Álgebra Y Cálculo Básicos¶
Sage puede efectuar cómputos relacionados al algebra y cálculo básicos: por ejemplo, encontrar soluciones de ecuaciones, diferenciación, integración y transformadas de Laplace. Véa la documentación «Construcciones En Sage» para más ejemplos.
Resolviendo Ecuaciones¶
Resolviendo Ecuaciones De Manera Exacta¶
La función solve
resuelve ecuaciones. Para usarla, primero no olvides especificar
algunas variables. Los argumentos de solve
son una ecuación (o un
sistema de ecuaciones), junto con las variables a resolver:
sage: x = var('x')
sage: solve(x^2 + 3*x + 2, x)
[x == -2, x == -1]
>>> from sage.all import *
>>> x = var('x')
>>> solve(x**Integer(2) + Integer(3)*x + Integer(2), x)
[x == -2, x == -1]
x = var('x') solve(x^2 + 3*x + 2, x)
Puedes resolver ecuaciones en una variable respecto de las demás:
sage: x, b, c = var('x b c')
sage: solve([x^2 + b*x + c == 0],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
>>> from sage.all import *
>>> x, b, c = var('x b c')
>>> solve([x**Integer(2) + b*x + c == Integer(0)],x)
[x == -1/2*b - 1/2*sqrt(b^2 - 4*c), x == -1/2*b + 1/2*sqrt(b^2 - 4*c)]
x, b, c = var('x b c') solve([x^2 + b*x + c == 0],x)
Puedes también resolver ecuaciones en varias variables:
sage: x, y = var('x, y')
sage: solve([x+y==6, x-y==4], x, y)
[[x == 5, y == 1]]
>>> from sage.all import *
>>> x, y = var('x, y')
>>> solve([x+y==Integer(6), x-y==Integer(4)], x, y)
[[x == 5, y == 1]]
x, y = var('x, y') solve([x+y==6, x-y==4], x, y)
El siguiente ejemplo del uso de Sage para resolver un sistema de ecuaciones no-lineales fue proporcionado por Jason Grout: primero, resolvemos el sistema simbólicamente:
sage: var('x y p q')
(x, y, p, q)
sage: eq1 = p+q==9
sage: eq2 = q*y+p*x==-6
sage: eq3 = q*y^2+p*x^2==24
sage: solve([eq1,eq2,eq3,p==1],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
>>> from sage.all import *
>>> var('x y p q')
(x, y, p, q)
>>> eq1 = p+q==Integer(9)
>>> eq2 = q*y+p*x==-Integer(6)
>>> eq3 = q*y**Integer(2)+p*x**Integer(2)==Integer(24)
>>> solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y)
[[p == 1, q == 8, x == -4/3*sqrt(10) - 2/3, y == 1/6*sqrt(10) - 2/3], [p == 1, q == 8, x == 4/3*sqrt(10) - 2/3, y == -1/6*sqrt(10) - 2/3]]
var('x y p q') eq1 = p+q==9 eq2 = q*y+p*x==-6 eq3 = q*y^2+p*x^2==24 solve([eq1,eq2,eq3,p==1],p,q,x,y)
Si queremos aproximaciones numéricas de las soluciones, podemos usar lo siguiente:
sage: solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True)
sage: [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
>>> from sage.all import *
>>> solns = solve([eq1,eq2,eq3,p==Integer(1)],p,q,x,y, solution_dict=True)
>>> [[s[p].n(Integer(30)), s[q].n(Integer(30)), s[x].n(Integer(30)), s[y].n(Integer(30))] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],
[1.0000000, 8.0000000, 3.5497035, -1.1937129]]
solns = solve([eq1,eq2,eq3,p==1],p,q,x,y, solution_dict=True) [[s[p].n(30), s[q].n(30), s[x].n(30), s[y].n(30)] for s in solns]
(La función n
imprime una aproximación numérica, y el
argumento es el número de bits de precisión.)
Resolviendo Ecuaciones Numéricamente¶
A menudo, solve
no podrá encontrar una solución exacta para
la ecuación o ecuaciones especificadas. Cuando falla, puedes usar
find_root
para encontrar una solución numérica. Por ejemplo, solve
no
devuelve nada interesante para la siguiente ecuación:
sage: theta = var('theta')
sage: solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
>>> from sage.all import *
>>> theta = var('theta')
>>> solve(cos(theta)==sin(theta), theta)
[sin(theta) == cos(theta)]
theta = var('theta') solve(cos(theta)==sin(theta), theta)
Por otro lado, podemos usar find_root
para encontrar una solución a la
ecuación de arriba en el rango
sage: phi = var('phi')
sage: find_root(cos(phi)==sin(phi),0,pi/2)
0.785398163397448...
>>> from sage.all import *
>>> phi = var('phi')
>>> find_root(cos(phi)==sin(phi),Integer(0),pi/Integer(2))
0.785398163397448...
phi = var('phi') find_root(cos(phi)==sin(phi),0,pi/2)
Diferenciación, Integración, etc.¶
Sage sabe cómo diferenciar e integrar muchas funciones.
Por ejemplo, para diferenciar
sage: u = var('u')
sage: diff(sin(u), u)
cos(u)
>>> from sage.all import *
>>> u = var('u')
>>> diff(sin(u), u)
cos(u)
u = var('u') diff(sin(u), u)
Para calcular la cuarta derivada de
sage: diff(sin(x^2), x, 4)
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
>>> from sage.all import *
>>> diff(sin(x**Integer(2)), x, Integer(4))
16*x^4*sin(x^2) - 48*x^2*cos(x^2) - 12*sin(x^2)
diff(sin(x^2), x, 4)
Para calcular las derivadas parciales de
sage: x, y = var('x,y')
sage: f = x^2 + 17*y^2
sage: f.diff(x)
2*x
sage: f.diff(y)
34*y
>>> from sage.all import *
>>> x, y = var('x,y')
>>> f = x**Integer(2) + Integer(17)*y**Integer(2)
>>> f.diff(x)
2*x
>>> f.diff(y)
34*y
x, y = var('x,y') f = x^2 + 17*y^2 f.diff(x) f.diff(y)
También podemos calcular integrales, tanto indefinidas como definidas.
Para calcular
sage: integral(x*sin(x^2), x)
-1/2*cos(x^2)
sage: integral(x/(x^2+1), x, 0, 1)
1/2*log(2)
>>> from sage.all import *
>>> integral(x*sin(x**Integer(2)), x)
-1/2*cos(x^2)
>>> integral(x/(x**Integer(2)+Integer(1)), x, Integer(0), Integer(1))
1/2*log(2)
integral(x*sin(x^2), x) integral(x/(x^2+1), x, 0, 1)
Para calcular la descomposición en fracciones simples de
sage: f = 1/((1+x)*(x-1))
sage: f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
>>> from sage.all import *
>>> f = Integer(1)/((Integer(1)+x)*(x-Integer(1)))
>>> f.partial_fraction(x)
-1/2/(x + 1) + 1/2/(x - 1)
f = 1/((1+x)*(x-1)) f.partial_fraction(x)
Resolviendo Ecuaciones Diferenciales¶
Puedes usar a Sage para investigar ecuaciones diferenciales ordinarias.
Para resolver la ecuación
sage: t = var('t') # defina una variable t
sage: x = function('x')(t) # defina x como una función de esa variable
sage: DE = diff(x, t) + x - 1
sage: desolve(DE, [x,t])
(_C + e^t)*e^(-t)
>>> from sage.all import *
>>> t = var('t') # defina una variable t
>>> x = function('x')(t) # defina x como una función de esa variable
>>> DE = diff(x, t) + x - Integer(1)
>>> desolve(DE, [x,t])
(_C + e^t)*e^(-t)
t = var('t') # defina una variable t x = function('x')(t) # defina x como una función de esa variable DE = diff(x, t) + x - 1 desolve(DE, [x,t])
Esto utiliza el interfaz a Maxima de Sage [Max], por lo que el resultado puede
diferir de otros resultados de Sage. En este caso, la salida nos dice que la
solución general a la ecuación diferencial es
También puedes calcular transformadas de Laplace; la transformada de Laplace
de
sage: s = var("s")
sage: t = var("t")
sage: f = t^2*exp(t) - sin(t)
sage: f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
>>> from sage.all import *
>>> s = var("s")
>>> t = var("t")
>>> f = t**Integer(2)*exp(t) - sin(t)
>>> f.laplace(t,s)
-1/(s^2 + 1) + 2/(s - 1)^3
s = var("s") t = var("t") f = t^2*exp(t) - sin(t) f.laplace(t,s)
Veamos un ejemplo más complicado. El desplazamiento desde el punto de equilibrio de dos resortes acoplados, sujetos a una pared a la izquierda
|------\/\/\/\/\---|masa1|----\/\/\/\/\/----|masa2|
resorte1 resorte2
está modelado por el sistema de ecuaciones diferenciales de segundo órden
donde
Ejemplo: Utiliza Sage para resolver el problema de arriba con
Solución: Toma la transformada de Laplace de la primera ecuación (con
la notación
sage: de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)")
sage: lde1 = de1.laplace("t","s"); lde1.sage()
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
>>> from sage.all import *
>>> de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)")
>>> lde1 = de1.laplace("t","s"); lde1.sage()
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
de1 = maxima("2*diff(x(t),t, 2) + 6*x(t) - 2*y(t)") lde1 = de1.laplace("t","s"); lde1.sage()
El resultado puede ser difícil de leer, pero significa que
(donde la transformada de Laplace de una función en letra minúscula como
sage: t,s = SR.var('t,s')
sage: x = function('x')
sage: y = function('y')
sage: f = 2*x(t).diff(t,2) + 6*x(t) - 2*y(t)
sage: f.laplace(t,s)
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
>>> from sage.all import *
>>> t,s = SR.var('t,s')
>>> x = function('x')
>>> y = function('y')
>>> f = Integer(2)*x(t).diff(t,Integer(2)) + Integer(6)*x(t) - Integer(2)*y(t)
>>> f.laplace(t,s)
2*s^2*laplace(x(t), t, s) - 2*s*x(0) + 6*laplace(x(t), t, s) - 2*laplace(y(t), t, s) - 2*D[0](x)(0)
t,s = SR.var('t,s') x = function('x') y = function('y') f = 2*x(t).diff(t,2) + 6*x(t) - 2*y(t) f.laplace(t,s)
Esto dice
Introduce las condiciones iniciales para
sage: var('s X Y')
(s, X, Y)
sage: eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s]
sage: solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
>>> from sage.all import *
>>> var('s X Y')
(s, X, Y)
>>> eqns = [(Integer(2)*s**Integer(2)+Integer(6))*X-Integer(2)*Y == Integer(6)*s, -Integer(2)*X +(s**Integer(2)+Integer(2))*Y == Integer(3)*s]
>>> solve(eqns, X,Y)
[[X == 3*(s^3 + 3*s)/(s^4 + 5*s^2 + 4),
Y == 3*(s^3 + 5*s)/(s^4 + 5*s^2 + 4)]]
var('s X Y') eqns = [(2*s^2+6)*X-2*Y == 6*s, -2*X +(s^2+2)*Y == 3*s] solve(eqns, X,Y)
Ahora toma la transformada inversa de Laplace para obtener la respuesta:
sage: var('s t')
(s, t)
sage: inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t)
cos(2*t) + 2*cos(t)
sage: inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
-cos(2*t) + 4*cos(t)
>>> from sage.all import *
>>> var('s t')
(s, t)
>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(9)*s)/(s**Integer(4) + Integer(5)*s**Integer(2) + Integer(4)),s,t)
cos(2*t) + 2*cos(t)
>>> inverse_laplace((Integer(3)*s**Integer(3) + Integer(15)*s)/(s**Integer(4) + Integer(5)*s**Integer(2) + Integer(4)),s,t)
-cos(2*t) + 4*cos(t)
var('s t') inverse_laplace((3*s^3 + 9*s)/(s^4 + 5*s^2 + 4),s,t) inverse_laplace((3*s^3 + 15*s)/(s^4 + 5*s^2 + 4),s,t)
Por tanto, la solución es
La solución puede dibujarse paramétricamente usando
sage: t = var('t')
sage: P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),\
....: (0, 2*pi), rgbcolor=hue(0.9))
sage: show(P)
>>> from sage.all import *
>>> t = var('t')
>>> P = parametric_plot((cos(Integer(2)*t) + Integer(2)*cos(t), Integer(4)*cos(t) - cos(Integer(2)*t) ),(Integer(0), Integer(2)*pi), rgbcolor=hue(RealNumber('0.9')))
>>> show(P)
t = var('t') P = parametric_plot((cos(2*t) + 2*cos(t), 4*cos(t) - cos(2*t) ),\ (0, 2*pi), rgbcolor=hue(0.9)) show(P)
Los componentes individuales pueden dibujarse usando
sage: t = var('t')
sage: p1 = plot(cos(2*t) + 2*cos(t), 0, 2*pi, rgbcolor=hue(0.3))
sage: p2 = plot(4*cos(t) - cos(2*t), 0, 2*pi, rgbcolor=hue(0.6))
sage: show(p1 + p2)
>>> from sage.all import *
>>> t = var('t')
>>> p1 = plot(cos(Integer(2)*t) + Integer(2)*cos(t), Integer(0), Integer(2)*pi, rgbcolor=hue(RealNumber('0.3')))
>>> p2 = plot(Integer(4)*cos(t) - cos(Integer(2)*t), Integer(0), Integer(2)*pi, rgbcolor=hue(RealNumber('0.6')))
>>> show(p1 + p2)
t = var('t') p1 = plot(cos(2*t) + 2*cos(t), 0, 2*pi, rgbcolor=hue(0.3)) p2 = plot(4*cos(t) - cos(2*t), 0, 2*pi, rgbcolor=hue(0.6)) show(p1 + p2)
REFERENCIAS: Nagle, Saff, Snider, Fundamentos De Ecuaciones Diferenciales, 6a ed, Addison-Wesley, 2004. (véase § 5.5).
Método De Euler Para Sistemas De Ecuaciones Diferenciales¶
En el siguiente ejemplo, ilustraremos el método de Euler para EDOs de primer y segundo órden. Primero, recordemos la idea básica para ecuaciones de primer órden. Dado un problema con valor inicial de la forma
queremos encontrar el valor aproximado de la solución en
Recuerda de la definición de derivada que
donde
Si llamamos a
Si descomponemos el intervalo desde a a b en n pasos, de modo que
… |
||
… |
||
… |
||
??? |
… |
La meta es llenar todos los espacios de la tabla, una fila cada
la vez, hasta que lleguemos a la casilla ???, que será la
aproximación del método de Euler para
La idea para los sistemas de EDOs es similar.
Ejemplo: Aproxima numéricamente
Debemos reducir la EDO de segundo órden a un sistema de dos EDs
de primer órden (usando
sage: t,x,y = PolynomialRing(RealField(10),3,"txy").gens()
sage: f = y; g = -x - y * t
sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
>>> from sage.all import *
>>> t,x,y = PolynomialRing(RealField(Integer(10)),Integer(3),"txy").gens()
>>> f = y; g = -x - y * t
>>> eulers_method_2x2(f,g, Integer(0), Integer(1), Integer(0), Integer(1)/Integer(4), Integer(1))
t x h*f(t,x,y) y h*g(t,x,y)
0 1 0.00 0 -0.25
1/4 1.0 -0.062 -0.25 -0.23
1/2 0.94 -0.12 -0.48 -0.17
3/4 0.82 -0.16 -0.66 -0.081
1 0.65 -0.18 -0.74 0.022
t,x,y = PolynomialRing(RealField(10),3,"txy").gens() f = y; g = -x - y * t eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
Por tanto,
También podemos dibujar los puntos eulers_method_2x2_plot
.
Para poder usarla, necesitamos definir las funciones f y
g que toman un argumento con tres coordenadas: (t, x,*y*).
sage: f = lambda z: z[2] # f(t,x,y) = y
sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
>>> from sage.all import *
>>> f = lambda z: z[Integer(2)] # f(t,x,y) = y
>>> g = lambda z: -sin(z[Integer(1)]) # g(t,x,y) = -sin(x)
>>> P = eulers_method_2x2_plot(f,g, RealNumber('0.0'), RealNumber('0.75'), RealNumber('0.0'), RealNumber('0.1'), RealNumber('1.0'))
f = lambda z: z[2] # f(t,x,y) = y g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x) P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)
A estas alturas, P
está guardando dos gráficas: P[0]
, el gráfico de x
vs. t, y P[1]
, el gráfico de y vs. t. Podemos mostrar ámbas como sigue:
sage: show(P[0] + P[1])
>>> from sage.all import *
>>> show(P[Integer(0)] + P[Integer(1)])
show(P[0] + P[1])
Funciones Especiales¶
Se han implementado varios polinomios ortogonales y funciones especiales, utilizando tanto PARI [GAP] como Maxima [Max]. Estas funciones están documentadas en las secciones apropiadas («Polinomios Ortogonales» y «Funciones Especiales», respectivamente) del manual de referencia de Sage.
sage: x = polygen(QQ, 'x')
sage: chebyshev_U(2,x)
4*x^2 - 1
sage: bessel_I(1,1).n(250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1).n()
0.565159103992485
sage: bessel_I(2,1.1).n() # los últimos digitos son al azar
0.16708949925104...
>>> from sage.all import *
>>> x = polygen(QQ, 'x')
>>> chebyshev_U(Integer(2),x)
4*x^2 - 1
>>> bessel_I(Integer(1),Integer(1)).n(Integer(250))
0.56515910399248502720769602760986330732889962162109200948029448947925564096
>>> bessel_I(Integer(1),Integer(1)).n()
0.565159103992485
>>> bessel_I(Integer(2),RealNumber('1.1')).n() # los últimos digitos son al azar
0.16708949925104...
x = polygen(QQ, 'x') chebyshev_U(2,x) bessel_I(1,1).n(250) bessel_I(1,1).n() bessel_I(2,1.1).n() # los últimos digitos son al azar
Hasta este punto, Sage únicamente ha encapsulado estas funciones para uso numérico. Para uso simbólico, por favor utiliza directamente la interfaz a Maxima, como en el siguiente ejemplo:
sage: maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
sage: maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'
>>> from sage.all import *
>>> maxima.eval("f:bessel_y(v, w)")
'bessel_y(v,w)'
>>> maxima.eval("diff(f,w)")
'(bessel_y(v-1,w)-bessel_y(v+1,w))/2'
maxima.eval("f:bessel_y(v, w)") maxima.eval("diff(f,w)")
El Grupo GAP, GAP - Grupos, Algorítmos y Programación
, https://www.gap-system.org