Matrix plots¶
- class sage.plot.matrix_plot.MatrixPlot(xy_data_array, xrange, yrange, options)[source]¶
Bases:
GraphicPrimitive
Primitive class for the matrix plot graphics type. See
matrix_plot?
for help actually doing matrix plots.INPUT:
xy_data_array
– list of lists giving matrix values corresponding to the gridxrange
– tuple of 2 floats indicating range for horizontal direction (number of columns in the matrix). IfNone
, the defaults are used as indicated inmatrix_plot()
.yrange
– tuple of 2 floats indicating range for vertical direction (number of rows in the matrix). IfNone
, the defaults are used as indicated inmatrix_plot()
.options
– dictionary of valid plot options to pass to constructor
EXAMPLES:
Note this should normally be used indirectly via
matrix_plot()
:sage: from sage.plot.matrix_plot import MatrixPlot sage: M = MatrixPlot([[1,3],[2,4]],(1,2),(2,3),options={'cmap':'winter'}) sage: M MatrixPlot defined by a 2 x 2 data grid sage: M.yrange (2, 3) sage: M.xy_data_array [[1, 3], [2, 4]] sage: M.options() {'cmap': 'winter'}
>>> from sage.all import * >>> from sage.plot.matrix_plot import MatrixPlot >>> M = MatrixPlot([[Integer(1),Integer(3)],[Integer(2),Integer(4)]],(Integer(1),Integer(2)),(Integer(2),Integer(3)),options={'cmap':'winter'}) >>> M MatrixPlot defined by a 2 x 2 data grid >>> M.yrange (2, 3) >>> M.xy_data_array [[1, 3], [2, 4]] >>> M.options() {'cmap': 'winter'}
from sage.plot.matrix_plot import MatrixPlot M = MatrixPlot([[1,3],[2,4]],(1,2),(2,3),options={'cmap':'winter'}) M M.yrange M.xy_data_array M.options()
Extra options will get passed on to
show()
, as long as they are valid:sage: matrix_plot([[1, 0], [0, 1]], fontsize=10) Graphics object consisting of 1 graphics primitive sage: matrix_plot([[1, 0], [0, 1]]).show(fontsize=10) # These are equivalent
>>> from sage.all import * >>> matrix_plot([[Integer(1), Integer(0)], [Integer(0), Integer(1)]], fontsize=Integer(10)) Graphics object consisting of 1 graphics primitive >>> matrix_plot([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]).show(fontsize=Integer(10)) # These are equivalent
matrix_plot([[1, 0], [0, 1]], fontsize=10) matrix_plot([[1, 0], [0, 1]]).show(fontsize=10) # These are equivalent
- get_minmax_data()[source]¶
Return a dictionary with the bounding box data.
EXAMPLES:
sage: m = matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]]))[0] sage: list(sorted(m.get_minmax_data().items())) [('xmax', 3.5), ('xmin', -0.5), ('ymax', 2.5), ('ymin', -0.5)]
>>> from sage.all import * >>> m = matrix_plot(matrix([[Integer(1),Integer(3),Integer(5),Integer(1)],[Integer(2),Integer(4),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5),Integer(7)]]))[Integer(0)] >>> list(sorted(m.get_minmax_data().items())) [('xmax', 3.5), ('xmin', -0.5), ('ymax', 2.5), ('ymin', -0.5)]
m = matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]]))[0] list(sorted(m.get_minmax_data().items()))
- sage.plot.matrix_plot.matrix_plot(mat, xrange=None, yrange=None, aspect_ratio=1, axes=False, cmap='Greys', colorbar=False, frame=True, marker='.', norm=None, flip_y=True, subdivisions=False, ticks_integer=True, vmin=None, vmax=None, subdivision_boundaries=None, subdivision_style=None, colorbar_orientation='vertical', colorbar_format=None, **options)[source]¶
A plot of a given matrix or 2D array.
If the matrix is sparse, colors only indicate whether an element is nonzero or zero, so the plot represents the sparsity pattern of the matrix.
If the matrix is dense, each matrix element is given a different color value depending on its relative size compared to the other elements in the matrix.
The default is for the lowest number to be black and the highest number to be white in a greyscale pattern; see the information about normalizing below. To reverse this, use
cmap='Greys'
.The tick marks drawn on the frame axes denote the row numbers (vertical ticks) and the column numbers (horizontal ticks) of the matrix.
INPUT:
mat
– a 2D matrix or arrayxrange
– (default:None
) tuple of the horizontal extent(xmin, xmax)
of the bounding box in which to draw the matrix. The image is stretched individually along x and y to fill the box.If
None
, the extent is determined by the following conditions. Matrix entries have unit size in data coordinates. Their centers are on integer coordinates, and their center coordinates range from 0 to columns-1 horizontally and from 0 to rows-1 vertically.If the matrix is sparse, this keyword is ignored.
yrange
– (default:None
) tuple of the vertical extent(ymin, ymax)
of the bounding box in which to draw the matrix. Seexrange
for details.
The following input must all be passed in as named parameters, if default not used:
cmap
– a colormap (default:'Greys'
); the name of a predefined colormap, a list of colors, or an instance of a matplotlib ColormapThe list of predefined color maps can be visualized in matplotlib’s documentation. You can also type
import matplotlib.cm; matplotlib.cm.datad.keys()
to list their names.colorbar
– boolean (default:False
); show a colorbar or not (dense matrices only)The following options are used to adjust the style and placement of colorbars. They have no effect if a colorbar is not shown.
colorbar_orientation
– string (default:'vertical'
); controls placement of the colorbar, can be either ‘vertical’ or ‘horizontal’colorbar_format
– a format string, this is used to format the colorbar labelscolorbar_options
– dictionary of options for the matplotlib colorbar API. Documentation for thematplotlib.colorbar
module has details.
norm
– ifNone
(default), the value range is scaled to the interval [0,1]. If ‘value’, then the actual value is used with no scaling. Amatplotlib.colors.Normalize
instance may also passed.vmin
– the minimum value (values below this are set to this value)vmax
– the maximum value (values above this are set to this value)flip_y
– boolean (default:True
); ifFalse
, the first row of the matrix is on the bottom of the graph. Otherwise, the first row is on the top of the graph.subdivisions
– ifTrue
, plot the subdivisions of the matrix as linessubdivision_boundaries
– list of lists in the form[row_subdivisions, column_subdivisions]
, which specifies the row and column subdivisions to use. If not specified, defaults to the matrix subdivisionssubdivision_style
– dictionary of properties passed on to theline2d()
command for plotting subdivisions. If this is a two-element list or tuple, then it specifies the styles of row and column divisions, respectively.
EXAMPLES:
A matrix over \(\ZZ\) colored with different grey levels:
sage: matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]])) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(matrix([[Integer(1),Integer(3),Integer(5),Integer(1)],[Integer(2),Integer(4),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5),Integer(7)]])) Graphics object consisting of 1 graphics primitive
matrix_plot(matrix([[1,3,5,1],[2,4,5,6],[1,3,5,7]]))
Here we make a random matrix over \(\RR\) and use
cmap='hsv'
to color the matrix elements different RGB colors:sage: matrix_plot(random_matrix(RDF, 50), cmap='hsv') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(random_matrix(RDF, Integer(50)), cmap='hsv') Graphics object consisting of 1 graphics primitive
matrix_plot(random_matrix(RDF, 50), cmap='hsv')
By default, entries are scaled to the interval [0,1] before determining colors from the color map. That means the two plots below are the same:
sage: P = matrix_plot(matrix(2,[1,1,3,3])) sage: Q = matrix_plot(matrix(2,[2,2,3,3])) sage: P; Q Graphics object consisting of 1 graphics primitive Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> P = matrix_plot(matrix(Integer(2),[Integer(1),Integer(1),Integer(3),Integer(3)])) >>> Q = matrix_plot(matrix(Integer(2),[Integer(2),Integer(2),Integer(3),Integer(3)])) >>> P; Q Graphics object consisting of 1 graphics primitive Graphics object consisting of 1 graphics primitive
P = matrix_plot(matrix(2,[1,1,3,3])) Q = matrix_plot(matrix(2,[2,2,3,3])) P; Q
However, we can specify which values scale to 0 or 1 with the
vmin
andvmax
parameters (values outside the range are clipped). The two plots below are now distinguished:sage: P = matrix_plot(matrix(2,[1,1,3,3]), vmin=0, vmax=3, colorbar=True) sage: Q = matrix_plot(matrix(2,[2,2,3,3]), vmin=0, vmax=3, colorbar=True) sage: P; Q Graphics object consisting of 1 graphics primitive Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> P = matrix_plot(matrix(Integer(2),[Integer(1),Integer(1),Integer(3),Integer(3)]), vmin=Integer(0), vmax=Integer(3), colorbar=True) >>> Q = matrix_plot(matrix(Integer(2),[Integer(2),Integer(2),Integer(3),Integer(3)]), vmin=Integer(0), vmax=Integer(3), colorbar=True) >>> P; Q Graphics object consisting of 1 graphics primitive Graphics object consisting of 1 graphics primitive
P = matrix_plot(matrix(2,[1,1,3,3]), vmin=0, vmax=3, colorbar=True) Q = matrix_plot(matrix(2,[2,2,3,3]), vmin=0, vmax=3, colorbar=True) P; Q
We can also specify a norm function of ‘value’, which means that there is no scaling performed:
sage: matrix_plot(random_matrix(ZZ,10)*.05, norm='value', colorbar=True) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(random_matrix(ZZ,Integer(10))*RealNumber('.05'), norm='value', colorbar=True) Graphics object consisting of 1 graphics primitive
matrix_plot(random_matrix(ZZ,10)*.05, norm='value', colorbar=True)
Matrix subdivisions can be plotted as well:
sage: m=random_matrix(RR,10) sage: m.subdivide([2,4],[6,8]) sage: matrix_plot(m, subdivisions=True, ....: subdivision_style=dict(color='red',thickness=3)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> m=random_matrix(RR,Integer(10)) >>> m.subdivide([Integer(2),Integer(4)],[Integer(6),Integer(8)]) >>> matrix_plot(m, subdivisions=True, ... subdivision_style=dict(color='red',thickness=Integer(3))) Graphics object consisting of 1 graphics primitive
m=random_matrix(RR,10) m.subdivide([2,4],[6,8]) matrix_plot(m, subdivisions=True, subdivision_style=dict(color='red',thickness=3))
You can also specify your own subdivisions and separate styles for row or column subdivisions:
sage: m=random_matrix(RR,10) sage: matrix_plot(m, subdivisions=True, subdivision_boundaries=[[2,4],[6,8]], ....: subdivision_style=[dict(color='red',thickness=3), ....: dict(linestyle='--',thickness=6)]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> m=random_matrix(RR,Integer(10)) >>> matrix_plot(m, subdivisions=True, subdivision_boundaries=[[Integer(2),Integer(4)],[Integer(6),Integer(8)]], ... subdivision_style=[dict(color='red',thickness=Integer(3)), ... dict(linestyle='--',thickness=Integer(6))]) Graphics object consisting of 1 graphics primitive
m=random_matrix(RR,10) matrix_plot(m, subdivisions=True, subdivision_boundaries=[[2,4],[6,8]], subdivision_style=[dict(color='red',thickness=3), dict(linestyle='--',thickness=6)])
Generally matrices are plotted with the (0,0) entry in the upper left. However, sometimes if we are plotting an image, we’d like the (0,0) entry to be in the lower left. We can do that with the
flip_y
argument:sage: matrix_plot(identity_matrix(100), flip_y=False) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(identity_matrix(Integer(100)), flip_y=False) Graphics object consisting of 1 graphics primitive
matrix_plot(identity_matrix(100), flip_y=False)
A custom bounding box in which to draw the matrix can be specified using the
xrange
andyrange
arguments:sage: P = matrix_plot(identity_matrix(10), xrange=(0, pi), yrange=(-pi, 0)); P # needs sage.symbolic Graphics object consisting of 1 graphics primitive sage: P.get_minmax_data() # needs sage.symbolic {'xmax': 3.14159..., 'xmin': 0.0, 'ymax': 0.0, 'ymin': -3.14159...}
>>> from sage.all import * >>> P = matrix_plot(identity_matrix(Integer(10)), xrange=(Integer(0), pi), yrange=(-pi, Integer(0))); P # needs sage.symbolic Graphics object consisting of 1 graphics primitive >>> P.get_minmax_data() # needs sage.symbolic {'xmax': 3.14159..., 'xmin': 0.0, 'ymax': 0.0, 'ymin': -3.14159...}
P = matrix_plot(identity_matrix(10), xrange=(0, pi), yrange=(-pi, 0)); P # needs sage.symbolic P.get_minmax_data() # needs sage.symbolic
If the horizontal and vertical dimension of the image are very different, the default
aspect_ratio=1
may be unsuitable and can be changed toautomatic
:sage: matrix_plot(random_matrix(RDF, 2, 2), (-100, 100), (0, 1), ....: aspect_ratio='automatic') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(random_matrix(RDF, Integer(2), Integer(2)), (-Integer(100), Integer(100)), (Integer(0), Integer(1)), ... aspect_ratio='automatic') Graphics object consisting of 1 graphics primitive
matrix_plot(random_matrix(RDF, 2, 2), (-100, 100), (0, 1), aspect_ratio='automatic')
Another random plot, but over \(\GF{389}\):
sage: m = random_matrix(GF(389), 10) # needs sage.rings.finite_rings sage: matrix_plot(m, cmap='Oranges') # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> m = random_matrix(GF(Integer(389)), Integer(10)) # needs sage.rings.finite_rings >>> matrix_plot(m, cmap='Oranges') # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
m = random_matrix(GF(389), 10) # needs sage.rings.finite_rings matrix_plot(m, cmap='Oranges') # needs sage.rings.finite_rings
It also works if you lift it to the polynomial ring:
sage: matrix_plot(m.change_ring(GF(389)['x']), cmap='Oranges') # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(m.change_ring(GF(Integer(389))['x']), cmap='Oranges') # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
matrix_plot(m.change_ring(GF(389)['x']), cmap='Oranges') # needs sage.rings.finite_rings
We have several options for colorbars:
sage: matrix_plot(random_matrix(RDF, 50), colorbar=True, ....: colorbar_orientation='horizontal') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(random_matrix(RDF, Integer(50)), colorbar=True, ... colorbar_orientation='horizontal') Graphics object consisting of 1 graphics primitive
matrix_plot(random_matrix(RDF, 50), colorbar=True, colorbar_orientation='horizontal')
sage: matrix_plot(random_matrix(RDF, 50), colorbar=True, colorbar_format='%.3f') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(random_matrix(RDF, Integer(50)), colorbar=True, colorbar_format='%.3f') Graphics object consisting of 1 graphics primitive
matrix_plot(random_matrix(RDF, 50), colorbar=True, colorbar_format='%.3f')
The length of a color bar and the length of the adjacent matrix plot dimension may be quite different. This example shows how to adjust the length of the colorbar by passing a dictionary of options to the matplotlib colorbar routines.
sage: m = random_matrix(ZZ, 40, 80, x=-10, y=10) sage: m.plot(colorbar=True, colorbar_orientation='vertical', ....: colorbar_options={'shrink':0.50}) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> m = random_matrix(ZZ, Integer(40), Integer(80), x=-Integer(10), y=Integer(10)) >>> m.plot(colorbar=True, colorbar_orientation='vertical', ... colorbar_options={'shrink':RealNumber('0.50')}) Graphics object consisting of 1 graphics primitive
m = random_matrix(ZZ, 40, 80, x=-10, y=10) m.plot(colorbar=True, colorbar_orientation='vertical', colorbar_options={'shrink':0.50})
Here we plot a random sparse matrix:
sage: sparse = matrix(dict(((randint(0, 10), randint(0, 10)), 1) ....: for i in range(100))) sage: matrix_plot(sparse) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> sparse = matrix(dict(((randint(Integer(0), Integer(10)), randint(Integer(0), Integer(10))), Integer(1)) ... for i in range(Integer(100)))) >>> matrix_plot(sparse) Graphics object consisting of 1 graphics primitive
sparse = matrix(dict(((randint(0, 10), randint(0, 10)), 1) for i in range(100))) matrix_plot(sparse)
sage: A = random_matrix(ZZ, 100000, density=.00001, sparse=True) sage: matrix_plot(A, marker=',') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> A = random_matrix(ZZ, Integer(100000), density=RealNumber('.00001'), sparse=True) >>> matrix_plot(A, marker=',') Graphics object consisting of 1 graphics primitive
A = random_matrix(ZZ, 100000, density=.00001, sparse=True) matrix_plot(A, marker=',')
As with dense matrices, sparse matrix entries are automatically converted to floating point numbers before plotting. Thus the following works:
sage: b = random_matrix(GF(2), 200, sparse=True, density=0.01) # needs sage.rings.finite_rings sage: matrix_plot(b) # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> b = random_matrix(GF(Integer(2)), Integer(200), sparse=True, density=RealNumber('0.01')) # needs sage.rings.finite_rings >>> matrix_plot(b) # needs sage.rings.finite_rings Graphics object consisting of 1 graphics primitive
b = random_matrix(GF(2), 200, sparse=True, density=0.01) # needs sage.rings.finite_rings matrix_plot(b) # needs sage.rings.finite_rings
While this returns an error:
sage: b = random_matrix(CDF, 200, sparse=True, density=0.01) sage: matrix_plot(b) Traceback (most recent call last): ... ValueError: cannot convert entries to floating point numbers
>>> from sage.all import * >>> b = random_matrix(CDF, Integer(200), sparse=True, density=RealNumber('0.01')) >>> matrix_plot(b) Traceback (most recent call last): ... ValueError: cannot convert entries to floating point numbers
b = random_matrix(CDF, 200, sparse=True, density=0.01) matrix_plot(b)
To plot the absolute value of a complex matrix, use the
apply_map
method:sage: b = random_matrix(CDF, 200, sparse=True, density=0.01) sage: matrix_plot(b.apply_map(abs)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> b = random_matrix(CDF, Integer(200), sparse=True, density=RealNumber('0.01')) >>> matrix_plot(b.apply_map(abs)) Graphics object consisting of 1 graphics primitive
b = random_matrix(CDF, 200, sparse=True, density=0.01) matrix_plot(b.apply_map(abs))
Plotting lists of lists also works:
sage: matrix_plot([[1,3,5,1],[2,4,5,6],[1,3,5,7]]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot([[Integer(1),Integer(3),Integer(5),Integer(1)],[Integer(2),Integer(4),Integer(5),Integer(6)],[Integer(1),Integer(3),Integer(5),Integer(7)]]) Graphics object consisting of 1 graphics primitive
matrix_plot([[1,3,5,1],[2,4,5,6],[1,3,5,7]])
As does plotting of NumPy arrays:
sage: import numpy # needs numpy sage: matrix_plot(numpy.random.rand(10, 10)) # needs numpy Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> import numpy # needs numpy >>> matrix_plot(numpy.random.rand(Integer(10), Integer(10))) # needs numpy Graphics object consisting of 1 graphics primitive
import numpy # needs numpy matrix_plot(numpy.random.rand(10, 10)) # needs numpy
A plot title can be added to the matrix plot.:
sage: matrix_plot(identity_matrix(50), flip_y=False, title='not identity') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(identity_matrix(Integer(50)), flip_y=False, title='not identity') Graphics object consisting of 1 graphics primitive
matrix_plot(identity_matrix(50), flip_y=False, title='not identity')
The title position is adjusted upwards if the
flip_y
keyword is set toTrue
(this is the default).:sage: matrix_plot(identity_matrix(50), title='identity') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> matrix_plot(identity_matrix(Integer(50)), title='identity') Graphics object consisting of 1 graphics primitive
matrix_plot(identity_matrix(50), title='identity')