Dense univariate polynomials over \(\ZZ\), implemented using FLINT¶
AUTHORS:
David Harvey: rewrote to talk to NTL directly, instead of via ntl.pyx (2007-09); a lot of this was based on Joel Mohler’s recent rewrite of the NTL wrapper
David Harvey: split off from polynomial_element_generic.py (2007-09)
Burcin Erocal: rewrote to use FLINT (2008-06-16)
- class sage.rings.polynomial.polynomial_integer_dense_flint.Polynomial_integer_dense_flint[source]¶
Bases:
Polynomial
A dense polynomial over the integers, implemented via FLINT.
- _add_(right)[source]¶
Return
self
plusright
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = 2*x + 1 sage: g = -3*x^2 + 6 sage: f + g -3*x^2 + 2*x + 7
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = Integer(2)*x + Integer(1) >>> g = -Integer(3)*x**Integer(2) + Integer(6) >>> f + g -3*x^2 + 2*x + 7
R.<x> = PolynomialRing(ZZ) f = 2*x + 1 g = -3*x^2 + 6 f + g
- _sub_(right)[source]¶
Return
self
minusright
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = 2*x + 1 sage: g = -3*x^2 + 6 sage: f - g 3*x^2 + 2*x - 5
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = Integer(2)*x + Integer(1) >>> g = -Integer(3)*x**Integer(2) + Integer(6) >>> f - g 3*x^2 + 2*x - 5
R.<x> = PolynomialRing(ZZ) f = 2*x + 1 g = -3*x^2 + 6 f - g
- _lmul_(right)[source]¶
Return
self
multiplied byright
, whereright
is a scalar (integer).EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: x*3 3*x sage: (2*x^2 + 4)*3 6*x^2 + 12
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> x*Integer(3) 3*x >>> (Integer(2)*x**Integer(2) + Integer(4))*Integer(3) 6*x^2 + 12
R.<x> = PolynomialRing(ZZ) x*3 (2*x^2 + 4)*3
- _rmul_(right)[source]¶
Return
self
multiplied byright
, where right is a scalar (integer).EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: 3*x 3*x sage: 3*(2*x^2 + 4) 6*x^2 + 12
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> Integer(3)*x 3*x >>> Integer(3)*(Integer(2)*x**Integer(2) + Integer(4)) 6*x^2 + 12
R.<x> = PolynomialRing(ZZ) 3*x 3*(2*x^2 + 4)
- _mul_(right)[source]¶
Return
self
multiplied byright
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: (x - 2)*(x^2 - 8*x + 16) x^3 - 10*x^2 + 32*x - 32
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> (x - Integer(2))*(x**Integer(2) - Integer(8)*x + Integer(16)) x^3 - 10*x^2 + 32*x - 32
R.<x> = PolynomialRing(ZZ) (x - 2)*(x^2 - 8*x + 16)
- _mul_trunc_(right, n)[source]¶
Truncated multiplication.
See also
_mul_()
for standard multiplicationEXAMPLES:
sage: x = polygen(ZZ) sage: p1 = 1 + x + x^2 + x^4 sage: p2 = -2 + 3*x^2 + 5*x^4 sage: p1._mul_trunc_(p2, 4) 3*x^3 + x^2 - 2*x - 2 sage: (p1*p2).truncate(4) 3*x^3 + x^2 - 2*x - 2 sage: p1._mul_trunc_(p2, 6) 5*x^5 + 6*x^4 + 3*x^3 + x^2 - 2*x - 2
>>> from sage.all import * >>> x = polygen(ZZ) >>> p1 = Integer(1) + x + x**Integer(2) + x**Integer(4) >>> p2 = -Integer(2) + Integer(3)*x**Integer(2) + Integer(5)*x**Integer(4) >>> p1._mul_trunc_(p2, Integer(4)) 3*x^3 + x^2 - 2*x - 2 >>> (p1*p2).truncate(Integer(4)) 3*x^3 + x^2 - 2*x - 2 >>> p1._mul_trunc_(p2, Integer(6)) 5*x^5 + 6*x^4 + 3*x^3 + x^2 - 2*x - 2
x = polygen(ZZ) p1 = 1 + x + x^2 + x^4 p2 = -2 + 3*x^2 + 5*x^4 p1._mul_trunc_(p2, 4) (p1*p2).truncate(4) p1._mul_trunc_(p2, 6)
- content()[source]¶
Return the greatest common divisor of the coefficients of this polynomial. The sign is the sign of the leading coefficient. The content of the zero polynomial is zero.
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: (2*x^2 - 4*x^4 + 14*x^7).content() 2 sage: x.content() 1 sage: R(1).content() 1 sage: R(0).content() 0
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> (Integer(2)*x**Integer(2) - Integer(4)*x**Integer(4) + Integer(14)*x**Integer(7)).content() 2 >>> x.content() 1 >>> R(Integer(1)).content() 1 >>> R(Integer(0)).content() 0
R.<x> = PolynomialRing(ZZ) (2*x^2 - 4*x^4 + 14*x^7).content() x.content() R(1).content() R(0).content()
- degree(gen=None)[source]¶
Return the degree of this polynomial.
The zero polynomial has degree \(-1\).
EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: x.degree() 1 sage: (x^2).degree() 2 sage: R(1).degree() 0 sage: R(0).degree() -1
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> x.degree() 1 >>> (x**Integer(2)).degree() 2 >>> R(Integer(1)).degree() 0 >>> R(Integer(0)).degree() -1
R.<x> = PolynomialRing(ZZ) x.degree() (x^2).degree() R(1).degree() R(0).degree()
- disc(proof=True)[source]¶
Return the discriminant of
self
, which is by definition\[(-1)^{m(m-1)/2} \mathop{\mathrm{resultant}}(a, a')/\mathop{\mathrm{lc}}(a),\]where \(m = \mathop{\mathrm{deg}}(a)\), and \(\mathop{\mathrm{lc}}(a)\) is the leading coefficient of a. If
proof
is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80}\).EXAMPLES:
sage: R.<x> = ZZ[] sage: f = 3*x^3 + 2*x + 1 sage: f.discriminant() -339 sage: f.discriminant(proof=False) -339
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> f = Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1) >>> f.discriminant() -339 >>> f.discriminant(proof=False) -339
R.<x> = ZZ[] f = 3*x^3 + 2*x + 1 f.discriminant() f.discriminant(proof=False)
- discriminant(proof=True)[source]¶
Return the discriminant of
self
, which is by definition\[(-1)^{m(m-1)/2} \mathop{\mathrm{resultant}}(a, a')/\mathop{\mathrm{lc}}(a),\]where \(m = \mathop{\mathrm{deg}}(a)\), and \(\mathop{\mathrm{lc}}(a)\) is the leading coefficient of a. If
proof
is False (the default is True), then this function may use a randomized strategy that errors with probability no more than \(2^{-80}\).EXAMPLES:
sage: R.<x> = ZZ[] sage: f = 3*x^3 + 2*x + 1 sage: f.discriminant() -339 sage: f.discriminant(proof=False) -339
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> f = Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1) >>> f.discriminant() -339 >>> f.discriminant(proof=False) -339
R.<x> = ZZ[] f = 3*x^3 + 2*x + 1 f.discriminant() f.discriminant(proof=False)
- factor()[source]¶
This function overrides the generic polynomial factorization to make a somewhat intelligent decision to use PARI or NTL based on some benchmarking.
Note: This function factors the content of the polynomial, which can take very long if it’s a really big integer. If you do not need the content factored, divide it out of your polynomial before calling this function.
EXAMPLES:
sage: R.<x> = ZZ[] sage: f = x^4 - 1 sage: f.factor() (x - 1) * (x + 1) * (x^2 + 1) sage: f = 1 - x sage: f.factor() (-1) * (x - 1) sage: f.factor().unit() -1 sage: f = -30*x; f.factor() (-1) * 2 * 3 * 5 * x
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> f = x**Integer(4) - Integer(1) >>> f.factor() (x - 1) * (x + 1) * (x^2 + 1) >>> f = Integer(1) - x >>> f.factor() (-1) * (x - 1) >>> f.factor().unit() -1 >>> f = -Integer(30)*x; f.factor() (-1) * 2 * 3 * 5 * x
R.<x> = ZZ[] f = x^4 - 1 f.factor() f = 1 - x f.factor() f.factor().unit() f = -30*x; f.factor()
- factor_mod(p)[source]¶
Return the factorization of
self
modulo the prime \(p\).INPUT:
p
– prime
OUTPUT: factorization of
self
reduced modulo \(p\)EXAMPLES:
sage: R.<x> = ZZ['x'] sage: f = -3*x*(x-2)*(x-9) + x sage: f.factor_mod(3) x sage: f = -3 * x * (x - 2) * (x - 9) sage: f.factor_mod(3) Traceback (most recent call last): ... ArithmeticError: factorization of 0 is not defined sage: f = 2 * x * (x - 2) * (x - 9) sage: f.factor_mod(7) (2) * x * (x + 5)^2
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> f = -Integer(3)*x*(x-Integer(2))*(x-Integer(9)) + x >>> f.factor_mod(Integer(3)) x >>> f = -Integer(3) * x * (x - Integer(2)) * (x - Integer(9)) >>> f.factor_mod(Integer(3)) Traceback (most recent call last): ... ArithmeticError: factorization of 0 is not defined >>> f = Integer(2) * x * (x - Integer(2)) * (x - Integer(9)) >>> f.factor_mod(Integer(7)) (2) * x * (x + 5)^2
R.<x> = ZZ['x'] f = -3*x*(x-2)*(x-9) + x f.factor_mod(3) f = -3 * x * (x - 2) * (x - 9) f.factor_mod(3) f = 2 * x * (x - 2) * (x - 9) f.factor_mod(7)
- factor_padic(p, prec=10)[source]¶
Return \(p\)-adic factorization of
self
to given precision.INPUT:
p
– primeprec
– integer; the precision
OUTPUT: factorization of
self
over the completion at \(p\)EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = x^2 + 1 sage: f.factor_padic(5, 4) ((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4)) * ((1 + O(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = x**Integer(2) + Integer(1) >>> f.factor_padic(Integer(5), Integer(4)) ((1 + O(5^4))*x + 2 + 5 + 2*5^2 + 5^3 + O(5^4)) * ((1 + O(5^4))*x + 3 + 3*5 + 2*5^2 + 3*5^3 + O(5^4))
R.<x> = PolynomialRing(ZZ) f = x^2 + 1 f.factor_padic(5, 4)
A more difficult example:
sage: f = 100 * (5*x + 1)^2 * (x + 5)^2 sage: f.factor_padic(5, 10) (4 + O(5^10)) * (5 + O(5^11))^2 * ((1 + O(5^10))*x + 5 + O(5^10))^2 * ((5 + O(5^10))*x + 1 + O(5^10))^2
>>> from sage.all import * >>> f = Integer(100) * (Integer(5)*x + Integer(1))**Integer(2) * (x + Integer(5))**Integer(2) >>> f.factor_padic(Integer(5), Integer(10)) (4 + O(5^10)) * (5 + O(5^11))^2 * ((1 + O(5^10))*x + 5 + O(5^10))^2 * ((5 + O(5^10))*x + 1 + O(5^10))^2
f = 100 * (5*x + 1)^2 * (x + 5)^2 f.factor_padic(5, 10)
- gcd(right)[source]¶
Return the GCD of
self
andright
. The leading coefficient need not be 1.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = (6*x + 47) * (7*x^2 - 2*x + 38) sage: g = (6*x + 47) * (3*x^3 + 2*x + 1) sage: f.gcd(g) 6*x + 47
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) - Integer(2)*x + Integer(38)) >>> g = (Integer(6)*x + Integer(47)) * (Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1)) >>> f.gcd(g) 6*x + 47
R.<x> = PolynomialRing(ZZ) f = (6*x + 47) * (7*x^2 - 2*x + 38) g = (6*x + 47) * (3*x^3 + 2*x + 1) f.gcd(g)
- inverse_series_trunc(prec)[source]¶
Return a polynomial approximation of precision
prec
of the inverse series of this polynomial.EXAMPLES:
sage: x = polygen(ZZ) sage: p = 1 + x + 2*x^2 sage: q5 = p.inverse_series_trunc(5) sage: q5 -x^4 + 3*x^3 - x^2 - x + 1 sage: p*q5 -2*x^6 + 5*x^5 + 1 sage: (x-1).inverse_series_trunc(5) -x^4 - x^3 - x^2 - x - 1 sage: q100 = p.inverse_series_trunc(100) sage: (q100 * p).truncate(100) 1
>>> from sage.all import * >>> x = polygen(ZZ) >>> p = Integer(1) + x + Integer(2)*x**Integer(2) >>> q5 = p.inverse_series_trunc(Integer(5)) >>> q5 -x^4 + 3*x^3 - x^2 - x + 1 >>> p*q5 -2*x^6 + 5*x^5 + 1 >>> (x-Integer(1)).inverse_series_trunc(Integer(5)) -x^4 - x^3 - x^2 - x - 1 >>> q100 = p.inverse_series_trunc(Integer(100)) >>> (q100 * p).truncate(Integer(100)) 1
x = polygen(ZZ) p = 1 + x + 2*x^2 q5 = p.inverse_series_trunc(5) q5 p*q5 (x-1).inverse_series_trunc(5) q100 = p.inverse_series_trunc(100) (q100 * p).truncate(100)
- is_one()[source]¶
Return
True
ifself
is equal to one.EXAMPLES:
sage: R.<x> = ZZ[] sage: R(0).is_one() False sage: R(1).is_one() True sage: x.is_one() False
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> R(Integer(0)).is_one() False >>> R(Integer(1)).is_one() True >>> x.is_one() False
R.<x> = ZZ[] R(0).is_one() R(1).is_one() x.is_one()
- is_zero()[source]¶
Return
True
ifself
is equal to zero.EXAMPLES:
sage: R.<x> = ZZ[] sage: R(0).is_zero() True sage: R(1).is_zero() False sage: x.is_zero() False
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> R(Integer(0)).is_zero() True >>> R(Integer(1)).is_zero() False >>> x.is_zero() False
R.<x> = ZZ[] R(0).is_zero() R(1).is_zero() x.is_zero()
- lcm(right)[source]¶
Return the LCM of
self
andright
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = (6*x + 47) * (7*x^2 - 2*x + 38) sage: g = (6*x + 47) * (3*x^3 + 2*x + 1) sage: h = f.lcm(g); h 126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786 sage: h == (6*x + 47) * (7*x^2 - 2*x + 38) * (3*x^3 + 2*x + 1) True
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) - Integer(2)*x + Integer(38)) >>> g = (Integer(6)*x + Integer(47)) * (Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1)) >>> h = f.lcm(g); h 126*x^6 + 951*x^5 + 486*x^4 + 6034*x^3 + 585*x^2 + 3706*x + 1786 >>> h == (Integer(6)*x + Integer(47)) * (Integer(7)*x**Integer(2) - Integer(2)*x + Integer(38)) * (Integer(3)*x**Integer(3) + Integer(2)*x + Integer(1)) True
R.<x> = PolynomialRing(ZZ) f = (6*x + 47) * (7*x^2 - 2*x + 38) g = (6*x + 47) * (3*x^3 + 2*x + 1) h = f.lcm(g); h h == (6*x + 47) * (7*x^2 - 2*x + 38) * (3*x^3 + 2*x + 1)
- list(copy=True)[source]¶
Return a new copy of the list of the underlying elements of
self
.EXAMPLES:
sage: x = PolynomialRing(ZZ,'x').0 sage: f = x^3 + 3*x - 17 sage: f.list() [-17, 3, 0, 1] sage: f = PolynomialRing(ZZ,'x')(0) sage: f.list() []
>>> from sage.all import * >>> x = PolynomialRing(ZZ,'x').gen(0) >>> f = x**Integer(3) + Integer(3)*x - Integer(17) >>> f.list() [-17, 3, 0, 1] >>> f = PolynomialRing(ZZ,'x')(Integer(0)) >>> f.list() []
x = PolynomialRing(ZZ,'x').0 f = x^3 + 3*x - 17 f.list() f = PolynomialRing(ZZ,'x')(0) f.list()
- pseudo_divrem(B)[source]¶
Write
A = self
. This function computes polynomials \(Q\) and \(R\) and an integer \(d\) such that\[\mathop{\mathrm{lead}}(B)^d A = B Q + R\]where R has degree less than that of B.
INPUT:
B
– a polynomial over \(\ZZ\)
OUTPUT:
Q
,R
– polynomialsd
– nonnegative integer
EXAMPLES:
sage: R.<x> = ZZ['x'] sage: A = R(range(10)) sage: B = 3*R([-1, 0, 1]) sage: Q, R, d = A.pseudo_divrem(B) sage: Q, R, d (9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1) sage: B.leading_coefficient()^d * A == B*Q + R True
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> A = R(range(Integer(10))) >>> B = Integer(3)*R([-Integer(1), Integer(0), Integer(1)]) >>> Q, R, d = A.pseudo_divrem(B) >>> Q, R, d (9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 75*x + 60, 1) >>> B.leading_coefficient()**d * A == B*Q + R True
R.<x> = ZZ['x'] A = R(range(10)) B = 3*R([-1, 0, 1]) Q, R, d = A.pseudo_divrem(B) Q, R, d B.leading_coefficient()^d * A == B*Q + R
- quo_rem(right)[source]¶
Attempts to divide
self
byright
, and return a quotient and remainder.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: f = R(range(10)); g = R([-1, 0, 1]) sage: q, r = f.quo_rem(g) sage: q, r (9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20) sage: q*g + r == f True sage: f = x^2 sage: f.quo_rem(0) Traceback (most recent call last): ... ZeroDivisionError: division by zero polynomial sage: f = (x^2 + 3) * (2*x - 1) sage: f.quo_rem(2*x - 1) (x^2 + 3, 0) sage: f = x^2 sage: f.quo_rem(2*x - 1) (0, x^2)
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = R(range(Integer(10))); g = R([-Integer(1), Integer(0), Integer(1)]) >>> q, r = f.quo_rem(g) >>> q, r (9*x^7 + 8*x^6 + 16*x^5 + 14*x^4 + 21*x^3 + 18*x^2 + 24*x + 20, 25*x + 20) >>> q*g + r == f True >>> f = x**Integer(2) >>> f.quo_rem(Integer(0)) Traceback (most recent call last): ... ZeroDivisionError: division by zero polynomial >>> f = (x**Integer(2) + Integer(3)) * (Integer(2)*x - Integer(1)) >>> f.quo_rem(Integer(2)*x - Integer(1)) (x^2 + 3, 0) >>> f = x**Integer(2) >>> f.quo_rem(Integer(2)*x - Integer(1)) (0, x^2)
R.<x> = PolynomialRing(ZZ) f = R(range(10)); g = R([-1, 0, 1]) q, r = f.quo_rem(g) q, r q*g + r == f f = x^2 f.quo_rem(0) f = (x^2 + 3) * (2*x - 1) f.quo_rem(2*x - 1) f = x^2 f.quo_rem(2*x - 1)
- real_root_intervals()[source]¶
Return isolating intervals for the real roots of this polynomial.
EXAMPLES: We compute the roots of the characteristic polynomial of some Salem numbers:
sage: R.<x> = PolynomialRing(ZZ) sage: f = 1 - x^2 - x^3 - x^4 + x^6 sage: f.real_root_intervals() # needs sage.libs.linbox [((1/2, 3/4), 1), ((1, 3/2), 1)]
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> f = Integer(1) - x**Integer(2) - x**Integer(3) - x**Integer(4) + x**Integer(6) >>> f.real_root_intervals() # needs sage.libs.linbox [((1/2, 3/4), 1), ((1, 3/2), 1)]
R.<x> = PolynomialRing(ZZ) f = 1 - x^2 - x^3 - x^4 + x^6 f.real_root_intervals() # needs sage.libs.linbox
- resultant(other, proof=True)[source]¶
Return the resultant of
self
andother
, which must lie in the same polynomial ring.If
proof=False
(the default isproof=True
), then this function may use a randomized strategy that errors with probability no more than \(2^{-80}\).INPUT:
other
– a polynomial
OUTPUT: an element of the base ring of the polynomial ring
EXAMPLES:
sage: x = PolynomialRing(ZZ,'x').0 sage: f = x^3 + x + 1; g = x^3 - x - 1 sage: r = f.resultant(g); r -8 sage: r.parent() is ZZ True
>>> from sage.all import * >>> x = PolynomialRing(ZZ,'x').gen(0) >>> f = x**Integer(3) + x + Integer(1); g = x**Integer(3) - x - Integer(1) >>> r = f.resultant(g); r -8 >>> r.parent() is ZZ True
x = PolynomialRing(ZZ,'x').0 f = x^3 + x + 1; g = x^3 - x - 1 r = f.resultant(g); r r.parent() is ZZ
- reverse(degree=None)[source]¶
Return a polynomial with the coefficients of this polynomial reversed.
If an optional degree argument is given the coefficient list will be truncated or zero padded as necessary before computing the reverse.
EXAMPLES:
sage: R.<x> = ZZ[] sage: p = R([1,2,3,4]); p 4*x^3 + 3*x^2 + 2*x + 1 sage: p.reverse() x^3 + 2*x^2 + 3*x + 4 sage: p.reverse(degree=6) x^6 + 2*x^5 + 3*x^4 + 4*x^3 sage: p.reverse(degree=2) x^2 + 2*x + 3
>>> from sage.all import * >>> R = ZZ['x']; (x,) = R._first_ngens(1) >>> p = R([Integer(1),Integer(2),Integer(3),Integer(4)]); p 4*x^3 + 3*x^2 + 2*x + 1 >>> p.reverse() x^3 + 2*x^2 + 3*x + 4 >>> p.reverse(degree=Integer(6)) x^6 + 2*x^5 + 3*x^4 + 4*x^3 >>> p.reverse(degree=Integer(2)) x^2 + 2*x + 3
R.<x> = ZZ[] p = R([1,2,3,4]); p p.reverse() p.reverse(degree=6) p.reverse(degree=2)
- revert_series(n)[source]¶
Return a polynomial \(f\) such that \(f(\)
self
\((x)) =\)self
\((f(x)) = x\) (mod \(x^n\)).EXAMPLES:
sage: R.<t> = ZZ[] sage: f = t - t^3 + t^5 sage: f.revert_series(6) 2*t^5 + t^3 + t sage: f.revert_series(-1) Traceback (most recent call last): ... ValueError: argument n must be a nonnegative integer, got -1 sage: g = - t^3 + t^5 sage: g.revert_series(6) Traceback (most recent call last): ... ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
>>> from sage.all import * >>> R = ZZ['t']; (t,) = R._first_ngens(1) >>> f = t - t**Integer(3) + t**Integer(5) >>> f.revert_series(Integer(6)) 2*t^5 + t^3 + t >>> f.revert_series(-Integer(1)) Traceback (most recent call last): ... ValueError: argument n must be a nonnegative integer, got -1 >>> g = - t**Integer(3) + t**Integer(5) >>> g.revert_series(Integer(6)) Traceback (most recent call last): ... ValueError: self must have constant coefficient 0 and a unit for coefficient t^1
R.<t> = ZZ[] f = t - t^3 + t^5 f.revert_series(6) f.revert_series(-1) g = - t^3 + t^5 g.revert_series(6)
- squarefree_decomposition()[source]¶
Return the square-free decomposition of
self
. This is a partial factorization ofself
into square-free, relatively prime polynomials.This is a wrapper for the NTL function
SquareFreeDecomp
.EXAMPLES:
sage: R.<x> = PolynomialRing(ZZ) sage: p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4) sage: p.squarefree_decomposition() (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3 sage: p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4) sage: p.squarefree_decomposition() (37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
>>> from sage.all import * >>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1) >>> p = (x-Integer(1))**Integer(2) * (x-Integer(2))**Integer(2) * (x-Integer(3))**Integer(3) * (x-Integer(4)) >>> p.squarefree_decomposition() (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3 >>> p = Integer(37) * (x-Integer(1))**Integer(2) * (x-Integer(2))**Integer(2) * (x-Integer(3))**Integer(3) * (x-Integer(4)) >>> p.squarefree_decomposition() (37) * (x - 4) * (x^2 - 3*x + 2)^2 * (x - 3)^3
R.<x> = PolynomialRing(ZZ) p = (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4) p.squarefree_decomposition() p = 37 * (x-1)^2 * (x-2)^2 * (x-3)^3 * (x-4) p.squarefree_decomposition()
- xgcd(right)[source]¶
Return a triple \((g,s,t)\) such that \(g = s\cdot{}\)
self
+ \(t\cdot{}\)right
and such that \(g\) is the gcd ofself
andright
up to a divisor of the resultant ofself
andother
.As integer polynomials do not form a principal ideal domain, it is not always possible given \(a\) and \(b\) to find a pair \(s,t\) such that \(gcd(a,b) = sa + tb\). Take \(a=x+2\) and \(b=x+4\) as an example for which the gcd is \(1\) but the best you can achieve in the Bezout identity is \(2\).
If
self
andright
are coprime as polynomials over the rationals, theng
is guaranteed to be the resultant ofself
andright
, as a constant polynomial.EXAMPLES:
sage: P.<x> = PolynomialRing(ZZ) sage: (x + 2).xgcd(x + 4) (2, -1, 1) sage: (x + 2).resultant(x + 4) 2 sage: (x + 2).gcd(x + 4) 1 sage: F = (x^2 + 2)*x^3; G = (x^2 + 2) * (x - 3) sage: g, u, v = F.xgcd(G) sage: g, u, v (27*x^2 + 54, 1, -x^2 - 3*x - 9) sage: u*F + v*G 27*x^2 + 54 sage: zero = P(0) sage: x.xgcd(zero) (x, 1, 0) sage: zero.xgcd(x) (x, 0, 1) sage: F = (x - 3)^3; G = (x - 15)^2 sage: g, u, v = F.xgcd(G) sage: g, u, v (2985984, -432*x + 8208, 432*x^2 + 864*x + 14256) sage: u*F + v*G 2985984
>>> from sage.all import * >>> P = PolynomialRing(ZZ, names=('x',)); (x,) = P._first_ngens(1) >>> (x + Integer(2)).xgcd(x + Integer(4)) (2, -1, 1) >>> (x + Integer(2)).resultant(x + Integer(4)) 2 >>> (x + Integer(2)).gcd(x + Integer(4)) 1 >>> F = (x**Integer(2) + Integer(2))*x**Integer(3); G = (x**Integer(2) + Integer(2)) * (x - Integer(3)) >>> g, u, v = F.xgcd(G) >>> g, u, v (27*x^2 + 54, 1, -x^2 - 3*x - 9) >>> u*F + v*G 27*x^2 + 54 >>> zero = P(Integer(0)) >>> x.xgcd(zero) (x, 1, 0) >>> zero.xgcd(x) (x, 0, 1) >>> F = (x - Integer(3))**Integer(3); G = (x - Integer(15))**Integer(2) >>> g, u, v = F.xgcd(G) >>> g, u, v (2985984, -432*x + 8208, 432*x^2 + 864*x + 14256) >>> u*F + v*G 2985984
P.<x> = PolynomialRing(ZZ) (x + 2).xgcd(x + 4) (x + 2).resultant(x + 4) (x + 2).gcd(x + 4) F = (x^2 + 2)*x^3; G = (x^2 + 2) * (x - 3) g, u, v = F.xgcd(G) g, u, v u*F + v*G zero = P(0) x.xgcd(zero) zero.xgcd(x) F = (x - 3)^3; G = (x - 15)^2 g, u, v = F.xgcd(G) g, u, v u*F + v*G