\(p\)-adic Capped Relative Dense Polynomials¶
- class sage.rings.polynomial.padics.polynomial_padic_capped_relative_dense.Polynomial_padic_capped_relative_dense(parent, x=None, check=True, is_gen=False, construct=False, absprec=+Infinity, relprec=+Infinity)[source]¶
Bases:
Polynomial_generic_cdv
,Polynomial_padic
- degree(secure=False)[source]¶
Return the degree of
self
.INPUT:
secure
– boolean (default:False
)
If
secure
isTrue
and the degree of this polynomial is not determined (because the leading coefficient is indistinguishable from 0), an error is raised.If
secure
isFalse
, the returned value is the largest \(n\) so that the coefficient of \(x^n\) does not compare equal to \(0\).EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.degree() 1 sage: (f-T).degree() 0 sage: (f-T).degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0 sage: x = O(3^5) sage: li = [3^i * x for i in range(0,5)]; li [O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)] sage: f = R(li); f O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5) sage: f.degree() -1 sage: f.degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.degree() 1 >>> (f-T).degree() 0 >>> (f-T).degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0 >>> x = O(Integer(3)**Integer(5)) >>> li = [Integer(3)**i * x for i in range(Integer(0),Integer(5))]; li [O(3^5), O(3^6), O(3^7), O(3^8), O(3^9)] >>> f = R(li); f O(3^9)*T^4 + O(3^8)*T^3 + O(3^7)*T^2 + O(3^6)*T + O(3^5) >>> f.degree() -1 >>> f.degree(secure=True) Traceback (most recent call last): ... PrecisionError: the leading coefficient is indistinguishable from 0
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.degree() (f-T).degree() (f-T).degree(secure=True) x = O(3^5) li = [3^i * x for i in range(0,5)]; li f = R(li); f f.degree() f.degree(secure=True)
- is_eisenstein(secure=False)[source]¶
Return
True
if this polynomial is an Eisenstein polynomial.EXAMPLES:
sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 5*t + t^4 sage: f.is_eisenstein() True
>>> from sage.all import * >>> K = Qp(Integer(5)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> f = Integer(5) + Integer(5)*t + t**Integer(4) >>> f.is_eisenstein() True
K = Qp(5) R.<t> = K[] f = 5 + 5*t + t^4 f.is_eisenstein()
AUTHOR:
Xavier Caruso (2013-03)
- lift()[source]¶
Return an integer polynomial congruent to this one modulo the precision of each coefficient.
Note
The lift that is returned will not necessarily be the same for polynomials with the same coefficients (i.e. same values and precisions): it will depend on how the polynomials are created.
EXAMPLES:
sage: K = Qp(13,7) sage: R.<t> = K[] sage: a = 13^7*t^3 + K(169,4)*t - 13^4 sage: a.lift() 62748517*t^3 + 169*t - 28561
>>> from sage.all import * >>> K = Qp(Integer(13),Integer(7)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> a = Integer(13)**Integer(7)*t**Integer(3) + K(Integer(169),Integer(4))*t - Integer(13)**Integer(4) >>> a.lift() 62748517*t^3 + 169*t - 28561
K = Qp(13,7) R.<t> = K[] a = 13^7*t^3 + K(169,4)*t - 13^4 a.lift()
- list(copy=True)[source]¶
Return a list of coefficients of
self
.Note
The length of the list returned may be greater than expected since it includes any leading zeros that have finite absolute precision.
EXAMPLES:
sage: K = Qp(13,7) sage: R.<t> = K[] sage: a = 2*t^3 + 169*t - 1 sage: a (2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + 12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7) sage: a.list() [12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7), 13^2 + O(13^9), 0, 2 + O(13^7)]
>>> from sage.all import * >>> K = Qp(Integer(13),Integer(7)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> a = Integer(2)*t**Integer(3) + Integer(169)*t - Integer(1) >>> a (2 + O(13^7))*t^3 + (13^2 + O(13^9))*t + 12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7) >>> a.list() [12 + 12*13 + 12*13^2 + 12*13^3 + 12*13^4 + 12*13^5 + 12*13^6 + O(13^7), 13^2 + O(13^9), 0, 2 + O(13^7)]
K = Qp(13,7) R.<t> = K[] a = 2*t^3 + 169*t - 1 a a.list()
- lshift_coeffs(shift, no_list=False)[source]¶
Return a new polynomials whose coefficients are multiplied by p^shift.
EXAMPLES:
sage: K = Qp(13, 4) sage: R.<t> = K[] sage: a = t + 52 sage: a.lshift_coeffs(3) (13^3 + O(13^7))*t + 4*13^4 + O(13^8)
>>> from sage.all import * >>> K = Qp(Integer(13), Integer(4)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> a = t + Integer(52) >>> a.lshift_coeffs(Integer(3)) (13^3 + O(13^7))*t + 4*13^4 + O(13^8)
K = Qp(13, 4) R.<t> = K[] a = t + 52 a.lshift_coeffs(3)
- newton_polygon()[source]¶
Return the Newton polygon of this polynomial.
Note
If some coefficients have not enough precision an error is raised.
OUTPUT: a
NewtonPolygon
EXAMPLES:
sage: K = Qp(2, prec=5) sage: P.<x> = K[] sage: f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37 sage: f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0) sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
>>> from sage.all import * >>> K = Qp(Integer(2), prec=Integer(5)) >>> P = K['x']; (x,) = P._first_ngens(1) >>> f = x**Integer(4) + Integer(2)**Integer(3)*x**Integer(3) + Integer(2)**Integer(13)*x**Integer(2) + Integer(2)**Integer(21)*x + Integer(2)**Integer(37) >>> f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 37), (1, 21), (3, 3), (4, 0) >>> K = Qp(Integer(5)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> f = Integer(5) + Integer(3)*t + t**Integer(4) + Integer(25)*t**Integer(10) >>> f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2)
K = Qp(2, prec=5) P.<x> = K[] f = x^4 + 2^3*x^3 + 2^13*x^2 + 2^21*x + 2^37 f.newton_polygon() # needs sage.geometry.polyhedron K = Qp(5) R.<t> = K[] f = 5 + 3*t + t^4 + 25*t^10 f.newton_polygon() # needs sage.geometry.polyhedron
Here is an example where the computation fails because precision is not sufficient:
sage: g = f + K(0,0)*t^4; g (5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21) sage: g.newton_polygon() # needs sage.geometry.polyhedron Traceback (most recent call last): ... PrecisionError: The coefficient of t^4 has not enough precision
>>> from sage.all import * >>> g = f + K(Integer(0),Integer(0))*t**Integer(4); g (5^2 + O(5^22))*t^10 + O(5^0)*t^4 + (3 + O(5^20))*t + 5 + O(5^21) >>> g.newton_polygon() # needs sage.geometry.polyhedron Traceback (most recent call last): ... PrecisionError: The coefficient of t^4 has not enough precision
g = f + K(0,0)*t^4; g g.newton_polygon() # needs sage.geometry.polyhedron
AUTHOR:
Xavier Caruso (2013-03-20)
- newton_slopes(repetition=True)[source]¶
Return a list of the Newton slopes of this polynomial.
These are the valuations of the roots of this polynomial.
If
repetition
isTrue
, each slope is repeated a number of times equal to its multiplicity. Otherwise it appears only one time.INPUT:
repetition
– boolean (default:True
)
OUTPUT: list of rationals
EXAMPLES:
sage: K = Qp(5) sage: R.<t> = K[] sage: f = 5 + 3*t + t^4 + 25*t^10 sage: f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2) sage: f.newton_slopes() # needs sage.geometry.polyhedron [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3] sage: f.newton_slopes(repetition=False) # needs sage.geometry.polyhedron [1, 0, -1/3]
>>> from sage.all import * >>> K = Qp(Integer(5)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> f = Integer(5) + Integer(3)*t + t**Integer(4) + Integer(25)*t**Integer(10) >>> f.newton_polygon() # needs sage.geometry.polyhedron Finite Newton polygon with 4 vertices: (0, 1), (1, 0), (4, 0), (10, 2) >>> f.newton_slopes() # needs sage.geometry.polyhedron [1, 0, 0, 0, -1/3, -1/3, -1/3, -1/3, -1/3, -1/3] >>> f.newton_slopes(repetition=False) # needs sage.geometry.polyhedron [1, 0, -1/3]
K = Qp(5) R.<t> = K[] f = 5 + 3*t + t^4 + 25*t^10 f.newton_polygon() # needs sage.geometry.polyhedron f.newton_slopes() # needs sage.geometry.polyhedron f.newton_slopes(repetition=False) # needs sage.geometry.polyhedron
AUTHOR:
Xavier Caruso (2013-03-20)
- prec_degree()[source]¶
Return the largest \(n\) so that precision information is stored about the coefficient of \(x^n\).
Always greater than or equal to degree.
EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.prec_degree() 1
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.prec_degree() 1
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.prec_degree()
- precision_absolute(n=None)[source]¶
Return absolute precision information about
self
.INPUT:
self
– a \(p\)-adic polynomialn
–None
or integer (default:None
)
OUTPUT:
If
n
isNone
, returns a list of absolute precisions of coefficients. Otherwise, returns the absolute precision of the coefficient of \(x^n\).EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.precision_absolute() [10, 10]
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.precision_absolute() [10, 10]
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.precision_absolute()
- precision_relative(n=None)[source]¶
Return relative precision information about
self
.INPUT:
self
– a \(p\)-adic polynomialn
–None
or integer (default:None
)
OUTPUT:
If
n
isNone
, returns a list of relative precisions of coefficients. Otherwise, returns the relative precision of the coefficient of \(x^n\).EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.precision_relative() [10, 10]
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.precision_relative() [10, 10]
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.precision_relative()
- quo_rem(right, secure=False)[source]¶
Return the quotient and remainder in division of
self
byright
.EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2 sage: g = T**4 + 3*T+22 sage: g.quo_rem(f) ((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + 1 + 3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10), 2 + 3 + 3^3 + O(3^10))
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2) >>> g = T**Integer(4) + Integer(3)*T+Integer(22) >>> g.quo_rem(f) ((1 + O(3^10))*T^3 + (1 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10))*T^2 + (1 + 3 + O(3^10))*T + 1 + 3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + O(3^10), 2 + 3 + 3^3 + O(3^10))
K = Qp(3,10) R.<T> = K[] f = T + 2 g = T**4 + 3*T+22 g.quo_rem(f)
- rescale(a)[source]¶
Return \(f(a\cdot x)\).
Todo
Need to write this function for integer polynomials before this works.
EXAMPLES:
sage: K = Zp(13, 5) sage: R.<t> = K[] sage: f = t^3 + K(13, 3) * t sage: f.rescale(2) # not implemented
>>> from sage.all import * >>> K = Zp(Integer(13), Integer(5)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> f = t**Integer(3) + K(Integer(13), Integer(3)) * t >>> f.rescale(Integer(2)) # not implemented
K = Zp(13, 5) R.<t> = K[] f = t^3 + K(13, 3) * t f.rescale(2) # not implemented
- reverse(degree=None)[source]¶
Return the reverse of the input polynomial, thought as a polynomial of degree
degree
.If \(f\) is a degree-\(d\) polynomial, its reverse is \(x^d f(1/x)\).
INPUT:
degree
–None
or integer; if specified, truncate or zero pad the list of coefficients to this degree before reversing it
EXAMPLES:
sage: K = Qp(13,7) sage: R.<t> = K[] sage: f = t^3 + 4*t; f (1 + O(13^7))*t^3 + (4 + O(13^7))*t sage: f.reverse() 0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7) sage: f.reverse(3) 0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7) sage: f.reverse(2) 0*t^2 + (4 + O(13^7))*t sage: f.reverse(4) 0*t^4 + (4 + O(13^7))*t^3 + (1 + O(13^7))*t sage: f.reverse(6) 0*t^6 + (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
>>> from sage.all import * >>> K = Qp(Integer(13),Integer(7)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> f = t**Integer(3) + Integer(4)*t; f (1 + O(13^7))*t^3 + (4 + O(13^7))*t >>> f.reverse() 0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7) >>> f.reverse(Integer(3)) 0*t^3 + (4 + O(13^7))*t^2 + 1 + O(13^7) >>> f.reverse(Integer(2)) 0*t^2 + (4 + O(13^7))*t >>> f.reverse(Integer(4)) 0*t^4 + (4 + O(13^7))*t^3 + (1 + O(13^7))*t >>> f.reverse(Integer(6)) 0*t^6 + (4 + O(13^7))*t^5 + (1 + O(13^7))*t^3
K = Qp(13,7) R.<t> = K[] f = t^3 + 4*t; f f.reverse() f.reverse(3) f.reverse(2) f.reverse(4) f.reverse(6)
- rshift_coeffs(shift, no_list=False)[source]¶
Return a new polynomial whose coefficients are \(p\)-adically shifted to the right by
shift
.Note
Type
Qp(5)(0).__rshift__?
for more information.EXAMPLES:
sage: K = Zp(13, 4) sage: R.<t> = K[] sage: a = t^2 + K(13,3)*t + 169; a (1 + O(13^4))*t^2 + (13 + O(13^3))*t + 13^2 + O(13^6) sage: b = a.rshift_coeffs(1); b O(13^3)*t^2 + (1 + O(13^2))*t + 13 + O(13^5) sage: b.list() [13 + O(13^5), 1 + O(13^2), O(13^3)] sage: b = a.rshift_coeffs(2); b O(13^2)*t^2 + O(13)*t + 1 + O(13^4) sage: b.list() [1 + O(13^4), O(13), O(13^2)]
>>> from sage.all import * >>> K = Zp(Integer(13), Integer(4)) >>> R = K['t']; (t,) = R._first_ngens(1) >>> a = t**Integer(2) + K(Integer(13),Integer(3))*t + Integer(169); a (1 + O(13^4))*t^2 + (13 + O(13^3))*t + 13^2 + O(13^6) >>> b = a.rshift_coeffs(Integer(1)); b O(13^3)*t^2 + (1 + O(13^2))*t + 13 + O(13^5) >>> b.list() [13 + O(13^5), 1 + O(13^2), O(13^3)] >>> b = a.rshift_coeffs(Integer(2)); b O(13^2)*t^2 + O(13)*t + 1 + O(13^4) >>> b.list() [1 + O(13^4), O(13), O(13^2)]
K = Zp(13, 4) R.<t> = K[] a = t^2 + K(13,3)*t + 169; a b = a.rshift_coeffs(1); b b.list() b = a.rshift_coeffs(2); b b.list()
- valuation(val_of_var=None)[source]¶
Return the valuation of
self
.INPUT:
self
– a \(p\)-adic polynomialval_of_var
–None
or a rational (default:None
)
OUTPUT:
If
val_of_var
isNone
, returns the largest power of the variable dividingself
. Otherwise, returns the valuation ofself
where the variable is assigned valuationval_of_var
EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.valuation() 0
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.valuation() 0
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.valuation()
- valuation_of_coefficient(n=None)[source]¶
Return valuation information about
self
’s coefficients.INPUT:
self
– a \(p\)-adic polynomialn
–None
or integer (default:None
)
OUTPUT:
If
n
isNone
, returns a list of valuations of coefficients. Otherwise, returns the valuation of the coefficient of \(x^n\).EXAMPLES:
sage: K = Qp(3,10) sage: R.<T> = K[] sage: f = T + 2; f (1 + O(3^10))*T + 2 + O(3^10) sage: f.valuation_of_coefficient(1) 0
>>> from sage.all import * >>> K = Qp(Integer(3),Integer(10)) >>> R = K['T']; (T,) = R._first_ngens(1) >>> f = T + Integer(2); f (1 + O(3^10))*T + 2 + O(3^10) >>> f.valuation_of_coefficient(Integer(1)) 0
K = Qp(3,10) R.<T> = K[] f = T + 2; f f.valuation_of_coefficient(1)