Trivial valuations¶
AUTHORS:
Julian Rüth (2016-10-14): initial version
EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v
Trivial valuation on Rational Field
sage: v(1)
0
- class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation(parent)[source]¶
Bases:
TrivialDiscretePseudoValuation_base,InfiniteDiscretePseudoValuationThe trivial pseudo-valuation that is
everywhere.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ); v Trivial pseudo-valuation on Rational Field
- lift(X)[source]¶
Return a lift of
Xto the domain of this valuation.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.lift(v.residue_ring().zero()) 0
- reduce(x)[source]¶
Reduce
xmodulo the positive elements of this valuation.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.reduce(1) 0
- residue_ring()[source]¶
Return the residue ring of this valuation.
EXAMPLES:
sage: valuations.TrivialPseudoValuation(QQ).residue_ring() Quotient of Rational Field by the ideal (1)
- value_group()[source]¶
Return the value group of this valuation.
EXAMPLES:
A trivial discrete pseudo-valuation has no value group:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.value_group() Traceback (most recent call last): ... ValueError: The trivial pseudo-valuation that is infinity everywhere does not have a value group.
- class sage.rings.valuation.trivial_valuation.TrivialDiscretePseudoValuation_base(parent)[source]¶
Bases:
DiscretePseudoValuationBase class for code shared by trivial valuations.
EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(ZZ); v Trivial pseudo-valuation on Integer Ring
- is_negative_pseudo_valuation()[source]¶
Return whether this valuation attains the value
.EXAMPLES:
sage: v = valuations.TrivialPseudoValuation(QQ) sage: v.is_negative_pseudo_valuation() False
- class sage.rings.valuation.trivial_valuation.TrivialDiscreteValuation(parent)[source]¶
Bases:
TrivialDiscretePseudoValuation_base,DiscreteValuationThe trivial valuation that is zero on nonzero elements.
EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v Trivial valuation on Rational Field
- extensions(ring)[source]¶
Return the unique extension of this valuation to
ring.EXAMPLES:
sage: v = valuations.TrivialValuation(ZZ) sage: v.extensions(QQ) [Trivial valuation on Rational Field]
- lift(X)[source]¶
Return a lift of
Xto the domain of this valuation.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ) sage: v.lift(v.residue_ring().zero()) 0
- reduce(x)[source]¶
Reduce
xmodulo the positive elements of this valuation.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ) sage: v.reduce(1) 1
- class sage.rings.valuation.trivial_valuation.TrivialValuationFactory(clazz, parent, *args, **kwargs)[source]¶
Bases:
UniqueFactoryCreate a trivial valuation on
domain.EXAMPLES:
sage: v = valuations.TrivialValuation(QQ); v Trivial valuation on Rational Field sage: v(1) 0