 1)
R.<t> = QQ[] K = R.fraction_field() sigma = K.hom([(t+1)/(t-1)]) S.<x> = K['x',sigma] a = (-2*t^2 - t + 1)*x^3 + (-t^2 + t)*x^2 + (-12*t - 2)*x - t^2 - 95*t + 1 b = x^2 + (5*t - 6)*x - 4*t^2 + 4*t - 1 a.left_quo_rem(b)
- left_xgcd(other, monic=True)[source]¶
Return the left gcd of
self
andother
along with the coefficients for the linear combination.If \(a\) is
self
and \(b\) isother
, then there are Ore polynomials \(u\) and \(v\) such that \(g = a u + b v\), where \(g\) is the left gcd of \(a\) and \(b\). This method returns \((g, u, v)\).INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the left gcd should be normalized to be monic
OUTPUT:
The left gcd of
self
andother
, that is an Ore polynomial \(g\) with the following property: any Ore polynomial is divisible on the left by \(g\) iff it is divisible on the left by bothself
andother
. If monic isTrue
, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)Two Ore polynomials \(u\) and \(v\) such that:
\[g = a \cdot u + b \cdot v,\]where \(s\) is
self
and \(b\) isother
.
Note
Works only if following two conditions are fulfilled (otherwise left gcd do not exist in general): 1) the base ring is a field and 2) the twisting morphism is bijective.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: g,u,v = a.left_xgcd(b); g x + t sage: a*u + b*v == g True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> g,u,v = a.left_xgcd(b); g x + t >>> a*u + b*v == g True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) g,u,v = a.left_xgcd(b); g a*u + b*v == g
Specifying
monic=False
, we can get a nonmonic gcd:sage: g,u,v = a.left_xgcd(b, monic=False); g # needs sage.rings.finite_rings 2*t*x + 4*t + 2 sage: a*u + b*v == g # needs sage.rings.finite_rings True
>>> from sage.all import * >>> g,u,v = a.left_xgcd(b, monic=False); g # needs sage.rings.finite_rings 2*t*x + 4*t + 2 >>> a*u + b*v == g # needs sage.rings.finite_rings True
g,u,v = a.left_xgcd(b, monic=False); g # needs sage.rings.finite_rings a*u + b*v == g # needs sage.rings.finite_rings
The base ring must be a field:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: a.left_xgcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> a.left_xgcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) a.left_xgcd(b)
And the twisting morphism must be bijective:
sage: FR = R.fraction_field() sage: f = FR.hom([FR(t)^2]) sage: S.<x> = FR['x',f] sage: a = (x + t) * (x^2 + t*x + 1) sage: b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) sage: a.left_xgcd(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
>>> from sage.all import * >>> FR = R.fraction_field() >>> f = FR.hom([FR(t)**Integer(2)]) >>> S = FR['x',f]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x**Integer(2) + t*x + Integer(1)) >>> b = Integer(2) * (x + t) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) >>> a.left_xgcd(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
FR = R.fraction_field() f = FR.hom([FR(t)^2]) S.<x> = FR['x',f] a = (x + t) * (x^2 + t*x + 1) b = 2 * (x + t) * (x^3 + (t+1)*x^2 + t^2) a.left_xgcd(b)
- left_xlcm(other, monic=True)[source]¶
Return the left lcm \(L\) of
self
andother
together with two Ore polynomials \(U\) and \(V\) such that\[U \cdot \text{self} = V \cdot \text{other} = L.\]EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: P = (x + t^2) * (x + t) sage: Q = 2 * (x^2 + t + 1) * (x * t) sage: L, U, V = P.left_xlcm(Q) sage: L x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x sage: U * P == L # needs sage.rings.finite_rings True sage: V * Q == L # needs sage.rings.finite_rings True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> P = (x + t**Integer(2)) * (x + t) >>> Q = Integer(2) * (x**Integer(2) + t + Integer(1)) * (x * t) >>> L, U, V = P.left_xlcm(Q) >>> L x^5 + (2*t^2 + t + 4)*x^4 + (3*t^2 + 4)*x^3 + (3*t^2 + 3*t + 2)*x^2 + (t^2 + t + 2)*x >>> U * P == L # needs sage.rings.finite_rings True >>> V * Q == L # needs sage.rings.finite_rings True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] P = (x + t^2) * (x + t) Q = 2 * (x^2 + t + 1) * (x * t) L, U, V = P.left_xlcm(Q) L U * P == L # needs sage.rings.finite_rings V * Q == L # needs sage.rings.finite_rings
- number_of_terms()[source]¶
Return the number of nonzero coefficients of
self
.This is also known as the weight, hamming weight or sparsity.
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: a.number_of_terms() 3
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> a.number_of_terms() 3
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 a.number_of_terms()
This is also an alias for
hamming_weight
:sage: a.hamming_weight() 3
>>> from sage.all import * >>> a.hamming_weight() 3
a.hamming_weight()
- padded_list(n=None)[source]¶
Return list of coefficients of
self
up to (but not including) degree \(n\).Includes \(0`s in the list on the right so that the list always has length exactly `n\).
INPUT:
n
– (default:None
) if given, an integer that is at least \(0\)
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + t*x^3 + t^2*x^5 sage: a.padded_list() [1, 0, 0, t, 0, t^2] sage: a.padded_list(10) [1, 0, 0, t, 0, t^2, 0, 0, 0, 0] sage: len(a.padded_list(10)) 10 sage: a.padded_list(3) [1, 0, 0] sage: a.padded_list(0) [] sage: a.padded_list(-1) Traceback (most recent call last): ... ValueError: n must be at least 0
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + t*x**Integer(3) + t**Integer(2)*x**Integer(5) >>> a.padded_list() [1, 0, 0, t, 0, t^2] >>> a.padded_list(Integer(10)) [1, 0, 0, t, 0, t^2, 0, 0, 0, 0] >>> len(a.padded_list(Integer(10))) 10 >>> a.padded_list(Integer(3)) [1, 0, 0] >>> a.padded_list(Integer(0)) [] >>> a.padded_list(-Integer(1)) Traceback (most recent call last): ... ValueError: n must be at least 0
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + t*x^3 + t^2*x^5 a.padded_list() a.padded_list(10) len(a.padded_list(10)) a.padded_list(3) a.padded_list(0) a.padded_list(-1)
- prec()[source]¶
Return the precision of
self
.This is always infinity, since polynomials are of infinite precision by definition (there is no big-oh).
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: x.prec() +Infinity
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> x.prec() +Infinity
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] x.prec()
- right_divides(other)[source]¶
Check if
self
dividesother
on the right.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT: boolean
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = x^2 + t*x + t^2 + 3 sage: b = x^3 + (t + 1)*x^2 + 1 sage: c = a * b sage: a.right_divides(c) False sage: b.right_divides(c) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x + t**Integer(2) + Integer(3) >>> b = x**Integer(3) + (t + Integer(1))*x**Integer(2) + Integer(1) >>> c = a * b >>> a.right_divides(c) False >>> b.right_divides(c) True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = x^2 + t*x + t^2 + 3 b = x^3 + (t + 1)*x^2 + 1 c = a * b a.right_divides(c) b.right_divides(c)
Divisibility by \(0\) does not make sense:
sage: S(0).right_divides(c) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
>>> from sage.all import * >>> S(Integer(0)).right_divides(c) # needs sage.rings.finite_rings Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid
S(0).right_divides(c) # needs sage.rings.finite_rings
This function does not work if the leading coefficient of the divisor is not a unit:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2 + 2*x + t sage: b = (t+1)*x + t^2 sage: c = a*b sage: b.right_divides(c) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + Integer(2)*x + t >>> b = (t+Integer(1))*x + t**Integer(2) >>> c = a*b >>> b.right_divides(c) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2 + 2*x + t b = (t+1)*x + t^2 c = a*b b.right_divides(c)
- right_gcd(other, monic=True)[source]¶
Return the right gcd of
self
andother
.INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the right gcd should be normalized to be monic
OUTPUT:
The right gcd of
self
andother
, that is an Ore polynomial \(g\) with the following property: any Ore polynomial is divisible on the right by \(g\) iff it is divisible on the right by bothself
andother
. If monic isTrue
, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)Note
Works only if the base ring is a field (otherwise right gcd do not exist in general).
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x^2 + t*x + 1) * (x + t) sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) sage: a.right_gcd(b) x + t
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x**Integer(2) + t*x + Integer(1)) * (x + t) >>> b = Integer(2) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) * (x + t) >>> a.right_gcd(b) x + t
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x^2 + t*x + 1) * (x + t) b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) a.right_gcd(b)
Specifying
monic=False
, we can get a nonmonic gcd:sage: a.right_gcd(b,monic=False) # needs sage.rings.finite_rings (4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
>>> from sage.all import * >>> a.right_gcd(b,monic=False) # needs sage.rings.finite_rings (4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3
a.right_gcd(b,monic=False) # needs sage.rings.finite_rings
The base ring need to be a field:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (x^2 + t*x + 1) * (x + t) sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) sage: a.right_gcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x**Integer(2) + t*x + Integer(1)) * (x + t) >>> b = Integer(2) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) * (x + t) >>> a.right_gcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (x^2 + t*x + 1) * (x + t) b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) a.right_gcd(b)
- right_lcm(other, monic=True)[source]¶
Return the right lcm of
self
andother
.INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the right lcm should be normalized to be monic
OUTPUT:
The right lcm of
self
andother
, that is an Ore polynomial \(l\) with the following property: any Ore polynomial is a right multiple of \(g\) (left divisible by \(l\)) iff it is a right multiple of bothself
andother
(left divisible byself
andother
). If monic isTrue
, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)Note
Works only if two following conditions are fulfilled (otherwise right lcm do not exist in general): 1) the base ring is a field and 2) the twisting morphism on this field is bijective.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x + t) * (x + t^2) sage: b = 2 * (x + t) * (x^2 + t + 1) sage: c = a.right_lcm(b); c x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 + 4 sage: c.is_left_divisible_by(a) True sage: c.is_left_divisible_by(b) True sage: a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree() True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x + t**Integer(2)) >>> b = Integer(2) * (x + t) * (x**Integer(2) + t + Integer(1)) >>> c = a.right_lcm(b); c x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 + 4 >>> c.is_left_divisible_by(a) True >>> c.is_left_divisible_by(b) True >>> a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree() True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x + t) * (x + t^2) b = 2 * (x + t) * (x^2 + t + 1) c = a.right_lcm(b); c c.is_left_divisible_by(a) c.is_left_divisible_by(b) a.degree() + b.degree() == c.degree() + a.left_gcd(b).degree()
Specifying
monic=False
, we can get a nonmonic gcd:sage: a.right_lcm(b,monic=False) # needs sage.rings.finite_rings 2*t*x^4 + (3*t + 1)*x^3 + (4*t^2 + 4*t + 3)*x^2 + (3*t^2 + 4*t + 2)*x + 3*t^2 + 2*t + 3
>>> from sage.all import * >>> a.right_lcm(b,monic=False) # needs sage.rings.finite_rings 2*t*x^4 + (3*t + 1)*x^3 + (4*t^2 + 4*t + 3)*x^2 + (3*t^2 + 4*t + 2)*x + 3*t^2 + 2*t + 3
a.right_lcm(b,monic=False) # needs sage.rings.finite_rings
The base ring needs to be a field:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (x + t) * (x + t^2) sage: b = 2 * (x + t) * (x^2 + t + 1) sage: a.right_lcm(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x + t**Integer(2)) >>> b = Integer(2) * (x + t) * (x**Integer(2) + t + Integer(1)) >>> a.right_lcm(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (x + t) * (x + t^2) b = 2 * (x + t) * (x^2 + t + 1) a.right_lcm(b)
And the twisting morphism needs to be bijective:
sage: FR = R.fraction_field() sage: f = FR.hom([FR(t)^2]) sage: S.<x> = FR['x',f] sage: a = (x + t) * (x + t^2) sage: b = 2 * (x + t) * (x^2 + t + 1) sage: a.right_lcm(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
>>> from sage.all import * >>> FR = R.fraction_field() >>> f = FR.hom([FR(t)**Integer(2)]) >>> S = FR['x',f]; (x,) = S._first_ngens(1) >>> a = (x + t) * (x + t**Integer(2)) >>> b = Integer(2) * (x + t) * (x**Integer(2) + t + Integer(1)) >>> a.right_lcm(b) Traceback (most recent call last): ... NotImplementedError: inversion of the twisting morphism Ring endomorphism of Fraction Field of Univariate Polynomial Ring in t over Rational Field Defn: t |--> t^2
FR = R.fraction_field() f = FR.hom([FR(t)^2]) S.<x> = FR['x',f] a = (x + t) * (x + t^2) b = 2 * (x + t) * (x^2 + t + 1) a.right_lcm(b)
- right_mod(other)[source]¶
Return the remainder of right division of
self
byother
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + t*x^2 sage: b = x + 1 sage: a % b t + 1 sage: (x^3 + x - 1).right_mod(x^2 - 1) 2*x - 1
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + t*x**Integer(2) >>> b = x + Integer(1) >>> a % b t + 1 >>> (x**Integer(3) + x - Integer(1)).right_mod(x**Integer(2) - Integer(1)) 2*x - 1
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + t*x^2 b = x + 1 a % b (x^3 + x - 1).right_mod(x^2 - 1)
- right_monic()[source]¶
Return the unique monic Ore polynomial which divides this polynomial on the right and has the same degree.
Given an Ore polynomial \(P\) of degree \(n\), its right monic is given by \((1/k) \cdot P\), where \(k\) is the leading coefficient of \(P\).
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 sage: b = a.right_monic(); b x^3 + (2*t^2 + 3*t + 4)*x^2 + (3*t^2 + 4*t + 1)*x + 2*t^2 + 4*t + 3
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (Integer(3)*t**Integer(2) + Integer(3)*t + Integer(2))*x**Integer(3) + (Integer(2)*t**Integer(2) + Integer(3))*x**Integer(2) + (Integer(4)*t**Integer(2) + t + Integer(4))*x + Integer(2)*t**Integer(2) + Integer(2) >>> b = a.right_monic(); b x^3 + (2*t^2 + 3*t + 4)*x^2 + (3*t^2 + 4*t + 1)*x + 2*t^2 + 4*t + 3
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (3*t^2 + 3*t + 2)*x^3 + (2*t^2 + 3)*x^2 + (4*t^2 + t + 4)*x + 2*t^2 + 2 b = a.right_monic(); b
Check list:
sage: b.degree() == a.degree() # needs sage.rings.finite_rings True sage: a.is_right_divisible_by(b) # needs sage.rings.finite_rings True sage: a == a.leading_coefficient() * b # needs sage.rings.finite_rings True
>>> from sage.all import * >>> b.degree() == a.degree() # needs sage.rings.finite_rings True >>> a.is_right_divisible_by(b) # needs sage.rings.finite_rings True >>> a == a.leading_coefficient() * b # needs sage.rings.finite_rings True
b.degree() == a.degree() # needs sage.rings.finite_rings a.is_right_divisible_by(b) # needs sage.rings.finite_rings a == a.leading_coefficient() * b # needs sage.rings.finite_rings
Note that \(b\) does not divide \(a\) on the right:
sage: a.is_left_divisible_by(b) # needs sage.rings.finite_rings False
>>> from sage.all import * >>> a.is_left_divisible_by(b) # needs sage.rings.finite_rings False
a.is_left_divisible_by(b) # needs sage.rings.finite_rings
This function does not work if the leading coefficient is not a unit:
sage: R.<t> = QQ[] sage: der = R.derivation() sage: S.<x> = R['x', der] sage: a = t*x sage: a.right_monic() Traceback (most recent call last): ... NotImplementedError: the leading coefficient is not a unit
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> der = R.derivation() >>> S = R['x', der]; (x,) = S._first_ngens(1) >>> a = t*x >>> a.right_monic() Traceback (most recent call last): ... NotImplementedError: the leading coefficient is not a unit
R.<t> = QQ[] der = R.derivation() S.<x> = R['x', der] a = t*x a.right_monic()
- right_quo_rem(other)[source]¶
Return the quotient and remainder of the right Euclidean division of
self
byother
.INPUT:
other
– an Ore polynomial in the same ring asself
OUTPUT:
the quotient and the remainder of the right Euclidean division of this Ore polynomial by
other
Note
This will fail if the leading coefficient of the divisor is not a unit.
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = S.random_element(degree=4) sage: b = S.random_element(monic=True) sage: q,r = a.right_quo_rem(b) sage: a == q*b + r True
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = S.random_element(degree=Integer(4)) >>> b = S.random_element(monic=True) >>> q,r = a.right_quo_rem(b) >>> a == q*b + r True
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = S.random_element(degree=4) b = S.random_element(monic=True) q,r = a.right_quo_rem(b) a == q*b + r
The leading coefficient of the divisor need to be invertible:
sage: a.right_quo_rem(S(0)) Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid sage: c = S.random_element() sage: while not c or c.leading_coefficient().is_unit(): ....: c = S.random_element() sage: while a.degree() < c.degree(): ....: a = S.random_element(degree=4) sage: a.right_quo_rem(c) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
>>> from sage.all import * >>> a.right_quo_rem(S(Integer(0))) Traceback (most recent call last): ... ZeroDivisionError: division by zero is not valid >>> c = S.random_element() >>> while not c or c.leading_coefficient().is_unit(): ... c = S.random_element() >>> while a.degree() < c.degree(): ... a = S.random_element(degree=Integer(4)) >>> a.right_quo_rem(c) Traceback (most recent call last): ... NotImplementedError: the leading coefficient of the divisor is not invertible
a.right_quo_rem(S(0)) c = S.random_element() while not c or c.leading_coefficient().is_unit(): c = S.random_element() while a.degree() < c.degree(): a = S.random_element(degree=4) a.right_quo_rem(c)
- right_xgcd(other, monic=True)[source]¶
Return the right gcd of
self
andother
along with the coefficients for the linear combination.If \(a\) is
self
and \(b\) isother
, then there are Ore polynomials \(u\) and \(v\) such that \(g = u a + v b\), where \(g\) is the right gcd of \(a\) and \(b\). This method returns \((g, u, v)\).INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); return whether the right gcd should be normalized to be monic
OUTPUT:
The right gcd of
self
andother
, that is an Ore polynomial \(g\) with the following property: any Ore polynomial is divisible on the right by \(g\) iff it is divisible on the right by bothself
andother
. If monic isTrue
, \(g\) is in addition monic. (With this extra condition, it is uniquely determined.)Two Ore polynomials \(u\) and \(v\) such that:
\[g = u \cdot a + v \cdot b\]where \(a\) is
self
and \(b\) isother
.
Note
Works only if the base ring is a field (otherwise right gcd do not exist in general).
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: a = (x^2 + t*x + 1) * (x + t) sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) sage: g,u,v = a.right_xgcd(b); g x + t sage: u*a + v*b == g True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> a = (x**Integer(2) + t*x + Integer(1)) * (x + t) >>> b = Integer(2) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) * (x + t) >>> g,u,v = a.right_xgcd(b); g x + t >>> u*a + v*b == g True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] a = (x^2 + t*x + 1) * (x + t) b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) g,u,v = a.right_xgcd(b); g u*a + v*b == g
Specifying
monic=False
, we can get a nonmonic gcd:sage: g,u,v = a.right_xgcd(b, monic=False); g # needs sage.rings.finite_rings (4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3 sage: u*a + v*b == g # needs sage.rings.finite_rings True
>>> from sage.all import * >>> g,u,v = a.right_xgcd(b, monic=False); g # needs sage.rings.finite_rings (4*t^2 + 4*t + 1)*x + 4*t^2 + 4*t + 3 >>> u*a + v*b == g # needs sage.rings.finite_rings True
g,u,v = a.right_xgcd(b, monic=False); g # needs sage.rings.finite_rings u*a + v*b == g # needs sage.rings.finite_rings
The base ring must be a field:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = (x^2 + t*x + 1) * (x + t) sage: b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) sage: a.right_xgcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = (x**Integer(2) + t*x + Integer(1)) * (x + t) >>> b = Integer(2) * (x**Integer(3) + (t+Integer(1))*x**Integer(2) + t**Integer(2)) * (x + t) >>> a.right_xgcd(b) Traceback (most recent call last): ... TypeError: the base ring must be a field
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = (x^2 + t*x + 1) * (x + t) b = 2 * (x^3 + (t+1)*x^2 + t^2) * (x + t) a.right_xgcd(b)
- right_xlcm(other, monic=True)[source]¶
Return the right lcm \(L\) of
self
andother
together with two Ore polynomials \(U\) and \(V\) such that\[\text{self} \cdot U = \text{other} \cdot V = L.\]INPUT:
other
– an Ore polynomial in the same ring asself
monic
– boolean (default:True
); whether the right lcm should be normalized to be monic
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: P = (x + t) * (x + t^2) sage: Q = 2 * (x + t) * (x^2 + t + 1) sage: L, U, V = P.right_xlcm(Q) sage: L x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 + 4 sage: P * U == L True sage: Q * V == L True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> P = (x + t) * (x + t**Integer(2)) >>> Q = Integer(2) * (x + t) * (x**Integer(2) + t + Integer(1)) >>> L, U, V = P.right_xlcm(Q) >>> L x^4 + (2*t^2 + t + 2)*x^3 + (3*t^2 + 4*t + 1)*x^2 + (3*t^2 + 4*t + 1)*x + t^2 + 4 >>> P * U == L True >>> Q * V == L True
# needs sage.rings.finite_rings k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] P = (x + t) * (x + t^2) Q = 2 * (x + t) * (x^2 + t + 1) L, U, V = P.right_xlcm(Q) L P * U == L Q * V == L
- shift(n)[source]¶
Return
self
multiplied on the right by the power \(x^n\).If \(n\) is negative, terms below \(x^n\) will be discarded.
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^5 + t^4*x^4 + t^2*x^2 + t^10 sage: a.shift(0) x^5 + t^4*x^4 + t^2*x^2 + t^10 sage: a.shift(-1) x^4 + t^4*x^3 + t^2*x sage: a.shift(-5) 1 sage: a.shift(2) x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(5) + t**Integer(4)*x**Integer(4) + t**Integer(2)*x**Integer(2) + t**Integer(10) >>> a.shift(Integer(0)) x^5 + t^4*x^4 + t^2*x^2 + t^10 >>> a.shift(-Integer(1)) x^4 + t^4*x^3 + t^2*x >>> a.shift(-Integer(5)) 1 >>> a.shift(Integer(2)) x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^5 + t^4*x^4 + t^2*x^2 + t^10 a.shift(0) a.shift(-1) a.shift(-5) a.shift(2)
One can also use the infix shift operator:
sage: a >> 2 x^3 + t^4*x^2 + t^2 sage: a << 2 x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
>>> from sage.all import * >>> a >> Integer(2) x^3 + t^4*x^2 + t^2 >>> a << Integer(2) x^7 + t^4*x^6 + t^2*x^4 + t^10*x^2
a >> 2 a << 2
- square()[source]¶
Return the square of
self
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x', sigma] sage: a = x + t; a x + t sage: a.square() x^2 + (2*t + 1)*x + t^2 sage: a.square() == a*a True sage: der = R.derivation() sage: A.<d> = R['d', der] sage: (d + t).square() d^2 + 2*t*d + t^2 + 1
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x', sigma]; (x,) = S._first_ngens(1) >>> a = x + t; a x + t >>> a.square() x^2 + (2*t + 1)*x + t^2 >>> a.square() == a*a True >>> der = R.derivation() >>> A = R['d', der]; (d,) = A._first_ngens(1) >>> (d + t).square() d^2 + 2*t*d + t^2 + 1
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x', sigma] a = x + t; a a.square() a.square() == a*a der = R.derivation() A.<d> = R['d', der] (d + t).square()
- variable_name()[source]¶
Return the string name of the variable used in
self
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x + t sage: a.variable_name() 'x'
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x + t >>> a.variable_name() 'x'
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x + t a.variable_name()
- class sage.rings.polynomial.ore_polynomial_element.OrePolynomialBaseringInjection[source]¶
Bases:
Morphism
Representation of the canonical homomorphism from a ring \(R\) into an Ore polynomial ring over \(R\).
This class is necessary for automatic coercion from the base ring to the Ore polynomial ring.
See also
EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: S.coerce_map_from(S.base_ring()) #indirect doctest Ore Polynomial base injection morphism: From: Univariate Polynomial Ring in t over Rational Field To: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> S.coerce_map_from(S.base_ring()) #indirect doctest Ore Polynomial base injection morphism: From: Univariate Polynomial Ring in t over Rational Field To: Ore Polynomial Ring in x over Univariate Polynomial Ring in t over Rational Field twisted by t |--> t + 1
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] S.coerce_map_from(S.base_ring()) #indirect doctest
- an_element()[source]¶
Return an element of the codomain of the ring homomorphism.
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: from sage.rings.polynomial.ore_polynomial_element import OrePolynomialBaseringInjection sage: k.<t> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x',Frob] sage: m = OrePolynomialBaseringInjection(k, k['x', Frob]) sage: m.an_element() x
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> from sage.rings.polynomial.ore_polynomial_element import OrePolynomialBaseringInjection >>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x',Frob]; (x,) = S._first_ngens(1) >>> m = OrePolynomialBaseringInjection(k, k['x', Frob]) >>> m.an_element() x
# needs sage.rings.finite_rings from sage.rings.polynomial.ore_polynomial_element import OrePolynomialBaseringInjection k.<t> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x',Frob] m = OrePolynomialBaseringInjection(k, k['x', Frob]) m.an_element()
- class sage.rings.polynomial.ore_polynomial_element.OrePolynomial_generic_dense[source]¶
Bases:
OrePolynomial
Generic implementation of dense Ore polynomial supporting any valid base ring, twisting morphism and twisting derivation.
- coefficients(sparse=True)[source]¶
Return the coefficients of the monomials appearing in
self
.If
sparse=True
(the default), return only the nonzero coefficients. Otherwise, return the same value asself.list()
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: a.coefficients() [t^2 + 1, t + 1, 1] sage: a.coefficients(sparse=False) [t^2 + 1, 0, t + 1, 0, 1]
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> a.coefficients() [t^2 + 1, t + 1, 1] >>> a.coefficients(sparse=False) [t^2 + 1, 0, t + 1, 0, 1]
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 a.coefficients() a.coefficients(sparse=False)
- degree()[source]¶
Return the degree of
self
.By convention, the zero Ore polynomial has degree \(-1\).
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2 + t*x^3 + t^2*x + 1 sage: a.degree() 3
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x**Integer(3) + t**Integer(2)*x + Integer(1) >>> a.degree() 3
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2 + t*x^3 + t^2*x + 1 a.degree()
By convention, the degree of \(0\) is \(-1\):
sage: S(0).degree() -1
>>> from sage.all import * >>> S(Integer(0)).degree() -1
S(0).degree()
- dict()[source]¶
Return a dictionary representation of
self
.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2012 + t*x^1006 + t^3 + 2*t sage: a.monomial_coefficients() {0: t^3 + 2*t, 1006: t, 2012: 1}
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2012) + t*x**Integer(1006) + t**Integer(3) + Integer(2)*t >>> a.monomial_coefficients() {0: t^3 + 2*t, 1006: t, 2012: 1}
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2012 + t*x^1006 + t^3 + 2*t a.monomial_coefficients()
dict
is an alias:sage: a.dict() {0: t^3 + 2*t, 1006: t, 2012: 1}
>>> from sage.all import * >>> a.dict() {0: t^3 + 2*t, 1006: t, 2012: 1}
a.dict()
- hilbert_shift(s, var=None)[source]¶
Return this Ore polynomial with variable shifted by \(s\), i.e. if this Ore polynomial is \(P(x)\), return \(P(x+s)\).
INPUT:
s
– an element in the base ringvar
– string; the variable name
EXAMPLES:
sage: R.<t> = GF(7)[] sage: der = R.derivation() sage: A.<d> = R['d', der] sage: L = d^3 + t*d^2 sage: L.hilbert_shift(t) d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t sage: (d+t)^3 + t*(d+t)^2 d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t
>>> from sage.all import * >>> R = GF(Integer(7))['t']; (t,) = R._first_ngens(1) >>> der = R.derivation() >>> A = R['d', der]; (d,) = A._first_ngens(1) >>> L = d**Integer(3) + t*d**Integer(2) >>> L.hilbert_shift(t) d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t >>> (d+t)**Integer(3) + t*(d+t)**Integer(2) d^3 + 4*t*d^2 + (5*t^2 + 3)*d + 2*t^3 + 4*t
R.<t> = GF(7)[] der = R.derivation() A.<d> = R['d', der] L = d^3 + t*d^2 L.hilbert_shift(t) (d+t)^3 + t*(d+t)^2
One can specify another variable name:
sage: L.hilbert_shift(t, var='x') x^3 + 4*t*x^2 + (5*t^2 + 3)*x + 2*t^3 + 4*t
>>> from sage.all import * >>> L.hilbert_shift(t, var='x') x^3 + 4*t*x^2 + (5*t^2 + 3)*x + 2*t^3 + 4*t
L.hilbert_shift(t, var='x')
When the twisting morphism is not trivial, the output lies in a different Ore polynomial ring:
sage: # needs sage.rings.finite_rings sage: k.<a> = GF(5^3) sage: Frob = k.frobenius_endomorphism() sage: S.<x> = k['x', Frob] sage: P = x^2 + a*x + a^2 sage: Q = P.hilbert_shift(a); Q x^2 + (2*a^2 + a + 4)*x + a^2 + 3*a + 4 sage: Q.parent() Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5 and a*([a |--> a^5] - id) sage: Q.parent() is S False
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1) >>> Frob = k.frobenius_endomorphism() >>> S = k['x', Frob]; (x,) = S._first_ngens(1) >>> P = x**Integer(2) + a*x + a**Integer(2) >>> Q = P.hilbert_shift(a); Q x^2 + (2*a^2 + a + 4)*x + a^2 + 3*a + 4 >>> Q.parent() Ore Polynomial Ring in x over Finite Field in a of size 5^3 twisted by a |--> a^5 and a*([a |--> a^5] - id) >>> Q.parent() is S False
# needs sage.rings.finite_rings k.<a> = GF(5^3) Frob = k.frobenius_endomorphism() S.<x> = k['x', Frob] P = x^2 + a*x + a^2 Q = P.hilbert_shift(a); Q Q.parent() Q.parent() is S
This behavior ensures that the Hilbert shift by a fixed element defines a homomorphism of rings:
sage: # needs sage.rings.finite_rings sage: U = S.random_element(degree=5) sage: V = S.random_element(degree=5) sage: s = k.random_element() sage: (U+V).hilbert_shift(s) == U.hilbert_shift(s) + V.hilbert_shift(s) True sage: (U*V).hilbert_shift(s) == U.hilbert_shift(s) * V.hilbert_shift(s) True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> U = S.random_element(degree=Integer(5)) >>> V = S.random_element(degree=Integer(5)) >>> s = k.random_element() >>> (U+V).hilbert_shift(s) == U.hilbert_shift(s) + V.hilbert_shift(s) True >>> (U*V).hilbert_shift(s) == U.hilbert_shift(s) * V.hilbert_shift(s) True
# needs sage.rings.finite_rings U = S.random_element(degree=5) V = S.random_element(degree=5) s = k.random_element() (U+V).hilbert_shift(s) == U.hilbert_shift(s) + V.hilbert_shift(s) (U*V).hilbert_shift(s) == U.hilbert_shift(s) * V.hilbert_shift(s)
We check that shifting by an element and then by its opposite gives back the initial Ore polynomial:
sage: # needs sage.rings.finite_rings sage: P = S.random_element(degree=10) sage: s = k.random_element() sage: P.hilbert_shift(s).hilbert_shift(-s) == P True
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> P = S.random_element(degree=Integer(10)) >>> s = k.random_element() >>> P.hilbert_shift(s).hilbert_shift(-s) == P True
# needs sage.rings.finite_rings P = S.random_element(degree=10) s = k.random_element() P.hilbert_shift(s).hilbert_shift(-s) == P
- list(copy=True)[source]¶
Return a list of the coefficients of
self
.EXAMPLES:
sage: R.<t> = QQ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = 1 + x^4 + (t+1)*x^2 + t^2 sage: l = a.list(); l [t^2 + 1, 0, t + 1, 0, 1]
>>> from sage.all import * >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = Integer(1) + x**Integer(4) + (t+Integer(1))*x**Integer(2) + t**Integer(2) >>> l = a.list(); l [t^2 + 1, 0, t + 1, 0, 1]
R.<t> = QQ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = 1 + x^4 + (t+1)*x^2 + t^2 l = a.list(); l
Note that \(l\) is a list, it is mutable, and each call to the list method returns a new list:
sage: type(l) <... 'list'> sage: l[0] = 5 sage: a.list() [t^2 + 1, 0, t + 1, 0, 1]
>>> from sage.all import * >>> type(l) <... 'list'> >>> l[Integer(0)] = Integer(5) >>> a.list() [t^2 + 1, 0, t + 1, 0, 1]
type(l) l[0] = 5 a.list()
- monomial_coefficients()[source]¶
Return a dictionary representation of
self
.EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2012 + t*x^1006 + t^3 + 2*t sage: a.monomial_coefficients() {0: t^3 + 2*t, 1006: t, 2012: 1}
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2012) + t*x**Integer(1006) + t**Integer(3) + Integer(2)*t >>> a.monomial_coefficients() {0: t^3 + 2*t, 1006: t, 2012: 1}
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2012 + t*x^1006 + t^3 + 2*t a.monomial_coefficients()
dict
is an alias:sage: a.dict() {0: t^3 + 2*t, 1006: t, 2012: 1}
>>> from sage.all import * >>> a.dict() {0: t^3 + 2*t, 1006: t, 2012: 1}
a.dict()
- truncate(n)[source]¶
Return the polynomial resulting from discarding all monomials of degree at least \(n\).
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = t*x^3 + x^4 + (t+1)*x^2 sage: a.truncate(4) t*x^3 + (t + 1)*x^2 sage: a.truncate(3) (t + 1)*x^2
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = t*x**Integer(3) + x**Integer(4) + (t+Integer(1))*x**Integer(2) >>> a.truncate(Integer(4)) t*x^3 + (t + 1)*x^2 >>> a.truncate(Integer(3)) (t + 1)*x^2
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = t*x^3 + x^4 + (t+1)*x^2 a.truncate(4) a.truncate(3)
- valuation()[source]¶
Return the minimal degree of a nonzero monomial of
self
.By convention, the zero Ore polynomial has valuation \(+\infty\).
EXAMPLES:
sage: R.<t> = ZZ[] sage: sigma = R.hom([t+1]) sage: S.<x> = R['x',sigma] sage: a = x^2 + t*x^3 + t^2*x sage: a.valuation() 1
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> sigma = R.hom([t+Integer(1)]) >>> S = R['x',sigma]; (x,) = S._first_ngens(1) >>> a = x**Integer(2) + t*x**Integer(3) + t**Integer(2)*x >>> a.valuation() 1
R.<t> = ZZ[] sigma = R.hom([t+1]) S.<x> = R['x',sigma] a = x^2 + t*x^3 + t^2*x a.valuation()
By convention, the valuation of \(0\) is \(+\infty\):
sage: S(0).valuation() +Infinity
>>> from sage.all import * >>> S(Integer(0)).valuation() +Infinity
S(0).valuation()