Cython wrapper for bernmm library¶
AUTHOR:
David Harvey (2008-06): initial version
- sage.rings.bernmm.bernmm_bern_modp(p, k)[source]¶
Compute \(B_k \mod p\), where \(B_k\) is the \(k\)-th Bernoulli number.
If \(B_k\) is not \(p\)-integral, return \(-1\).
INPUT:
p
– a primek
– nonnegative integer
COMPLEXITY:
Pretty much linear in \(p\).
EXAMPLES:
sage: from sage.rings.bernmm import bernmm_bern_modp sage: bernoulli(0) % 5, bernmm_bern_modp(5, 0) (1, 1) sage: bernoulli(1) % 5, bernmm_bern_modp(5, 1) (2, 2) sage: bernoulli(2) % 5, bernmm_bern_modp(5, 2) (1, 1) sage: bernoulli(3) % 5, bernmm_bern_modp(5, 3) (0, 0) sage: bernoulli(4), bernmm_bern_modp(5, 4) (-1/30, -1) sage: bernoulli(18) % 5, bernmm_bern_modp(5, 18) (4, 4) sage: bernoulli(19) % 5, bernmm_bern_modp(5, 19) (0, 0) sage: p = 10000019; k = 1000 sage: bernoulli(k) % p 1972762 sage: bernmm_bern_modp(p, k) 1972762
>>> from sage.all import * >>> from sage.rings.bernmm import bernmm_bern_modp >>> bernoulli(Integer(0)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(0)) (1, 1) >>> bernoulli(Integer(1)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(1)) (2, 2) >>> bernoulli(Integer(2)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(2)) (1, 1) >>> bernoulli(Integer(3)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(3)) (0, 0) >>> bernoulli(Integer(4)), bernmm_bern_modp(Integer(5), Integer(4)) (-1/30, -1) >>> bernoulli(Integer(18)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(18)) (4, 4) >>> bernoulli(Integer(19)) % Integer(5), bernmm_bern_modp(Integer(5), Integer(19)) (0, 0) >>> p = Integer(10000019); k = Integer(1000) >>> bernoulli(k) % p 1972762 >>> bernmm_bern_modp(p, k) 1972762
from sage.rings.bernmm import bernmm_bern_modp bernoulli(0) % 5, bernmm_bern_modp(5, 0) bernoulli(1) % 5, bernmm_bern_modp(5, 1) bernoulli(2) % 5, bernmm_bern_modp(5, 2) bernoulli(3) % 5, bernmm_bern_modp(5, 3) bernoulli(4), bernmm_bern_modp(5, 4) bernoulli(18) % 5, bernmm_bern_modp(5, 18) bernoulli(19) % 5, bernmm_bern_modp(5, 19) p = 10000019; k = 1000 bernoulli(k) % p bernmm_bern_modp(p, k)
- sage.rings.bernmm.bernmm_bern_rat(k, num_threads=1)[source]¶
Compute \(k\)-th Bernoulli number using a multimodular algorithm. (Wrapper for bernmm library.)
INPUT:
k
– nonnegative integernum_threads
– integer \(\geq 1\), number of threads to use
COMPLEXITY:
Pretty much quadratic in \(k\). See the paper “A multimodular algorithm for computing Bernoulli numbers”, David Harvey, 2008, for more details.
EXAMPLES:
sage: from sage.rings.bernmm import bernmm_bern_rat sage: bernmm_bern_rat(0) 1 sage: bernmm_bern_rat(1) -1/2 sage: bernmm_bern_rat(2) 1/6 sage: bernmm_bern_rat(3) 0 sage: bernmm_bern_rat(100) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330 sage: bernmm_bern_rat(100, 3) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
>>> from sage.all import * >>> from sage.rings.bernmm import bernmm_bern_rat >>> bernmm_bern_rat(Integer(0)) 1 >>> bernmm_bern_rat(Integer(1)) -1/2 >>> bernmm_bern_rat(Integer(2)) 1/6 >>> bernmm_bern_rat(Integer(3)) 0 >>> bernmm_bern_rat(Integer(100)) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330 >>> bernmm_bern_rat(Integer(100), Integer(3)) -94598037819122125295227433069493721872702841533066936133385696204311395415197247711/33330
from sage.rings.bernmm import bernmm_bern_rat bernmm_bern_rat(0) bernmm_bern_rat(1) bernmm_bern_rat(2) bernmm_bern_rat(3) bernmm_bern_rat(100) bernmm_bern_rat(100, 3)