Manifolds¶
- class sage.categories.manifolds.ComplexManifolds(base, name=None)[source]¶
Bases:
Category_over_base_ring
The category of complex manifolds.
A \(d\)-dimensional complex manifold is a manifold whose underlying vector space is \(\CC^d\) and has a holomorphic atlas.
- super_categories()[source]¶
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).super_categories() [Category of topological spaces]
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).super_categories() [Category of topological spaces]
from sage.categories.manifolds import Manifolds Manifolds(RR).super_categories()
- class sage.categories.manifolds.Manifolds(base, name=None)[source]¶
Bases:
Category_over_base_ring
The category of manifolds over any topological field.
Let \(k\) be a topological field. A \(d\)-dimensional \(k\)-manifold \(M\) is a second countable Hausdorff space such that the neighborhood of any point \(x \in M\) is homeomorphic to \(k^d\).
EXAMPLES:
sage: # needs sage.rings.real_mpfr sage: from sage.categories.manifolds import Manifolds sage: C = Manifolds(RR); C Category of manifolds over Real Field with 53 bits of precision sage: C.super_categories() [Category of topological spaces]
>>> from sage.all import * >>> # needs sage.rings.real_mpfr >>> from sage.categories.manifolds import Manifolds >>> C = Manifolds(RR); C Category of manifolds over Real Field with 53 bits of precision >>> C.super_categories() [Category of topological spaces]
# needs sage.rings.real_mpfr from sage.categories.manifolds import Manifolds C = Manifolds(RR); C C.super_categories()
- class AlmostComplex(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of almost complex manifolds.
An almost complex manifold \(M\) is a manifold with a smooth tensor field \(J\) of rank \((1, 1)\) such that \(J^2 = -1\) when regarded as a vector bundle isomorphism \(J : TM \to TM\) on the tangent bundle. The tensor field \(J\) is called the almost complex structure of \(M\).
- extra_super_categories()[source]¶
Return the extra super categories of
self
.An almost complex manifold is smooth.
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).AlmostComplex().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of smooth manifolds over Real Field with 53 bits of precision]
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).AlmostComplex().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of smooth manifolds over Real Field with 53 bits of precision]
from sage.categories.manifolds import Manifolds Manifolds(RR).AlmostComplex().super_categories() # indirect doctest # needs sage.rings.real_mpfr
- class Analytic(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of complex manifolds.
An analytic manifold is a manifold with an analytic atlas.
- extra_super_categories()[source]¶
Return the extra super categories of
self
.An analytic manifold is smooth.
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Analytic().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of smooth manifolds over Real Field with 53 bits of precision]
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Analytic().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of smooth manifolds over Real Field with 53 bits of precision]
from sage.categories.manifolds import Manifolds Manifolds(RR).Analytic().super_categories() # indirect doctest # needs sage.rings.real_mpfr
- class Connected(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of connected manifolds.
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: C = Manifolds(RR).Connected() sage: TestSuite(C).run(skip='_test_category_over_bases')
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> C = Manifolds(RR).Connected() >>> TestSuite(C).run(skip='_test_category_over_bases')
from sage.categories.manifolds import Manifolds C = Manifolds(RR).Connected() TestSuite(C).run(skip='_test_category_over_bases')
- class Differentiable(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of differentiable manifolds.
A differentiable manifold is a manifold with a differentiable atlas.
- class FiniteDimensional(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
Category of finite dimensional manifolds.
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: C = Manifolds(RR).FiniteDimensional() sage: TestSuite(C).run(skip='_test_category_over_bases')
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> C = Manifolds(RR).FiniteDimensional() >>> TestSuite(C).run(skip='_test_category_over_bases')
from sage.categories.manifolds import Manifolds C = Manifolds(RR).FiniteDimensional() TestSuite(C).run(skip='_test_category_over_bases')
- class ParentMethods[source]¶
Bases:
object
- dimension()[source]¶
Return the dimension of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: M = Manifolds(RR).example() sage: M.dimension() 3
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> M = Manifolds(RR).example() >>> M.dimension() 3
from sage.categories.manifolds import Manifolds M = Manifolds(RR).example() M.dimension()
- class Smooth(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
The category of smooth manifolds.
A smooth manifold is a manifold with a smooth atlas.
- extra_super_categories()[source]¶
Return the extra super categories of
self
.A smooth manifold is differentiable.
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Smooth().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of differentiable manifolds over Real Field with 53 bits of precision]
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Smooth().super_categories() # indirect doctest # needs sage.rings.real_mpfr [Category of differentiable manifolds over Real Field with 53 bits of precision]
from sage.categories.manifolds import Manifolds Manifolds(RR).Smooth().super_categories() # indirect doctest # needs sage.rings.real_mpfr
- class SubcategoryMethods[source]¶
Bases:
object
- AlmostComplex()[source]¶
Return the subcategory of the almost complex objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).AlmostComplex() # needs sage.rings.real_mpfr Category of almost complex manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).AlmostComplex() # needs sage.rings.real_mpfr Category of almost complex manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(RR).AlmostComplex() # needs sage.rings.real_mpfr
- Analytic()[source]¶
Return the subcategory of the analytic objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Analytic() # needs sage.rings.real_mpfr Category of analytic manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Analytic() # needs sage.rings.real_mpfr Category of analytic manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(RR).Analytic() # needs sage.rings.real_mpfr
- Complex()[source]¶
Return the subcategory of manifolds over \(\CC\) of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(CC).Complex() # needs sage.rings.real_mpfr Category of complex manifolds over Complex Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(CC).Complex() # needs sage.rings.real_mpfr Category of complex manifolds over Complex Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(CC).Complex() # needs sage.rings.real_mpfr
- Connected()[source]¶
Return the full subcategory of the connected objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Connected() # needs sage.rings.real_mpfr Category of connected manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Connected() # needs sage.rings.real_mpfr Category of connected manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(RR).Connected() # needs sage.rings.real_mpfr
- Differentiable()[source]¶
Return the subcategory of the differentiable objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Differentiable() # needs sage.rings.real_mpfr Category of differentiable manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Differentiable() # needs sage.rings.real_mpfr Category of differentiable manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(RR).Differentiable() # needs sage.rings.real_mpfr
- FiniteDimensional()[source]¶
Return the full subcategory of the finite dimensional objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: C = Manifolds(RR).Connected().FiniteDimensional(); C # needs sage.rings.real_mpfr Category of finite dimensional connected manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> C = Manifolds(RR).Connected().FiniteDimensional(); C # needs sage.rings.real_mpfr Category of finite dimensional connected manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds C = Manifolds(RR).Connected().FiniteDimensional(); C # needs sage.rings.real_mpfr
- Smooth()[source]¶
Return the subcategory of the smooth objects of
self
.EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).Smooth() # needs sage.rings.real_mpfr Category of smooth manifolds over Real Field with 53 bits of precision
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).Smooth() # needs sage.rings.real_mpfr Category of smooth manifolds over Real Field with 53 bits of precision
from sage.categories.manifolds import Manifolds Manifolds(RR).Smooth() # needs sage.rings.real_mpfr
- additional_structure()[source]¶
Return
None
.Indeed, the category of manifolds defines no new structure: a morphism of topological spaces between manifolds is a manifold morphism.
See also
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).additional_structure()
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).additional_structure()
from sage.categories.manifolds import Manifolds Manifolds(RR).additional_structure()
- super_categories()[source]¶
EXAMPLES:
sage: from sage.categories.manifolds import Manifolds sage: Manifolds(RR).super_categories() [Category of topological spaces]
>>> from sage.all import * >>> from sage.categories.manifolds import Manifolds >>> Manifolds(RR).super_categories() [Category of topological spaces]
from sage.categories.manifolds import Manifolds Manifolds(RR).super_categories()