Kodaira symbols¶
Kodaira symbols encode the type of reduction of an elliptic curve at a (finite) place.
The standard notation for Kodaira Symbols is as a string which is one
of
Kodaira Symbol |
Eclib coding |
PARI Coding |
---|---|---|
AUTHORS:
David Roe <roed@math.harvard.edu>
John Cremona
- sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol(symbol)[source]¶
Return the specified Kodaira symbol.
INPUT:
symbol
– string or integer; either a string of the form “I0”, “I1”, …, “In”, “II”, “III”, “IV”, “I0*”, “I1*”, …, “In*”, “II*”, “III*”, or “IV*”, or an integer encoding a Kodaira symbol using PARI’s conventions
OUTPUT:
(KodairaSymbol) The corresponding Kodaira symbol.
EXAMPLES:
sage: KS = KodairaSymbol sage: [KS(n) for n in range(1,10)] [I0, II, III, IV, I1, I2, I3, I4, I5] sage: [KS(-n) for n in range(1,10)] [I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*] sage: all(KS(str(KS(n))) == KS(n) for n in range(-10,10) if n != 0) True
>>> from sage.all import * >>> KS = KodairaSymbol >>> [KS(n) for n in range(Integer(1),Integer(10))] [I0, II, III, IV, I1, I2, I3, I4, I5] >>> [KS(-n) for n in range(Integer(1),Integer(10))] [I0*, II*, III*, IV*, I1*, I2*, I3*, I4*, I5*] >>> all(KS(str(KS(n))) == KS(n) for n in range(-Integer(10),Integer(10)) if n != Integer(0)) True
KS = KodairaSymbol [KS(n) for n in range(1,10)] [KS(-n) for n in range(1,10)] all(KS(str(KS(n))) == KS(n) for n in range(-10,10) if n != 0)
- class sage.schemes.elliptic_curves.kodaira_symbol.KodairaSymbol_class(symbol)[source]¶
Bases:
SageObject
Class to hold a Kodaira symbol of an elliptic curve over a
-adic local field.Users should use the
KodairaSymbol()
function to construct Kodaira Symbols rather than use the class constructor directly.