より進んだ数学¶
代数幾何¶
Sageでは,任意の代数多様体を定義することができるが,その非自明な機能は \(\QQ\) 上の環あるいは有限体でしか使えない場合がある. 例として,2本のアフィン平面曲線の和を取り,ついで元の曲線を和の既約成分として分離してみよう.
sage: x, y = AffineSpace(2, QQ, 'xy').gens()
sage: C2 = Curve(x^2 + y^2 - 1)
sage: C3 = Curve(x^3 + y^3 - 1)
sage: D = C2 + C3
sage: D
Affine Plane Curve over Rational Field defined by
x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1
sage: D.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x^2 + y^2 - 1,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x^3 + y^3 - 1]
>>> from sage.all import *
>>> x, y = AffineSpace(Integer(2), QQ, 'xy').gens()
>>> C2 = Curve(x**Integer(2) + y**Integer(2) - Integer(1))
>>> C3 = Curve(x**Integer(3) + y**Integer(3) - Integer(1))
>>> D = C2 + C3
>>> D
Affine Plane Curve over Rational Field defined by
x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1
>>> D.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x^2 + y^2 - 1,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x^3 + y^3 - 1]
x, y = AffineSpace(2, QQ, 'xy').gens() C2 = Curve(x^2 + y^2 - 1) C3 = Curve(x^3 + y^3 - 1) D = C2 + C3 D D.irreducible_components()
以上の2本の曲線の交わりを取れば,全ての交点を求めてその既約成分を計算することもできる.
sage: V = C2.intersection(C3)
sage: V.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
y,
x - 1,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
y - 1,
x,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x + y + 2,
2*y^2 + 4*y + 3]
>>> from sage.all import *
>>> V = C2.intersection(C3)
>>> V.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
y,
x - 1,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
y - 1,
x,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
x + y + 2,
2*y^2 + 4*y + 3]
V = C2.intersection(C3) V.irreducible_components()
というわけで,点 \((1,0)\) および \((0,1)\) が双方の曲線上にあるのはすぐ見てとることができるし, \(y\) 成分が \(2y^2 + 4y + 3=0\) を満足する(2次の)点についても同じことだ.
Sageでは,3次元射影空間における捻れ3次曲線のトーリック・イデアルを計算することができる:
sage: R.<a,b,c,d> = PolynomialRing(QQ, 4)
sage: I = ideal(b^2-a*c, c^2-b*d, a*d-b*c)
sage: F = I.groebner_fan(); F
Groebner fan of the ideal:
Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring
in a, b, c, d over Rational Field
sage: F.reduced_groebner_bases ()
[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],
[-b*c + a*d, -c^2 + b*d, b^2 - a*c],
[-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],
[-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],
[-b*c + a*d, -b^2 + a*c, c^2 - b*d],
[-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],
[-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],
[c^2 - b*d, b*c - a*d, b^2 - a*c]]
sage: F.polyhedralfan()
Polyhedral fan in 4 dimensions of dimension 4
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = R._first_ngens(4)
>>> I = ideal(b**Integer(2)-a*c, c**Integer(2)-b*d, a*d-b*c)
>>> F = I.groebner_fan(); F
Groebner fan of the ideal:
Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring
in a, b, c, d over Rational Field
>>> F.reduced_groebner_bases ()
[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],
[-b*c + a*d, -c^2 + b*d, b^2 - a*c],
[-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],
[-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],
[-b*c + a*d, -b^2 + a*c, c^2 - b*d],
[-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],
[-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],
[c^2 - b*d, b*c - a*d, b^2 - a*c]]
>>> F.polyhedralfan()
Polyhedral fan in 4 dimensions of dimension 4
R.<a,b,c,d> = PolynomialRing(QQ, 4) I = ideal(b^2-a*c, c^2-b*d, a*d-b*c) F = I.groebner_fan(); F F.reduced_groebner_bases () F.polyhedralfan()
楕円曲線¶
Sageの楕円曲線部門にはPARIの楕円曲線機能の大部分が取り込まれており,Cremonaの管理するオンラインデータベースに接続することもできる(これにはデータベースパッケージを追加する必要がある). さらに、Second-descentによって楕円曲線の完全Mordell-Weil群を計算するmwrankの機能が使えるし,SEAアルゴリズムの実行や同種写像全ての計算なども可能だ. \(\QQ\) 上の曲線群を扱うためのコードは大幅に更新され,Denis Simonによる代数的降下法ソフトウェアも取り込まれている.
楕円曲線を生成するコマンド EllipticCurve
には,さまざまな書法がある:
EllipticCurve([\(a_1\), \(a_2\), \(a_3\), \(a_4\), \(a_6\) ]): 楕円曲線
\[y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,\]を生成する. ただし \(a_i\) は \(a_1\) のペアレントクラスに合わせて型強制される. 全ての \(a_i\) がペアレント \(\ZZ\) を持つ場合, \(a_i\) は \(\QQ\) に型強制される.
EllipticCurve([\(a_4\), \(a_6\) ]): \(a_1=a_2=a_3=0\) となる以外は上と同じ.
EllipticCurve(ラベル): Cremonaの(新しい)分類ラベルを指定して,Cremonaデータベースに登録された楕円曲線を生成する. ラベルは
"11a"
や"37b2"
といった文字列で,(以前のラベルと混同しないように)小文字でなければならない.EllipticCurve(j): \(j\) -不変量 \(j\) を持つ楕円曲線を生成する.
EllipticCurve(R,[\(a_1\), \(a_2\), \(a_3\), \(a_4\), \(a_6\) ]): 最初と同じように \(a_i\) を指定して環 \(R\) 上の楕円曲線を生成する.
以上の各コンストラクタを実際に動かしてみよう:
sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: EllipticCurve([GF(5)(0),0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
sage: EllipticCurve([1,2])
Elliptic Curve defined by y^2 = x^3 + x + 2 over Rational Field
sage: EllipticCurve('37a')
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: EllipticCurve_from_j(1)
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field
sage: EllipticCurve(GF(5), [0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
>>> from sage.all import *
>>> EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
>>> EllipticCurve([GF(Integer(5))(Integer(0)),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
>>> EllipticCurve([Integer(1),Integer(2)])
Elliptic Curve defined by y^2 = x^3 + x + 2 over Rational Field
>>> EllipticCurve('37a')
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
>>> EllipticCurve_from_j(Integer(1))
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field
>>> EllipticCurve(GF(Integer(5)), [Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
EllipticCurve([0,0,1,-1,0]) EllipticCurve([GF(5)(0),0,1,-1,0]) EllipticCurve([1,2]) EllipticCurve('37a') EllipticCurve_from_j(1) EllipticCurve(GF(5), [0,0,1,-1,0])
点 \((0,0)\) は、 \(y^2 + y = x^3 - x\) で定義される楕円曲線 \(E\) 上にある.
Sageを使ってこの点を生成するには, E([0,0])
と入力する.
Sageは,そうした楕円曲線上に点を付け加えていくことができる(楕円曲線は,無限遠点が零元、同一曲線上の3点を加えると0となる加法群としての構造を備えている):
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: P + P
(1 : 0 : 1)
sage: 10*P
(161/16 : -2065/64 : 1)
sage: 20*P
(683916417/264517696 : -18784454671297/4302115807744 : 1)
sage: E.conductor()
37
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
>>> E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
>>> P = E([Integer(0),Integer(0)])
>>> P + P
(1 : 0 : 1)
>>> Integer(10)*P
(161/16 : -2065/64 : 1)
>>> Integer(20)*P
(683916417/264517696 : -18784454671297/4302115807744 : 1)
>>> E.conductor()
37
E = EllipticCurve([0,0,1,-1,0]) E P = E([0,0]) P + P 10*P 20*P E.conductor()
複素数体上の楕円曲線は, \(j\) -不変量によって記述される. Sageでは, \(j\) -不変量を以下のようにして計算する:
sage: E = EllipticCurve([0,0,0,-4,2]); E
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
sage: E.conductor()
2368
sage: E.j_invariant()
110592/37
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),-Integer(4),Integer(2)]); E
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
>>> E.conductor()
2368
>>> E.j_invariant()
110592/37
E = EllipticCurve([0,0,0,-4,2]); E E.conductor() E.j_invariant()
\(E\) と同じ \(j\) -不変量を指定して楕円曲線を作っても,それが \(E\) と同型になるとは限らない. 次の例でも,2つの曲線は導手(conductor)が異なるため同型にならない.
sage: F = EllipticCurve_from_j(110592/37)
sage: F.conductor()
37
>>> from sage.all import *
>>> F = EllipticCurve_from_j(Integer(110592)/Integer(37))
>>> F.conductor()
37
F = EllipticCurve_from_j(110592/37) F.conductor()
しかし, \(F\) を2で捻ったツイスト(twist)は同型の曲線になる.
sage: G = F.quadratic_twist(2); G
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
sage: G.conductor()
2368
sage: G.j_invariant()
110592/37
>>> from sage.all import *
>>> G = F.quadratic_twist(Integer(2)); G
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
>>> G.conductor()
2368
>>> G.j_invariant()
110592/37
G = F.quadratic_twist(2); G G.conductor() G.j_invariant()
楕円曲線に随伴する \(L\) -級数,あるいはモジュラー形式 \(\sum_{n=0}^\infty a_nq^n\) の係数 \(a_n\) を求めることもできる. 計算にはPARIのC-ライブラリを援用している:
sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.anlist(30)
[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,
3, 10, 2, 0, -1, 4, -9, -2, 6, -12]
sage: v = E.anlist(10000)
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
>>> E.anlist(Integer(30))
[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,
3, 10, 2, 0, -1, 4, -9, -2, 6, -12]
>>> v = E.anlist(Integer(10000))
E = EllipticCurve([0,0,1,-1,0]) E.anlist(30) v = E.anlist(10000)
\(a_n\) を \(n\leq 10^5\) の全てについて計算しても1秒ほどしかかからない:
sage: %time v = E.anlist(100000)
CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06
>>> from sage.all import *
>>> %time v = E.anlist(Integer(100000))
CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06
%time v = E.anlist(100000)
楕円曲線を,対応するCremonaの分類ラベルを指定して生成する方法もある. そうすると,目的の楕円曲線がその階数,玉河数,単数基準(regulator)などの情報と共にプレロードされる:
sage: E = EllipticCurve("37b2")
sage: E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational
Field
sage: E = EllipticCurve("389a")
sage: E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: E.rank()
2
sage: E = EllipticCurve("5077a")
sage: E.rank()
3
>>> from sage.all import *
>>> E = EllipticCurve("37b2")
>>> E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational
Field
>>> E = EllipticCurve("389a")
>>> E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
>>> E.rank()
2
>>> E = EllipticCurve("5077a")
>>> E.rank()
3
E = EllipticCurve("37b2") E E = EllipticCurve("389a") E E.rank() E = EllipticCurve("5077a") E.rank()
Cremonaのデータベースへ直接にアクセスすることも可能だ.
sage: db = sage.databases.cremona.CremonaDatabase()
sage: db.curves(37)
{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}
sage: db.allcurves(37)
{'a1': [[0, 0, 1, -1, 0], 1, 1],
'b1': [[0, 1, 1, -23, -50], 0, 3],
'b2': [[0, 1, 1, -1873, -31833], 0, 1],
'b3': [[0, 1, 1, -3, 1], 0, 3]}
>>> from sage.all import *
>>> db = sage.databases.cremona.CremonaDatabase()
>>> db.curves(Integer(37))
{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}
>>> db.allcurves(Integer(37))
{'a1': [[0, 0, 1, -1, 0], 1, 1],
'b1': [[0, 1, 1, -23, -50], 0, 3],
'b2': [[0, 1, 1, -1873, -31833], 0, 1],
'b3': [[0, 1, 1, -3, 1], 0, 3]}
db = sage.databases.cremona.CremonaDatabase() db.curves(37) db.allcurves(37)
この方法でデータベースから引き出されるデータは,むろん EllipticCurve
型のオブジェクトにはならない.
複数のフィールドから構成されたデータベースのレコードであるにすぎない.
デフォルトでSageに付属しているのは,導手が \(\leq 10000\) の楕円曲線の情報要約からなる,Cremonaのデータベースの小型版である.
オプションで大型版のデータベースも用意されていて,こちらは導手が \(120000\) までの全ての楕円曲線群の詳細情報を含む(2005年10月時点).
さらに、Sage用の大規模版データベースパッケージ(2GB)では,Stein-Watkinsデータベース上の数千万種の楕円曲線を利用することができる.
ディリクレ指標¶
ディリクレ指標とは, 環 \(R\) に対する準同型写像 \((\ZZ/N\ZZ)^* \to R^*\) を, \(\gcd(N,x)>1\) なる整数 \(x\) を0と置くことによって写像 \(\ZZ \to R\) へ拡張したものである.
sage: G = DirichletGroup(12)
sage: G.list()
[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,
Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]
sage: G.gens()
(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)
sage: len(G)
4
>>> from sage.all import *
>>> G = DirichletGroup(Integer(12))
>>> G.list()
[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,
Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]
>>> G.gens()
(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)
>>> len(G)
4
G = DirichletGroup(12) G.list() G.gens() len(G)
ディリクレ群を作成したので、次にその元を一つ取って演算に使ってみよう.
sage: G = DirichletGroup(21)
sage: chi = G.1; chi
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6
sage: chi.values()
[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,
0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]
sage: chi.conductor()
7
sage: chi.modulus()
21
sage: chi.order()
6
sage: chi(19)
-zeta6 + 1
sage: chi(40)
-zeta6 + 1
>>> from sage.all import *
>>> G = DirichletGroup(Integer(21))
>>> chi = G.gen(1); chi
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6
>>> chi.values()
[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,
0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]
>>> chi.conductor()
7
>>> chi.modulus()
21
>>> chi.order()
6
>>> chi(Integer(19))
-zeta6 + 1
>>> chi(Integer(40))
-zeta6 + 1
G = DirichletGroup(21) chi = G.1; chi chi.values() chi.conductor() chi.modulus() chi.order() chi(19) chi(40)
この指標に対してガロワ群 \(\text{Gal}(\QQ(\zeta_N)/\QQ)\) がどう振る舞うか計算したり,法(modulus)の因数分解に相当する直積分解を実行することも可能だ.
sage: chi.galois_orbit()
[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]
sage: go = G.galois_orbits()
sage: [len(orbit) for orbit in go]
[1, 2, 2, 1, 1, 2, 2, 1]
sage: G.decomposition()
[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,
Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]
>>> from sage.all import *
>>> chi.galois_orbit()
[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]
>>> go = G.galois_orbits()
>>> [len(orbit) for orbit in go]
[1, 2, 2, 1, 1, 2, 2, 1]
>>> G.decomposition()
[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,
Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]
chi.galois_orbit() go = G.galois_orbits() [len(orbit) for orbit in go] G.decomposition()
次に,mod 20,ただし値が \(\QQ(i)\) 上に収まるディリクレ指標の群を作成する:
sage: K.<i> = NumberField(x^2+1)
sage: G = DirichletGroup(20,K)
sage: G
Group of Dirichlet characters modulo 20 with values in Number Field in i with defining polynomial x^2 + 1
>>> from sage.all import *
>>> K = NumberField(x**Integer(2)+Integer(1), names=('i',)); (i,) = K._first_ngens(1)
>>> G = DirichletGroup(Integer(20),K)
>>> G
Group of Dirichlet characters modulo 20 with values in Number Field in i with defining polynomial x^2 + 1
K.<i> = NumberField(x^2+1) G = DirichletGroup(20,K) G
ついで, G
の不変量をいくつか計算してみよう:
sage: G.gens()
(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,
Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)
sage: G.unit_gens()
(11, 17)
sage: G.zeta()
i
sage: G.zeta_order()
4
>>> from sage.all import *
>>> G.gens()
(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,
Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)
>>> G.unit_gens()
(11, 17)
>>> G.zeta()
i
>>> G.zeta_order()
4
G.gens() G.unit_gens() G.zeta() G.zeta_order()
以下の例では、数体上でディリクレ指標を生成する.1の累乗根については、 DirichletGroup
の3番目の引数として明示的に指定している.
sage: x = polygen(QQ, 'x')
sage: K = NumberField(x^4 + 1, 'a'); a = K.0
sage: b = K.gen(); a == b
True
sage: K
Number Field in a with defining polynomial x^4 + 1
sage: G = DirichletGroup(5, K, a); G
Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in Number Field in a with defining polynomial x^4 + 1
sage: chi = G.0; chi
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2
sage: [(chi^i)(2) for i in range(4)]
[1, a^2, -1, -a^2]
>>> from sage.all import *
>>> x = polygen(QQ, 'x')
>>> K = NumberField(x**Integer(4) + Integer(1), 'a'); a = K.gen(0)
>>> b = K.gen(); a == b
True
>>> K
Number Field in a with defining polynomial x^4 + 1
>>> G = DirichletGroup(Integer(5), K, a); G
Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in Number Field in a with defining polynomial x^4 + 1
>>> chi = G.gen(0); chi
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2
>>> [(chi**i)(Integer(2)) for i in range(Integer(4))]
[1, a^2, -1, -a^2]
x = polygen(QQ, 'x') K = NumberField(x^4 + 1, 'a'); a = K.0 b = K.gen(); a == b K G = DirichletGroup(5, K, a); G chi = G.0; chi [(chi^i)(2) for i in range(4)]
ここで NumberField(x^4 + 1, 'a')
と指定したのは,Sageに記号 \(a\) を使って K
の内容(\(a\) で生成される数体上の多項式 \(x^4 + 1\))を表示させるためである.
その時点で記号名 \(a\) はいったん未定義になるが、 a = K.0
(a = K.gen()
としても同じ)が実行されると記号 \(a\) は多項式 \(x^4+1\) の根を表すようになる.
モジュラー形式¶
Sageを使ってモジュラー空間の次元,モジュラー・シンポルの空間,Hecke演算子、素因数分解などを含むモジュラー形式に関連した計算を実行することができる.
モジュラー形式が張る空間の次元を求める関数が数種類用意されている. 例えば
sage: from sage.modular.dims import dimension_cusp_forms
sage: dimension_cusp_forms(Gamma0(11),2)
1
sage: dimension_cusp_forms(Gamma0(1),12)
1
sage: dimension_cusp_forms(Gamma1(389),2)
6112
>>> from sage.all import *
>>> from sage.modular.dims import dimension_cusp_forms
>>> dimension_cusp_forms(Gamma0(Integer(11)),Integer(2))
1
>>> dimension_cusp_forms(Gamma0(Integer(1)),Integer(12))
1
>>> dimension_cusp_forms(Gamma1(Integer(389)),Integer(2))
6112
from sage.modular.dims import dimension_cusp_forms dimension_cusp_forms(Gamma0(11),2) dimension_cusp_forms(Gamma0(1),12) dimension_cusp_forms(Gamma1(389),2)
次に、レベル \(1\) ,ウェイト \(12\) のモジュラー・シンボル空間上でHecke演算子を計算してみよう.
sage: M = ModularSymbols(1,12)
sage: M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
sage: t2 = M.T(2)
sage: t2
Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)
of weight 12 with sign 0 over Rational Field
sage: t2.matrix()
[ -24 0 0]
[ 0 -24 0]
[4860 0 2049]
sage: f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
sage: factor(f)
(x - 2049) * (x + 24)^2
sage: M.T(11).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
>>> from sage.all import *
>>> M = ModularSymbols(Integer(1),Integer(12))
>>> M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
>>> t2 = M.T(Integer(2))
>>> t2
Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)
of weight 12 with sign 0 over Rational Field
>>> t2.matrix()
[ -24 0 0]
[ 0 -24 0]
[4860 0 2049]
>>> f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
>>> factor(f)
(x - 2049) * (x + 24)^2
>>> M.T(Integer(11)).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
M = ModularSymbols(1,12) M.basis() t2 = M.T(2) t2 t2.matrix() f = t2.charpoly('x'); f factor(f) M.T(11).charpoly('x').factor()
\(\Gamma_0(N)\) と \(\Gamma_1(N)\) の空間を生成することもできる.
sage: ModularSymbols(11,2)
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
sage: ModularSymbols(Gamma1(11),2)
Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with
sign 0 over Rational Field
>>> from sage.all import *
>>> ModularSymbols(Integer(11),Integer(2))
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
>>> ModularSymbols(Gamma1(Integer(11)),Integer(2))
Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with
sign 0 over Rational Field
ModularSymbols(11,2) ModularSymbols(Gamma1(11),2)
特性多項式と \(q\) -展開を計算してみよう.
sage: M = ModularSymbols(Gamma1(11),2)
sage: M.T(2).charpoly('x')
x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4
+ 70*x^3 - 515*x^2 + 1804*x - 1452
sage: M.T(2).charpoly('x').factor()
(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)
* (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)
sage: S = M.cuspidal_submodule()
sage: S.T(2).matrix()
[-2 0]
[ 0 -2]
sage: S.q_expansion_basis(10)
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]
>>> from sage.all import *
>>> M = ModularSymbols(Gamma1(Integer(11)),Integer(2))
>>> M.T(Integer(2)).charpoly('x')
x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4
+ 70*x^3 - 515*x^2 + 1804*x - 1452
>>> M.T(Integer(2)).charpoly('x').factor()
(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)
* (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)
>>> S = M.cuspidal_submodule()
>>> S.T(Integer(2)).matrix()
[-2 0]
[ 0 -2]
>>> S.q_expansion_basis(Integer(10))
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]
M = ModularSymbols(Gamma1(11),2) M.T(2).charpoly('x') M.T(2).charpoly('x').factor() S = M.cuspidal_submodule() S.T(2).matrix() S.q_expansion_basis(10)
モジュラー・シンボルの空間を,指標を指定して生成することも可能だ.
sage: G = DirichletGroup(13)
sage: e = G.0^2
sage: M = ModularSymbols(e,2); M
Modular Symbols space of dimension 4 and level 13, weight 2, character
[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
sage: M.T(2).charpoly('x').factor()
(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2
sage: S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 4 and level 13, weight 2, character [zeta6], sign 0, over
Cyclotomic Field of order 6 and degree 2
sage: S.T(2).charpoly('x').factor()
(x + zeta6 + 1)^2
sage: S.q_expansion_basis(10)
[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6 + (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]
>>> from sage.all import *
>>> G = DirichletGroup(Integer(13))
>>> e = G.gen(0)**Integer(2)
>>> M = ModularSymbols(e,Integer(2)); M
Modular Symbols space of dimension 4 and level 13, weight 2, character
[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
>>> M.T(Integer(2)).charpoly('x').factor()
(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2
>>> S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 4 and level 13, weight 2, character [zeta6], sign 0, over
Cyclotomic Field of order 6 and degree 2
>>> S.T(Integer(2)).charpoly('x').factor()
(x + zeta6 + 1)^2
>>> S.q_expansion_basis(Integer(10))
[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6 + (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]
G = DirichletGroup(13) e = G.0^2 M = ModularSymbols(e,2); M M.T(2).charpoly('x').factor() S = M.cuspidal_submodule(); S S.T(2).charpoly('x').factor() S.q_expansion_basis(10)
以下の例では,モジュラー形式によって張られる空間に対するHecke演算子の作用を,Sageでどうやって計算するかを示す.
sage: T = ModularForms(Gamma0(11),2)
sage: T
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of
weight 2 over Rational Field
sage: T.degree()
2
sage: T.level()
11
sage: T.group()
Congruence Subgroup Gamma0(11)
sage: T.dimension()
2
sage: T.cuspidal_subspace()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
sage: T.eisenstein_subspace()
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2
for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
sage: M = ModularSymbols(11); M
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
sage: M.weight()
2
sage: M.basis()
((1,0), (1,8), (1,9))
sage: M.sign()
0
>>> from sage.all import *
>>> T = ModularForms(Gamma0(Integer(11)),Integer(2))
>>> T
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of
weight 2 over Rational Field
>>> T.degree()
2
>>> T.level()
11
>>> T.group()
Congruence Subgroup Gamma0(11)
>>> T.dimension()
2
>>> T.cuspidal_subspace()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
>>> T.eisenstein_subspace()
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2
for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
>>> M = ModularSymbols(Integer(11)); M
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
>>> M.weight()
2
>>> M.basis()
((1,0), (1,8), (1,9))
>>> M.sign()
0
T = ModularForms(Gamma0(11),2) T T.degree() T.level() T.group() T.dimension() T.cuspidal_subspace() T.eisenstein_subspace() M = ModularSymbols(11); M M.weight() M.basis() M.sign()
\(T_p\) は通常のHecke演算子( \(p\) は素数)を表す. Hecke演算子 \(T_2\) , \(T_3\) , \(T_5\) はモジュラー・シンボル空間にどんな作用を及ぼすのだろうか?
sage: M.T(2).matrix()
[ 3 0 -1]
[ 0 -2 0]
[ 0 0 -2]
sage: M.T(3).matrix()
[ 4 0 -1]
[ 0 -1 0]
[ 0 0 -1]
sage: M.T(5).matrix()
[ 6 0 -1]
[ 0 1 0]
[ 0 0 1]
>>> from sage.all import *
>>> M.T(Integer(2)).matrix()
[ 3 0 -1]
[ 0 -2 0]
[ 0 0 -2]
>>> M.T(Integer(3)).matrix()
[ 4 0 -1]
[ 0 -1 0]
[ 0 0 -1]
>>> M.T(Integer(5)).matrix()
[ 6 0 -1]
[ 0 1 0]
[ 0 0 1]
M.T(2).matrix() M.T(3).matrix() M.T(5).matrix()