Univariate skew polynomial rings

This module provides the SkewPolynomialRing. In the class hierarchy in Sage, the locution Skew Polynomial is used for a Ore polynomial without twisting derivation.

This module also provides:

AUTHOR:

  • Xavier Caruso (2012-06-29): initial version

  • Arpit Merchant (2016-08-04): improved docstrings, fixed doctests and refactored classes and methods

  • Johan Rosenkilde (2016-08-03): changes for bug fixes, docstring and doctest errors

class sage.rings.polynomial.skew_polynomial_ring.SectionSkewPolynomialCenterInjection[source]

Bases: Section

Section of the canonical injection of the center of a skew polynomial ring into this ring.

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialCenterInjection(domain, codomain, embed, order)[source]

Bases: RingHomomorphism

Canonical injection of the center of a skew polynomial ring into this ring.

section()[source]

Return a section of this morphism.

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<a> = GF(5^3)
sage: S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism())
sage: Z = S.center()
sage: iota = S.convert_map_from(Z)
sage: sigma = iota.section()
sage: sigma(x^3)
z
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(5)**Integer(3), names=('a',)); (a,) = k._first_ngens(1)
>>> S = SkewPolynomialRing(k, k.frobenius_endomorphism(), names=('x',)); (x,) = S._first_ngens(1)
>>> Z = S.center()
>>> iota = S.convert_map_from(Z)
>>> sigma = iota.section()
>>> sigma(x**Integer(3))
z
# needs sage.rings.finite_rings
k.<a> = GF(5^3)
S.<x> = SkewPolynomialRing(k, k.frobenius_endomorphism())
Z = S.center()
iota = S.convert_map_from(Z)
sigma = iota.section()
sigma(x^3)
class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing(base_ring, morphism, derivation, name, sparse, category=None)[source]

Bases: OrePolynomialRing

Initialize self.

INPUT:

  • base_ring – a commutative ring

  • twisting_morphism – an automorphism of the base ring

  • name – string or list of strings representing the name of the variables of ring

  • sparse – boolean (default: False)

  • category – a category

EXAMPLES:

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t + 1])
sage: S.<x> = SkewPolynomialRing(R,sigma)
sage: S.category()
Category of algebras over Univariate Polynomial Ring in t over Integer Ring
sage: S([1]) + S([-1])
0
sage: TestSuite(S).run()
>>> from sage.all import *
>>> R = ZZ['t']; (t,) = R._first_ngens(1)
>>> sigma = R.hom([t + Integer(1)])
>>> S = SkewPolynomialRing(R,sigma, names=('x',)); (x,) = S._first_ngens(1)
>>> S.category()
Category of algebras over Univariate Polynomial Ring in t over Integer Ring
>>> S([Integer(1)]) + S([-Integer(1)])
0
>>> TestSuite(S).run()
R.<t> = ZZ[]
sigma = R.hom([t + 1])
S.<x> = SkewPolynomialRing(R,sigma)
S.category()
S([1]) + S([-1])
TestSuite(S).run()
lagrange_polynomial(points)[source]

Return the minimal-degree polynomial which interpolates the given points.

More precisely, given n pairs (x1,y1),,(xn,yn)R2, where R is self.base_ring(), compute a skew polynomial p(x) such that p(xi)=yi for each i, under the condition that the xi are linearly independent over the fixed field of self.twisting_morphism().

If the xi are linearly independent over the fixed field of self.twisting_morphism() then such a polynomial is guaranteed to exist. Otherwise, it might exist depending on the yi, but the algorithm used in this implementation does not support that, and so an error is always raised.

INPUT:

  • points – list of pairs (x1,y1),,(xn,yn) of elements of the base ring of self; the xi should be linearly independent over the fixed field of self.twisting_morphism()

OUTPUT: the Lagrange polynomial

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: points = [(t, 3*t^2 + 4*t + 4), (t^2, 4*t)]
sage: d = S.lagrange_polynomial(points); d
x + t

sage: R.<t> = ZZ[]
sage: sigma = R.hom([t + 1])
sage: T.<x> = R['x', sigma]
sage: points = [(1, t^2 + 3*t + 4), (t, 2*t^2 + 3*t + 1), (t^2, t^2 + 3*t + 4)]
sage: p = T.lagrange_polynomial(points); p
((-t^4 - 2*t - 3)/-2)*x^2 + (-t^4 - t^3 - t^2 - 3*t - 2)*x
 + (-t^4 - 2*t^3 - 4*t^2 - 10*t - 9)/-2
sage: p.multi_point_evaluation([1, t, t^2]) == [t^2 + 3*t + 4, 2*t^2 + 3*t + 1, t^2 + 3*t + 4]
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1)
>>> Frob = k.frobenius_endomorphism()
>>> S = k['x', Frob]; (x,) = S._first_ngens(1)
>>> points = [(t, Integer(3)*t**Integer(2) + Integer(4)*t + Integer(4)), (t**Integer(2), Integer(4)*t)]
>>> d = S.lagrange_polynomial(points); d
x + t

>>> R = ZZ['t']; (t,) = R._first_ngens(1)
>>> sigma = R.hom([t + Integer(1)])
>>> T = R['x', sigma]; (x,) = T._first_ngens(1)
>>> points = [(Integer(1), t**Integer(2) + Integer(3)*t + Integer(4)), (t, Integer(2)*t**Integer(2) + Integer(3)*t + Integer(1)), (t**Integer(2), t**Integer(2) + Integer(3)*t + Integer(4))]
>>> p = T.lagrange_polynomial(points); p
((-t^4 - 2*t - 3)/-2)*x^2 + (-t^4 - t^3 - t^2 - 3*t - 2)*x
 + (-t^4 - 2*t^3 - 4*t^2 - 10*t - 9)/-2
>>> p.multi_point_evaluation([Integer(1), t, t**Integer(2)]) == [t**Integer(2) + Integer(3)*t + Integer(4), Integer(2)*t**Integer(2) + Integer(3)*t + Integer(1), t**Integer(2) + Integer(3)*t + Integer(4)]
True
# needs sage.rings.finite_rings
k.<t> = GF(5^3)
Frob = k.frobenius_endomorphism()
S.<x> = k['x', Frob]
points = [(t, 3*t^2 + 4*t + 4), (t^2, 4*t)]
d = S.lagrange_polynomial(points); d
R.<t> = ZZ[]
sigma = R.hom([t + 1])
T.<x> = R['x', sigma]
points = [(1, t^2 + 3*t + 4), (t, 2*t^2 + 3*t + 1), (t^2, t^2 + 3*t + 4)]
p = T.lagrange_polynomial(points); p
p.multi_point_evaluation([1, t, t^2]) == [t^2 + 3*t + 4, 2*t^2 + 3*t + 1, t^2 + 3*t + 4]

If the xi are linearly dependent over the fixed field of self.twisting_morphism(), then an error is raised:

sage: T.lagrange_polynomial([(t, 1), (2*t, 3)])
Traceback (most recent call last):
...
ValueError: the given evaluation points are linearly dependent over the fixed field of the twisting morphism,
so a Lagrange polynomial could not be determined (and might not exist)
>>> from sage.all import *
>>> T.lagrange_polynomial([(t, Integer(1)), (Integer(2)*t, Integer(3))])
Traceback (most recent call last):
...
ValueError: the given evaluation points are linearly dependent over the fixed field of the twisting morphism,
so a Lagrange polynomial could not be determined (and might not exist)
T.lagrange_polynomial([(t, 1), (2*t, 3)])
minimal_vanishing_polynomial(eval_pts)[source]

Return the minimal-degree, monic skew polynomial which vanishes at all the given evaluation points.

The degree of the vanishing polynomial is at most the length of eval_pts. Equality holds if and only if the elements of eval_pts are linearly independent over the fixed field of self.twisting_morphism().

  • eval_pts – list of evaluation points which are linearly independent over the fixed field of the twisting morphism of the associated skew polynomial ring

OUTPUT: the minimal vanishing polynomial

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x', Frob]
sage: eval_pts = [1, t, t^2]
sage: b = S.minimal_vanishing_polynomial(eval_pts); b
x^3 + 4
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1)
>>> Frob = k.frobenius_endomorphism()
>>> S = k['x', Frob]; (x,) = S._first_ngens(1)
>>> eval_pts = [Integer(1), t, t**Integer(2)]
>>> b = S.minimal_vanishing_polynomial(eval_pts); b
x^3 + 4
# needs sage.rings.finite_rings
k.<t> = GF(5^3)
Frob = k.frobenius_endomorphism()
S.<x> = k['x', Frob]
eval_pts = [1, t, t^2]
b = S.minimal_vanishing_polynomial(eval_pts); b

The minimal vanishing polynomial evaluates to 0 at each of the evaluation points:

sage: eval = b.multi_point_evaluation(eval_pts); eval                       # needs sage.rings.finite_rings
[0, 0, 0]
>>> from sage.all import *
>>> eval = b.multi_point_evaluation(eval_pts); eval                       # needs sage.rings.finite_rings
[0, 0, 0]
eval = b.multi_point_evaluation(eval_pts); eval                       # needs sage.rings.finite_rings

If the evaluation points are linearly dependent over the fixed field of the twisting morphism, then the returned polynomial has lower degree than the number of evaluation points:

sage: S.minimal_vanishing_polynomial([t])                                   # needs sage.rings.finite_rings
x + 3*t^2 + 3*t
sage: S.minimal_vanishing_polynomial([t, 3*t])                              # needs sage.rings.finite_rings
x + 3*t^2 + 3*t
>>> from sage.all import *
>>> S.minimal_vanishing_polynomial([t])                                   # needs sage.rings.finite_rings
x + 3*t^2 + 3*t
>>> S.minimal_vanishing_polynomial([t, Integer(3)*t])                              # needs sage.rings.finite_rings
x + 3*t^2 + 3*t
S.minimal_vanishing_polynomial([t])                                   # needs sage.rings.finite_rings
S.minimal_vanishing_polynomial([t, 3*t])                              # needs sage.rings.finite_rings
class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_finite_field(base_ring, morphism, derivation, names, sparse, category=None)[source]

Bases: SkewPolynomialRing_finite_order

A specialized class for skew polynomial rings over finite fields.

Todo

Add methods related to center of skew polynomial ring, irreducibility, karatsuba multiplication and factorization.

class sage.rings.polynomial.skew_polynomial_ring.SkewPolynomialRing_finite_order(base_ring, morphism, derivation, name, sparse, category=None)[source]

Bases: SkewPolynomialRing

A specialized class for skew polynomial rings whose twising morphism has finite order.

center(name=None, names=None, default=False)[source]

Return the center of this skew polynomial ring.

Note

If F denotes the subring of R fixed by σ and σ has order r, the center of K[x,σ] is F[xr], that is a univariate polynomial ring over F.

INPUT:

  • name – string or None (default: None); the name for the central variable (namely xr)

  • default – boolean (default: False); if True, set the default variable name for the center to name

EXAMPLES:

sage: # needs sage.rings.finite_rings
sage: k.<t> = GF(5^3)
sage: Frob = k.frobenius_endomorphism()
sage: S.<x> = k['x',Frob]; S
Ore Polynomial Ring in x over Finite Field in t of size 5^3
 twisted by t |--> t^5
sage: Z = S.center(); Z
Univariate Polynomial Ring in z over Finite Field of size 5
sage: Z.gen()
z
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> k = GF(Integer(5)**Integer(3), names=('t',)); (t,) = k._first_ngens(1)
>>> Frob = k.frobenius_endomorphism()
>>> S = k['x',Frob]; (x,) = S._first_ngens(1); S
Ore Polynomial Ring in x over Finite Field in t of size 5^3
 twisted by t |--> t^5
>>> Z = S.center(); Z
Univariate Polynomial Ring in z over Finite Field of size 5
>>> Z.gen()
z
# needs sage.rings.finite_rings
k.<t> = GF(5^3)
Frob = k.frobenius_endomorphism()
S.<x> = k['x',Frob]; S
Z = S.center(); Z
Z.gen()

We can pass in another variable name:

sage: S.center(name='y')                                                    # needs sage.rings.finite_rings
Univariate Polynomial Ring in y over Finite Field of size 5
>>> from sage.all import *
>>> S.center(name='y')                                                    # needs sage.rings.finite_rings
Univariate Polynomial Ring in y over Finite Field of size 5
S.center(name='y')                                                    # needs sage.rings.finite_rings

or use the bracket notation:

sage: Zy.<y> = S.center(); Zy                                               # needs sage.rings.finite_rings
Univariate Polynomial Ring in y over Finite Field of size 5
sage: y.parent() is Zy                                                      # needs sage.rings.finite_rings
True
>>> from sage.all import *
>>> Zy = S.center(names=('y',)); (y,) = Zy._first_ngens(1); Zy                                               # needs sage.rings.finite_rings
Univariate Polynomial Ring in y over Finite Field of size 5
>>> y.parent() is Zy                                                      # needs sage.rings.finite_rings
True
Zy.<y> = S.center(); Zy                                               # needs sage.rings.finite_rings
y.parent() is Zy                                                      # needs sage.rings.finite_rings

A coercion map from the center to the skew polynomial ring is set:

sage: # needs sage.rings.finite_rings
sage: S.has_coerce_map_from(Zy)
True
sage: P = y + x; P
x^3 + x
sage: P.parent()
Ore Polynomial Ring in x over Finite Field in t of size 5^3
 twisted by t |--> t^5
sage: P.parent() is S
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> S.has_coerce_map_from(Zy)
True
>>> P = y + x; P
x^3 + x
>>> P.parent()
Ore Polynomial Ring in x over Finite Field in t of size 5^3
 twisted by t |--> t^5
>>> P.parent() is S
True
# needs sage.rings.finite_rings
S.has_coerce_map_from(Zy)
P = y + x; P
P.parent()
P.parent() is S

together with a conversion map in the reverse direction:

sage: Zy(x^6 + 2*x^3 + 3)                                                   # needs sage.rings.finite_rings
y^2 + 2*y + 3

sage: Zy(x^2)                                                               # needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: x^2 is not in the center
>>> from sage.all import *
>>> Zy(x**Integer(6) + Integer(2)*x**Integer(3) + Integer(3))                                                   # needs sage.rings.finite_rings
y^2 + 2*y + 3

>>> Zy(x**Integer(2))                                                               # needs sage.rings.finite_rings
Traceback (most recent call last):
...
ValueError: x^2 is not in the center
Zy(x^6 + 2*x^3 + 3)                                                   # needs sage.rings.finite_rings
Zy(x^2)                                                               # needs sage.rings.finite_rings

Two different skew polynomial rings can share the same center:

sage: S1.<x1> = k['x1', Frob]                                               # needs sage.rings.finite_rings
sage: S2.<x2> = k['x2', Frob]                                               # needs sage.rings.finite_rings
sage: S1.center() is S2.center()                                            # needs sage.rings.finite_rings
True
>>> from sage.all import *
>>> S1 = k['x1', Frob]; (x1,) = S1._first_ngens(1)# needs sage.rings.finite_rings
>>> S2 = k['x2', Frob]; (x2,) = S2._first_ngens(1)# needs sage.rings.finite_rings
>>> S1.center() is S2.center()                                            # needs sage.rings.finite_rings
True
S1.<x1> = k['x1', Frob]                                               # needs sage.rings.finite_rings
S2.<x2> = k['x2', Frob]                                               # needs sage.rings.finite_rings
S1.center() is S2.center()                                            # needs sage.rings.finite_rings

About the default name of the central variable

A priori, the default is z.

However, a variable name is given the first time this method is called, the given name become the default for the next calls:

sage: # needs sage.rings.finite_rings
sage: K.<t> = GF(11^3)
sage: phi = K.frobenius_endomorphism()
sage: A.<X> = K['X', phi]
sage: C.<u> = A.center()  # first call
sage: C
Univariate Polynomial Ring in u over Finite Field of size 11
sage: A.center()  # second call: the variable name is still u
Univariate Polynomial Ring in u over Finite Field of size 11
sage: A.center() is C
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> K = GF(Integer(11)**Integer(3), names=('t',)); (t,) = K._first_ngens(1)
>>> phi = K.frobenius_endomorphism()
>>> A = K['X', phi]; (X,) = A._first_ngens(1)
>>> C = A.center(names=('u',)); (u,) = C._first_ngens(1)# first call
>>> C
Univariate Polynomial Ring in u over Finite Field of size 11
>>> A.center()  # second call: the variable name is still u
Univariate Polynomial Ring in u over Finite Field of size 11
>>> A.center() is C
True
# needs sage.rings.finite_rings
K.<t> = GF(11^3)
phi = K.frobenius_endomorphism()
A.<X> = K['X', phi]
C.<u> = A.center()  # first call
C
A.center()  # second call: the variable name is still u
A.center() is C

We can update the default variable name by passing in the argument default=True:

sage: # needs sage.rings.finite_rings
sage: D.<v> = A.center(default=True)
sage: D
Univariate Polynomial Ring in v over Finite Field of size 11
sage: A.center()
Univariate Polynomial Ring in v over Finite Field of size 11
sage: A.center() is D
True
>>> from sage.all import *
>>> # needs sage.rings.finite_rings
>>> D = A.center(default=True, names=('v',)); (v,) = D._first_ngens(1)
>>> D
Univariate Polynomial Ring in v over Finite Field of size 11
>>> A.center()
Univariate Polynomial Ring in v over Finite Field of size 11
>>> A.center() is D
True
# needs sage.rings.finite_rings
D.<v> = A.center(default=True)
D
A.center()
A.center() is D