Weierstrass \(\wp\)-function for elliptic curves¶
The Weierstrass \(\wp\) function associated to an elliptic curve over a field \(k\) is a Laurent series of the form
If the field is contained in \(\mathbb{C}\), then this is the series expansion of the map from \(\mathbb{C}\) to \(E(\mathbb{C})\) whose kernel is the period lattice of \(E\).
Over other fields, like finite fields, this still makes sense as a formal power series with coefficients in \(k\) - at least its first \(p-2\) coefficients where \(p\) is the characteristic of \(k\). It can be defined via the formal group as \(x+c\) in the variable \(z=\log_E(t)\) for a constant \(c\) such that the constant term \(c_0\) in \(\wp(z)\) is zero.
EXAMPLES:
sage: E = EllipticCurve([0,1])
sage: E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(1)])
>>> E.weierstrass_p()
z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20)
E = EllipticCurve([0,1]) E.weierstrass_p()
REFERENCES:
AUTHORS:
Dan Shumov 04/09: original implementation
Chris Wuthrich 11/09: major restructuring
Jeroen Demeyer (2014-03-06): code clean up, fix characteristic bound for quadratic algorithm (see Issue #15855)
- sage.schemes.elliptic_curves.ell_wp.compute_wp_fast(k, A, B, m)[source]¶
Compute the Weierstrass function of an elliptic curve defined by short Weierstrass model: \(y^2 = x^3 + Ax + B\). It does this with as fast as polynomial of degree \(m\) can be multiplied together in the base ring, i.e. \(O(M(n))\) in the notation of [BMSS2006].
Let \(p\) be the characteristic of the underlying field: Then we must have either \(p=0\), or \(p > m + 3\).
INPUT:
k
– the base field of the curveA
– andB
– as the coefficients of the short Weierstrass model \(y^2 = x^3 +Ax +B\), andm
– the precision to which the function is computed to
OUTPUT: the Weierstrass \(\wp\) function as a Laurent series to precision \(m\)
ALGORITHM:
This function uses the algorithm described in section 3.3 of [BMSS2006].
EXAMPLES:
sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast sage: compute_wp_fast(QQ, 1, 8, 7) z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7) sage: k = GF(37) sage: compute_wp_fast(k, k(1), k(8), 5) z^-2 + 22*z^2 + 20*z^4 + O(z^5)
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast >>> compute_wp_fast(QQ, Integer(1), Integer(8), Integer(7)) z^-2 - 1/5*z^2 - 8/7*z^4 + 1/75*z^6 + O(z^7) >>> k = GF(Integer(37)) >>> compute_wp_fast(k, k(Integer(1)), k(Integer(8)), Integer(5)) z^-2 + 22*z^2 + 20*z^4 + O(z^5)
from sage.schemes.elliptic_curves.ell_wp import compute_wp_fast compute_wp_fast(QQ, 1, 8, 7) k = GF(37) compute_wp_fast(k, k(1), k(8), 5)
- sage.schemes.elliptic_curves.ell_wp.compute_wp_pari(E, prec)[source]¶
Compute the Weierstrass \(\wp\)-function with the
ellwp
function from PARI.EXAMPLES:
sage: E = EllipticCurve([0,1]) sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari sage: compute_wp_pari(E, prec=20) z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20) sage: compute_wp_pari(E, prec=30) z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + 3/38548055*z^22 - 4/8364927935*z^28 + O(z^30)
>>> from sage.all import * >>> E = EllipticCurve([Integer(0),Integer(1)]) >>> from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari >>> compute_wp_pari(E, prec=Integer(20)) z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + O(z^20) >>> compute_wp_pari(E, prec=Integer(30)) z^-2 - 1/7*z^4 + 1/637*z^10 - 1/84721*z^16 + 3/38548055*z^22 - 4/8364927935*z^28 + O(z^30)
E = EllipticCurve([0,1]) from sage.schemes.elliptic_curves.ell_wp import compute_wp_pari compute_wp_pari(E, prec=20) compute_wp_pari(E, prec=30)
- sage.schemes.elliptic_curves.ell_wp.compute_wp_quadratic(k, A, B, prec)[source]¶
Compute the truncated Weierstrass function of an elliptic curve defined by short Weierstrass model: \(y^2 = x^3 + Ax + B\). Uses an algorithm that is of complexity \(O(prec^2)\).
Let p be the characteristic of the underlying field. Then we must have either p = 0, or p > prec + 2.
INPUT:
k
– the field of definition of the curveA
– andB
– the coefficients of the elliptic curveprec
– the precision to which we compute the series
OUTPUT:
A Laurent series approximating the Weierstrass \(\wp\)-function to precision
prec
.ALGORITHM:
This function uses the algorithm described in section 3.2 of [BMSS2006].
EXAMPLES:
sage: E = EllipticCurve([7,0]) sage: E.weierstrass_p(prec=10, algorithm='quadratic') z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10) sage: E = EllipticCurve(GF(103), [1,2]) sage: E.weierstrass_p(algorithm='quadratic') z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 55*z^10 + 73*z^12 + 11*z^14 + 17*z^16 + 50*z^18 + O(z^20) sage: from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic sage: compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=10) z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)
>>> from sage.all import * >>> E = EllipticCurve([Integer(7),Integer(0)]) >>> E.weierstrass_p(prec=Integer(10), algorithm='quadratic') z^-2 - 7/5*z^2 + 49/75*z^6 + O(z^10) >>> E = EllipticCurve(GF(Integer(103)), [Integer(1),Integer(2)]) >>> E.weierstrass_p(algorithm='quadratic') z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + 55*z^10 + 73*z^12 + 11*z^14 + 17*z^16 + 50*z^18 + O(z^20) >>> from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic >>> compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=Integer(10)) z^-2 + 41*z^2 + 88*z^4 + 11*z^6 + 57*z^8 + O(z^10)
E = EllipticCurve([7,0]) E.weierstrass_p(prec=10, algorithm='quadratic') E = EllipticCurve(GF(103), [1,2]) E.weierstrass_p(algorithm='quadratic') from sage.schemes.elliptic_curves.ell_wp import compute_wp_quadratic compute_wp_quadratic(E.base_ring(), E.a4(), E.a6(), prec=10)
- sage.schemes.elliptic_curves.ell_wp.solve_linear_differential_system(a, b, c, alpha)[source]¶
Solve a system of linear differential equations: \(af' + bf = c\) and \(f'(0) = \alpha\) where \(a\), \(b\), and \(c\) are power series in one variable and \(\alpha\) is a constant in the coefficient ring.
ALGORITHM:
due to Brent and Kung ‘78.
EXAMPLES:
sage: from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_system sage: k = GF(17) sage: R.<x> = PowerSeriesRing(k) sage: a = 1 + x + O(x^7); b = x + O(x^7); c = 1 + x^3 + O(x^7); alpha = k(3) sage: f = solve_linear_differential_system(a, b, c, alpha) sage: f 3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8) sage: a*f.derivative() + b*f - c O(x^7) sage: f(0) == alpha True
>>> from sage.all import * >>> from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_system >>> k = GF(Integer(17)) >>> R = PowerSeriesRing(k, names=('x',)); (x,) = R._first_ngens(1) >>> a = Integer(1) + x + O(x**Integer(7)); b = x + O(x**Integer(7)); c = Integer(1) + x**Integer(3) + O(x**Integer(7)); alpha = k(Integer(3)) >>> f = solve_linear_differential_system(a, b, c, alpha) >>> f 3 + x + 15*x^2 + x^3 + 10*x^5 + 3*x^6 + 13*x^7 + O(x^8) >>> a*f.derivative() + b*f - c O(x^7) >>> f(Integer(0)) == alpha True
from sage.schemes.elliptic_curves.ell_wp import solve_linear_differential_system k = GF(17) R.<x> = PowerSeriesRing(k) a = 1 + x + O(x^7); b = x + O(x^7); c = 1 + x^3 + O(x^7); alpha = k(3) f = solve_linear_differential_system(a, b, c, alpha) f a*f.derivative() + b*f - c f(0) == alpha
- sage.schemes.elliptic_curves.ell_wp.weierstrass_p(E, prec=20, algorithm=None)[source]¶
Compute the Weierstrass \(\wp\)-function on an elliptic curve.
INPUT:
E
– an elliptic curveprec
– precisionalgorithm
– string orNone
(default:None
); a choice of algorithm among'pari'
,'fast'
,'quadratic'
, orNone
to let this function determine the best algorithm to use
OUTPUT:
a Laurent series in one variable \(z\) with coefficients in the base field \(k\) of \(E\).
EXAMPLES:
sage: E = EllipticCurve('11a1') sage: E.weierstrass_p(prec=10) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10) sage: E.weierstrass_p(prec=8) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) sage: Esh = E.short_weierstrass_model() sage: Esh.weierstrass_p(prec=8) z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8) sage: E.weierstrass_p(prec=8, algorithm='pari') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) sage: E.weierstrass_p(prec=8, algorithm='quadratic') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) sage: k = GF(11) sage: E = EllipticCurve(k, [1,1]) sage: E.weierstrass_p(prec=6, algorithm='fast') z^-2 + 2*z^2 + 3*z^4 + O(z^6) sage: E.weierstrass_p(prec=7, algorithm='fast') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via the fast algorithm, the characteristic (11) of the underlying field must be greater than prec + 4 = 11 sage: E.weierstrass_p(prec=8) z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) sage: E.weierstrass_p(prec=8, algorithm='quadratic') z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) sage: E.weierstrass_p(prec=8, algorithm='pari') z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) sage: E.weierstrass_p(prec=9) Traceback (most recent call last): ... NotImplementedError: currently no algorithms for computing the Weierstrass p-function for that characteristic / precision pair is implemented. Lower the precision below char(k) - 2 sage: E.weierstrass_p(prec=9, algorithm='quadratic') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via the quadratic algorithm, the characteristic (11) of the underlying field must be greater than prec + 2 = 11 sage: E.weierstrass_p(prec=9, algorithm='pari') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via pari, the characteristic (11) of the underlying field must be greater than prec + 2 = 11
>>> from sage.all import * >>> E = EllipticCurve('11a1') >>> E.weierstrass_p(prec=Integer(10)) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + O(z^10) >>> E.weierstrass_p(prec=Integer(8)) z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) >>> Esh = E.short_weierstrass_model() >>> Esh.weierstrass_p(prec=Integer(8)) z^-2 + 13392/5*z^2 + 1080432/7*z^4 + 59781888/25*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(8), algorithm='pari') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(8), algorithm='quadratic') z^-2 + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + O(z^8) >>> k = GF(Integer(11)) >>> E = EllipticCurve(k, [Integer(1),Integer(1)]) >>> E.weierstrass_p(prec=Integer(6), algorithm='fast') z^-2 + 2*z^2 + 3*z^4 + O(z^6) >>> E.weierstrass_p(prec=Integer(7), algorithm='fast') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via the fast algorithm, the characteristic (11) of the underlying field must be greater than prec + 4 = 11 >>> E.weierstrass_p(prec=Integer(8)) z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(8), algorithm='quadratic') z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(8), algorithm='pari') z^-2 + 2*z^2 + 3*z^4 + 5*z^6 + O(z^8) >>> E.weierstrass_p(prec=Integer(9)) Traceback (most recent call last): ... NotImplementedError: currently no algorithms for computing the Weierstrass p-function for that characteristic / precision pair is implemented. Lower the precision below char(k) - 2 >>> E.weierstrass_p(prec=Integer(9), algorithm='quadratic') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via the quadratic algorithm, the characteristic (11) of the underlying field must be greater than prec + 2 = 11 >>> E.weierstrass_p(prec=Integer(9), algorithm='pari') Traceback (most recent call last): ... ValueError: for computing the Weierstrass p-function via pari, the characteristic (11) of the underlying field must be greater than prec + 2 = 11
E = EllipticCurve('11a1') E.weierstrass_p(prec=10) E.weierstrass_p(prec=8) Esh = E.short_weierstrass_model() Esh.weierstrass_p(prec=8) E.weierstrass_p(prec=8, algorithm='pari') E.weierstrass_p(prec=8, algorithm='quadratic') k = GF(11) E = EllipticCurve(k, [1,1]) E.weierstrass_p(prec=6, algorithm='fast') E.weierstrass_p(prec=7, algorithm='fast') E.weierstrass_p(prec=8) E.weierstrass_p(prec=8, algorithm='quadratic') E.weierstrass_p(prec=8, algorithm='pari') E.weierstrass_p(prec=9) E.weierstrass_p(prec=9, algorithm='quadratic') E.weierstrass_p(prec=9, algorithm='pari')