Isomorphic Objects Functorial Construction¶
AUTHORS:
Nicolas M. Thiery (2010): initial revision
- class sage.categories.isomorphic_objects.IsomorphicObjectsCategory(category, *args)[source]¶
Bases:
RegressiveCovariantConstructionCategory
- classmethod default_super_categories(category)[source]¶
Return the default super categories of
category.IsomorphicObjects()
.Mathematical meaning: if
is the image of by an isomorphism in the category , then is both a subobject of and a quotient of in the category .INPUT:
cls
– the classIsomorphicObjectsCategory
category
– a category
OUTPUT: a (join) category
In practice, this returns
category.Subobjects()
andcategory.Quotients()
, joined together with the result of the methodRegressiveCovariantConstructionCategory.default_super_categories()
(that is the join ofcategory
andcat.IsomorphicObjects()
for eachcat
in the super categories ofcategory
).EXAMPLES:
Consider
category=Groups()
, which hascat=Monoids()
as super category. Then, the image of a group by a group isomorphism is simultaneously a subgroup of , a subquotient of , a group by itself, and the image of by a monoid isomorphism:sage: Groups().IsomorphicObjects().super_categories() [Category of groups, Category of subquotients of monoids, Category of quotients of semigroups, Category of isomorphic objects of sets]
>>> from sage.all import * >>> Groups().IsomorphicObjects().super_categories() [Category of groups, Category of subquotients of monoids, Category of quotients of semigroups, Category of isomorphic objects of sets]
Groups().IsomorphicObjects().super_categories()
Mind the last item above: there is indeed currently nothing implemented about isomorphic objects of monoids.
This resulted from the following call:
sage: sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_super_categories(Groups()) Join of Category of groups and Category of subquotients of monoids and Category of quotients of semigroups and Category of isomorphic objects of sets
>>> from sage.all import * >>> sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_super_categories(Groups()) Join of Category of groups and Category of subquotients of monoids and Category of quotients of semigroups and Category of isomorphic objects of sets
sage.categories.isomorphic_objects.IsomorphicObjectsCategory.default_super_categories(Groups())