Miscellaneous arithmetic functions¶
AUTHORS:
Kevin Stueve (2010-01-17): in
is_prime(n)
, delegated calculation ton.is_prime()
- sage.arith.misc.CRT_basis(moduli, require_coprime_moduli)[source]¶
Return a CRT basis for the given moduli.
INPUT:
moduli
– list of moduli which admit an extended Euclidean algorithmrequire_coprime_moduli
– boolean (default:True
); whether the moduli must be pairwise coprime.
OUTPUT:
a list of integers
of the same length as such that if is any list of integers of the same length as , and we let , then for all (if a solution of the system of congruences exists). When the moduli are pairwise coprime, this implies that is congruent to 1 modulo and to 0 modulo for .if
require_coprime_moduli
isFalse
, also returns a boolean value that isTrue
if the given moduli are pairwise coprime
EXAMPLES:
sage: a1 = ZZ(mod(42,5)) sage: a2 = ZZ(mod(42,13)) sage: c1,c2 = CRT_basis([5,13]) sage: mod(a1*c1+a2*c2,5*13) 42
A polynomial example:
sage: x = polygen(QQ) sage: mods = [x,x^2+1,2*x-3] sage: b = CRT_basis(mods) sage: b [-2/3*x^3 + x^2 - 2/3*x + 1, 6/13*x^3 - x^2 + 6/13*x, 8/39*x^3 + 8/39*x] sage: [[bi % mj for mj in mods] for bi in b] [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
- sage.arith.misc.CRT_list(values, moduli=None)[source]¶
Given a list
values
of elements and a list of correspondingmoduli
, find a single element that reduces to each element ofvalues
modulo the corresponding moduli.This function can also be called with one argument, each element of the list is a
modular integer
. In this case, it returns another modular integer.See also
EXAMPLES:
sage: CRT_list([2,3,2], [3,5,7]) 23 sage: x = polygen(QQ) sage: c = CRT_list([3], [x]); c 3 sage: c.parent() Univariate Polynomial Ring in x over Rational Field
It also works if the moduli are not coprime:
sage: CRT_list([32,2,2],[60,90,150]) 452
But with non coprime moduli there is not always a solution:
sage: CRT_list([32,2,1],[60,90,150]) Traceback (most recent call last): ... ValueError: no solution to crt problem since gcd(180,150) does not divide 92-1
Call with one argument:
sage: x = CRT_list([mod(2,3),mod(3,5),mod(2,7)]); x 23 sage: x.parent() Ring of integers modulo 105
The arguments must be lists:
sage: CRT_list([1,2,3],"not a list") Traceback (most recent call last): ... ValueError: arguments to CRT_list should be lists sage: CRT_list("not a list",[2,3]) Traceback (most recent call last): ... ValueError: arguments to CRT_list should be lists
The list of moduli must have the same length as the list of elements:
sage: CRT_list([1,2,3],[2,3,5]) 23 sage: CRT_list([1,2,3],[2,3]) Traceback (most recent call last): ... ValueError: arguments to CRT_list should be lists of the same length sage: CRT_list([1,2,3],[2,3,5,7]) Traceback (most recent call last): ... ValueError: arguments to CRT_list should be lists of the same length
- sage.arith.misc.CRT_vectors(X, moduli)[source]¶
Vector form of the Chinese Remainder Theorem: given a list of integer vectors
and a list of moduli , find a vector such that for all .This is more efficient than applying
CRT()
to each entry.INPUT:
X
– list or tuple, consisting of lists/tuples/vectors/etc of integers of the same lengthmoduli
– list of len(X) moduli
OUTPUT: list; application of CRT componentwise
EXAMPLES:
sage: CRT_vectors([[3,5,7],[3,5,11]], [2,3]) [3, 5, 5] sage: CRT_vectors([vector(ZZ, [2,3,1]), Sequence([1,7,8], ZZ)], [8,9]) # needs sage.modules [10, 43, 17]
CRT_vectors
also works for some non-coprime moduli:sage: CRT_vectors([[6],[0]],[10, 4]) [16] sage: CRT_vectors([[6],[0]],[10, 10]) Traceback (most recent call last): ... ValueError: solution does not exist
- class sage.arith.misc.Euler_Phi[source]¶
Bases:
object
Return the value of the Euler phi function on the integer
. We defined this to be the number of positive integers <= n that are relatively prime to . Thus if theneuler_phi(n)
is defined and equals 0.INPUT:
n
– integer
EXAMPLES:
sage: euler_phi(1) 1 sage: euler_phi(2) 1 sage: euler_phi(3) # needs sage.libs.pari 2 sage: euler_phi(12) # needs sage.libs.pari 4 sage: euler_phi(37) # needs sage.libs.pari 36
Notice that
euler_phi
is defined to be 0 on negative numbers and 0:sage: euler_phi(-1) 0 sage: euler_phi(0) 0 sage: type(euler_phi(0)) <class 'sage.rings.integer.Integer'>
We verify directly that the phi function is correct for 21:
sage: euler_phi(21) # needs sage.libs.pari 12 sage: [i for i in range(21) if gcd(21,i) == 1] [1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20]
The length of the list of integers ‘i’ in
range(n)
such that thegcd(i,n) == 1
equalseuler_phi(n)
:sage: len([i for i in range(21) if gcd(21,i) == 1]) == euler_phi(21) # needs sage.libs.pari True
The phi function also has a special plotting method:
sage: P = plot(euler_phi, -3, 71) # needs sage.libs.pari sage.plot
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: euler_phi(int8(37)) # needs numpy sage.libs.pari 36 sage: from gmpy2 import mpz sage: euler_phi(mpz(37)) # needs sage.libs.pari 36
AUTHORS:
William Stein
Alex Clemesha (2006-01-10): some examples
- plot(xmin=1, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]¶
Plot the Euler phi function.
INPUT:
xmin
– (default: 1)xmax
– (default: 50)pointsize
– (default: 30)rgbcolor
– (default: (0,0,1))join
– boolean (default:True
); whether to join the points**kwds
– passed on
EXAMPLES:
sage: from sage.arith.misc import Euler_Phi sage: p = Euler_Phi().plot() # needs sage.libs.pari sage.plot sage: p.ymax() # needs sage.libs.pari sage.plot 46.0
- class sage.arith.misc.Moebius[source]¶
Bases:
object
Return the value of the Möbius function of abs(n), where n is an integer.
DEFINITION:
is 0 if is not square free, and otherwise equals , where has distinct prime factors.For simplicity, if
we define .IMPLEMENTATION: Factors or - for integers - uses the PARI C library.
INPUT:
n
– anything that can be factored
OUTPUT: 0, 1, or -1
EXAMPLES:
sage: # needs sage.libs.pari sage: moebius(-5) -1 sage: moebius(9) 0 sage: moebius(12) 0 sage: moebius(-35) 1 sage: moebius(-1) 1 sage: moebius(7) -1
sage: moebius(0) # potentially nonstandard! 0
The moebius function even makes sense for non-integer inputs.
sage: x = GF(7)['x'].0 sage: moebius(x + 2) # needs sage.libs.pari -1
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: moebius(int8(-5)) # needs numpy sage.libs.pari -1 sage: from gmpy2 import mpz sage: moebius(mpz(-5)) # needs sage.libs.pari -1
- plot(xmin=0, xmax=50, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]¶
Plot the Möbius function.
INPUT:
xmin
– (default: 0)xmax
– (default: 50)pointsize
– (default: 30)rgbcolor
– (default: (0,0,1))join
– (default:True
) whether to join the points(very helpful in seeing their order)
**kwds
– passed on
EXAMPLES:
sage: from sage.arith.misc import Moebius sage: p = Moebius().plot() # needs sage.libs.pari sage.plot sage: p.ymax() # needs sage.libs.pari sage.plot 1.0
- range(start, stop=None, step=None)[source]¶
Return the Möbius function evaluated at the given range of values, i.e., the image of the list range(start, stop, step) under the Möbius function.
This is much faster than directly computing all these values with a list comprehension.
EXAMPLES:
sage: # needs sage.libs.pari sage: v = moebius.range(-10, 10); v [1, 0, 0, -1, 1, -1, 0, -1, -1, 1, 0, 1, -1, -1, 0, -1, 1, -1, 0, 0] sage: v == [moebius(n) for n in range(-10, 10)] True sage: v = moebius.range(-1000, 2000, 4) sage: v == [moebius(n) for n in range(-1000, 2000, 4)] True
- class sage.arith.misc.Sigma[source]¶
Bases:
object
Return the sum of the
-th powers of the divisors of .INPUT:
n
– integerk
– integer (default: 1)
OUTPUT: integer
EXAMPLES:
sage: sigma(5) 6 sage: sigma(5,2) 26
The sigma function also has a special plotting method.
sage: P = plot(sigma, 1, 100) # needs sage.plot
This method also works with
-th powers.sage: P = plot(sigma, 1, 100, k=2) # needs sage.plot
AUTHORS:
William Stein: original implementation
Craig Citro (2007-06-01): rewrote for huge speedup
- plot(xmin=1, xmax=50, k=1, pointsize=30, rgbcolor=(0, 0, 1), join=True, **kwds)[source]¶
Plot the sigma (sum of
-th powers of divisors) function.INPUT:
xmin
– (default: 1)xmax
– (default: 50)k
– (default: 1)pointsize
– (default: 30)rgbcolor
– (default: (0,0,1))join
– (default:True
) whether to join the points**kwds
– passed on
EXAMPLES:
sage: from sage.arith.misc import Sigma sage: p = Sigma().plot() # needs sage.libs.pari sage.plot sage: p.ymax() # needs sage.libs.pari sage.plot 124.0
- sage.arith.misc.algdep(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)[source]¶
alias of
algebraic_dependency()
.
- sage.arith.misc.algebraic_dependency(z, degree, known_bits=None, use_bits=None, known_digits=None, use_digits=None, height_bound=None, proof=False)[source]¶
Return an irreducible polynomial of degree at most
which is approximately satisfied by the number .You can specify the number of known bits or digits of
withknown_bits=k
orknown_digits=k
. PARI is then told to compute the result using of these bits/digits. Or, you can specify the precision to use directly withuse_bits=k
oruse_digits=k
. If none of these are specified, then the precision is taken from the input value.A height bound may be specified to indicate the maximum coefficient size of the returned polynomial; if a sufficiently small polynomial is not found, then
None
will be returned. Ifproof=True
then the result is returned only if it can be proved correct (i.e. the only possible minimal polynomial satisfying the height bound, or no such polynomial exists). Otherwise aValueError
is raised indicating that higher precision is required.ALGORITHM: Uses LLL for real/complex inputs, PARI C-library pari:algdep command otherwise.
Note that
algdep
is a synonym foralgebraic_dependency
.INPUT:
z
– real, complex, or -adic numberdegree
– integerheight_bound
– integer (default:None
); specifying the maximum coefficient size for the returned polynomialproof
– boolean (default:False
); requires height_bound to be set
EXAMPLES:
sage: algebraic_dependency(1.888888888888888, 1) # needs sage.libs.pari 9*x - 17 sage: algdep(0.12121212121212, 1) # needs sage.libs.pari 33*x - 4 sage: algdep(sqrt(2), 2) # needs sage.libs.pari sage.symbolic x^2 - 2
This example involves a complex number:
sage: z = (1/2) * (1 + RDF(sqrt(3)) * CC.0); z # needs sage.symbolic 0.500000000000000 + 0.866025403784439*I sage: algdep(z, 6) # needs sage.symbolic x^2 - x + 1
This example involves a
-adic number:sage: K = Qp(3, print_mode='series') # needs sage.rings.padics sage: a = K(7/19); a # needs sage.rings.padics 1 + 2*3 + 3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^8 + 2*3^9 + 3^11 + 3^12 + 2*3^15 + 2*3^16 + 3^17 + 2*3^19 + O(3^20) sage: algdep(a, 1) # needs sage.rings.padics 19*x - 7
These examples show the importance of proper precision control. We compute a 200-bit approximation to
which is wrong in the 33’rd bit:sage: # needs sage.libs.pari sage.rings.real_mpfr sage: z = sqrt(RealField(200)(2)) + (1/2)^33 sage: p = algdep(z, 4); p 227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088 sage: factor(p) 227004321085*x^4 - 216947902586*x^3 - 99411220986*x^2 + 82234881648*x - 211871195088 sage: algdep(z, 4, known_bits=32) x^2 - 2 sage: algdep(z, 4, known_digits=10) x^2 - 2 sage: algdep(z, 4, use_bits=25) x^2 - 2 sage: algdep(z, 4, use_digits=8) x^2 - 2
Using the
height_bound
andproof
parameters, we can see that is not the root of an integer polynomial of degree at most 5 and coefficients bounded above by 10:sage: algdep(pi.n(), 5, height_bound=10, proof=True) is None # needs sage.libs.pari sage.symbolic True
For stronger results, we need more precision:
sage: # needs sage.libs.pari sage.symbolic sage: algdep(pi.n(), 5, height_bound=100, proof=True) is None Traceback (most recent call last): ... ValueError: insufficient precision for non-existence proof sage: algdep(pi.n(200), 5, height_bound=100, proof=True) is None True sage: algdep(pi.n(), 10, height_bound=10, proof=True) is None Traceback (most recent call last): ... ValueError: insufficient precision for non-existence proof sage: algdep(pi.n(200), 10, height_bound=10, proof=True) is None True
We can also use
proof=True
to get positive results:sage: # needs sage.libs.pari sage.symbolic sage: a = sqrt(2) + sqrt(3) + sqrt(5) sage: algdep(a.n(), 8, height_bound=1000, proof=True) Traceback (most recent call last): ... ValueError: insufficient precision for uniqueness proof sage: f = algdep(a.n(1000), 8, height_bound=1000, proof=True); f x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576 sage: f(a).expand() 0
- sage.arith.misc.bernoulli(n, algorithm='default', num_threads=1)[source]¶
Return the
-th Bernoulli number, as a rational number.INPUT:
n
– integeralgorithm
:'default'
– use ‘flint’ for n <= 20000, then ‘arb’ for n <= 300000 and ‘bernmm’ for larger values (this is just a heuristic, and not guaranteed to be optimal on all hardware)'arb'
– use thebernoulli_fmpq_ui
function (formerly part of Arb) of the FLINT library'flint'
– use thearith_bernoulli_number
function of the FLINT library'pari'
– use the PARI C library'gap'
– use GAP'gp'
– use PARI/GP interpreter'magma'
– use MAGMA (optional)'bernmm'
– use bernmm package (a multimodular algorithm)
num_threads
– positive integer, number of threads to use (only used for bernmm algorithm)
EXAMPLES:
sage: bernoulli(12) # needs sage.libs.flint -691/2730 sage: bernoulli(50) # needs sage.libs.flint 495057205241079648212477525/66
We demonstrate each of the alternative algorithms:
sage: bernoulli(12, algorithm='arb') # needs sage.libs.flint -691/2730 sage: bernoulli(12, algorithm='flint') # needs sage.libs.flint -691/2730 sage: bernoulli(12, algorithm='gap') # needs sage.libs.gap -691/2730 sage: bernoulli(12, algorithm='gp') # needs sage.libs.pari -691/2730 sage: bernoulli(12, algorithm='magma') # optional - magma -691/2730 sage: bernoulli(12, algorithm='pari') # needs sage.libs.pari -691/2730 sage: bernoulli(12, algorithm='bernmm') # needs sage.libs.ntl -691/2730 sage: bernoulli(12, algorithm='bernmm', num_threads=4) # needs sage.libs.ntl -691/2730
AUTHOR:
David Joyner and William Stein
- sage.arith.misc.binomial(x, m, **kwds)[source]¶
Return the binomial coefficient.
which is defined for
and any . We extend this definition to include cases when is an integer but is not byIf
, return .INPUT:
x
,m
– numbers or symbolic expressions; eitherm
orx-m
must be an integer
OUTPUT: number or symbolic expression (if input is symbolic)
EXAMPLES:
sage: from sage.arith.misc import binomial sage: binomial(5, 2) 10 sage: binomial(2, 0) 1 sage: binomial(1/2, 0) # needs sage.libs.pari 1 sage: binomial(3, -1) 0 sage: binomial(20, 10) 184756 sage: binomial(-2, 5) -6 sage: binomial(-5, -2) 0 sage: binomial(RealField()('2.5'), 2) # needs sage.rings.real_mpfr 1.87500000000000 sage: binomial(Zp(5)(99),50) 3 + 4*5^3 + 2*5^4 + 4*5^5 + 4*5^6 + 4*5^7 + 4*5^8 + 5^9 + 2*5^10 + 3*5^11 + 4*5^12 + 4*5^13 + 2*5^14 + 3*5^15 + 3*5^16 + 4*5^17 + 4*5^18 + 2*5^19 + O(5^20) sage: binomial(Qp(3)(2/3),2) 2*3^-2 + 2*3^-1 + 2 + 2*3 + 2*3^2 + 2*3^3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + 2*3^9 + 2*3^10 + 2*3^11 + 2*3^12 + 2*3^13 + 2*3^14 + 2*3^15 + 2*3^16 + 2*3^17 + O(3^18) sage: n = var('n'); binomial(n, 2) # needs sage.symbolic 1/2*(n - 1)*n sage: n = var('n'); binomial(n, n) # needs sage.symbolic 1 sage: n = var('n'); binomial(n, n - 1) # needs sage.symbolic n sage: binomial(2^100, 2^100) 1 sage: x = polygen(ZZ) sage: binomial(x, 3) 1/6*x^3 - 1/2*x^2 + 1/3*x sage: binomial(x, x - 3) 1/6*x^3 - 1/2*x^2 + 1/3*x
If
, there is an optional ‘algorithm’ parameter, which can be ‘gmp’ (faster for small values; alias: ‘mpir’) or ‘pari’ (faster for large values):sage: a = binomial(100, 45, algorithm='gmp') sage: b = binomial(100, 45, algorithm='pari') # needs sage.libs.pari sage: a == b # needs sage.libs.pari True
- sage.arith.misc.binomial_coefficients(n)[source]¶
Return a dictionary containing pairs
where are binomial coefficients and .INPUT:
n
– integer
OUTPUT: dictionary
EXAMPLES:
sage: sorted(binomial_coefficients(3).items()) [((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
Notice the coefficients above are the same as below:
sage: R.<x,y> = QQ[] sage: (x+y)^3 x^3 + 3*x^2*y + 3*x*y^2 + y^3
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: sorted(binomial_coefficients(int8(3)).items()) # needs numpy [((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)] sage: from gmpy2 import mpz sage: sorted(binomial_coefficients(mpz(3)).items()) [((0, 3), 1), ((1, 2), 3), ((2, 1), 3), ((3, 0), 1)]
AUTHORS:
Fredrik Johansson
- sage.arith.misc.carmichael_lambda(n)[source]¶
Return the Carmichael function of a positive integer
n
.The Carmichael function of
, denoted , is the smallest positive integer such that for all satisfying . Thus, is the exponent of the multiplicative group .INPUT:
n
– positive integer
OUTPUT: the Carmichael function of
n
ALGORITHM:
If
then . Let be an odd prime and let be a positive integer. Then . If , then . Now consider the case where is composite and let be the prime factorization of . ThenEXAMPLES:
The Carmichael function of all positive integers up to and including 10:
sage: from sage.arith.misc import carmichael_lambda sage: list(map(carmichael_lambda, [1..10])) [1, 1, 2, 2, 4, 2, 6, 2, 6, 4]
The Carmichael function of the first ten primes:
sage: list(map(carmichael_lambda, primes_first_n(10))) # needs sage.libs.pari [1, 2, 4, 6, 10, 12, 16, 18, 22, 28]
Cases where the Carmichael function is equivalent to the Euler phi function:
sage: carmichael_lambda(2) == euler_phi(2) True sage: carmichael_lambda(4) == euler_phi(4) # needs sage.libs.pari True sage: p = random_prime(1000, lbound=3, proof=True) # needs sage.libs.pari sage: k = randint(1, 1000) sage: carmichael_lambda(p^k) == euler_phi(p^k) # needs sage.libs.pari True
A case where
:sage: k = randint(3, 1000) sage: carmichael_lambda(2^k) == 2^(k - 2) # needs sage.libs.pari True sage: carmichael_lambda(2^k) == 2^(k - 2) == euler_phi(2^k) # needs sage.libs.pari False
Verifying the current implementation of the Carmichael function using another implementation. The other implementation that we use for verification is an exhaustive search for the exponent of the multiplicative group
.sage: from sage.arith.misc import carmichael_lambda sage: n = randint(1, 500) sage: c = carmichael_lambda(n) sage: def coprime(n): ....: return [i for i in range(n) if gcd(i, n) == 1] sage: def znpower(n, k): ....: L = coprime(n) ....: return list(map(power_mod, L, [k]*len(L), [n]*len(L))) sage: def my_carmichael(n): ....: if n == 1: ....: return 1 ....: for k in range(1, n): ....: L = znpower(n, k) ....: ones = [1] * len(L) ....: T = [L[i] == ones[i] for i in range(len(L))] ....: if all(T): ....: return k sage: c == my_carmichael(n) True
Carmichael’s theorem states that
for all elements of the multiplicative group . Here, we verify Carmichael’s theorem.sage: from sage.arith.misc import carmichael_lambda sage: n = randint(2, 1000) sage: c = carmichael_lambda(n) sage: ZnZ = IntegerModRing(n) sage: M = ZnZ.list_of_elements_of_multiplicative_group() sage: ones = [1] * len(M) sage: P = [power_mod(a, c, n) for a in M] sage: P == ones True
REFERENCES:
- sage.arith.misc.continuant(v, n=None)[source]¶
Function returns the continuant of the sequence
(list or tuple).Definition: see Graham, Knuth and Patashnik, Concrete Mathematics, section 6.7: Continuants. The continuant is defined by
If
n = None
orn > len(v)
the defaultn = len(v)
is used.INPUT:
v
– list or tuple of elements of a ringn
– (optional) integer
OUTPUT: element of ring (integer, polynomial, etcetera).
EXAMPLES:
sage: continuant([1,2,3]) 10 sage: p = continuant([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10]) sage: q = continuant([1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10]) sage: p/q 517656/190435 sage: F = continued_fraction([2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10]) sage: F.convergent(14) 517656/190435 sage: x = PolynomialRing(RationalField(), 'x', 5).gens() sage: continuant(x) x0*x1*x2*x3*x4 + x0*x1*x2 + x0*x1*x4 + x0*x3*x4 + x2*x3*x4 + x0 + x2 + x4 sage: continuant(x, 3) x0*x1*x2 + x0 + x2 sage: continuant(x, 2) x0*x1 + 1
We verify the identity
for
using polynomial arithmetic:sage: z = QQ['z'].0 sage: continuant((z,z,z,z,z,z,z,z,z,z,z,z,z,z,z), 6) z^6 + 5*z^4 + 6*z^2 + 1 sage: continuant(9) Traceback (most recent call last): ... TypeError: object of type 'sage.rings.integer.Integer' has no len()
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: continuant([int8(1), int8(2), int8(3)]) # needs numpy 10 sage: from gmpy2 import mpz sage: continuant([mpz(1), mpz(2), mpz(3)]) mpz(10)
AUTHORS:
Jaap Spies (2007-02-06)
- sage.arith.misc.coprime_part(x, base)[source]¶
Given an element
x
of a Euclidean domain and a factor basebase
, return the largest divisor ofx
that is not divisible by any element ofbase
.ALGORITHM: Divide
by thesmooth_part()
.EXAMPLES:
sage: from sage.arith.misc import coprime_part, smooth_part sage: from sage.rings.generic import ProductTree sage: coprime_part(10^77+1, primes(10000)) 2159827213801295896328509719222460043196544298056155507343412527 sage: tree = ProductTree(primes(10000)) sage: coprime_part(10^55+1, tree) 6426667196963538873896485804232411 sage: coprime_part(10^55+1, tree).factor() 20163494891 * 318727841165674579776721 sage: prod(smooth_part(10^55+1, tree)) * coprime_part(10^55+1, tree) 10000000000000000000000000000000000000000000000000000001
- sage.arith.misc.crt(a, b, m=None, n=None)[source]¶
Return a solution to a Chinese Remainder Theorem problem.
INPUT:
a
,b
– two residues (elements of some ring for which extended gcd is available), or two lists, one of residues and one of modulim
,n
– (default:None
) two moduli, orNone
OUTPUT:
If
m
,n
are notNone
, returns a solution to the simultaneous congruences and , if one exists. By the Chinese Remainder Theorem, a solution to the simultaneous congruences exists if and only if . The solution is only well-defined modulo .If
a
andb
are lists, returns a simultaneous solution to the congruences , if one exists.See also
EXAMPLES:
Using
crt
by giving it pairs of residues and moduli:sage: crt(2, 1, 3, 5) 11 sage: crt(13, 20, 100, 301) 28013 sage: crt([2, 1], [3, 5]) 11 sage: crt([13, 20], [100, 301]) 28013
You can also use upper case:
sage: c = CRT(2,3, 3, 5); c 8 sage: c % 3 == 2 True sage: c % 5 == 3 True
Note that this also works for polynomial rings:
sage: # needs sage.rings.number_field sage: x = polygen(ZZ, 'x') sage: K.<a> = NumberField(x^3 - 7) sage: R.<y> = K[] sage: f = y^2 + 3 sage: g = y^3 - 5 sage: CRT(1, 3, f, g) -3/26*y^4 + 5/26*y^3 + 15/26*y + 53/26 sage: CRT(1, a, f, g) (-3/52*a + 3/52)*y^4 + (5/52*a - 5/52)*y^3 + (15/52*a - 15/52)*y + 27/52*a + 25/52
You can also do this for any number of moduli:
sage: # needs sage.rings.number_field sage: K.<a> = NumberField(x^3 - 7) sage: R.<x> = K[] sage: CRT([], []) 0 sage: CRT([a], [x]) a sage: f = x^2 + 3 sage: g = x^3 - 5 sage: h = x^5 + x^2 - 9 sage: k = CRT([1, a, 3], [f, g, h]); k (127/26988*a - 5807/386828)*x^9 + (45/8996*a - 33677/1160484)*x^8 + (2/173*a - 6/173)*x^7 + (133/6747*a - 5373/96707)*x^6 + (-6/2249*a + 18584/290121)*x^5 + (-277/8996*a + 38847/386828)*x^4 + (-135/4498*a + 42673/193414)*x^3 + (-1005/8996*a + 470245/1160484)*x^2 + (-1215/8996*a + 141165/386828)*x + 621/8996*a + 836445/386828 sage: k.mod(f) 1 sage: k.mod(g) a sage: k.mod(h) 3
If the moduli are not coprime, a solution may not exist:
sage: crt(4, 8, 8, 12) 20 sage: crt(4, 6, 8, 12) Traceback (most recent call last): ... ValueError: no solution to crt problem since gcd(8,12) does not divide 4-6 sage: x = polygen(QQ) sage: crt(2, 3, x - 1, x + 1) -1/2*x + 5/2 sage: crt(2, x, x^2 - 1, x^2 + 1) -1/2*x^3 + x^2 + 1/2*x + 1 sage: crt(2, x, x^2 - 1, x^3 - 1) Traceback (most recent call last): ... ValueError: no solution to crt problem since gcd(x^2 - 1,x^3 - 1) does not divide 2-x sage: crt(int(2), int(3), int(7), int(11)) 58
crt also work with numpy and gmpy2 numbers:
sage: import numpy # needs numpy sage: crt(numpy.int8(2), numpy.int8(3), numpy.int8(7), numpy.int8(11)) # needs numpy 58 sage: from gmpy2 import mpz sage: crt(mpz(2), mpz(3), mpz(7), mpz(11)) 58 sage: crt(mpz(2), 3, mpz(7), numpy.int8(11)) # needs numpy 58
- sage.arith.misc.dedekind_psi(N)[source]¶
Return the value of the Dedekind psi function at
N
.INPUT:
N
– positive integer
OUTPUT: integer
The Dedekind psi function is the multiplicative function defined by
See Wikipedia article Dedekind_psi_function and OEIS sequence A001615.
EXAMPLES:
sage: from sage.arith.misc import dedekind_psi sage: [dedekind_psi(d) for d in range(1, 12)] [1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12]
- sage.arith.misc.dedekind_sum(p, q, algorithm='default')[source]¶
Return the Dedekind sum
defined for integers , aswhere
Warning
Caution is required as the Dedekind sum sometimes depends on the algorithm or is left undefined when
and are not coprime.INPUT:
p
,q
– integersalgorithm
– must be one of the following'default'
– (default) use FLINT'flint'
– use FLINT'pari'
– use PARI (gives different results if andare not coprime)
OUTPUT: a rational number
EXAMPLES:
Several small values:
sage: for q in range(10): print([dedekind_sum(p,q) for p in range(q+1)]) # needs sage.libs.flint [0] [0, 0] [0, 0, 0] [0, 1/18, -1/18, 0] [0, 1/8, 0, -1/8, 0] [0, 1/5, 0, 0, -1/5, 0] [0, 5/18, 1/18, 0, -1/18, -5/18, 0] [0, 5/14, 1/14, -1/14, 1/14, -1/14, -5/14, 0] [0, 7/16, 1/8, 1/16, 0, -1/16, -1/8, -7/16, 0] [0, 14/27, 4/27, 1/18, -4/27, 4/27, -1/18, -4/27, -14/27, 0]
Check relations for restricted arguments:
sage: q = 23; dedekind_sum(1, q); (q-1)*(q-2)/(12*q) # needs sage.libs.flint 77/46 77/46 sage: p, q = 100, 723 # must be coprime sage: dedekind_sum(p, q) + dedekind_sum(q, p) # needs sage.libs.flint 31583/86760 sage: -1/4 + (p/q + q/p + 1/(p*q))/12 31583/86760
We check that evaluation works with large input:
sage: dedekind_sum(3^54 - 1, 2^93 + 1) # needs sage.libs.flint 459340694971839990630374299870/29710560942849126597578981379 sage: dedekind_sum(3^54 - 1, 2^93 + 1, algorithm='pari') # needs sage.libs.pari 459340694971839990630374299870/29710560942849126597578981379
We check consistency of the results:
sage: dedekind_sum(5, 7, algorithm='default') # needs sage.libs.flint -1/14 sage: dedekind_sum(5, 7, algorithm='flint') # needs sage.libs.flint -1/14 sage: dedekind_sum(5, 7, algorithm='pari') # needs sage.libs.pari -1/14 sage: dedekind_sum(6, 8, algorithm='default') # needs sage.libs.flint -1/8 sage: dedekind_sum(6, 8, algorithm='flint') # needs sage.libs.flint -1/8 sage: dedekind_sum(6, 8, algorithm='pari') # needs sage.libs.pari -1/8
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: dedekind_sum(int8(5), int8(7), algorithm='default') # needs numpy sage.libs.flint -1/14 sage: from gmpy2 import mpz sage: dedekind_sum(mpz(5), mpz(7), algorithm='default') # needs sage.libs.flint -1/14
REFERENCES:
- sage.arith.misc.differences(lis, n=1)[source]¶
Return the
successive differences of the elements inlis
.EXAMPLES:
sage: differences(prime_range(50)) # needs sage.libs.pari [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4] sage: differences([i^2 for i in range(1,11)]) [3, 5, 7, 9, 11, 13, 15, 17, 19] sage: differences([i^3 + 3*i for i in range(1,21)]) [10, 22, 40, 64, 94, 130, 172, 220, 274, 334, 400, 472, 550, 634, 724, 820, 922, 1030, 1144] sage: differences([i^3 - i^2 for i in range(1,21)], 2) [10, 16, 22, 28, 34, 40, 46, 52, 58, 64, 70, 76, 82, 88, 94, 100, 106, 112] sage: differences([p - i^2 for i, p in enumerate(prime_range(50))], 3) # needs sage.libs.pari [-1, 2, -4, 4, -4, 4, 0, -6, 8, -6, 0, 4]
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: differences([int8(1), int8(4), int8(6), int8(19)]) # needs numpy [3, 2, 13] sage: from gmpy2 import mpz sage: differences([mpz(1), mpz(4), mpz(6), mpz(19)]) [mpz(3), mpz(2), mpz(13)]
AUTHORS:
Timothy Clemans (2008-03-09)
- sage.arith.misc.divisors(n)[source]¶
Return the list of all divisors (up to units) of this element of a unique factorization domain.
For an integer, the list of all positive integer divisors of this integer, sorted in increasing order, is returned.
INPUT:
n
– the element
EXAMPLES:
Divisors of integers:
sage: divisors(-3) [1, 3] sage: divisors(6) [1, 2, 3, 6] sage: divisors(28) [1, 2, 4, 7, 14, 28] sage: divisors(2^5) [1, 2, 4, 8, 16, 32] sage: divisors(100) [1, 2, 4, 5, 10, 20, 25, 50, 100] sage: divisors(1) [1] sage: divisors(0) Traceback (most recent call last): ... ValueError: n must be nonzero sage: divisors(2^3 * 3^2 * 17) [1, 2, 3, 4, 6, 8, 9, 12, 17, 18, 24, 34, 36, 51, 68, 72, 102, 136, 153, 204, 306, 408, 612, 1224]
This function works whenever one has unique factorization:
sage: # needs sage.rings.number_field sage: K.<a> = QuadraticField(7) sage: divisors(K.ideal(7)) [Fractional ideal (1), Fractional ideal (a), Fractional ideal (7)] sage: divisors(K.ideal(3)) [Fractional ideal (1), Fractional ideal (3), Fractional ideal (a - 2), Fractional ideal (a + 2)] sage: divisors(K.ideal(35)) [Fractional ideal (1), Fractional ideal (5), Fractional ideal (a), Fractional ideal (7), Fractional ideal (5*a), Fractional ideal (35)]
- sage.arith.misc.eratosthenes(n)[source]¶
Return a list of the primes
.This is extremely slow and is for educational purposes only.
INPUT:
n
– positive integer
OUTPUT: list of primes less than or equal to
EXAMPLES:
sage: eratosthenes(3) [2, 3] sage: eratosthenes(50) [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47] sage: len(eratosthenes(100)) 25 sage: eratosthenes(213) == prime_range(213) # needs sage.libs.pari True
- sage.arith.misc.factor(n, proof=None, int_=False, algorithm=None, verbose=0, **kwds)[source]¶
Return the factorization of
n
. The result depends on the type ofn
.If
n
is an integer, returns the factorization as an object of typeFactorization
.If
n
is not an integer,n.factor(proof=proof, **kwds)
gets called. Seen.factor??
for more documentation in this case.Warning
This means that applying
factor()
to an integer result of a symbolic computation will not factor the integer, because it is considered as an element of a larger symbolic ring.EXAMPLES:
sage: f(n) = n^2 # needs sage.symbolic sage: is_prime(f(3)) # needs sage.symbolic False sage: factor(f(3)) # needs sage.symbolic 9
INPUT:
n
– nonzero integerproof
– boolean orNone
(default:None
)int_
– boolean (default:False
); whether to return answers as Python integersalgorithm
– string'pari'
– (default) use the PARI C library'kash'
– use KASH computer algebra system (requires that kash be installed)'magma'
– use Magma (requires magma be installed)
verbose
– integer (default: 0); PARI’s debug variable is set to this. E.g., set to 4 or 8 to see lots of output during factorization.
OUTPUT: factorization of
The qsieve and ecm commands give access to highly optimized implementations of algorithms for doing certain integer factorization problems. These implementations are not used by the generic
factor()
command, which currently just calls PARI (note that PARI also implements sieve and ecm algorithms, but they are not as optimized). Thus you might consider using them instead for certain numbers.The factorization returned is an element of the class
Factorization
; useFactorization??
to see more details, and examples below for usage. AFactorization
contains both the unit factor ( or ) and a sorted list of(prime, exponent)
pairs.The factorization displays in pretty-print format but it is easy to obtain access to the
(prime, exponent)
pairs and the unit, to recover the number from its factorization, and even to multiply two factorizations. See examples below.EXAMPLES:
sage: factor(500) 2^2 * 5^3 sage: factor(-20) -1 * 2^2 * 5 sage: f=factor(-20) sage: list(f) [(2, 2), (5, 1)] sage: f.unit() -1 sage: f.value() -20 sage: factor(-next_prime(10^2) * next_prime(10^7)) # needs sage.libs.pari -1 * 101 * 10000019
sage: factor(293292629867846432923017396246429, algorithm='flint') # needs sage.libs.flint 3 * 4852301647696687 * 20148007492971089
sage: factor(-500, algorithm='kash') -1 * 2^2 * 5^3
sage: factor(-500, algorithm='magma') # optional - magma -1 * 2^2 * 5^3
sage: factor(0) Traceback (most recent call last): ... ArithmeticError: factorization of 0 is not defined sage: factor(1) 1 sage: factor(-1) -1 sage: factor(2^(2^7) + 1) # needs sage.libs.pari 59649589127497217 * 5704689200685129054721
Sage calls PARI’s pari:factor, which has
proof=False
by default. Sage has a global proof flag, set toTrue
by default (seesage.structure.proof.proof
, or useproof.[tab]
). To override the default, call this function withproof=False
.sage: factor(3^89 - 1, proof=False) # needs sage.libs.pari 2 * 179 * 1611479891519807 * 5042939439565996049162197
sage: factor(2^197 + 1) # long time (2s) # needs sage.libs.pari 3 * 197002597249 * 1348959352853811313 * 251951573867253012259144010843
Any object which has a factor method can be factored like this:
sage: # needs sage.rings.number_field sage: K.<i> = QuadraticField(-1) sage: f = factor(122 - 454*i); f (-1) * (i - 1)^3 * (2*i - 1)^3 * (3*i + 2) * (i + 4)
To access the data in a factorization:
sage: # needs sage.libs.pari sage: f = factor(420); f 2^2 * 3 * 5 * 7 sage: [x for x in f] [(2, 2), (3, 1), (5, 1), (7, 1)] sage: [p for p, e in f] [2, 3, 5, 7] sage: [e for p, e in f] [2, 1, 1, 1] sage: [p^e for p, e in f] [4, 3, 5, 7]
We can factor Python, numpy and gmpy2 numbers:
sage: factor(math.pi) 3.141592653589793 sage: import numpy # needs numpy sage: factor(numpy.int8(30)) # needs numpy sage.libs.pari 2 * 3 * 5 sage: import gmpy2 sage: factor(gmpy2.mpz(30)) 2 * 3 * 5
- sage.arith.misc.factorial(n, algorithm='gmp')[source]¶
Compute the factorial of
, which is the product .INPUT:
n
– integeralgorithm
– string (default:'gmp'
):'gmp'
– use the GMP C-library factorial function'pari'
– use PARI’s factorial function
OUTPUT: integer
EXAMPLES:
sage: from sage.arith.misc import factorial sage: factorial(0) 1 sage: factorial(4) 24 sage: factorial(10) 3628800 sage: factorial(1) == factorial(0) True sage: factorial(6) == 6*5*4*3*2 True sage: factorial(1) == factorial(0) True sage: factorial(71) == 71* factorial(70) True sage: factorial(-32) Traceback (most recent call last): ... ValueError: factorial -- must be nonnegative
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: factorial(int8(4)) # needs numpy 24 sage: from gmpy2 import mpz sage: factorial(mpz(4)) 24
PERFORMANCE: This discussion is valid as of April 2006. All timings below are on a Pentium Core Duo 2Ghz MacBook Pro running Linux with a 2.6.16.1 kernel.
It takes less than a minute to compute the factorial of
using the GMP algorithm, and the factorial of takes less than 4 seconds.The GMP algorithm is faster and more memory efficient than the PARI algorithm. E.g., PARI computes
factorial in 100 seconds on the core duo 2Ghz.For comparison, computation in Magma
2.12-10 of is best done using*[1..n]
. It takes 113 seconds to compute the factorial of and 6 seconds to compute the factorial of . Mathematica V5.2 compute the factorial of in 136 seconds and the factorial of in 7 seconds. (Mathematica is notably very efficient at memory usage when doing factorial calculations.)
- sage.arith.misc.falling_factorial(x, a)[source]¶
Return the falling factorial
.The notation in the literature is a mess: often
, but there are many other notations: GKP: Concrete Mathematics uses .Definition: for integer
we have . In all other cases we use the GAMMA-function: .INPUT:
x
– element of a ringa
– nonnegative integer orx
,a
– any numbers
OUTPUT: the falling factorial
See also
EXAMPLES:
sage: falling_factorial(10, 3) 720 sage: falling_factorial(10, 10) 3628800 sage: factorial(10) 3628800 sage: # needs sage.symbolic sage: falling_factorial(10, RR('3.0')) 720.000000000000 sage: falling_factorial(10, RR('3.3')) 1310.11633396601 sage: a = falling_factorial(1 + I, I); a gamma(I + 2) sage: CC(a) 0.652965496420167 + 0.343065839816545*I sage: falling_factorial(1 + I, 4) 4*I + 2 sage: falling_factorial(I, 4) -10 sage: M = MatrixSpace(ZZ, 4, 4) # needs sage.modules sage: A = M([1,0,1,0, 1,0,1,0, 1,0,10,10, 1,0,1,1]) # needs sage.modules sage: falling_factorial(A, 2) # A(A - I) # needs sage.modules [ 1 0 10 10] [ 1 0 10 10] [ 20 0 101 100] [ 2 0 11 10] sage: x = ZZ['x'].0 sage: falling_factorial(x, 4) x^4 - 6*x^3 + 11*x^2 - 6*x
AUTHORS:
Jaap Spies (2006-03-05)
- sage.arith.misc.four_squares(n)[source]¶
Write the integer
as a sum of four integer squares.INPUT:
n
– integer
OUTPUT: a tuple
of nonnegative integers such that with .EXAMPLES:
sage: four_squares(3) (0, 1, 1, 1) sage: four_squares(13) (0, 0, 2, 3) sage: four_squares(130) (0, 0, 3, 11) sage: four_squares(1101011011004) (90, 102, 1220, 1049290) sage: four_squares(10^100 - 1) # needs sage.libs.pari (155024616290, 2612183768627, 14142135623730950488016887, 99999999999999999999999999999999999999999999999999) sage: for i in range(2^129, 2^129 + 10000): # long time # needs sage.libs.pari ....: S = four_squares(i) ....: assert sum(x^2 for x in S) == i
- sage.arith.misc.fundamental_discriminant(D)[source]¶
Return the discriminant of the quadratic extension
, i.e. an integer d congruent to either 0 or 1, mod 4, and such that, at most, the only square dividing it is 4.INPUT:
D
– integer
OUTPUT: integer; the fundamental discriminant
EXAMPLES:
sage: fundamental_discriminant(102) 408 sage: fundamental_discriminant(720) 5 sage: fundamental_discriminant(2) 8
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: fundamental_discriminant(int8(102)) # needs numpy 408 sage: from gmpy2 import mpz sage: fundamental_discriminant(mpz(102)) 408
- sage.arith.misc.gauss_sum(char_value, finite_field)[source]¶
Return the Gauss sums for a general finite field.
INPUT:
char_value
– choice of multiplicative character, given by its value on thefinite_field.multiplicative_generator()
finite_field
– a finite field
OUTPUT:
an element of the parent ring of
char_value
, that can be any field containing enough roots of unity, for example theUniversalCyclotomicField
,QQbar
orComplexField
For a finite field
of characteristic , the Gauss sum associated to a multiplicative character (with values in a ring ) is defined aswhere
is a primitive root of unity of order and Tr is the trace map from to its prime field .For more info on Gauss sums, see Wikipedia article Gauss_sum.
Todo
Implement general Gauss sums for an arbitrary pair
(multiplicative_character, additive_character)
EXAMPLES:
sage: # needs sage.libs.pari sage.rings.number_field sage: from sage.arith.misc import gauss_sum sage: F = GF(5); q = 5 sage: zq = UniversalCyclotomicField().zeta(q - 1) sage: L = [gauss_sum(zq**i, F) for i in range(5)]; L [-1, E(20)^4 + E(20)^13 - E(20)^16 - E(20)^17, E(5) - E(5)^2 - E(5)^3 + E(5)^4, E(20)^4 - E(20)^13 - E(20)^16 + E(20)^17, -1] sage: [g*g.conjugate() for g in L] [1, 5, 5, 5, 1] sage: # needs sage.libs.pari sage.rings.number_field sage: F = GF(11**2); q = 11**2 sage: zq = UniversalCyclotomicField().zeta(q - 1) sage: g = gauss_sum(zq**4, F) sage: g*g.conjugate() 121
See also
sage.rings.padics.misc.gauss_sum()
for a -adic versionsage.modular.dirichlet.DirichletCharacter.gauss_sum()
for prime finite fieldssage.modular.dirichlet.DirichletCharacter.gauss_sum_numerical()
for prime finite fields
- sage.arith.misc.gcd(a, b=None, **kwargs)[source]¶
Return the greatest common divisor of
a
andb
.If
a
is a list andb
is omitted, return instead the greatest common divisor of all elements ofa
.INPUT:
a
,b
– two elements of a ring with gcd ora
– list or tuple of elements of a ring with gcd
Additional keyword arguments are passed to the respectively called methods.
OUTPUT:
The given elements are first coerced into a common parent. Then, their greatest common divisor in that common parent is returned.
EXAMPLES:
sage: GCD(97,100) 1 sage: GCD(97*10^15, 19^20*97^2) 97 sage: GCD(2/3, 4/5) 2/15 sage: GCD([2,4,6,8]) 2 sage: GCD(srange(0,10000,10)) # fast !! 10
Note that to take the gcd of
elements for you must put the elements into a list by enclosing them in[..]
. Before Issue #4988 the following wrongly returned 3 since the third parameter was just ignored:sage: gcd(3, 6, 2) Traceback (most recent call last): ... TypeError: ...gcd() takes ... sage: gcd([3, 6, 2]) 1
Similarly, giving just one element (which is not a list) gives an error:
sage: gcd(3) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable
By convention, the gcd of the empty list is (the integer) 0:
sage: gcd([]) 0 sage: type(gcd([])) <class 'sage.rings.integer.Integer'>
- sage.arith.misc.get_gcd(order)[source]¶
Return the fastest gcd function for integers of size no larger than order.
EXAMPLES:
sage: sage.arith.misc.get_gcd(4000) <bound method arith_int.gcd_int of <sage.rings.fast_arith.arith_int object at ...> sage: sage.arith.misc.get_gcd(400000) <bound method arith_llong.gcd_longlong of <sage.rings.fast_arith.arith_llong object at ...> sage: sage.arith.misc.get_gcd(4000000000) <function gcd at ...>
- sage.arith.misc.get_inverse_mod(order)[source]¶
Return the fastest inverse_mod function for integers of size no larger than order.
EXAMPLES:
sage: sage.arith.misc.get_inverse_mod(6000) <bound method arith_int.inverse_mod_int of <sage.rings.fast_arith.arith_int object at ...> sage: sage.arith.misc.get_inverse_mod(600000) <bound method arith_llong.inverse_mod_longlong of <sage.rings.fast_arith.arith_llong object at ...> sage: sage.arith.misc.get_inverse_mod(6000000000) <function inverse_mod at ...>
- sage.arith.misc.hilbert_conductor(a, b)[source]¶
Return the product of all (finite) primes where the Hilbert symbol is -1.
This is the (reduced) discriminant of the quaternion algebra
over .INPUT:
a
,b
– integers
OUTPUT: squarefree positive integer
EXAMPLES:
sage: # needs sage.libs.pari sage: hilbert_conductor(-1, -1) 2 sage: hilbert_conductor(-1, -11) 11 sage: hilbert_conductor(-2, -5) 5 sage: hilbert_conductor(-3, -17) 17
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: hilbert_conductor(int8(-3), int8(-17)) # needs numpy sage.libs.pari 17 sage: from gmpy2 import mpz sage: hilbert_conductor(mpz(-3), mpz(-17)) # needs sage.libs.pari 17
AUTHOR:
Gonzalo Tornaria (2009-03-02)
- sage.arith.misc.hilbert_conductor_inverse(d)[source]¶
Find a pair of integers
such thathilbert_conductor(a,b) == d
.The quaternion algebra
over will then have (reduced) discriminant .INPUT:
d
– square-free positive integer
OUTPUT: pair of integers
EXAMPLES:
sage: # needs sage.libs.pari sage: hilbert_conductor_inverse(2) (-1, -1) sage: hilbert_conductor_inverse(3) (-1, -3) sage: hilbert_conductor_inverse(6) (-1, 3) sage: hilbert_conductor_inverse(30) (-3, -10) sage: hilbert_conductor_inverse(4) Traceback (most recent call last): ... ValueError: d needs to be squarefree sage: hilbert_conductor_inverse(-1) Traceback (most recent call last): ... ValueError: d needs to be positive
AUTHOR:
Gonzalo Tornaria (2009-03-02)
- sage.arith.misc.hilbert_symbol(a, b, p, algorithm='pari')[source]¶
Return 1 if
-adically represents a nonzero square, otherwise returns . If either a or b is 0, returns 0.INPUT:
a
,b
– integersp
– integer; either prime or -1 (which represents the archimedean place)algorithm
– string'pari'
– (default) use the PARI C library'direct'
– use a Python implementation'all'
– use both PARI and direct and check thatthe results agree, then return the common answer
OUTPUT: integer (0, -1, or 1)
EXAMPLES:
sage: # needs sage.libs.pari sage: hilbert_symbol(-1, -1, -1, algorithm='all') -1 sage: hilbert_symbol(2, 3, 5, algorithm='all') 1 sage: hilbert_symbol(4, 3, 5, algorithm='all') 1 sage: hilbert_symbol(0, 3, 5, algorithm='all') 0 sage: hilbert_symbol(-1, -1, 2, algorithm='all') -1 sage: hilbert_symbol(1, -1, 2, algorithm='all') 1 sage: hilbert_symbol(3, -1, 2, algorithm='all') -1 sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 2) == -1 # needs sage.libs.pari True sage: hilbert_symbol(QQ(-1)/QQ(4), -1, 3) == 1 # needs sage.libs.pari True
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: hilbert_symbol(int8(2), int8(3), int8(5), algorithm='all') # needs numpy sage.libs.pari 1 sage: from gmpy2 import mpz sage: hilbert_symbol(mpz(2), mpz(3), mpz(5), algorithm='all') # needs sage.libs.pari 1
AUTHORS:
William Stein and David Kohel (2006-01-05)
- sage.arith.misc.integer_ceil(x)[source]¶
Return the ceiling of x.
EXAMPLES:
sage: integer_ceil(5.4) 6 sage: integer_ceil(x) # needs sage.symbolic Traceback (most recent call last): ... NotImplementedError: computation of ceil of x not implemented
Tests with numpy and gmpy2 numbers:
sage: from numpy import float32 # needs numpy sage: integer_ceil(float32(5.4)) # needs numpy 6 sage: from gmpy2 import mpfr sage: integer_ceil(mpfr(5.4)) 6
- sage.arith.misc.integer_floor(x)[source]¶
Return the largest integer
.INPUT:
x
– an object that has a floor method or is coercible to integer
OUTPUT: integer
EXAMPLES:
sage: integer_floor(5.4) 5 sage: integer_floor(float(5.4)) 5 sage: integer_floor(-5/2) -3 sage: integer_floor(RDF(-5/2)) -3 sage: integer_floor(x) # needs sage.symbolic Traceback (most recent call last): ... NotImplementedError: computation of floor of x not implemented
Tests with numpy and gmpy2 numbers:
sage: from numpy import float32 # needs numpy sage: integer_floor(float32(5.4)) # needs numpy 5 sage: from gmpy2 import mpfr sage: integer_floor(mpfr(5.4)) 5
- sage.arith.misc.integer_trunc(i)[source]¶
Truncate to the integer closer to zero.
EXAMPLES:
sage: from sage.arith.misc import integer_trunc as trunc sage: trunc(-3/2), trunc(-1), trunc(-1/2), trunc(0), trunc(1/2), trunc(1), trunc(3/2) (-1, -1, 0, 0, 0, 1, 1) sage: isinstance(trunc(3/2), Integer) True
- sage.arith.misc.inverse_mod(a, m)[source]¶
The inverse of the ring element a modulo m.
If no special inverse_mod is defined for the elements, it tries to coerce them into integers and perform the inversion there
sage: inverse_mod(7, 1) 0 sage: inverse_mod(5, 14) 3 sage: inverse_mod(3, -5) 2
Tests with numpy and mpz numbers:
sage: from numpy import int8 # needs numpy sage: inverse_mod(int8(5), int8(14)) # needs numpy 3 sage: from gmpy2 import mpz sage: inverse_mod(mpz(5), mpz(14)) 3
- sage.arith.misc.is_power_of_two(n)[source]¶
Return whether
is a power of 2.INPUT:
n
– integer
OUTPUT: boolean
EXAMPLES:
sage: is_power_of_two(1024) True sage: is_power_of_two(1) True sage: is_power_of_two(24) False sage: is_power_of_two(0) False sage: is_power_of_two(-4) False
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: is_power_of_two(int8(16)) # needs numpy True sage: is_power_of_two(int8(24)) # needs numpy False sage: from gmpy2 import mpz sage: is_power_of_two(mpz(16)) True sage: is_power_of_two(mpz(24)) False
- sage.arith.misc.is_prime(n)[source]¶
Determine whether
is a prime element of its parent ring.INPUT:
n
– the object for which to determine primality
Exceptional special cases:
For integers, determine whether
is a positive prime.For number fields except
, determine whether is a prime element of the maximal order.
ALGORITHM:
For integers, this function uses a provable primality test or a strong pseudo-primality test depending on the global
arithmetic proof flag
.EXAMPLES:
sage: is_prime(389) True sage: is_prime(2000) False sage: is_prime(2) True sage: is_prime(-1) False sage: is_prime(1) False sage: is_prime(-2) False
sage: a = 2**2048 + 981 sage: is_prime(a) # not tested - takes ~ 1min sage: proof.arithmetic(False) sage: is_prime(a) # instantaneous! # needs sage.libs.pari True sage: proof.arithmetic(True)
- sage.arith.misc.is_prime_power(n, get_data=False)[source]¶
Test whether
n
is a positive power of a prime number.This function simply calls the method
Integer.is_prime_power()
of Integers.INPUT:
n
– integerget_data
– if set toTrue
, return a pair(p,k)
such that this integer equalsp^k
instead ofTrue
or(self,0)
instead ofFalse
EXAMPLES:
sage: # needs sage.libs.pari sage: is_prime_power(389) True sage: is_prime_power(2000) False sage: is_prime_power(2) True sage: is_prime_power(1024) True sage: is_prime_power(1024, get_data=True) (2, 10)
The same results can be obtained with:
sage: # needs sage.libs.pari sage: 389.is_prime_power() True sage: 2000.is_prime_power() False sage: 2.is_prime_power() True sage: 1024.is_prime_power() True sage: 1024.is_prime_power(get_data=True) (2, 10)
- sage.arith.misc.is_pseudoprime(n)[source]¶
Test whether
n
is a pseudo-prime.The result is NOT proven correct - this is a pseudo-primality test!.
INPUT:
n
– integer
Note
We do not consider negatives of prime numbers as prime.
EXAMPLES:
sage: # needs sage.libs.pari sage: is_pseudoprime(389) True sage: is_pseudoprime(2000) False sage: is_pseudoprime(2) True sage: is_pseudoprime(-1) False sage: factor(-6) -1 * 2 * 3 sage: is_pseudoprime(1) False sage: is_pseudoprime(-2) False
- sage.arith.misc.is_pseudoprime_power(n, get_data=False)[source]¶
Test if
n
is a power of a pseudoprime.The result is NOT proven correct - this IS a pseudo-primality test!. Note that a prime power is a positive power of a prime number so that 1 is not a prime power.
INPUT:
n
– integerget_data
– boolean (default:False
); instead of a boolean return a pair so thatn
equals and is a pseudoprime or otherwise
EXAMPLES:
sage: # needs sage.libs.pari sage: is_pseudoprime_power(389) True sage: is_pseudoprime_power(2000) False sage: is_pseudoprime_power(2) True sage: is_pseudoprime_power(1024) True sage: is_pseudoprime_power(-1) False sage: is_pseudoprime_power(1) False sage: is_pseudoprime_power(997^100) True
Use of the get_data keyword:
sage: # needs sage.libs.pari sage: is_pseudoprime_power(3^1024, get_data=True) (3, 1024) sage: is_pseudoprime_power(2^256, get_data=True) (2, 256) sage: is_pseudoprime_power(31, get_data=True) (31, 1) sage: is_pseudoprime_power(15, get_data=True) (15, 0)
Tests with numpy and gmpy2 numbers:
sage: from numpy import int16 # needs numpy sage: is_pseudoprime_power(int16(1024)) # needs numpy sage.libs.pari True sage: from gmpy2 import mpz sage: is_pseudoprime_power(mpz(1024)) True
- sage.arith.misc.is_square(n, root=False)[source]¶
Return whether or not
is square.If
is a square also return the square root. If is not square, also returnNone
.INPUT:
n
– integerroot
– whether or not to also return a square root (default:False
)
OUTPUT:
bool
– whether or not a squareobject
– (optional) an actual square if found, andNone
otherwise
EXAMPLES:
sage: is_square(2) False sage: is_square(4) True sage: is_square(2.2) True sage: is_square(-2.2) False sage: is_square(CDF(-2.2)) # needs sage.rings.complex_double True sage: is_square((x-1)^2) # needs sage.symbolic Traceback (most recent call last): ... NotImplementedError: is_square() not implemented for non-constant or relational elements of Symbolic Ring
sage: is_square(4, True) (True, 2)
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: is_square(int8(4)) # needs numpy True sage: from gmpy2 import mpz sage: is_square(mpz(4)) True
Tests with Polynomial:
sage: R.<v> = LaurentPolynomialRing(QQ, 'v') sage: H = IwahoriHeckeAlgebra('A3', v**2) # needs sage.combinat sage.modules sage: R.<a,b,c,d> = QQ[] sage: p = a*b + c*d*a*d*a + 5 sage: is_square(p**2) True
- sage.arith.misc.is_squarefree(n)[source]¶
Test whether
n
is square free.EXAMPLES:
sage: is_squarefree(100) # needs sage.libs.pari False sage: is_squarefree(101) # needs sage.libs.pari True sage: R = ZZ['x'] sage: x = R.gen() sage: is_squarefree((x^2+x+1) * (x-2)) # needs sage.libs.pari True sage: is_squarefree((x-1)**2 * (x-3)) # needs sage.libs.pari False sage: # needs sage.rings.number_field sage.symbolic sage: O = ZZ[sqrt(-1)] sage: I = O.gen(1) sage: is_squarefree(I + 1) True sage: is_squarefree(O(2)) False sage: O(2).factor() (I) * (I - 1)^2
This method fails on domains which are not Unique Factorization Domains:
sage: O = ZZ[sqrt(-5)] # needs sage.rings.number_field sage.symbolic sage: a = O.gen(1) # needs sage.rings.number_field sage.symbolic sage: is_squarefree(a - 3) # needs sage.rings.number_field sage.symbolic Traceback (most recent call last): ... ArithmeticError: non-principal ideal in factorization
Tests with numpy and gmpy2 numbers:
sage: # needs sage.libs.pari sage: from numpy import int8 # needs numpy sage: is_squarefree(int8(100)) # needs numpy False sage: is_squarefree(int8(101)) # needs numpy True sage: from gmpy2 import mpz sage: is_squarefree(mpz(100)) False sage: is_squarefree(mpz(101)) True
- sage.arith.misc.jacobi_symbol(a, b)[source]¶
The Jacobi symbol of integers
and , where is odd.Note
The
kronecker_symbol()
command extends the Jacobi symbol to all integers .If
then
where
are Legendre Symbols.INPUT:
a
– integerb
– odd integer
EXAMPLES:
sage: jacobi_symbol(10,777) -1 sage: jacobi_symbol(10,5) 0 sage: jacobi_symbol(10,2) Traceback (most recent call last): ... ValueError: second input must be odd, 2 is not odd
Tests with numpy and gmpy2 numbers:
sage: from numpy import int16 # needs numpy sage: jacobi_symbol(int16(10), int16(777)) # needs numpy -1 sage: from gmpy2 import mpz sage: jacobi_symbol(mpz(10),mpz(777)) -1
- sage.arith.misc.kronecker(x, y)[source]¶
alias of
kronecker_symbol()
.
- sage.arith.misc.kronecker_symbol(x, y)[source]¶
The Kronecker symbol
.INPUT:
x
– integery
– integer
OUTPUT: integer
EXAMPLES:
sage: kronecker_symbol(13,21) -1 sage: kronecker_symbol(101,4) 1
This is also available as
kronecker()
:sage: kronecker(3,5) -1 sage: kronecker(3,15) 0 sage: kronecker(2,15) 1 sage: kronecker(-2,15) -1 sage: kronecker(2/3,5) 1
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: kronecker_symbol(int8(13),int8(21)) # needs numpy -1 sage: from gmpy2 import mpz sage: kronecker_symbol(mpz(13),mpz(21)) -1
- sage.arith.misc.legendre_symbol(x, p)[source]¶
The Legendre symbol
, for prime.Note
The
kronecker_symbol()
command extends the Legendre symbol to composite moduli and .INPUT:
x
– integerp
– odd prime number
EXAMPLES:
sage: legendre_symbol(2,3) -1 sage: legendre_symbol(1,3) 1 sage: legendre_symbol(1,2) Traceback (most recent call last): ... ValueError: p must be odd sage: legendre_symbol(2,15) Traceback (most recent call last): ... ValueError: p must be a prime sage: kronecker_symbol(2,15) 1 sage: legendre_symbol(2/3,7) -1
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: legendre_symbol(int8(2), int8(3)) # needs numpy -1 sage: from gmpy2 import mpz sage: legendre_symbol(mpz(2),mpz(3)) -1
- sage.arith.misc.mqrr_rational_reconstruction(u, m, T)[source]¶
Maximal Quotient Rational Reconstruction.
For research purposes only - this is pure Python, so slow.
INPUT:
u
,m
,T
– integers such that ,
OUTPUT:
Either integers
such that , , , and , orNone
.Reference: Monagan, Maximal Quotient Rational Reconstruction: An Almost Optimal Algorithm for Rational Reconstruction (page 11)
This algorithm is probabilistic.
EXAMPLES:
sage: mqrr_rational_reconstruction(21, 3100, 13) (21, 1)
Tests with numpy and gmpy2 numbers:
sage: from numpy import int16 # needs numpy sage: mqrr_rational_reconstruction(int16(21), int16(3100), int16(13)) # needs numpy (21, 1) sage: from gmpy2 import mpz sage: mqrr_rational_reconstruction(mpz(21), mpz(3100), mpz(13)) (21, 1)
- sage.arith.misc.multinomial(*ks)[source]¶
Return the multinomial coefficient.
INPUT:
either an arbitrary number of integer arguments
or an iterable (e.g. a list) of integers
OUTPUT: the integer:
EXAMPLES:
sage: multinomial(0, 0, 2, 1, 0, 0) 3 sage: multinomial([0, 0, 2, 1, 0, 0]) 3 sage: multinomial(3, 2) 10 sage: multinomial(2^30, 2, 1) 618970023101454657175683075 sage: multinomial([2^30, 2, 1]) 618970023101454657175683075 sage: multinomial(Composition([1, 3])) 4 sage: multinomial(Partition([4, 2])) # needs sage.combinat 15
AUTHORS:
Gabriel Ebner
- sage.arith.misc.multinomial_coefficients(m, n)[source]¶
Return a dictionary containing pairs
where are multinomial coefficients such that .INPUT:
m
– integern
– integer
OUTPUT: dictionary
EXAMPLES:
sage: sorted(multinomial_coefficients(2, 5).items()) [((0, 5), 1), ((1, 4), 5), ((2, 3), 10), ((3, 2), 10), ((4, 1), 5), ((5, 0), 1)]
Notice that these are the coefficients of
:sage: R.<x,y> = QQ[] sage: (x+y)^5 x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + y^5
sage: sorted(multinomial_coefficients(3, 2).items()) [((0, 0, 2), 1), ((0, 1, 1), 2), ((0, 2, 0), 1), ((1, 0, 1), 2), ((1, 1, 0), 2), ((2, 0, 0), 1)]
ALGORITHM: The algorithm we implement for computing the multinomial coefficients is based on the following result:
e.g.:
sage: k = (2, 4, 1, 0, 2, 6, 0, 0, 3, 5, 7, 1) # random value sage: n = sum(k) sage: s = 0 sage: for i in range(1, len(k)): ....: ki = list(k) ....: ki[0] += 1 ....: ki[i] -= 1 ....: s += multinomial(n, *ki) sage: multinomial(n, *k) == (k[0] + 1) / (n - k[0]) * s True
- sage.arith.misc.next_prime(n, proof=None)[source]¶
The next prime greater than the integer
. If is prime, then this function does not return , but the next prime after . If the optional argument proof isFalse
, this function only returns a pseudo-prime, as defined by the PARI nextprime function. If it isNone
, uses the global default (seesage.structure.proof.proof
)INPUT:
n
– integerproof
– boolean orNone
(default:None
)
EXAMPLES:
sage: # needs sage.libs.pari sage: next_prime(-100) 2 sage: next_prime(1) 2 sage: next_prime(2) 3 sage: next_prime(3) 5 sage: next_prime(4) 5
Notice that the next_prime(5) is not 5 but 7.
sage: next_prime(5) # needs sage.libs.pari 7 sage: next_prime(2004) # needs sage.libs.pari 2011
- sage.arith.misc.next_prime_power(n)[source]¶
Return the smallest prime power greater than
n
.Note that if
n
is a prime power, then this function does not returnn
, but the next prime power aftern
.This function just calls the method
Integer.next_prime_power()
of Integers.See also
EXAMPLES:
sage: # needs sage.libs.pari sage: next_prime_power(1) 2 sage: next_prime_power(2) 3 sage: next_prime_power(10) 11 sage: next_prime_power(7) 8 sage: next_prime_power(99) 101
The same results can be obtained with:
sage: 1.next_prime_power() 2 sage: 2.next_prime_power() 3 sage: 10.next_prime_power() 11
Note that
is the smallest prime power:sage: next_prime_power(-10) 2 sage: next_prime_power(0) 2
- sage.arith.misc.next_probable_prime(n)[source]¶
Return the next probable prime after self, as determined by PARI.
INPUT:
n
– integer
EXAMPLES:
sage: # needs sage.libs.pari sage: next_probable_prime(-100) 2 sage: next_probable_prime(19) 23 sage: next_probable_prime(int(999999999)) 1000000007 sage: next_probable_prime(2^768) 1552518092300708935148979488462502555256886017116696611139052038026050952686376886330878408828646477950487730697131073206171580044114814391444287275041181139204454976020849905550265285631598444825262999193716468750892846853816058039
- sage.arith.misc.nth_prime(n)[source]¶
Return the
-th prime number (1-indexed, so that 2 is the 1st prime).INPUT:
n
– positive integer
OUTPUT: the
-th prime numberEXAMPLES:
sage: nth_prime(3) # needs sage.libs.pari 5 sage: nth_prime(10) # needs sage.libs.pari 29 sage: nth_prime(10^7) # needs sage.libs.pari 179424673
sage: nth_prime(0) Traceback (most recent call last): ... ValueError: nth prime meaningless for nonpositive n (=0)
- sage.arith.misc.number_of_divisors(n)[source]¶
Return the number of divisors of the integer
.INPUT:
n
– nonzero integer
OUTPUT: integer; the number of divisors of
EXAMPLES:
sage: number_of_divisors(100) # needs sage.libs.pari 9 sage: number_of_divisors(-720) # needs sage.libs.pari 30
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: number_of_divisors(int8(100)) # needs numpy sage.libs.pari 9 sage: from gmpy2 import mpz sage: number_of_divisors(mpz(100)) # needs sage.libs.pari 9
- sage.arith.misc.odd_part(n)[source]¶
The odd part of the integer
. This is , where .EXAMPLES:
sage: odd_part(5) 5 sage: odd_part(4) 1 sage: odd_part(factorial(31)) 122529844256906551386796875
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: odd_part(int8(5)) # needs numpy 5 sage: from gmpy2 import mpz sage: odd_part(mpz(5)) 5
- sage.arith.misc.power_mod(a, n, m)[source]¶
Return the
-th power of modulo , where and are elements of a ring that implements the modulo operator%
.ALGORITHM: square-and-multiply
EXAMPLES:
sage: power_mod(2, 388, 389) 1 sage: power_mod(2, 390, 391) 285 sage: power_mod(2, -1, 7) 4 sage: power_mod(11, 1, 7) 4
This function works for fairly general rings:
sage: R.<x> = ZZ[] sage: power_mod(3*x, 10, 7) 4*x^10 sage: power_mod(-3*x^2 + 4, 7, 2*x^3 - 5) x^14 + x^8 + x^6 + x^3 + 962509*x^2 - 791910*x - 698281
- sage.arith.misc.previous_prime(n)[source]¶
The largest prime < n. The result is provably correct. If n <= 1, this function raises a
ValueError
.EXAMPLES:
sage: # needs sage.libs.pari sage: previous_prime(10) 7 sage: previous_prime(7) 5 sage: previous_prime(8) 7 sage: previous_prime(7) 5 sage: previous_prime(5) 3 sage: previous_prime(3) 2 sage: previous_prime(2) Traceback (most recent call last): ... ValueError: no previous prime sage: previous_prime(1) Traceback (most recent call last): ... ValueError: no previous prime sage: previous_prime(-20) Traceback (most recent call last): ... ValueError: no previous prime
- sage.arith.misc.previous_prime_power(n)[source]¶
Return the largest prime power smaller than
n
.The result is provably correct. If
n
is smaller or equal than2
this function raises an error.This function simply call the method
Integer.previous_prime_power()
of Integers.See also
EXAMPLES:
sage: # needs sage.libs.pari sage: previous_prime_power(3) 2 sage: previous_prime_power(10) 9 sage: previous_prime_power(7) 5 sage: previous_prime_power(127) 125
The same results can be obtained with:
sage: # needs sage.libs.pari sage: 3.previous_prime_power() 2 sage: 10.previous_prime_power() 9 sage: 7.previous_prime_power() 5 sage: 127.previous_prime_power() 125
Input less than or equal to
raises errors:sage: previous_prime_power(2) Traceback (most recent call last): ... ValueError: no prime power less than 2 sage: previous_prime_power(-10) Traceback (most recent call last): ... ValueError: no prime power less than 2
sage: n = previous_prime_power(2^16 - 1) # needs sage.libs.pari sage: while is_prime(n): # needs sage.libs.pari ....: n = previous_prime_power(n) sage: factor(n) # needs sage.libs.pari 251^2
- sage.arith.misc.prime_divisors(n)[source]¶
Return the list of prime divisors (up to units) of this element of a unique factorization domain.
INPUT:
n
– any object which can be decomposed into prime factors
OUTPUT:
A list of prime factors of
n
. For integers, this list is sorted in increasing order.EXAMPLES:
Prime divisors of positive integers:
sage: prime_divisors(1) [] sage: prime_divisors(100) [2, 5] sage: prime_divisors(2004) [2, 3, 167]
If
n
is negative, we do not include -1 among the prime divisors, since -1 is not a prime number:sage: prime_divisors(-100) [2, 5]
For polynomials we get all irreducible factors:
sage: R.<x> = PolynomialRing(QQ) sage: prime_divisors(x^12 - 1) # needs sage.libs.pari [x - 1, x + 1, x^2 - x + 1, x^2 + 1, x^2 + x + 1, x^4 - x^2 + 1]
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: prime_divisors(int8(-100)) # needs numpy [2, 5] sage: from gmpy2 import mpz sage: prime_divisors(mpz(-100)) [2, 5]
- sage.arith.misc.prime_factors(n)[source]¶
alias of
prime_divisors()
.
- sage.arith.misc.prime_powers(start, stop=None)[source]¶
List of all positive primes powers between
start
andstop
-1, inclusive. If the second argument is omitted, returns the prime powers up to the first argument.INPUT:
start
– integer; if two inputs are given, a lower bound for the returned set of prime powers. If this is the only input, then it is an upper bound.stop
– integer (default:None
); an upper bound for the returned set of prime powers
OUTPUT:
The set of all prime powers between
start
andstop
or, if only one argument is passed, the set of all prime powers between 1 andstart
. The number is a prime power if , where is a prime number and is a positive integer. Thus, is not a prime power.EXAMPLES:
sage: prime_powers(20) # needs sage.libs.pari [2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19] sage: len(prime_powers(1000)) # needs sage.libs.pari 193 sage: len(prime_range(1000)) # needs sage.libs.pari 168 sage: # needs sage.libs.pari sage: a = [z for z in range(95, 1234) if is_prime_power(z)] sage: b = prime_powers(95, 1234) sage: len(b) 194 sage: len(a) 194 sage: a[:10] [97, 101, 103, 107, 109, 113, 121, 125, 127, 128] sage: b[:10] [97, 101, 103, 107, 109, 113, 121, 125, 127, 128] sage: a == b True sage: prime_powers(100) == [i for i in range(100) if is_prime_power(i)] # needs sage.libs.pari True sage: prime_powers(10, 7) [] sage: prime_powers(-5) [] sage: prime_powers(-1, 3) # needs sage.libs.pari [2]
- sage.arith.misc.prime_to_m_part(n, m)[source]¶
Return the prime-to-
part of .This is the largest divisor of
that is coprime to .INPUT:
n
– integer (nonzero)m
– integer
OUTPUT: integer
EXAMPLES:
sage: prime_to_m_part(240,2) 15 sage: prime_to_m_part(240,3) 80 sage: prime_to_m_part(240,5) 48 sage: prime_to_m_part(43434,20) 21717
Note that integers also have a method with the same name:
sage: 240.prime_to_m_part(2) 15
Tests with numpy and gmpy2 numbers:
sage: from numpy import int16 # needs numpy sage: prime_to_m_part(int16(240), int16(2)) # needs numpy 15 sage: from gmpy2 import mpz sage: prime_to_m_part(mpz(240), mpz(2)) 15
- sage.arith.misc.primes(start=2, stop=None, proof=None)[source]¶
Return an iterator over all primes between
start
andstop-1
, inclusive. This is much slower thanprime_range()
, but potentially uses less memory. As withnext_prime()
, the optional argumentproof
controls whether the numbers returned are guaranteed to be prime or not.This command is like the Python 3
range()
command, except it only iterates over primes. In some cases it is better to useprimes()
thanprime_range()
, becauseprimes()
does not build a list of all primes in the range in memory all at once. However, it is potentially much slower since it simply calls thenext_prime()
function repeatedly, andnext_prime()
is slow.INPUT:
start
– integer (default: 2); lower bound for the primesstop
– integer (or infinity); upper (open) bound for the primesproof
– boolean orNone
(default:None
); ifTrue
, the function yields only proven primes. IfFalse
, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. IfNone
, uses the global default (seesage.structure.proof.proof
)
OUTPUT: an iterator over primes from
start
tostop-1
, inclusiveEXAMPLES:
sage: # needs sage.libs.pari sage: for p in primes(5, 10): ....: print(p) 5 7 sage: list(primes(13)) [2, 3, 5, 7, 11] sage: list(primes(10000000000, 10000000100)) [10000000019, 10000000033, 10000000061, 10000000069, 10000000097] sage: max(primes(10^100, 10^100+10^4, proof=False)) 10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000009631 sage: next(p for p in primes(10^20, infinity) if is_prime(2*p+1)) 100000000000000001243
- sage.arith.misc.primes_first_n(n, leave_pari=False)[source]¶
Return the first
primes.INPUT:
n
– nonnegative integer
OUTPUT: list of the first
prime numbersEXAMPLES:
sage: primes_first_n(10) # needs sage.libs.pari [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] sage: len(primes_first_n(1000)) # needs sage.libs.pari 1000 sage: primes_first_n(0) []
- sage.arith.misc.primitive_root(n, check=True)[source]¶
Return a positive integer that generates the multiplicative group of integers modulo
, if one exists; otherwise, raise aValueError
.A primitive root exists if
or or , where is an odd prime and is a nonnegative number.INPUT:
n
– nonzero integercheck
– boolean (default:True
); ifFalse
, then is assumed to be a positive integer possessing a primitive root, and behavior is undefined otherwise.
OUTPUT:
A primitive root of
. If is prime, this is the smallest primitive root.EXAMPLES:
sage: # needs sage.libs.pari sage: primitive_root(23) 5 sage: primitive_root(-46) 5 sage: primitive_root(25) 2 sage: print([primitive_root(p) for p in primes(100)]) [1, 2, 2, 3, 2, 2, 3, 2, 5, 2, 3, 2, 6, 3, 5, 2, 2, 2, 2, 7, 5, 3, 2, 3, 5] sage: primitive_root(8) Traceback (most recent call last): ... ValueError: no primitive root
Note
It takes extra work to check if
has a primitive root; to avoid this, usecheck=False
, which may slightly speed things up (but could also result in undefined behavior). For example, the second call below is an order of magnitude faster than the first:sage: n = 10^50 + 151 # a prime sage: primitive_root(n) # needs sage.libs.pari 11 sage: primitive_root(n, check=False) # needs sage.libs.pari 11
- sage.arith.misc.quadratic_residues(n)[source]¶
Return a sorted list of all squares modulo the integer
in the range .EXAMPLES:
sage: quadratic_residues(11) [0, 1, 3, 4, 5, 9] sage: quadratic_residues(1) [0] sage: quadratic_residues(2) [0, 1] sage: quadratic_residues(8) [0, 1, 4] sage: quadratic_residues(-10) [0, 1, 4, 5, 6, 9] sage: v = quadratic_residues(1000); len(v) 159
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: quadratic_residues(int8(11)) # needs numpy [0, 1, 3, 4, 5, 9] sage: from gmpy2 import mpz sage: quadratic_residues(mpz(11)) [0, 1, 3, 4, 5, 9]
- sage.arith.misc.radical(n, *args, **kwds)[source]¶
Return the product of the prime divisors of n.
This calls
n.radical(*args, **kwds)
.EXAMPLES:
sage: radical(2 * 3^2 * 5^5) 30 sage: radical(0) Traceback (most recent call last): ... ArithmeticError: radical of 0 is not defined sage: K.<i> = QuadraticField(-1) # needs sage.rings.number_field sage: radical(K(2)) # needs sage.rings.number_field i - 1
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: radical(int8(50)) # needs numpy 10 sage: from gmpy2 import mpz sage: radical(mpz(50)) 10
- sage.arith.misc.random_prime(n, proof=None, lbound=2)[source]¶
Return a random prime
betweenlbound
and .The returned prime
satisfieslbound
.The returned prime
is chosen uniformly at random from the set of prime numbers less than or equal to .INPUT:
n
– integerproof
– boolean orNone
(default:None
); ifFalse
, the function uses a pseudo-primality test, which is much faster for really big numbers but does not provide a proof of primality. IfNone
, uses the global default (seesage.structure.proof.proof
)lbound
– integer; , lower bound for the chosen primes
EXAMPLES:
sage: # needs sage.libs.pari sage: p = random_prime(100000) sage: p.is_prime() True sage: p <= 100000 True sage: random_prime(2) 2
Here we generate a random prime between 100 and 200:
sage: p = random_prime(200, lbound=100) sage: p.is_prime() True sage: 100 <= p <= 200 True
If all we care about is finding a pseudo prime, then we can pass in
proof=False
sage: p = random_prime(200, proof=False, lbound=100) # needs sage.libs.pari sage: p.is_pseudoprime() # needs sage.libs.pari True sage: 100 <= p <= 200 True
AUTHORS:
Jon Hanke (2006-08-08): with standard Stein cleanup
Jonathan Bober (2007-03-17)
- sage.arith.misc.rational_reconstruction(a, m, algorithm='fast')[source]¶
This function tries to compute
, where is a rational number in lowest terms such that the reduction of modulo is equal to and the absolute values of and are both . If such exists, that pair is unique and this function returns it. If no such pair exists, this function raisesZeroDivisionError
.An efficient algorithm for computing rational reconstruction is very similar to the extended Euclidean algorithm. For more details, see Knuth, Vol 2, 3rd ed, pages 656-657.
INPUT:
a
– integerm
– a modulusalgorithm
– string (default:'fast'
)'fast'
– a fast implementation using direct GMP library callsin Cython
OUTPUT:
Numerator and denominator
, of the unique rational number , if it exists, with and . Return if no such number exists.The algorithm for rational reconstruction is described (with a complete nontrivial proof) on pages 656-657 of Knuth, Vol 2, 3rd ed. as the solution to exercise 51 on page 379. See in particular the conclusion paragraph right in the middle of page 657, which describes the algorithm thus:
This discussion proves that the problem can be solved efficiently by applying Algorithm 4.5.2X with
and , but with the following replacement for step X2: If , the algorithm terminates. The pair is then the unique solution, provided that and are coprime and ; otherwise there is no solution. (Alg 4.5.2X is the extended Euclidean algorithm.)Knuth remarks that this algorithm is due to Wang, Kornerup, and Gregory from around 1983.
EXAMPLES:
sage: m = 100000 sage: (119*inverse_mod(53,m))%m 11323 sage: rational_reconstruction(11323,m) 119/53
sage: rational_reconstruction(400,1000) Traceback (most recent call last): ... ArithmeticError: rational reconstruction of 400 (mod 1000) does not exist
sage: rational_reconstruction(3, 292393) 3 sage: a = Integers(292393)(45/97); a 204977 sage: rational_reconstruction(a, 292393, algorithm='fast') 45/97 sage: rational_reconstruction(293048, 292393) Traceback (most recent call last): ... ArithmeticError: rational reconstruction of 655 (mod 292393) does not exist sage: rational_reconstruction(0, 0) Traceback (most recent call last): ... ZeroDivisionError: rational reconstruction with zero modulus sage: rational_reconstruction(0, 1, algorithm='foobar') Traceback (most recent call last): ... ValueError: unknown algorithm 'foobar'
Tests with numpy and gmpy2 numbers:
sage: from numpy import int32 # needs numpy sage: rational_reconstruction(int32(3), int32(292393)) # needs numpy 3 sage: from gmpy2 import mpz sage: rational_reconstruction(mpz(3), mpz(292393)) 3
- sage.arith.misc.rising_factorial(x, a)[source]¶
Return the rising factorial
.The notation in the literature is a mess: often
, but there are many other notations: GKP: Concrete Mathematics uses .The rising factorial is also known as the Pochhammer symbol, see Maple and Mathematica.
Definition: for integer
we have . In all other cases we use the GAMMA-function: .INPUT:
x
– element of a ringa
– nonnegative integer orx
,a
– any numbers
OUTPUT: the rising factorial
See also
EXAMPLES:
sage: rising_factorial(10,3) 1320 sage: # needs sage.symbolic sage: rising_factorial(10, RR('3.0')) 1320.00000000000 sage: rising_factorial(10, RR('3.3')) 2826.38895824964 sage: a = rising_factorial(1+I, I); a gamma(2*I + 1)/gamma(I + 1) sage: CC(a) 0.266816390637832 + 0.122783354006372*I sage: a = rising_factorial(I, 4); a -10 sage: x = polygen(ZZ) sage: rising_factorial(x, 4) x^4 + 6*x^3 + 11*x^2 + 6*x
AUTHORS:
Jaap Spies (2006-03-05)
- sage.arith.misc.smooth_part(x, base)[source]¶
Given an element
x
of a Euclidean domain and a factor basebase
, return aFactorization
object corresponding to the largest divisor ofx
that splits completely overbase
.The factor base can be specified in the following ways:
A sequence of elements.
A
ProductTree
built from such a sequence. (Caching the tree in the caller will speed things up if this function is called multiple times with the same factor base.)
EXAMPLES:
sage: from sage.arith.misc import smooth_part sage: from sage.rings.generic import ProductTree sage: smooth_part(10^77+1, primes(1000)) 11^2 * 23 * 463 sage: tree = ProductTree(primes(1000)) sage: smooth_part(10^77+1, tree) 11^2 * 23 * 463 sage: smooth_part(10^99+1, tree) 7 * 11^2 * 13 * 19 * 23
- sage.arith.misc.sort_complex_numbers_for_display(nums)[source]¶
Given a list of complex numbers (or a list of tuples, where the first element of each tuple is a complex number), we sort the list in a “pretty” order.
Real numbers (with a zero imaginary part) come before complex numbers, and are sorted. Complex numbers are sorted by their real part unless their real parts are quite close, in which case they are sorted by their imaginary part.
This is not a useful function mathematically (not least because there is no principled way to determine whether the real components should be treated as equal or not). It is called by various polynomial root-finders; its purpose is to make doctest printing more reproducible.
We deliberately choose a cumbersome name for this function to discourage use, since it is mathematically meaningless.
EXAMPLES:
sage: # needs sage.rings.complex_double sage: import sage.arith.misc sage: sort_c = sort_complex_numbers_for_display sage: nums = [CDF(i) for i in range(3)] sage: for i in range(3): ....: nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11), ....: RDF.random_element())) ....: nums.append(CDF(i + RDF.random_element(-3e-11, 3e-11), ....: RDF.random_element())) sage: shuffle(nums) sage: nums = sort_c(nums) sage: for i in range(len(nums)): ....: if nums[i].imag(): ....: first_non_real = i ....: break ....: else: ....: first_non_real = len(nums) sage: assert first_non_real >= 3 sage: for i in range(first_non_real - 1): ....: assert nums[i].real() <= nums[i + 1].real() sage: def truncate(n): ....: if n.real() < 1e-10: ....: return 0 ....: else: ....: return n.real().n(digits=9) sage: for i in range(first_non_real, len(nums)-1): ....: assert truncate(nums[i]) <= truncate(nums[i + 1]) ....: if truncate(nums[i]) == truncate(nums[i + 1]): ....: assert nums[i].imag() <= nums[i+1].imag()
- sage.arith.misc.squarefree_divisors(x)[source]¶
Return an iterator over the squarefree divisors (up to units) of this ring element.
Depends on the output of the prime_divisors function.
Squarefree divisors of an integer are not necessarily yielded in increasing order.
INPUT:
x
– an element of any ring for which the prime_divisors function works
EXAMPLES:
Integers with few prime divisors:
sage: list(squarefree_divisors(7)) [1, 7] sage: list(squarefree_divisors(6)) [1, 2, 3, 6] sage: list(squarefree_divisors(12)) [1, 2, 3, 6]
Squarefree divisors are not yielded in increasing order:
sage: list(squarefree_divisors(30)) [1, 2, 3, 6, 5, 10, 15, 30]
- sage.arith.misc.subfactorial(n)[source]¶
Subfactorial or rencontres numbers, or derangements: number of permutations of
elements with no fixed points.INPUT:
n
– nonnegative integer
OUTPUT: integer
EXAMPLES:
sage: subfactorial(0) 1 sage: subfactorial(1) 0 sage: subfactorial(8) 14833
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: subfactorial(int8(8)) # needs numpy 14833 sage: from gmpy2 import mpz sage: subfactorial(mpz(8)) 14833
AUTHORS:
Jaap Spies (2007-01-23)
- sage.arith.misc.sum_of_k_squares(k, n)[source]¶
Write the integer
as a sum of integer squares if possible; otherwise raise aValueError
.INPUT:
k
– nonnegative integern
– integer
OUTPUT: a tuple
of nonnegative integers such that their squares sum to .EXAMPLES:
sage: sum_of_k_squares(2, 9634) (15, 97) sage: sum_of_k_squares(3, 9634) (0, 15, 97) sage: sum_of_k_squares(4, 9634) (1, 2, 5, 98) sage: sum_of_k_squares(5, 9634) (0, 1, 2, 5, 98) sage: sum_of_k_squares(6, 11^1111 - 1) # needs sage.libs.pari (19215400822645944253860920437586326284, 37204645194585992174252915693267578306, 3473654819477394665857484221256136567800161086815834297092488779216863122, 5860191799617673633547572610351797996721850737768032876360978911074629287841061578270832330322236796556721252602860754789786937515870682024273948, 20457423294558182494001919812379023992538802203730791019728543439765347851316366537094696896669915675685581905102118246887673397020172285247862426612188418787649371716686651256443143210952163970564228423098202682066311189439731080552623884051737264415984619097656479060977602722566383385989, 311628095411678159849237738619458396497534696043580912225334269371611836910345930320700816649653412141574887113710604828156159177769285115652741014638785285820578943010943846225597311231847997461959204894255074229895666356909071243390280307709880906261008237873840245959883405303580405277298513108957483306488193844321589356441983980532251051786704380984788999660195252373574924026139168936921591652831237741973242604363696352878914129671292072201700073286987126265965322808664802662993006926302359371379531571194266134916767573373504566621665949840469229781956838744551367172353) sage: sum_of_k_squares(7, 0) (0, 0, 0, 0, 0, 0, 0) sage: sum_of_k_squares(30,999999) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7, 44, 999) sage: sum_of_k_squares(1, 9) (3,) sage: sum_of_k_squares(1, 10) Traceback (most recent call last): ... ValueError: 10 is not a sum of 1 square sage: sum_of_k_squares(1, -10) Traceback (most recent call last): ... ValueError: -10 is not a sum of 1 square sage: sum_of_k_squares(0, 9) Traceback (most recent call last): ... ValueError: 9 is not a sum of 0 squares sage: sum_of_k_squares(0, 0) () sage: sum_of_k_squares(7, -1) Traceback (most recent call last): ... ValueError: -1 is not a sum of 7 squares sage: sum_of_k_squares(-1, 0) Traceback (most recent call last): ... ValueError: k = -1 must be nonnegative
Tests with numpy and gmpy2 numbers:
sage: from numpy import int16 # needs numpy sage: sum_of_k_squares(int16(2), int16(9634)) # needs numpy (15, 97) sage: from gmpy2 import mpz sage: sum_of_k_squares(mpz(2), mpz(9634)) (15, 97)
- sage.arith.misc.three_squares(n)[source]¶
Write the integer
as a sum of three integer squares if possible; otherwise raise aValueError
.INPUT:
n
– integer
OUTPUT: a tuple
of nonnegative integers such that with .EXAMPLES:
sage: three_squares(389) (1, 8, 18) sage: three_squares(946) (9, 9, 28) sage: three_squares(2986) (3, 24, 49) sage: three_squares(7^100) (0, 0, 1798465042647412146620280340569649349251249) sage: three_squares(11^111 - 1) # needs sage.libs.pari (616274160655975340150706442680, 901582938385735143295060746161, 6270382387635744140394001363065311967964099981788593947233) sage: three_squares(7 * 2^41) # needs sage.libs.pari (1048576, 2097152, 3145728) sage: three_squares(7 * 2^42) Traceback (most recent call last): ... ValueError: 30786325577728 is not a sum of 3 squares sage: three_squares(0) (0, 0, 0) sage: three_squares(-1) Traceback (most recent call last): ... ValueError: -1 is not a sum of 3 squares
ALGORITHM:
- sage.arith.misc.trial_division(n, bound=None)[source]¶
Return the smallest prime divisor less than or equal to
bound
of the positive integer , or if there is no such prime. If the optional argument bound is omitted, then bound .INPUT:
n
– positive integerbound
– (optional) positive integer
OUTPUT: a prime
p=bound
that divides , or if there is no such primeEXAMPLES:
sage: trial_division(15) 3 sage: trial_division(91) 7 sage: trial_division(11) 11 sage: trial_division(387833, 300) 387833 sage: # 300 is not big enough to split off a sage: # factor, but 400 is. sage: trial_division(387833, 400) 389
Tests with numpy and gmpy2 numbers:
sage: from numpy import int8 # needs numpy sage: trial_division(int8(91)) # needs numpy 7 sage: from gmpy2 import mpz sage: trial_division(mpz(91)) 7
- sage.arith.misc.two_squares(n)[source]¶
Write the integer
as a sum of two integer squares if possible; otherwise raise aValueError
.INPUT:
n
– integer
OUTPUT: a tuple
of nonnegative integers such that with .EXAMPLES:
sage: two_squares(389) (10, 17) sage: two_squares(21) Traceback (most recent call last): ... ValueError: 21 is not a sum of 2 squares sage: two_squares(21^2) (0, 21) sage: a, b = two_squares(100000000000000000129); a, b # needs sage.libs.pari (4418521500, 8970878873) sage: a^2 + b^2 # needs sage.libs.pari 100000000000000000129 sage: two_squares(2^222 + 1) # needs sage.libs.pari (253801659504708621991421712450521, 2583712713213354898490304645018692) sage: two_squares(0) (0, 0) sage: two_squares(-1) Traceback (most recent call last): ... ValueError: -1 is not a sum of 2 squares
ALGORITHM:
- sage.arith.misc.valuation(m, *args, **kwds)[source]¶
Return the valuation of
m
.This function simply calls the m.valuation() method. See the documentation of m.valuation() for a more precise description.
Note that the use of this functions is discouraged as it is better to use m.valuation() directly.
Note
This is not always a valuation in the mathematical sense. For more information see: sage.rings.finite_rings.integer_mod.IntegerMod_int.valuation
EXAMPLES:
sage: valuation(512,2) 9 sage: valuation(1,2) 0 sage: valuation(5/9, 3) -2
Valuation of 0 is defined, but valuation with respect to 0 is not:
sage: valuation(0,7) +Infinity sage: valuation(3,0) Traceback (most recent call last): ... ValueError: You can only compute the valuation with respect to a integer larger than 1.
Here are some other examples:
sage: valuation(100,10) 2 sage: valuation(200,10) 2 sage: valuation(243,3) 5 sage: valuation(243*10007,3) 5 sage: valuation(243*10007,10007) 1 sage: y = QQ['y'].gen() sage: valuation(y^3, y) 3 sage: x = QQ[['x']].gen() sage: valuation((x^3-x^2)/(x-4)) 2 sage: valuation(4r,2r) 2 sage: valuation(1r,1r) Traceback (most recent call last): ... ValueError: You can only compute the valuation with respect to a integer larger than 1. sage: from numpy import int16 # needs numpy sage: valuation(int16(512), int16(2)) # needs numpy 9 sage: from gmpy2 import mpz sage: valuation(mpz(512), mpz(2)) 9
- sage.arith.misc.xgcd(a, b=None)[source]¶
Return the greatest common divisor and the Bézout coefficients of the input arguments.
When both
a
andb
are given, then return a triple(g,s,t)
such that . When onlya
is given, then return a tupler
of lengthlen(a) + 1
such thatNote
One exception is if the elements are not in a principal ideal domain (see Wikipedia article Principal_ideal_domain), e.g., they are both polynomials over the integers. Then this function can’t in general return
(g,s,t)
orr
as above, since they need not exist. Instead, over the integers, whena
andb
are given, we first multiply by a divisor of the resultant of and , up to sign.INPUT:
One of the following:
a, b
– integers or more generally, element of a ring for which the xgcd make sense (e.g. a field or univariate polynomials).a
– a list or tuple of at least two integers or more generally, elements of a ring which the xgcd make sense.
OUTPUT:
One of the following:
g, s, t
– when two inputsa, b
are given. They satisfy .r
– a tuple, when onlya
is given (andb = None
). Its first entryr[0]
is the gcd of the inputs, and has length one longer than the length ofa
. Its entries satisfy .
Note
There is no guarantee that the returned cofactors (s and t) are minimal.
EXAMPLES:
sage: xgcd(56, 44) (4, 4, -5) sage: 4*56 + (-5)*44 4 sage: xgcd([56, 44]) (4, 4, -5) sage: r = xgcd([30, 105, 70, 42]); r (1, -255, 85, -17, -2) sage: (-255)*30 + 85*105 + (-17)*70 + (-2)*42 1 sage: xgcd([]) (0,) sage: xgcd([42]) (42, 1) sage: g, a, b = xgcd(5/1, 7/1); g, a, b (1, 3, -2) sage: a*(5/1) + b*(7/1) == g True sage: x = polygen(QQ) sage: xgcd(x^3 - 1, x^2 - 1) (x - 1, 1, -x) sage: g, a, b, c = xgcd([x^4 - x, x^6 - 1, x^4 - 1]); g, a, b, c (x - 1, x^3, -x, 1) sage: a*(x^4 - x) + b*(x^6 - 1) + c*(x^4 - 1) == g True sage: K.<g> = NumberField(x^2 - 3) # needs sage.rings.number_field sage: g.xgcd(g + 2) # needs sage.rings.number_field (1, 1/3*g, 0) sage: # needs sage.rings.number_field sage: R.<a,b> = K[] sage: S.<y> = R.fraction_field()[] sage: xgcd(y^2, a*y + b) (1, a^2/b^2, ((-a)/b^2)*y + 1/b) sage: xgcd((b+g)*y^2, (a+g)*y + b) (1, (a^2 + (2*g)*a + 3)/(b^3 + g*b^2), ((-a + (-g))/b^2)*y + 1/b)
Here is an example of a xgcd for two polynomials over the integers, where the linear combination is not the gcd but the gcd multiplied by the resultant:
sage: R.<x> = ZZ[] sage: gcd(2*x*(x-1), x^2) x sage: xgcd(2*x*(x-1), x^2) (2*x, -1, 2) sage: (2*(x-1)).resultant(x) # needs sage.libs.pari 2
Tests with numpy and gmpy2 types:
sage: from numpy import int8 # needs numpy sage: xgcd(4, int8(8)) # needs numpy (4, 1, 0) sage: xgcd(int8(4), int8(8)) # needs numpy (4, 1, 0) sage: xgcd([int8(4), int8(8), int(10)]) # needs numpy (2, -2, 0, 1) sage: from gmpy2 import mpz sage: xgcd(mpz(4), mpz(8)) (4, 1, 0) sage: xgcd(4, mpz(8)) (4, 1, 0) sage: xgcd([4, mpz(8), mpz(10)]) (2, -2, 0, 1)
- sage.arith.misc.xkcd(n='')[source]¶
This function is similar to the xgcd function, but behaves in a completely different way.
See https://xkcd.com/json.html for more details.
INPUT:
n
– integer (optional)
OUTPUT: a fragment of HTML
EXAMPLES:
sage: xkcd(353) # optional - internet <h1>Python</h1><img src="https://imgs.xkcd.com/comics/python.png" title="I wrote 20 short programs in Python yesterday. It was wonderful. Perl, I'm leaving you."><div>Source: <a href="http://xkcd.com/353" target="_blank">http://xkcd.com/353</a></div>
- sage.arith.misc.xlcm(m, n)[source]¶
Extended lcm function: given two positive integers
, returns a triple such that where , and , all with no factorization.Used to construct an element of order
from elements of orders in any group: see sage/groups/generic.py for examples.EXAMPLES:
sage: xlcm(120,36) (360, 40, 9)