Tate-Shafarevich group¶
If \(E\) is an elliptic curve over a global field \(K\), the Tate-Shafarevich group is the subgroup of elements in \(H^1(K,E)\) which map to zero under every global-to-local restriction map \(H^1(K,E) \to H^1(K_v,E)\), one for each place \(v\) of \(K\).
The group is usually denoted by the Russian letter Sha (Ш), in this document it will be denoted by \(Sha\).
\(Sha\) is known to be an abelian torsion group. It is conjectured that the Tate-Shafarevich group is finite for any elliptic curve over a global field. But it is not known in general.
A theorem of Kolyvagin and Gross-Zagier using Heegner points shows that if the \(L\)-series of an elliptic curve \(E/\QQ\) does not vanish at 1 or has a simple zero there, then \(Sha\) is finite.
A theorem of Kato, together with theorems from Iwasawa theory, allows for certain primes \(p\) to show that the \(p\)-primary part of \(Sha\) is finite and gives an effective upper bound for it.
The (\(p\)-adic) conjecture of Birch and Swinnerton-Dyer predicts the order of \(Sha\) from the leading term of the (\(p\)-adic) \(L\)-series of the elliptic curve.
Sage can compute a few things about \(Sha\). The commands an
,
an_numerical
and an_padic
compute the conjectural order of \(Sha\) as a
real or \(p\)-adic number. With p_primary_bound
one can find an upper bound
of the size of the \(p\)-primary part of \(Sha\). Finally, if the analytic rank is
at most 1, then bound_kato
and bound_kolyvagin
find all primes for
which the theorems of Kato and Kolyvagin respectively do not prove the
triviality the \(p\)-primary part of \(Sha\).
EXAMPLES:
sage: E = EllipticCurve('11a1')
sage: S = E.sha()
sage: S.bound_kato()
[2]
sage: S.bound_kolyvagin()
([2, 5], 1)
sage: S.an_padic(7,3)
1 + O(7^5)
sage: S.an()
1
sage: S.an_numerical()
1.00000000000000
sage: E = EllipticCurve('389a')
sage: S = E.sha(); S
Tate-Shafarevich group for the
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
sage: S.an_numerical()
1.00000000000000
sage: S.p_primary_bound(5)
0
sage: S.an_padic(5)
1 + O(5)
sage: S.an_padic(5,prec=4) # long time (2s on sage.math, 2011)
1 + O(5^3)
>>> from sage.all import *
>>> E = EllipticCurve('11a1')
>>> S = E.sha()
>>> S.bound_kato()
[2]
>>> S.bound_kolyvagin()
([2, 5], 1)
>>> S.an_padic(Integer(7),Integer(3))
1 + O(7^5)
>>> S.an()
1
>>> S.an_numerical()
1.00000000000000
>>> E = EllipticCurve('389a')
>>> S = E.sha(); S
Tate-Shafarevich group for the
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field
>>> S.an_numerical()
1.00000000000000
>>> S.p_primary_bound(Integer(5))
0
>>> S.an_padic(Integer(5))
1 + O(5)
>>> S.an_padic(Integer(5),prec=Integer(4)) # long time (2s on sage.math, 2011)
1 + O(5^3)
E = EllipticCurve('11a1') S = E.sha() S.bound_kato() S.bound_kolyvagin() S.an_padic(7,3) S.an() S.an_numerical() E = EllipticCurve('389a') S = E.sha(); S S.an_numerical() S.p_primary_bound(5) S.an_padic(5) S.an_padic(5,prec=4) # long time (2s on sage.math, 2011)
AUTHORS:
William Stein (2007) – initial version
Chris Wuthrich (April 2009) – reformat docstrings
Aly Deines, Chris Wuthrich, Jeaninne Van Order (2016-03): Added functionality that tests the Skinner-Urban condition.
- class sage.schemes.elliptic_curves.sha_tate.Sha(E)[source]¶
Bases:
SageObject
The Tate-Shafarevich group associated to an elliptic curve.
If \(E\) is an elliptic curve over a global field \(K\), the Tate-Shafarevich group is the subgroup of elements in \(H^1(K,E)\) which map to zero under every global-to-local restriction map \(H^1(K,E) \to H^1(K_v,E)\), one for each place \(v\) of \(K\).
EXAMPLES:
sage: E = EllipticCurve('571a1') sage: E._set_gens([]) # curve has rank 0, but non-trivial Sha[2] sage: S = E.sha() sage: S.bound_kato() [2] sage: S.bound_kolyvagin() ([2], 1) sage: S.an_padic(7,3) 4 + O(7^5) sage: S.an() 4 sage: S.an_numerical() 4.00000000000000 sage: E = EllipticCurve('389a') sage: S = E.sha(); S Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field sage: S.an_numerical() 1.00000000000000 sage: S.p_primary_bound(5) # long time 0 sage: S.an_padic(5) # long time 1 + O(5) sage: S.an_padic(5,prec=4) # very long time 1 + O(5^3)
>>> from sage.all import * >>> E = EllipticCurve('571a1') >>> E._set_gens([]) # curve has rank 0, but non-trivial Sha[2] >>> S = E.sha() >>> S.bound_kato() [2] >>> S.bound_kolyvagin() ([2], 1) >>> S.an_padic(Integer(7),Integer(3)) 4 + O(7^5) >>> S.an() 4 >>> S.an_numerical() 4.00000000000000 >>> E = EllipticCurve('389a') >>> S = E.sha(); S Tate-Shafarevich group for the Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x over Rational Field >>> S.an_numerical() 1.00000000000000 >>> S.p_primary_bound(Integer(5)) # long time 0 >>> S.an_padic(Integer(5)) # long time 1 + O(5) >>> S.an_padic(Integer(5),prec=Integer(4)) # very long time 1 + O(5^3)
E = EllipticCurve('571a1') E._set_gens([]) # curve has rank 0, but non-trivial Sha[2] S = E.sha() S.bound_kato() S.bound_kolyvagin() S.an_padic(7,3) S.an() S.an_numerical() E = EllipticCurve('389a') S = E.sha(); S S.an_numerical() S.p_primary_bound(5) # long time S.an_padic(5) # long time S.an_padic(5,prec=4) # very long time
- an(use_database=False, descent_second_limit=12)[source]¶
Return the Birch and Swinnerton-Dyer conjectural order of \(Sha\) as a provably correct integer, unless the analytic rank is > 1, in which case this function returns a numerical value.
INPUT:
use_database
– boolean (default:False
); ifTrue
, try to use any databases installed to lookup the analytic order of \(Sha\), if possible. The order of \(Sha\) is computed if it cannot be looked up.descent_second_limit
– integer (default: 12); limit to use on point searching for the quartic twist in the hard case
This result is proved correct if the order of vanishing is 0 and the Manin constant is <= 2.
If the optional parameter
use_database
isTrue
(default:False
), this function returns the analytic order of \(Sha\) as listed in Cremona’s tables, if this curve appears in Cremona’s tables.NOTE:
If you come across the following error:
sage: E = EllipticCurve([0, 0, 1, -34874, -2506691]) sage: E.sha().an() Traceback (most recent call last): ... RuntimeError: Unable to compute the rank, hence generators, with certainty (lower bound=0, generators found=[]). This could be because Sha(E/Q)[2] is nontrivial. Try increasing descent_second_limit then trying this command again.
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(34874), -Integer(2506691)]) >>> E.sha().an() Traceback (most recent call last): ... RuntimeError: Unable to compute the rank, hence generators, with certainty (lower bound=0, generators found=[]). This could be because Sha(E/Q)[2] is nontrivial. Try increasing descent_second_limit then trying this command again.
E = EllipticCurve([0, 0, 1, -34874, -2506691]) E.sha().an()
You can increase the
descent_second_limit
(in the above example, set to the default, 12) option to try again:sage: E.sha().an(descent_second_limit=16) # long time (2s on sage.math, 2011) 1
>>> from sage.all import * >>> E.sha().an(descent_second_limit=Integer(16)) # long time (2s on sage.math, 2011) 1
E.sha().an(descent_second_limit=16) # long time (2s on sage.math, 2011)
EXAMPLES:
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) sage: E.sha().an() 1 sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) sage: E.sha().an() 1 sage: EllipticCurve('14a4').sha().an() 1 sage: EllipticCurve('14a4').sha().an(use_database=True) # will be faster if you have large Cremona database installed 1
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)]) # 11A = X_0(11) >>> E.sha().an() 1 >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), Integer(0), Integer(0)]) # X_1(11) >>> E.sha().an() 1 >>> EllipticCurve('14a4').sha().an() 1 >>> EllipticCurve('14a4').sha().an(use_database=True) # will be faster if you have large Cremona database installed 1
E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) E.sha().an() E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) E.sha().an() EllipticCurve('14a4').sha().an() EllipticCurve('14a4').sha().an(use_database=True) # will be faster if you have large Cremona database installed
The smallest conductor curve with nontrivial \(Sha\):
sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66b3 sage: E.sha().an() 4
>>> from sage.all import * >>> E = EllipticCurve([Integer(1),Integer(1),Integer(1),-Integer(352),-Integer(2689)]) # 66b3 >>> E.sha().an() 4
E = EllipticCurve([1,1,1,-352,-2689]) # 66b3 E.sha().an()
The four optimal quotients with nontrivial \(Sha\) and conductor <= 1000:
sage: E = EllipticCurve([0, -1, 1, -929, -10595]) # 571A sage: E.sha().an() 4 sage: E = EllipticCurve([1, 1, 0, -1154, -15345]) # 681B sage: E.sha().an() 9 sage: E = EllipticCurve([0, -1, 0, -900, -10098]) # 960D sage: E.sha().an() 4 sage: E = EllipticCurve([0, 1, 0, -20, -42]) # 960N sage: E.sha().an() 4
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(929), -Integer(10595)]) # 571A >>> E.sha().an() 4 >>> E = EllipticCurve([Integer(1), Integer(1), Integer(0), -Integer(1154), -Integer(15345)]) # 681B >>> E.sha().an() 9 >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(0), -Integer(900), -Integer(10098)]) # 960D >>> E.sha().an() 4 >>> E = EllipticCurve([Integer(0), Integer(1), Integer(0), -Integer(20), -Integer(42)]) # 960N >>> E.sha().an() 4
E = EllipticCurve([0, -1, 1, -929, -10595]) # 571A E.sha().an() E = EllipticCurve([1, 1, 0, -1154, -15345]) # 681B E.sha().an() E = EllipticCurve([0, -1, 0, -900, -10098]) # 960D E.sha().an() E = EllipticCurve([0, 1, 0, -20, -42]) # 960N E.sha().an()
The smallest conductor curve of rank > 1:
sage: E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2) sage: E.sha().an() 1.00000000000000
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), Integer(1), Integer(1), -Integer(2), Integer(0)]) # 389A (rank 2) >>> E.sha().an() 1.00000000000000
E = EllipticCurve([0, 1, 1, -2, 0]) # 389A (rank 2) E.sha().an()
The following are examples that require computation of the Mordell- Weil group and regulator:
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) sage: E.sha().an() 1 sage: E = EllipticCurve("1610f3") sage: E.sha().an() 4
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1), Integer(0)]) # 37A (rank 1) >>> E.sha().an() 1 >>> E = EllipticCurve("1610f3") >>> E.sha().an() 4
E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) E.sha().an() E = EllipticCurve("1610f3") E.sha().an()
In this case the input curve is not minimal, and if this function did not transform it to be minimal, it would give nonsense:
sage: E = EllipticCurve([0, -432*6^2]) sage: E.sha().an() 1
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), -Integer(432)*Integer(6)**Integer(2)]) >>> E.sha().an() 1
E = EllipticCurve([0, -432*6^2]) E.sha().an()
See Issue #10096: this used to give the wrong result 6.0000 before since the minimal model was not used:
sage: E = EllipticCurve([1215*1216, 0]) # non-minimal model sage: E.sha().an() # long time (2s on sage.math, 2011) 1.00000000000000 sage: E.minimal_model().sha().an() # long time (1s on sage.math, 2011) 1.00000000000000
>>> from sage.all import * >>> E = EllipticCurve([Integer(1215)*Integer(1216), Integer(0)]) # non-minimal model >>> E.sha().an() # long time (2s on sage.math, 2011) 1.00000000000000 >>> E.minimal_model().sha().an() # long time (1s on sage.math, 2011) 1.00000000000000
E = EllipticCurve([1215*1216, 0]) # non-minimal model E.sha().an() # long time (2s on sage.math, 2011) E.minimal_model().sha().an() # long time (1s on sage.math, 2011)
- an_numerical(prec=None, use_database=True, proof=None)[source]¶
Return the numerical analytic order of \(Sha\), which is a floating point number in all cases.
INPUT:
prec
– integer (default: 53); bits precision – used for the \(L\)-series computation, period, regulator, etc.use_database
– whether the rank and generators should be looked up in the database if possible. Default isTrue
proof
– boolean orNone
(default:None
, see proof.[tab] or sage.structure.proof) proof option passed onto regulator and rank computation.
Note
See also the
an()
command, which will return a provably correct integer when the rank is 0 or 1.Warning
If the curve’s generators are not known, computing them may be very time-consuming. Also, computation of the \(L\)-series derivative will be time-consuming for large rank and large conductor, and the computation time for this may increase substantially at greater precision. However, use of very low precision less than about 10 can cause the underlying PARI library functions to fail.
EXAMPLES:
sage: EllipticCurve('11a').sha().an_numerical() 1.00000000000000 sage: EllipticCurve('37a').sha().an_numerical() 1.00000000000000 sage: EllipticCurve('389a').sha().an_numerical() 1.00000000000000 sage: EllipticCurve('66b3').sha().an_numerical() 4.00000000000000 sage: EllipticCurve('5077a').sha().an_numerical() 1.00000000000000
>>> from sage.all import * >>> EllipticCurve('11a').sha().an_numerical() 1.00000000000000 >>> EllipticCurve('37a').sha().an_numerical() 1.00000000000000 >>> EllipticCurve('389a').sha().an_numerical() 1.00000000000000 >>> EllipticCurve('66b3').sha().an_numerical() 4.00000000000000 >>> EllipticCurve('5077a').sha().an_numerical() 1.00000000000000
EllipticCurve('11a').sha().an_numerical() EllipticCurve('37a').sha().an_numerical() EllipticCurve('389a').sha().an_numerical() EllipticCurve('66b3').sha().an_numerical() EllipticCurve('5077a').sha().an_numerical()
A rank 4 curve:
sage: EllipticCurve([1, -1, 0, -79, 289]).sha().an_numerical() # long time (3s on sage.math, 2011) 1.00000000000000
>>> from sage.all import * >>> EllipticCurve([Integer(1), -Integer(1), Integer(0), -Integer(79), Integer(289)]).sha().an_numerical() # long time (3s on sage.math, 2011) 1.00000000000000
EllipticCurve([1, -1, 0, -79, 289]).sha().an_numerical() # long time (3s on sage.math, 2011)
A rank 5 curve:
sage: EllipticCurve([0, 0, 1, -79, 342]).sha().an_numerical(prec=10, proof=False) # long time (22s on sage.math, 2011) 1.0
>>> from sage.all import * >>> EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(79), Integer(342)]).sha().an_numerical(prec=Integer(10), proof=False) # long time (22s on sage.math, 2011) 1.0
EllipticCurve([0, 0, 1, -79, 342]).sha().an_numerical(prec=10, proof=False) # long time (22s on sage.math, 2011)
See Issue #1115:
sage: sha = EllipticCurve('37a1').sha() sage: [sha.an_numerical(prec) for prec in range(40,100,10)] # long time (3s on sage.math, 2013) [1.0000000000, 1.0000000000000, 1.0000000000000000, 1.0000000000000000000, 1.0000000000000000000000, 1.0000000000000000000000000]
>>> from sage.all import * >>> sha = EllipticCurve('37a1').sha() >>> [sha.an_numerical(prec) for prec in range(Integer(40),Integer(100),Integer(10))] # long time (3s on sage.math, 2013) [1.0000000000, 1.0000000000000, 1.0000000000000000, 1.0000000000000000000, 1.0000000000000000000000, 1.0000000000000000000000000]
sha = EllipticCurve('37a1').sha() [sha.an_numerical(prec) for prec in range(40,100,10)] # long time (3s on sage.math, 2013)
- an_padic(p, prec=0, use_twists=True)[source]¶
Return the conjectural order of \(Sha(E/\QQ)\), according to the \(p\)-adic analogue of the Birch and Swinnerton-Dyer conjecture as formulated in [MTT1986] and [BP1993].
INPUT:
p
– a prime > 3prec
– (optional) the precision used in the computation of the \(p\)-adic L-Seriesuse_twists
– boolean (default:True
); ifTrue
the algorithm may change to a quadratic twist with minimal conductor to do the modular symbol computations rather than using the modular symbols of the curve itself. IfFalse
it forces the computation using the modular symbols of the curve itself.
OUTPUT: \(p\)-adic number - that conjecturally equals \(\# Sha(E/\QQ)\).
If
prec
is set to zero (default) then the precision is set so that at least the first \(p\)-adic digit of conjectural \(\# Sha(E/\QQ)\) is determined.EXAMPLES:
Good ordinary examples:
sage: EllipticCurve('11a1').sha().an_padic(5) # rank 0 1 + O(5^22) sage: EllipticCurve('43a1').sha().an_padic(5) # rank 1 1 + O(5) sage: EllipticCurve('389a1').sha().an_padic(5,4) # rank 2, long time (2s on sage.math, 2011) 1 + O(5^3) sage: EllipticCurve('858k2').sha().an_padic(7) # rank 0, non trivial sha, long time (10s on sage.math, 2011) 7^2 + O(7^24) sage: EllipticCurve('300b2').sha().an_padic(3) # 9 elements in sha, long time (2s on sage.math, 2011) 3^2 + O(3^24) sage: EllipticCurve('300b2').sha().an_padic(7, prec=6) # long time 2 + 7 + O(7^8)
>>> from sage.all import * >>> EllipticCurve('11a1').sha().an_padic(Integer(5)) # rank 0 1 + O(5^22) >>> EllipticCurve('43a1').sha().an_padic(Integer(5)) # rank 1 1 + O(5) >>> EllipticCurve('389a1').sha().an_padic(Integer(5),Integer(4)) # rank 2, long time (2s on sage.math, 2011) 1 + O(5^3) >>> EllipticCurve('858k2').sha().an_padic(Integer(7)) # rank 0, non trivial sha, long time (10s on sage.math, 2011) 7^2 + O(7^24) >>> EllipticCurve('300b2').sha().an_padic(Integer(3)) # 9 elements in sha, long time (2s on sage.math, 2011) 3^2 + O(3^24) >>> EllipticCurve('300b2').sha().an_padic(Integer(7), prec=Integer(6)) # long time 2 + 7 + O(7^8)
EllipticCurve('11a1').sha().an_padic(5) # rank 0 EllipticCurve('43a1').sha().an_padic(5) # rank 1 EllipticCurve('389a1').sha().an_padic(5,4) # rank 2, long time (2s on sage.math, 2011) EllipticCurve('858k2').sha().an_padic(7) # rank 0, non trivial sha, long time (10s on sage.math, 2011) EllipticCurve('300b2').sha().an_padic(3) # 9 elements in sha, long time (2s on sage.math, 2011) EllipticCurve('300b2').sha().an_padic(7, prec=6) # long time
Exceptional cases:
sage: EllipticCurve('11a1').sha().an_padic(11) # rank 0 1 + O(11^22) sage: EllipticCurve('130a1').sha().an_padic(5) # rank 1 1 + O(5)
>>> from sage.all import * >>> EllipticCurve('11a1').sha().an_padic(Integer(11)) # rank 0 1 + O(11^22) >>> EllipticCurve('130a1').sha().an_padic(Integer(5)) # rank 1 1 + O(5)
EllipticCurve('11a1').sha().an_padic(11) # rank 0 EllipticCurve('130a1').sha().an_padic(5) # rank 1
Non-split, but rank 0 case (Issue #7331):
sage: EllipticCurve('270b1').sha().an_padic(5) # rank 0, long time (2s on sage.math, 2011) 1 + O(5^22)
>>> from sage.all import * >>> EllipticCurve('270b1').sha().an_padic(Integer(5)) # rank 0, long time (2s on sage.math, 2011) 1 + O(5^22)
EllipticCurve('270b1').sha().an_padic(5) # rank 0, long time (2s on sage.math, 2011)
The output has the correct sign:
sage: EllipticCurve('123a1').sha().an_padic(41) # rank 1, long time (3s on sage.math, 2011) 1 + O(41)
>>> from sage.all import * >>> EllipticCurve('123a1').sha().an_padic(Integer(41)) # rank 1, long time (3s on sage.math, 2011) 1 + O(41)
EllipticCurve('123a1').sha().an_padic(41) # rank 1, long time (3s on sage.math, 2011)
Supersingular cases:
sage: EllipticCurve('34a1').sha().an_padic(5) # rank 0 1 + O(5^22) sage: EllipticCurve('53a1').sha().an_padic(5) # rank 1, long time (11s on sage.math, 2011) 1 + O(5)
>>> from sage.all import * >>> EllipticCurve('34a1').sha().an_padic(Integer(5)) # rank 0 1 + O(5^22) >>> EllipticCurve('53a1').sha().an_padic(Integer(5)) # rank 1, long time (11s on sage.math, 2011) 1 + O(5)
EllipticCurve('34a1').sha().an_padic(5) # rank 0 EllipticCurve('53a1').sha().an_padic(5) # rank 1, long time (11s on sage.math, 2011)
Cases that use a twist to a lower conductor:
sage: EllipticCurve('99a1').sha().an_padic(5) 1 + O(5) sage: EllipticCurve('240d3').sha().an_padic(5) # sha has 4 elements here 4 + O(5) sage: EllipticCurve('448c5').sha().an_padic(7, prec=4, use_twists=False) # long time (2s on sage.math, 2011) 2 + 7 + O(7^6) sage: EllipticCurve([-19,34]).sha().an_padic(5) # see trac #6455, long time (4s on sage.math, 2011) 1 + O(5)
>>> from sage.all import * >>> EllipticCurve('99a1').sha().an_padic(Integer(5)) 1 + O(5) >>> EllipticCurve('240d3').sha().an_padic(Integer(5)) # sha has 4 elements here 4 + O(5) >>> EllipticCurve('448c5').sha().an_padic(Integer(7), prec=Integer(4), use_twists=False) # long time (2s on sage.math, 2011) 2 + 7 + O(7^6) >>> EllipticCurve([-Integer(19),Integer(34)]).sha().an_padic(Integer(5)) # see trac #6455, long time (4s on sage.math, 2011) 1 + O(5)
EllipticCurve('99a1').sha().an_padic(5) EllipticCurve('240d3').sha().an_padic(5) # sha has 4 elements here EllipticCurve('448c5').sha().an_padic(7, prec=4, use_twists=False) # long time (2s on sage.math, 2011) EllipticCurve([-19,34]).sha().an_padic(5) # see trac #6455, long time (4s on sage.math, 2011)
Test for Issue #15737:
sage: E = EllipticCurve([-100,0]) sage: s = E.sha() sage: s.an_padic(13) 1 + O(13^20)
>>> from sage.all import * >>> E = EllipticCurve([-Integer(100),Integer(0)]) >>> s = E.sha() >>> s.an_padic(Integer(13)) 1 + O(13^20)
E = EllipticCurve([-100,0]) s = E.sha() s.an_padic(13)
- bound()[source]¶
Compute a provably correct bound on the order of the Tate-Shafarevich group of this curve.
The bound is either
False
(no bound) or a listB
of primes such that any prime divisor of the order of \(Sha\) is in this list.EXAMPLES:
sage: EllipticCurve('37a').sha().bound() ([2], 1)
>>> from sage.all import * >>> EllipticCurve('37a').sha().bound() ([2], 1)
EllipticCurve('37a').sha().bound()
- bound_kato()[source]¶
Return a list of primes \(p\) such that the theorems of Kato’s [Kat2004] and others (e.g., as explained in a thesis of Grigor Grigorov [Gri2005]) imply that if \(p\) divides the order of \(Sha(E/\QQ)\) then \(p\) is in the list.
If \(L(E,1) = 0\), then this function gives no information, so it returns
False
.THEOREM: Suppose \(L(E,1) \neq 0\) and \(p \neq 2\) is a prime such that
\(E\) does not have additive reduction at \(p\),
either the \(p\)-adic representation is surjective or has its image contained in a Borel subgroup.
Then \({ord}_p(\#Sha(E))\) is bounded from above by the \(p\)-adic valuation of \(L(E,1)\cdot\#E(\QQ)_{tor}^2 / (\Omega_E \cdot \prod c_v)\).
If the \(L\)-series vanishes, the method
p_primary_bound
can be used instead.EXAMPLES:
sage: E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) sage: E.sha().bound_kato() [2] sage: E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) sage: E.sha().bound_kato() [2] sage: E = EllipticCurve([1,1,1,-352,-2689]) # 66B3 sage: E.sha().bound_kato() [2]
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), -Integer(10), -Integer(20)]) # 11A = X_0(11) >>> E.sha().bound_kato() [2] >>> E = EllipticCurve([Integer(0), -Integer(1), Integer(1), Integer(0), Integer(0)]) # X_1(11) >>> E.sha().bound_kato() [2] >>> E = EllipticCurve([Integer(1),Integer(1),Integer(1),-Integer(352),-Integer(2689)]) # 66B3 >>> E.sha().bound_kato() [2]
E = EllipticCurve([0, -1, 1, -10, -20]) # 11A = X_0(11) E.sha().bound_kato() E = EllipticCurve([0, -1, 1, 0, 0]) # X_1(11) E.sha().bound_kato() E = EllipticCurve([1,1,1,-352,-2689]) # 66B3 E.sha().bound_kato()
For the following curve one really has that 25 divides the order of \(Sha\) (by [GJPST2009]):
sage: E = EllipticCurve([1, -1, 0, -332311, -73733731]) # 1058D1 sage: E.sha().bound_kato() # long time (about 1 second) [2, 5, 23] sage: E.galois_representation().non_surjective() # long time (about 1 second) []
>>> from sage.all import * >>> E = EllipticCurve([Integer(1), -Integer(1), Integer(0), -Integer(332311), -Integer(73733731)]) # 1058D1 >>> E.sha().bound_kato() # long time (about 1 second) [2, 5, 23] >>> E.galois_representation().non_surjective() # long time (about 1 second) []
E = EllipticCurve([1, -1, 0, -332311, -73733731]) # 1058D1 E.sha().bound_kato() # long time (about 1 second) E.galois_representation().non_surjective() # long time (about 1 second)
For this one, \(Sha\) is divisible by 7:
sage: E = EllipticCurve([0, 0, 0, -4062871, -3152083138]) # 3364C1 sage: E.sha().bound_kato() # long time (< 10 seconds) [2, 7, 29]
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), Integer(0), Integer(0), -Integer(4062871), -Integer(3152083138)]) # 3364C1 >>> E.sha().bound_kato() # long time (< 10 seconds) [2, 7, 29]
E = EllipticCurve([0, 0, 0, -4062871, -3152083138]) # 3364C1 E.sha().bound_kato() # long time (< 10 seconds)
No information about curves of rank > 0:
sage: E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) sage: E.sha().bound_kato() False
>>> from sage.all import * >>> E = EllipticCurve([Integer(0), Integer(0), Integer(1), -Integer(1), Integer(0)]) # 37A (rank 1) >>> E.sha().bound_kato() False
E = EllipticCurve([0, 0, 1, -1, 0]) # 37A (rank 1) E.sha().bound_kato()
- bound_kolyvagin(D=0, regulator=None, ignore_nonsurj_hypothesis=False)[source]¶
Given a fundamental discriminant \(D \neq -3,-4\) that satisfies the Heegner hypothesis for \(E\), return a list of primes so that Kolyvagin’s theorem (as in Gross’s paper) implies that any prime divisor of \(Sha\) is in this list.
INPUT:
D
– (optional) a fundamental discriminant < -4 that satisfies the Heegner hypothesis for \(E\); if not given, use the first such \(D\)regulator
– (optional) regulator of \(E(K)\); if not given, will be computed (which could take a long time)ignore_nonsurj_hypothesis
– (default:False
); ifTrue
, then gives the bound coming from Heegner point index, but without any hypothesis on surjectivity of the mod-\(p\) representation
OUTPUT:
list
– list of primes such that if \(p\) divides \(Sha(E/K)\), then \(p\) is in this list, unless \(E/K\) has complex multiplication or analytic rank greater than 2 (in which case we return 0)index
– the odd part of the index of the Heegner point in the full group of \(K\)-rational points on \(E\) (if \(E\) has CM, returns 0)
REMARKS:
We do not have to assume that the Manin constant is 1 (or a power of 2). If the Manin constant were divisible by a prime, that prime would get included in the list of bad primes.
We assume the Gross-Zagier theorem is true under the hypothesis that \(gcd(N,D) = 1\), instead of the stronger hypothesis \(gcd(2\cdot N,D)=1\) that is in the original Gross-Zagier paper. That Gross-Zagier is true when \(gcd(N,D)=1\) is “well-known” to the experts, but does not seem to written up well in the literature.
Correctness of the computation is guaranteed using interval arithmetic, under the assumption that the regulator, square root, and period lattice are computed to precision at least \(10^{-10}\), i.e., they are correct up to addition or a real number with absolute value less than \(10^{-10}\).
EXAMPLES:
sage: E = EllipticCurve('37a') sage: E.sha().bound_kolyvagin() ([2], 1) sage: E = EllipticCurve('141a') sage: E.sha().an() 1 sage: E.sha().bound_kolyvagin() ([2, 7], 49)
>>> from sage.all import * >>> E = EllipticCurve('37a') >>> E.sha().bound_kolyvagin() ([2], 1) >>> E = EllipticCurve('141a') >>> E.sha().an() 1 >>> E.sha().bound_kolyvagin() ([2, 7], 49)
E = EllipticCurve('37a') E.sha().bound_kolyvagin() E = EllipticCurve('141a') E.sha().an() E.sha().bound_kolyvagin()
We get no information when the curve has rank 2.:
sage: E = EllipticCurve('389a') sage: E.sha().bound_kolyvagin() (0, 0) sage: E = EllipticCurve('681b') sage: E.sha().an() 9 sage: E.sha().bound_kolyvagin() ([2, 3], 9)
>>> from sage.all import * >>> E = EllipticCurve('389a') >>> E.sha().bound_kolyvagin() (0, 0) >>> E = EllipticCurve('681b') >>> E.sha().an() 9 >>> E.sha().bound_kolyvagin() ([2, 3], 9)
E = EllipticCurve('389a') E.sha().bound_kolyvagin() E = EllipticCurve('681b') E.sha().an() E.sha().bound_kolyvagin()
- p_primary_bound(p)[source]¶
Return a provable upper bound for the order of the \(p\)-primary part \(Sha(E)(p)\) of the Tate-Shafarevich group.
INPUT:
p
– a prime > 2
OUTPUT:
e
– nonnegative integer such that \(p^e\) is an upper bound for the order of \(Sha(E)(p)\)
In particular, if this algorithm does not fail, then it proves that the \(p\)-primary part of \(Sha\) is finite. This works also for curves of rank > 1.
Note also that this bound is sharp if one assumes the main conjecture of Iwasawa theory of elliptic curves. One may use the method
p_primary_order
for checking if the extra conditions hold under which the main conjecture is known by the work of Skinner and Urban. This then returns the provable \(p\)-primary part of the Tate-Shafarevich group.Currently the algorithm is only implemented when the following conditions are verified:
The \(p\)-adic Galois representation must be surjective or must have its image contained in a Borel subgroup.
The reduction at \(p\) is not allowed to be additive.
If the reduction at \(p\) is non-split multiplicative, then the rank must be 0.
If \(p = 3\), then the reduction at 3 must be good ordinary or split multiplicative, and the rank must be 0.
ALGORITHM:
The algorithm is described in [SW2013]. The results for the reducible case can be found in [Wu2004]. The main ingredient is Kato’s result on the main conjecture in Iwasawa theory.
EXAMPLES:
sage: e = EllipticCurve('11a3') sage: e.sha().p_primary_bound(3) 0 sage: e.sha().p_primary_bound(5) 0 sage: e.sha().p_primary_bound(7) 0 sage: e.sha().p_primary_bound(11) 0 sage: e.sha().p_primary_bound(13) 0 sage: e = EllipticCurve('389a1') sage: e.sha().p_primary_bound(5) 0 sage: e.sha().p_primary_bound(7) 0 sage: e.sha().p_primary_bound(11) 0 sage: e.sha().p_primary_bound(13) 0 sage: e = EllipticCurve('858k2') sage: e.sha().p_primary_bound(3) # long time (10s on sage.math, 2011) 0
>>> from sage.all import * >>> e = EllipticCurve('11a3') >>> e.sha().p_primary_bound(Integer(3)) 0 >>> e.sha().p_primary_bound(Integer(5)) 0 >>> e.sha().p_primary_bound(Integer(7)) 0 >>> e.sha().p_primary_bound(Integer(11)) 0 >>> e.sha().p_primary_bound(Integer(13)) 0 >>> e = EllipticCurve('389a1') >>> e.sha().p_primary_bound(Integer(5)) 0 >>> e.sha().p_primary_bound(Integer(7)) 0 >>> e.sha().p_primary_bound(Integer(11)) 0 >>> e.sha().p_primary_bound(Integer(13)) 0 >>> e = EllipticCurve('858k2') >>> e.sha().p_primary_bound(Integer(3)) # long time (10s on sage.math, 2011) 0
e = EllipticCurve('11a3') e.sha().p_primary_bound(3) e.sha().p_primary_bound(5) e.sha().p_primary_bound(7) e.sha().p_primary_bound(11) e.sha().p_primary_bound(13) e = EllipticCurve('389a1') e.sha().p_primary_bound(5) e.sha().p_primary_bound(7) e.sha().p_primary_bound(11) e.sha().p_primary_bound(13) e = EllipticCurve('858k2') e.sha().p_primary_bound(3) # long time (10s on sage.math, 2011)
Some checks for Issue #6406 and Issue #16959:
sage: e.sha().p_primary_bound(7) # long time 2 sage: E = EllipticCurve('608b1') sage: E.sha().p_primary_bound(5) Traceback (most recent call last): ... ValueError: The p-adic Galois representation is not surjective or reducible. Current knowledge about Euler systems does not provide an upper bound in this case. Try an_padic for a conjectural bound. sage: E.sha().an_padic(5) # long time 1 + O(5^22) sage: E = EllipticCurve("5040bi1") sage: E.sha().p_primary_bound(5) # long time 0
>>> from sage.all import * >>> e.sha().p_primary_bound(Integer(7)) # long time 2 >>> E = EllipticCurve('608b1') >>> E.sha().p_primary_bound(Integer(5)) Traceback (most recent call last): ... ValueError: The p-adic Galois representation is not surjective or reducible. Current knowledge about Euler systems does not provide an upper bound in this case. Try an_padic for a conjectural bound. >>> E.sha().an_padic(Integer(5)) # long time 1 + O(5^22) >>> E = EllipticCurve("5040bi1") >>> E.sha().p_primary_bound(Integer(5)) # long time 0
e.sha().p_primary_bound(7) # long time E = EllipticCurve('608b1') E.sha().p_primary_bound(5) E.sha().an_padic(5) # long time E = EllipticCurve("5040bi1") E.sha().p_primary_bound(5) # long time
- p_primary_order(p)[source]¶
Return the order of the \(p\)-primary part of the Tate-Shafarevich group.
This uses the result of Skinner and Urban [SU2014] on the main conjecture in Iwasawa theory. In particular the elliptic curve must have good ordinary reduction at \(p\), the residual Galois representation must be surjective. Furthermore there must be an auxiliary prime \(\ell\) dividing the conductor of the curve exactly once such that the residual representation is ramified at \(p\).
INPUT:
p
– an odd prime
OUTPUT:
e
– nonnegative integer such that \(p^e\) is the order of the \(p\)-primary order if the conditions are satisfied and raises aValueError
otherwise.
EXAMPLES:
sage: E = EllipticCurve("389a1") # rank 2 sage: E.sha().p_primary_order(5) 0 sage: E = EllipticCurve("11a1") sage: E.sha().p_primary_order(7) 0 sage: E.sha().p_primary_order(5) Traceback (most recent call last): ... ValueError: The order is not provably known using Skinner-Urban. Try running p_primary_bound to get a bound.
>>> from sage.all import * >>> E = EllipticCurve("389a1") # rank 2 >>> E.sha().p_primary_order(Integer(5)) 0 >>> E = EllipticCurve("11a1") >>> E.sha().p_primary_order(Integer(7)) 0 >>> E.sha().p_primary_order(Integer(5)) Traceback (most recent call last): ... ValueError: The order is not provably known using Skinner-Urban. Try running p_primary_bound to get a bound.
E = EllipticCurve("389a1") # rank 2 E.sha().p_primary_order(5) E = EllipticCurve("11a1") E.sha().p_primary_order(7) E.sha().p_primary_order(5)
- two_selmer_bound()[source]¶
Return the 2-rank, i.e. the \(\GF{2}\)-dimension of the 2-torsion part of \(Sha\), provided we can determine the rank of \(E\).
EXAMPLES:
sage: sh = EllipticCurve('571a1').sha() sage: sh.two_selmer_bound() 2 sage: sh.an() 4 sage: sh = EllipticCurve('66a1').sha() sage: sh.two_selmer_bound() 0 sage: sh.an() 1 sage: sh = EllipticCurve('960d1').sha() sage: sh.two_selmer_bound() 2 sage: sh.an() 4
>>> from sage.all import * >>> sh = EllipticCurve('571a1').sha() >>> sh.two_selmer_bound() 2 >>> sh.an() 4 >>> sh = EllipticCurve('66a1').sha() >>> sh.two_selmer_bound() 0 >>> sh.an() 1 >>> sh = EllipticCurve('960d1').sha() >>> sh.two_selmer_bound() 2 >>> sh.an() 4
sh = EllipticCurve('571a1').sha() sh.two_selmer_bound() sh.an() sh = EllipticCurve('66a1').sha() sh.two_selmer_bound() sh.an() sh = EllipticCurve('960d1').sha() sh.two_selmer_bound() sh.an()