Finite monoids

class sage.categories.finite_monoids.FiniteMonoids(base_category)[source]

Bases: CategoryWithAxiom_singleton

The category of finite (multiplicative) monoids.

A finite monoid is a finite sets endowed with an associative unital binary operation \(*\).

EXAMPLES:

sage: FiniteMonoids()
Category of finite monoids
sage: FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
>>> from sage.all import *
>>> FiniteMonoids()
Category of finite monoids
>>> FiniteMonoids().super_categories()
[Category of monoids, Category of finite semigroups]
FiniteMonoids()
FiniteMonoids().super_categories()
class ElementMethods[source]

Bases: object

pseudo_order()[source]

Return the pair \([k, j]\) with \(k\) minimal and \(0\leq j <k\) such that self^k == self^j.

Note that \(j\) is uniquely determined.

EXAMPLES:

sage: M = FiniteMonoids().example(); M
An example of a finite multiplicative monoid: the integers modulo 12

sage: x = M(2)
sage: [ x^i for i in range(7) ]
[1, 2, 4, 8, 4, 8, 4]
sage: x.pseudo_order()
[4, 2]

sage: x = M(3)
sage: [ x^i for i in range(7) ]
[1, 3, 9, 3, 9, 3, 9]
sage: x.pseudo_order()
[3, 1]

sage: x = M(4)
sage: [ x^i for i in range(7) ]
[1, 4, 4, 4, 4, 4, 4]
sage: x.pseudo_order()
[2, 1]

sage: x = M(5)
sage: [ x^i for i in range(7) ]
[1, 5, 1, 5, 1, 5, 1]
sage: x.pseudo_order()
[2, 0]
>>> from sage.all import *
>>> M = FiniteMonoids().example(); M
An example of a finite multiplicative monoid: the integers modulo 12

>>> x = M(Integer(2))
>>> [ x**i for i in range(Integer(7)) ]
[1, 2, 4, 8, 4, 8, 4]
>>> x.pseudo_order()
[4, 2]

>>> x = M(Integer(3))
>>> [ x**i for i in range(Integer(7)) ]
[1, 3, 9, 3, 9, 3, 9]
>>> x.pseudo_order()
[3, 1]

>>> x = M(Integer(4))
>>> [ x**i for i in range(Integer(7)) ]
[1, 4, 4, 4, 4, 4, 4]
>>> x.pseudo_order()
[2, 1]

>>> x = M(Integer(5))
>>> [ x**i for i in range(Integer(7)) ]
[1, 5, 1, 5, 1, 5, 1]
>>> x.pseudo_order()
[2, 0]
M = FiniteMonoids().example(); M
x = M(2)
[ x^i for i in range(7) ]
x.pseudo_order()
x = M(3)
[ x^i for i in range(7) ]
x.pseudo_order()
x = M(4)
[ x^i for i in range(7) ]
x.pseudo_order()
x = M(5)
[ x^i for i in range(7) ]
x.pseudo_order()

Todo

more appropriate name? see, for example, Jean-Eric Pin’s lecture notes on semigroups.

class ParentMethods[source]

Bases: object

nerve()[source]

The nerve (classifying space) of this monoid.

OUTPUT:

the nerve \(BG\) (if \(G\) denotes this monoid), as a simplicial set. The \(k\)-dimensional simplices of this object are indexed by products of \(k\) elements in the monoid:

\[a_1 * a_2 * \cdots * a_k\]

The \(0\)-th face of this is obtained by deleting \(a_1\), and the \(k\)-th face is obtained by deleting \(a_k\). The other faces are obtained by multiplying elements: the 1st face is

\[(a1 * a_2) * \cdots * a_k\]

and so on. See Wikipedia article Nerve_(category_theory), which describes the construction of the nerve as a simplicial set.

A simplex in this simplicial set will be degenerate if in the corresponding product of \(k\) elements, one of those elements is the identity. So we only need to keep track of the products of non-identity elements. Similarly, if a product \(a_{i-1} a_i\) is the identity element, then the corresponding face of the simplex will be a degenerate simplex.

EXAMPLES:

The nerve (classifying space) of the cyclic group of order 2 is infinite-dimensional real projective space.

sage: Sigma2 = groups.permutation.Cyclic(2)                             # needs sage.groups
sage: BSigma2 = Sigma2.nerve()                                          # needs sage.graphs sage.groups
sage: BSigma2.cohomology(4, base_ring=GF(2))                            # needs sage.graphs sage.groups sage.modules
Vector space of dimension 1 over Finite Field of size 2
>>> from sage.all import *
>>> Sigma2 = groups.permutation.Cyclic(Integer(2))                             # needs sage.groups
>>> BSigma2 = Sigma2.nerve()                                          # needs sage.graphs sage.groups
>>> BSigma2.cohomology(Integer(4), base_ring=GF(Integer(2)))                            # needs sage.graphs sage.groups sage.modules
Vector space of dimension 1 over Finite Field of size 2
Sigma2 = groups.permutation.Cyclic(2)                             # needs sage.groups
BSigma2 = Sigma2.nerve()                                          # needs sage.graphs sage.groups
BSigma2.cohomology(4, base_ring=GF(2))                            # needs sage.graphs sage.groups sage.modules

The \(k\)-simplices of the nerve are named after the chains of \(k\) non-unit elements to be multiplied. The group \(\Sigma_2\) has two elements, written () (the identity element) and (1,2) in Sage. So the 1-cells and 2-cells in \(B\Sigma_2\) are:

sage: BSigma2.n_cells(1)                                                # needs sage.graphs sage.groups
[(1,2)]
sage: BSigma2.n_cells(2)                                                # needs sage.graphs sage.groups
[(1,2) * (1,2)]
>>> from sage.all import *
>>> BSigma2.n_cells(Integer(1))                                                # needs sage.graphs sage.groups
[(1,2)]
>>> BSigma2.n_cells(Integer(2))                                                # needs sage.graphs sage.groups
[(1,2) * (1,2)]
BSigma2.n_cells(1)                                                # needs sage.graphs sage.groups
BSigma2.n_cells(2)                                                # needs sage.graphs sage.groups

Another construction of the group, with different names for its elements:

sage: # needs sage.groups sage.rings.number_field
sage: C2 = groups.misc.MultiplicativeAbelian([2])
sage: BC2 = C2.nerve()
sage: BC2.n_cells(0)
[1]
sage: BC2.n_cells(1)
[f]
sage: BC2.n_cells(2)
[f * f]
>>> from sage.all import *
>>> # needs sage.groups sage.rings.number_field
>>> C2 = groups.misc.MultiplicativeAbelian([Integer(2)])
>>> BC2 = C2.nerve()
>>> BC2.n_cells(Integer(0))
[1]
>>> BC2.n_cells(Integer(1))
[f]
>>> BC2.n_cells(Integer(2))
[f * f]
# needs sage.groups sage.rings.number_field
C2 = groups.misc.MultiplicativeAbelian([2])
BC2 = C2.nerve()
BC2.n_cells(0)
BC2.n_cells(1)
BC2.n_cells(2)

With mod \(p\) coefficients, \(B \Sigma_p\) should have its first nonvanishing homology group in dimension \(p\):

sage: Sigma3 = groups.permutation.Symmetric(3)                          # needs sage.groups
sage: BSigma3 = Sigma3.nerve()                                          # needs sage.graphs sage.groups
sage: BSigma3.homology(range(4), base_ring=GF(3))                       # needs sage.graphs sage.groups
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 0 over Finite Field of size 3,
 2: Vector space of dimension 0 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
>>> from sage.all import *
>>> Sigma3 = groups.permutation.Symmetric(Integer(3))                          # needs sage.groups
>>> BSigma3 = Sigma3.nerve()                                          # needs sage.graphs sage.groups
>>> BSigma3.homology(range(Integer(4)), base_ring=GF(Integer(3)))                       # needs sage.graphs sage.groups
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 0 over Finite Field of size 3,
 2: Vector space of dimension 0 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
Sigma3 = groups.permutation.Symmetric(3)                          # needs sage.groups
BSigma3 = Sigma3.nerve()                                          # needs sage.graphs sage.groups
BSigma3.homology(range(4), base_ring=GF(3))                       # needs sage.graphs sage.groups

Note that we can construct the \(n\)-skeleton for \(B\Sigma_2\) for relatively large values of \(n\), while for \(B\Sigma_3\), the complexes get large pretty quickly:

sage: # needs sage.graphs sage.groups
sage: Sigma2.nerve().n_skeleton(14)
Simplicial set with 15 non-degenerate simplices
sage: BSigma3 = Sigma3.nerve()
sage: BSigma3.n_skeleton(3)
Simplicial set with 156 non-degenerate simplices
sage: BSigma3.n_skeleton(4)
Simplicial set with 781 non-degenerate simplices
>>> from sage.all import *
>>> # needs sage.graphs sage.groups
>>> Sigma2.nerve().n_skeleton(Integer(14))
Simplicial set with 15 non-degenerate simplices
>>> BSigma3 = Sigma3.nerve()
>>> BSigma3.n_skeleton(Integer(3))
Simplicial set with 156 non-degenerate simplices
>>> BSigma3.n_skeleton(Integer(4))
Simplicial set with 781 non-degenerate simplices
# needs sage.graphs sage.groups
Sigma2.nerve().n_skeleton(14)
BSigma3 = Sigma3.nerve()
BSigma3.n_skeleton(3)
BSigma3.n_skeleton(4)

Finally, note that the classifying space of the order \(p\) cyclic group is smaller than that of the symmetric group on \(p\) letters, and its first homology group appears earlier:

sage: # needs sage.graphs sage.groups sage.rings.number_field
sage: C3 = groups.misc.MultiplicativeAbelian([3])
sage: list(C3)
[1, f, f^2]
sage: BC3 = C3.nerve()
sage: BC3.n_cells(1)
[f, f^2]
sage: BC3.n_cells(2)
[f * f, f * f^2, f^2 * f, f^2 * f^2]
sage: len(BSigma3.n_cells(2))
25
sage: len(BC3.n_cells(3))
8
sage: len(BSigma3.n_cells(3))
125
sage: BC3.homology(range(4), base_ring=GF(3))
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 1 over Finite Field of size 3,
 2: Vector space of dimension 1 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
sage: BC5 = groups.permutation.Cyclic(5).nerve()
sage: BC5.homology(range(4), base_ring=GF(5))
{0: Vector space of dimension 0 over Finite Field of size 5,
 1: Vector space of dimension 1 over Finite Field of size 5,
 2: Vector space of dimension 1 over Finite Field of size 5,
 3: Vector space of dimension 1 over Finite Field of size 5}
>>> from sage.all import *
>>> # needs sage.graphs sage.groups sage.rings.number_field
>>> C3 = groups.misc.MultiplicativeAbelian([Integer(3)])
>>> list(C3)
[1, f, f^2]
>>> BC3 = C3.nerve()
>>> BC3.n_cells(Integer(1))
[f, f^2]
>>> BC3.n_cells(Integer(2))
[f * f, f * f^2, f^2 * f, f^2 * f^2]
>>> len(BSigma3.n_cells(Integer(2)))
25
>>> len(BC3.n_cells(Integer(3)))
8
>>> len(BSigma3.n_cells(Integer(3)))
125
>>> BC3.homology(range(Integer(4)), base_ring=GF(Integer(3)))
{0: Vector space of dimension 0 over Finite Field of size 3,
 1: Vector space of dimension 1 over Finite Field of size 3,
 2: Vector space of dimension 1 over Finite Field of size 3,
 3: Vector space of dimension 1 over Finite Field of size 3}
>>> BC5 = groups.permutation.Cyclic(Integer(5)).nerve()
>>> BC5.homology(range(Integer(4)), base_ring=GF(Integer(5)))
{0: Vector space of dimension 0 over Finite Field of size 5,
 1: Vector space of dimension 1 over Finite Field of size 5,
 2: Vector space of dimension 1 over Finite Field of size 5,
 3: Vector space of dimension 1 over Finite Field of size 5}
# needs sage.graphs sage.groups sage.rings.number_field
C3 = groups.misc.MultiplicativeAbelian([3])
list(C3)
BC3 = C3.nerve()
BC3.n_cells(1)
BC3.n_cells(2)
len(BSigma3.n_cells(2))
len(BC3.n_cells(3))
len(BSigma3.n_cells(3))
BC3.homology(range(4), base_ring=GF(3))
BC5 = groups.permutation.Cyclic(5).nerve()
BC5.homology(range(4), base_ring=GF(5))
rhodes_radical_congruence(base_ring=None)[source]

Return the Rhodes radical congruence of the semigroup.

The Rhodes radical congruence is the congruence induced on S by the map \(S \rightarrow kS \rightarrow kS / rad kS\) with k a field.

INPUT:

  • base_ring – (default: \(\QQ\)) a field

OUTPUT:

  • A list of couples (m, n) with \(m \neq n\) in the lexicographic order for the enumeration of the monoid self.

EXAMPLES:

sage: M = Monoids().Finite().example()
sage: M.rhodes_radical_congruence()                                     # needs sage.modules
[(0, 6), (2, 8), (4, 10)]

sage: # needs sage.combinat sage.groups sage.modules
sage: from sage.monoids.hecke_monoid import HeckeMonoid
sage: H3 = HeckeMonoid(SymmetricGroup(3))
sage: H3.repr_element_method(style='reduced')
sage: H3.rhodes_radical_congruence()
[([1, 2], [2, 1]), ([1, 2], [1, 2, 1]), ([2, 1], [1, 2, 1])]
>>> from sage.all import *
>>> M = Monoids().Finite().example()
>>> M.rhodes_radical_congruence()                                     # needs sage.modules
[(0, 6), (2, 8), (4, 10)]

>>> # needs sage.combinat sage.groups sage.modules
>>> from sage.monoids.hecke_monoid import HeckeMonoid
>>> H3 = HeckeMonoid(SymmetricGroup(Integer(3)))
>>> H3.repr_element_method(style='reduced')
>>> H3.rhodes_radical_congruence()
[([1, 2], [2, 1]), ([1, 2], [1, 2, 1]), ([2, 1], [1, 2, 1])]
M = Monoids().Finite().example()
M.rhodes_radical_congruence()                                     # needs sage.modules
# needs sage.combinat sage.groups sage.modules
from sage.monoids.hecke_monoid import HeckeMonoid
H3 = HeckeMonoid(SymmetricGroup(3))
H3.repr_element_method(style='reduced')
H3.rhodes_radical_congruence()

By Maschke’s theorem, every group algebra over \(\QQ\) is semisimple hence the Rhodes radical of a group must be trivial:

sage: SymmetricGroup(3).rhodes_radical_congruence()                     # needs sage.combinat sage.groups sage.modules
[]
sage: DihedralGroup(10).rhodes_radical_congruence()                     # needs sage.groups sage.modules
[]
>>> from sage.all import *
>>> SymmetricGroup(Integer(3)).rhodes_radical_congruence()                     # needs sage.combinat sage.groups sage.modules
[]
>>> DihedralGroup(Integer(10)).rhodes_radical_congruence()                     # needs sage.groups sage.modules
[]
SymmetricGroup(3).rhodes_radical_congruence()                     # needs sage.combinat sage.groups sage.modules
DihedralGroup(10).rhodes_radical_congruence()                     # needs sage.groups sage.modules

REFERENCES: