Class to flatten polynomial rings over polynomial ring¶
For example QQ['a','b'],['x','y']
flattens to QQ['a','b','x','y']
.
EXAMPLES:
sage: R = QQ['x']['y']['s','t']['X']
sage: from sage.rings.polynomial.flatten import FlatteningMorphism
sage: phi = FlatteningMorphism(R); phi
Flattening morphism:
From: Univariate Polynomial Ring in X
over Multivariate Polynomial Ring in s, t
over Univariate Polynomial Ring in y
over Univariate Polynomial Ring in x over Rational Field
To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
sage: phi('x*y*s + t*X').parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
>>> from sage.all import *
>>> R = QQ['x']['y']['s','t']['X']
>>> from sage.rings.polynomial.flatten import FlatteningMorphism
>>> phi = FlatteningMorphism(R); phi
Flattening morphism:
From: Univariate Polynomial Ring in X
over Multivariate Polynomial Ring in s, t
over Univariate Polynomial Ring in y
over Univariate Polynomial Ring in x over Rational Field
To: Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
>>> phi('x*y*s + t*X').parent()
Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
R = QQ['x']['y']['s','t']['X'] from sage.rings.polynomial.flatten import FlatteningMorphism phi = FlatteningMorphism(R); phi phi('x*y*s + t*X').parent()
Authors:
Vincent Delecroix, Ben Hutz (July 2016): initial implementation
- class sage.rings.polynomial.flatten.FlatteningMorphism(domain)[source]¶
Bases:
Morphism
EXAMPLES:
sage: R = QQ['a','b']['x','y','z']['t1','t2'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.codomain() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field sage: p = R('(a+b)*x + (a^2-b)*t2*(z+y)') sage: p ((a^2 - b)*y + (a^2 - b)*z)*t2 + (a + b)*x sage: f(p) a^2*y*t2 + a^2*z*t2 - b*y*t2 - b*z*t2 + a*x + b*x sage: f(p).parent() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
>>> from sage.all import * >>> R = QQ['a','b']['x','y','z']['t1','t2'] >>> from sage.rings.polynomial.flatten import FlatteningMorphism >>> f = FlatteningMorphism(R) >>> f.codomain() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field >>> p = R('(a+b)*x + (a^2-b)*t2*(z+y)') >>> p ((a^2 - b)*y + (a^2 - b)*z)*t2 + (a + b)*x >>> f(p) a^2*y*t2 + a^2*z*t2 - b*y*t2 - b*z*t2 + a*x + b*x >>> f(p).parent() Multivariate Polynomial Ring in a, b, x, y, z, t1, t2 over Rational Field
R = QQ['a','b']['x','y','z']['t1','t2'] from sage.rings.polynomial.flatten import FlatteningMorphism f = FlatteningMorphism(R) f.codomain() p = R('(a+b)*x + (a^2-b)*t2*(z+y)') p f(p) f(p).parent()
Also works when univariate polynomial ring are involved:
sage: R = QQ['x']['y']['s','t']['X'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: f = FlatteningMorphism(R) sage: f.codomain() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field sage: p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X') sage: p x*y*X + (x*y^3 + (x + 2)*y + x^2 + 1)*s + (x*y^3 + (x + 2)*y + x^2 + 1)*t sage: f(p) x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t sage: f(p).parent() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
>>> from sage.all import * >>> R = QQ['x']['y']['s','t']['X'] >>> from sage.rings.polynomial.flatten import FlatteningMorphism >>> f = FlatteningMorphism(R) >>> f.codomain() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field >>> p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X') >>> p x*y*X + (x*y^3 + (x + 2)*y + x^2 + 1)*s + (x*y^3 + (x + 2)*y + x^2 + 1)*t >>> f(p) x*y^3*s + x*y^3*t + x^2*s + x*y*s + x^2*t + x*y*t + x*y*X + 2*y*s + 2*y*t + s + t >>> f(p).parent() Multivariate Polynomial Ring in x, y, s, t, X over Rational Field
R = QQ['x']['y']['s','t']['X'] from sage.rings.polynomial.flatten import FlatteningMorphism f = FlatteningMorphism(R) f.codomain() p = R('((x^2 + 1) + (x+2)*y + x*y^3)*(s+t) + x*y*X') p f(p) f(p).parent()
- inverse()[source]¶
Return the inverse of this flattening morphism.
This is the same as calling
section()
.EXAMPLES:
sage: f = QQ['x,y']['u,v'].flattening_morphism() sage: f.inverse() Unflattening morphism: From: Multivariate Polynomial Ring in x, y, u, v over Rational Field To: Multivariate Polynomial Ring in u, v over Multivariate Polynomial Ring in x, y over Rational Field
>>> from sage.all import * >>> f = QQ['x,y']['u,v'].flattening_morphism() >>> f.inverse() Unflattening morphism: From: Multivariate Polynomial Ring in x, y, u, v over Rational Field To: Multivariate Polynomial Ring in u, v over Multivariate Polynomial Ring in x, y over Rational Field
f = QQ['x,y']['u,v'].flattening_morphism() f.inverse()
- section()[source]¶
Inverse of this flattening morphism.
EXAMPLES:
sage: R = QQ['a','b','c']['x','y','z'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: h = FlatteningMorphism(R) sage: h.section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field To: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Rational Field
>>> from sage.all import * >>> R = QQ['a','b','c']['x','y','z'] >>> from sage.rings.polynomial.flatten import FlatteningMorphism >>> h = FlatteningMorphism(R) >>> h.section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c, x, y, z over Rational Field To: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Rational Field
R = QQ['a','b','c']['x','y','z'] from sage.rings.polynomial.flatten import FlatteningMorphism h = FlatteningMorphism(R) h.section()
sage: R = ZZ['a']['b']['c'] sage: from sage.rings.polynomial.flatten import FlatteningMorphism sage: FlatteningMorphism(R).section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c over Integer Ring To: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Integer Ring
>>> from sage.all import * >>> R = ZZ['a']['b']['c'] >>> from sage.rings.polynomial.flatten import FlatteningMorphism >>> FlatteningMorphism(R).section() Unflattening morphism: From: Multivariate Polynomial Ring in a, b, c over Integer Ring To: Univariate Polynomial Ring in c over Univariate Polynomial Ring in b over Univariate Polynomial Ring in a over Integer Ring
R = ZZ['a']['b']['c'] from sage.rings.polynomial.flatten import FlatteningMorphism FlatteningMorphism(R).section()
- class sage.rings.polynomial.flatten.FractionSpecializationMorphism(domain, D)[source]¶
Bases:
Morphism
A specialization morphism for fraction fields over (stacked) polynomial rings
- class sage.rings.polynomial.flatten.SpecializationMorphism(domain, D)[source]¶
Bases:
Morphism
Morphisms to specialize parameters in (stacked) polynomial rings.
EXAMPLES:
sage: R.<c> = PolynomialRing(QQ) sage: S.<x,y,z> = PolynomialRing(R) sage: D = dict({c:1}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: f = SpecializationMorphism(S, D) sage: g = f(x^2 + c*y^2 - z^2); g x^2 + y^2 - z^2 sage: g.parent() Multivariate Polynomial Ring in x, y, z over Rational Field
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1) >>> S = PolynomialRing(R, names=('x', 'y', 'z',)); (x, y, z,) = S._first_ngens(3) >>> D = dict({c:Integer(1)}) >>> from sage.rings.polynomial.flatten import SpecializationMorphism >>> f = SpecializationMorphism(S, D) >>> g = f(x**Integer(2) + c*y**Integer(2) - z**Integer(2)); g x^2 + y^2 - z^2 >>> g.parent() Multivariate Polynomial Ring in x, y, z over Rational Field
R.<c> = PolynomialRing(QQ) S.<x,y,z> = PolynomialRing(R) D = dict({c:1}) from sage.rings.polynomial.flatten import SpecializationMorphism f = SpecializationMorphism(S, D) g = f(x^2 + c*y^2 - z^2); g g.parent()
sage: R.<c> = PolynomialRing(QQ) sage: S.<z> = PolynomialRing(R) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, {c:0}); xi Specialization morphism: From: Univariate Polynomial Ring in z over Univariate Polynomial Ring in c over Rational Field To: Univariate Polynomial Ring in z over Rational Field sage: xi(z^2+c) z^2
>>> from sage.all import * >>> R = PolynomialRing(QQ, names=('c',)); (c,) = R._first_ngens(1) >>> S = PolynomialRing(R, names=('z',)); (z,) = S._first_ngens(1) >>> from sage.rings.polynomial.flatten import SpecializationMorphism >>> xi = SpecializationMorphism(S, {c:Integer(0)}); xi Specialization morphism: From: Univariate Polynomial Ring in z over Univariate Polynomial Ring in c over Rational Field To: Univariate Polynomial Ring in z over Rational Field >>> xi(z**Integer(2)+c) z^2
R.<c> = PolynomialRing(QQ) S.<z> = PolynomialRing(R) from sage.rings.polynomial.flatten import SpecializationMorphism xi = SpecializationMorphism(S, {c:0}); xi xi(z^2+c)
sage: R1.<u,v> = PolynomialRing(QQ) sage: R2.<a,b,c> = PolynomialRing(R1) sage: S.<x,y,z> = PolynomialRing(R2) sage: D = dict({a:1, b:2, x:0, u:1}) sage: from sage.rings.polynomial.flatten import SpecializationMorphism sage: xi = SpecializationMorphism(S, D); xi Specialization morphism: From: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Multivariate Polynomial Ring in u, v over Rational Field To: Multivariate Polynomial Ring in y, z over Univariate Polynomial Ring in c over Univariate Polynomial Ring in v over Rational Field sage: xi(a*(x*z+y^2)*u+b*v*u*(x*z+y^2)*y^2*c+c*y^2*z^2) 2*v*c*y^4 + c*y^2*z^2 + y^2
>>> from sage.all import * >>> R1 = PolynomialRing(QQ, names=('u', 'v',)); (u, v,) = R1._first_ngens(2) >>> R2 = PolynomialRing(R1, names=('a', 'b', 'c',)); (a, b, c,) = R2._first_ngens(3) >>> S = PolynomialRing(R2, names=('x', 'y', 'z',)); (x, y, z,) = S._first_ngens(3) >>> D = dict({a:Integer(1), b:Integer(2), x:Integer(0), u:Integer(1)}) >>> from sage.rings.polynomial.flatten import SpecializationMorphism >>> xi = SpecializationMorphism(S, D); xi Specialization morphism: From: Multivariate Polynomial Ring in x, y, z over Multivariate Polynomial Ring in a, b, c over Multivariate Polynomial Ring in u, v over Rational Field To: Multivariate Polynomial Ring in y, z over Univariate Polynomial Ring in c over Univariate Polynomial Ring in v over Rational Field >>> xi(a*(x*z+y**Integer(2))*u+b*v*u*(x*z+y**Integer(2))*y**Integer(2)*c+c*y**Integer(2)*z**Integer(2)) 2*v*c*y^4 + c*y^2*z^2 + y^2
R1.<u,v> = PolynomialRing(QQ) R2.<a,b,c> = PolynomialRing(R1) S.<x,y,z> = PolynomialRing(R2) D = dict({a:1, b:2, x:0, u:1}) from sage.rings.polynomial.flatten import SpecializationMorphism xi = SpecializationMorphism(S, D); xi xi(a*(x*z+y^2)*u+b*v*u*(x*z+y^2)*y^2*c+c*y^2*z^2)
- class sage.rings.polynomial.flatten.UnflatteningMorphism(domain, codomain)[source]¶
Bases:
Morphism
Inverses for
FlatteningMorphism
.EXAMPLES:
sage: R = QQ['c','x','y','z'] sage: S = QQ['c']['x','y','z'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: f = UnflatteningMorphism(R, S) sage: g = f(R('x^2 + c*y^2 - z^2'));g x^2 + c*y^2 - z^2 sage: g.parent() Multivariate Polynomial Ring in x, y, z over Univariate Polynomial Ring in c over Rational Field
>>> from sage.all import * >>> R = QQ['c','x','y','z'] >>> S = QQ['c']['x','y','z'] >>> from sage.rings.polynomial.flatten import UnflatteningMorphism >>> f = UnflatteningMorphism(R, S) >>> g = f(R('x^2 + c*y^2 - z^2'));g x^2 + c*y^2 - z^2 >>> g.parent() Multivariate Polynomial Ring in x, y, z over Univariate Polynomial Ring in c over Rational Field
R = QQ['c','x','y','z'] S = QQ['c']['x','y','z'] from sage.rings.polynomial.flatten import UnflatteningMorphism f = UnflatteningMorphism(R, S) g = f(R('x^2 + c*y^2 - z^2'));g g.parent()
sage: R = QQ['a','b', 'x','y'] sage: S = QQ['a','b']['x','y'] sage: from sage.rings.polynomial.flatten import UnflatteningMorphism sage: UnflatteningMorphism(R, S) Unflattening morphism: From: Multivariate Polynomial Ring in a, b, x, y over Rational Field To: Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Rational Field
>>> from sage.all import * >>> R = QQ['a','b', 'x','y'] >>> S = QQ['a','b']['x','y'] >>> from sage.rings.polynomial.flatten import UnflatteningMorphism >>> UnflatteningMorphism(R, S) Unflattening morphism: From: Multivariate Polynomial Ring in a, b, x, y over Rational Field To: Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in a, b over Rational Field
R = QQ['a','b', 'x','y'] S = QQ['a','b']['x','y'] from sage.rings.polynomial.flatten import UnflatteningMorphism UnflatteningMorphism(R, S)