Plotting primitives¶
- class sage.plot.primitive.GraphicPrimitive(options)[source]¶
Bases:
WithEqualityById
,SageObject
Base class for graphics primitives, e.g., things that knows how to draw themselves in 2D.
EXAMPLES:
We create an object that derives from GraphicPrimitive:
sage: P = line([(-1,-2), (3,5)]) sage: P[0] Line defined by 2 points sage: type(P[0]) <class 'sage.plot.line.Line'>
>>> from sage.all import * >>> P = line([(-Integer(1),-Integer(2)), (Integer(3),Integer(5))]) >>> P[Integer(0)] Line defined by 2 points >>> type(P[Integer(0)]) <class 'sage.plot.line.Line'>
P = line([(-1,-2), (3,5)]) P[0] type(P[0])
- options()[source]¶
Return the dictionary of options for this graphics primitive.
By default this function verifies that the options are all valid; if any aren’t, then a verbose message is printed with level 0.
EXAMPLES:
sage: from sage.plot.primitive import GraphicPrimitive sage: GraphicPrimitive({}).options() {}
>>> from sage.all import * >>> from sage.plot.primitive import GraphicPrimitive >>> GraphicPrimitive({}).options() {}
from sage.plot.primitive import GraphicPrimitive GraphicPrimitive({}).options()
- plot3d(**kwds)[source]¶
Plots 3D version of 2D graphics object. Not implemented for base class.
EXAMPLES:
sage: from sage.plot.primitive import GraphicPrimitive sage: G=GraphicPrimitive({}) sage: G.plot3d() Traceback (most recent call last): ... NotImplementedError: 3D plotting not implemented for Graphics primitive
>>> from sage.all import * >>> from sage.plot.primitive import GraphicPrimitive >>> G=GraphicPrimitive({}) >>> G.plot3d() Traceback (most recent call last): ... NotImplementedError: 3D plotting not implemented for Graphics primitive
from sage.plot.primitive import GraphicPrimitive G=GraphicPrimitive({}) G.plot3d()
- set_options(new_options)[source]¶
Change the options to \(new_options\).
EXAMPLES:
sage: from sage.plot.circle import Circle sage: c = Circle(0,0,1,{}) sage: c.set_options({'thickness': 0.6}) sage: c.options() {'thickness': 0.6...}
>>> from sage.all import * >>> from sage.plot.circle import Circle >>> c = Circle(Integer(0),Integer(0),Integer(1),{}) >>> c.set_options({'thickness': RealNumber('0.6')}) >>> c.options() {'thickness': 0.6...}
from sage.plot.circle import Circle c = Circle(0,0,1,{}) c.set_options({'thickness': 0.6}) c.options()
- set_zorder(zorder)[source]¶
Set the layer in which to draw the object.
EXAMPLES:
sage: P = line([(-2,-3), (3,4)], thickness=4) sage: p=P[0] sage: p.set_zorder(2) sage: p.options()['zorder'] 2 sage: Q = line([(-2,-4), (3,5)], thickness=4,zorder=1,hue=.5) sage: P+Q # blue line on top Graphics object consisting of 2 graphics primitives sage: q=Q[0] sage: q.set_zorder(3) sage: P+Q # teal line on top Graphics object consisting of 2 graphics primitives sage: q.options()['zorder'] 3
>>> from sage.all import * >>> P = line([(-Integer(2),-Integer(3)), (Integer(3),Integer(4))], thickness=Integer(4)) >>> p=P[Integer(0)] >>> p.set_zorder(Integer(2)) >>> p.options()['zorder'] 2 >>> Q = line([(-Integer(2),-Integer(4)), (Integer(3),Integer(5))], thickness=Integer(4),zorder=Integer(1),hue=RealNumber('.5')) >>> P+Q # blue line on top Graphics object consisting of 2 graphics primitives >>> q=Q[Integer(0)] >>> q.set_zorder(Integer(3)) >>> P+Q # teal line on top Graphics object consisting of 2 graphics primitives >>> q.options()['zorder'] 3
P = line([(-2,-3), (3,4)], thickness=4) p=P[0] p.set_zorder(2) p.options()['zorder'] Q = line([(-2,-4), (3,5)], thickness=4,zorder=1,hue=.5) P+Q # blue line on top q=Q[0] q.set_zorder(3) P+Q # teal line on top q.options()['zorder']
- class sage.plot.primitive.GraphicPrimitive_xydata(options)[source]¶
Bases:
GraphicPrimitive
- get_minmax_data()[source]¶
Return a dictionary with the bounding box data.
EXAMPLES:
sage: d = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,1))[0].get_minmax_data() sage: d['ymin'] 0.0 sage: d['xmin'] 1.0
>>> from sage.all import * >>> d = polygon([[Integer(1),Integer(2)], [Integer(5),Integer(6)], [Integer(5),Integer(0)]], rgbcolor=(Integer(1),Integer(0),Integer(1)))[Integer(0)].get_minmax_data() >>> d['ymin'] 0.0 >>> d['xmin'] 1.0
d = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,1))[0].get_minmax_data() d['ymin'] d['xmin']
sage: d = point((3, 3), rgbcolor=hue(0.75))[0].get_minmax_data() sage: d['xmin'] 3.0 sage: d['ymin'] 3.0
>>> from sage.all import * >>> d = point((Integer(3), Integer(3)), rgbcolor=hue(RealNumber('0.75')))[Integer(0)].get_minmax_data() >>> d['xmin'] 3.0 >>> d['ymin'] 3.0
d = point((3, 3), rgbcolor=hue(0.75))[0].get_minmax_data() d['xmin'] d['ymin']
>>> from sage.all import * >>> d = point((Integer(3), Integer(3)), rgbcolor=hue(RealNumber('0.75')))[Integer(0)].get_minmax_data() >>> d['xmin'] 3.0 >>> d['ymin'] 3.0
d = point((3, 3), rgbcolor=hue(0.75))[0].get_minmax_data() d['xmin'] d['ymin']
sage: l = line([(100, 100), (120, 120)])[0] sage: d = l.get_minmax_data() sage: d['xmin'] 100.0 sage: d['xmax'] 120.0
>>> from sage.all import * >>> l = line([(Integer(100), Integer(100)), (Integer(120), Integer(120))])[Integer(0)] >>> d = l.get_minmax_data() >>> d['xmin'] 100.0 >>> d['xmax'] 120.0
l = line([(100, 100), (120, 120)])[0] d = l.get_minmax_data() d['xmin'] d['xmax']
>>> from sage.all import * >>> l = line([(Integer(100), Integer(100)), (Integer(120), Integer(120))])[Integer(0)] >>> d = l.get_minmax_data() >>> d['xmin'] 100.0 >>> d['xmax'] 120.0
l = line([(100, 100), (120, 120)])[0] d = l.get_minmax_data() d['xmin'] d['xmax']