Valuations which are scaled versions of another valuation¶
EXAMPLES:
sage: 3*ZZ.valuation(3)
3 * 3-adic valuation
>>> from sage.all import *
>>> Integer(3)*ZZ.valuation(Integer(3))
3 * 3-adic valuation
3*ZZ.valuation(3)
AUTHORS:
Julian Rüth (2016-11-10): initial version
- class sage.rings.valuation.scaled_valuation.ScaledValuationFactory[source]¶
Bases:
UniqueFactory
Return a valuation which scales the valuation
base
by the factors
.EXAMPLES:
sage: 3*ZZ.valuation(2) # indirect doctest 3 * 2-adic valuation
>>> from sage.all import * >>> Integer(3)*ZZ.valuation(Integer(2)) # indirect doctest 3 * 2-adic valuation
3*ZZ.valuation(2) # indirect doctest
- class sage.rings.valuation.scaled_valuation.ScaledValuation_generic(parent, base_valuation, s)[source]¶
Bases:
DiscreteValuation
A valuation which scales another
base_valuation
by a finite positive factors
.EXAMPLES:
sage: v = 3*ZZ.valuation(3); v 3 * 3-adic valuation
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(3)); v 3 * 3-adic valuation
v = 3*ZZ.valuation(3); v
- extensions(ring)[source]¶
Return the extensions of this valuation to
ring
.EXAMPLES:
sage: v = 3*ZZ.valuation(5) sage: v.extensions(GaussianIntegers().fraction_field()) # needs sage.rings.number_field [3 * [ 5-adic valuation, v(x + 2) = 1 ]-adic valuation, 3 * [ 5-adic valuation, v(x + 3) = 1 ]-adic valuation]
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(5)) >>> v.extensions(GaussianIntegers().fraction_field()) # needs sage.rings.number_field [3 * [ 5-adic valuation, v(x + 2) = 1 ]-adic valuation, 3 * [ 5-adic valuation, v(x + 3) = 1 ]-adic valuation]
v = 3*ZZ.valuation(5) v.extensions(GaussianIntegers().fraction_field()) # needs sage.rings.number_field
- lift(F)[source]¶
Lift
F
from theresidue_field()
of this valuation into its domain.EXAMPLES:
sage: v = 3*ZZ.valuation(2) sage: v.lift(1) 1
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(2)) >>> v.lift(Integer(1)) 1
v = 3*ZZ.valuation(2) v.lift(1)
- reduce(f)[source]¶
Return the reduction of
f
in theresidue_field()
of this valuation.EXAMPLES:
sage: v = 3*ZZ.valuation(2) sage: v.reduce(1) 1
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(2)) >>> v.reduce(Integer(1)) 1
v = 3*ZZ.valuation(2) v.reduce(1)
- residue_ring()[source]¶
Return the residue field of this valuation.
EXAMPLES:
sage: v = 3*ZZ.valuation(2) sage: v.residue_ring() Finite Field of size 2
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(2)) >>> v.residue_ring() Finite Field of size 2
v = 3*ZZ.valuation(2) v.residue_ring()
- restriction(ring)[source]¶
Return the restriction of this valuation to
ring
.EXAMPLES:
sage: v = 3*QQ.valuation(5) sage: v.restriction(ZZ) 3 * 5-adic valuation
>>> from sage.all import * >>> v = Integer(3)*QQ.valuation(Integer(5)) >>> v.restriction(ZZ) 3 * 5-adic valuation
v = 3*QQ.valuation(5) v.restriction(ZZ)
- uniformizer()[source]¶
Return a uniformizing element of this valuation.
EXAMPLES:
sage: v = 3*ZZ.valuation(2) sage: v.uniformizer() 2
>>> from sage.all import * >>> v = Integer(3)*ZZ.valuation(Integer(2)) >>> v.uniformizer() 2
v = 3*ZZ.valuation(2) v.uniformizer()
- value_semigroup()[source]¶
Return the value semigroup of this valuation.
EXAMPLES:
sage: v2 = QQ.valuation(2) sage: (2*v2).value_semigroup() Additive Abelian Semigroup generated by -2, 2
>>> from sage.all import * >>> v2 = QQ.valuation(Integer(2)) >>> (Integer(2)*v2).value_semigroup() Additive Abelian Semigroup generated by -2, 2
v2 = QQ.valuation(2) (2*v2).value_semigroup()